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Abstract
Pharos: A Scalable Distributed Architecture for Locating HeterogeneousInformation SourcesbyRon A. DolinInformation retrieval over the Internet increasingly requires the �ltering of thou-sands of information sources. As the number of sources increases, new waysof automatically summarizing, discovering, and selecting sources relevant to auser's query are needed. We introduce Pharos, a highly scalable distributedarchitecture for locating heterogeneous information sources. Its design is hi-erarchical, thus allowing it to scale well as the number of information sourcesincreases. We demonstrate the feasibility of the Pharos architecture using 2500USENET newsgroups as separate collections. Each newsgroup is summarizedvia automated Library of Congress classi�cation. We show that using Pharos asan intermediate retrieval mechanism provides acceptable accuracy of source se-lection compared to selecting sources using complete classi�cation information,while maintaining good scalability.
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Preface
research: careful, systematic, patient study and investigation in some �eld ofknowledge, undertaken to discover or establish facts or principles.technology: 1. the science or study of the practical or industrial arts, appliedsciences, etc. 2. applied science. 3. a method, process, etc. for handlinga speci�c technical problem. 4. the system by which a society provides itsmembers with those things needed or desired.progress: 1. a moving forward or onward. 2. forward course; development. 3.advance toward perfection or to a higher or better state; improvement.\The little farmers watched debt creep up on them like the tide.They sprayed the trees and sold no crop, they pruned and graftedand could not pick the crop. And the men of knowledge have worked,have considered, and the fruit is rotting on the ground, and the de-caying mash in the wine vat is poisoning the air. And taste the wine{ no grape 
avor at all, just sulphur and tannic acid and alcohol.\This little orchard will be a part of a great holding next year,for the debt will have choked the owner.\This vineyard will belong to the bank. Only the great ownerscan survive, for they own the canneries, too. And four pears peeledand cut in half, cooked and canned, still cost �fteen cents. And thexxvi



canned pears do not spoil. They will last for years.\The decay spreads over the State, and the sweet smell is a greatsorrow on the land. Men who can graft the trees and make the seedfertile and big can �nd no way to let the hungry people eat theirproduce. Men who have created new fruits in the world cannotcreate a system whereby their fruits may be eaten. And the failurehangs over the State like a great sorrow."John Steinbeck, The Grapes of Wrath\...The last clear de�nite function of man { muscles aching towork, minds aching to create beyond the single need { this is man.To build a wall, to build a house, a dam, and in the wall and houseand dam to put something of the wall, the house, the dam; to takehard muscles from the lifting, to take the clear lines and form fromconceiving. For man, unlike any other thing organic or inorganic inthe universe, grows beyond his work, walks up the stairs of his con-cepts, emerges ahead of his accomplishments. This you may say ofman { when theories change and crash, when schools, philosophies,when narrow dark alleys of thought, national, religious, economic,grow and disintegrate, man reaches, stumbles forward, painfully,mistakenly sometimes. Having stepped forward, he may slip back,but only half a step, never the full step back. This you may say andknow it and know it. This you may know when the bombs plum-met out of the black planes on the market place, when prisoners arestuck like pigs, when the crushed bodies drain �lthily in the dust.You may know it in this way. If the step were not being taken, if thestumbling-forward ache were not alive, the bombs would not fall,the throats would not be cut. Fear the time when the bombs stopfalling while the bombers live { for every bomb is proof that thespirit has not died. And fear the time when the strikes stop whilethe great owners live { for every little beaten strike is proof that thestep is being taken. And this you can know { fear the time whenManself will not su�er and die for a concept, for this one quality isthe foundation of Manself, and this one quality is man, distinctivein the universe." John Steinbeck, The Grapes of Wrathxxvii



\It is a grave duty which I now face. In preparing for it, I havetried to enquire: what great principle or ideal is it that has keptthis Union so long together? And I believe that it was not the merematter of separation of the colonies from the motherland, but thatsentiment in the Declaration of Independence which gave liberty tothe people of this country and hope to all the world. This senti-ment was the ful�llment of an ancient dream, which men have heldthrough all time, that they might one day shake o� their chains and�nd freedom in the brotherhood of life. We gained democracy, andnow there is a question of whether it is �t to survive.\Perhaps we have come to the dreadful day of awakening, and thedream is ended. If so, I am afraid it must be ended forever. I cannotbelieve that ever again will men have the opportunity we have had.Perhaps we should admit that, and concede that our ideals of libertyand equality are decadent and doomed. I have heard of an easternmonarch who once charged his wise men to invent him a sentencewhich would be true and appropriate in all times and situations.They presented him the words, `And this too shall pass away.'\That is a comforting thought in time of a�iction { `And thistoo shall pass away.' And yet { let us believe that it is not true! Letus live to prove that we can cultivate the natural world that is aboutus, and the intellectual and moral world that is within us, so thatwe may secure an individual, social and political prosperity, whosecourse shall be forward, and which, while the earth endures, shallnot pass away...."Abraham Lincoln, Farewell Address, 1861, before assumingthe Presidency and the beginning of the U.S. Civil War(as told by Kurt Vonnegut in \Timequake")
xxviii



Chapter 1
Introduction
Information retrieval over the Internet increasingly requires the �ltering of thou-sands of heterogeneous information sources. Important sources of informationinclude not only traditional databases with structured data and queries, butalso increasing numbers of non-traditional, semi- or un-structured collectionssuch as Web sites, FTP archives, and newsgroups. As the number and vari-ety of information sources increase, new ways of summarizing, discovering, andselecting collections relevant to a user's query are needed. One such methodinvolves the use of classi�cation schemes, such as the Library of Congress Clas-si�cation (LCC) [Lib86], with which a collection may be represented based onaspects of its content, irrespective of the structure of the actual data or docu-ments. For such a system to be useful in a large-scale distributed environment,it must be easy to use for both collection managers and users. For collectionmanagers, it must be possible to classify collections automatically within a clas-1



2 CHAPTER 1.si�cation scheme. Furthermore, there must be a straightforward and intuitiveinterface with which the user may use the scheme to assist in information re-trieval (IR). Finally, once the collections are summarized, this information mustbe distributed across the network within a clearly de�ned architecture.The Alexandria Digital Library (ADL) Project [ACD+95] focuses on geo-ref-erenced information, whether text, maps, aerial photographs, or satellite im-ages. As a result, we are interested in techniques that work with both text andnon-text, such as combined textual and graphical queries, multi-dimensionalindexing, and IR methods that are not solely dependent on words or phrases.Part of this work involves locating relevant online sources of information. Inparticular, we have designed and tested aspects of a distributed architecture,Pharos, which we believe will scale up to �106 heterogeneous sources [DAE97,DAED97, DAEP98]. Pharos accommodates heterogeneity in content and for-mat, both across multiple sources as well as within a single source. That is,we consider sources to include Web sites, FTP archives, newsgroups, and fulldigital libraries; all of these systems can include a wide variety of content andmultimedia data formats.This dissertation focuses on the selection of collections of documents ratherthan on particular documents themselves. Thus, we are not directly addressingthe problem of a user �nding a particular document via author, title, keyword,etc. However, a particular author or title is generally included in one or moreinformation domains, such as subject area, geographical region, time period,image feature, type of business, etc. By focusing on �nding collections whichare characterized by such domains, we believe that users are likely to �nd those



1.1. 3authors and titles which are relevant to the concepts underlying specializedqueries. The reason for such a change in focus is that we believe that locatingcollections by domains is a more scalable methodology than locating particularauthors, titles, etc.Pharos is based on the use of hierarchical classi�cation schemes. These in-clude not only well-known `subject' (or `concept') based schemes such as theDewey Decimal Classi�cation and the LCC, but also, for example, geographicclassi�cations, which might be constructed as layers of smaller and smaller hier-archical longitude/latitude boxes. Pharos is designed to work with sophisticatedqueries that utilize subjects, geographical locations, temporal speci�cations, andother information domains. The Pharos architecture requires that hierarchicallystructured collection metadata be extracted so that it can be partitioned in sucha way as to greatly enhance scalability. Automated classi�cation is importantto Pharos because it allows information sources to extract automatically therequisite collection metadata that must be distributed.1.1 Signi�cance of the ResearchThis research focuses on two main themes: scalability and 
exibility.1.1.1 ScalabilityWe de�ne scalability as the ability (of a system) to accommodate growth whilemaintaining acceptable performance (up to a su�ciently large environment). In



4 CHAPTER 1.the areas of distributed information systems and resource discovery, scalabilityrefers both to source parameters as well as to user parameters. Thus, we re-quire that Pharos is able to accommodate an increasing number of informationsources, increasing sizes of collections, etc. In addition, we require Pharos to beable to handle an increasing number of users. Our research has been orientedtoward speci�c scalability goals, such as being able to handle 106 sources and108 users { in other words, the Internet. We have also attempted to estimaterigorously the necessary resource utilization.In many IR systems involving multiple collections, it is straightforward to allowfor growth by allowing retrieval accuracy to degrade (e.g. [MZ94]). However,scalability requires acceptable performance, including acceptable query results.This research is important in that a high level of scalability is achieved whilemaintaining good retrieval accuracy. In order to accomplish this, we have com-pletely speci�ed the network architecture of Pharos, including the metadatastructure and placement, and the mechanisms for metadata propagation andretrieval. Pharos achieves scalability by using a hierarchical metadata struc-ture and a highly decentralized metadata distribution, storage, and retrievalmechanism.
1.1.2 FlexibilityIn one sense, 
exibility can be viewed as another type of scalability { namely,in accommodating the growing diversity of data and the growing uses and com-plexity of information systems. Pharos has been designed around a very general



1.2. 5framework that can work with data that is heterogeneous in both content andformat, including text, maps, images, etc. User queries in Pharos are express-ible as combinations of di�erent information domains, such as keyword/subject,geographical region, and time period. In addition, Pharos is designed to extenduser source selection beyond linear ranking, and to give control of the selectionmechanism to the user, rather than some intermediate network server. This al-lows the user to include not only factors such as number of relevant documentsfor a given collection, but also non-content factors such as network parameters,use charges, etc. These values are made available to the user interface, whichcan then make them available to the user in customizable ways to aid in sourceselection. Finally, Pharos provides a signi�cant level of autonomy to the in-formation sources. It allows them a fairly general framework within which todescribe their collections and also permits them to determine their own meta-data update frequency. Pharos is intended to work with heterogeneity not onlyacross collections, but also within collections. This diversity includes both dataformat and data content.
1.2 Research ObjectivesThe main goals of this research, as previously discussed, are 1) to develop adistributed architecture that scales well, and 2) to enhance the selection ofinformation sources and query 
exibility. The architecture must be able towork with non-text entities such as images, while still being applicable to textentities. In particular, besides content keywords and/or concepts, queries should



6 CHAPTER 1.be able to incorporate temporal and geographical speci�cations.As an outgrowth of the need to evaluate the e�ectiveness of attaining the pri-mary objectives, a secondary goal of the research is to develop evaluation metricsto measure the accuracy of the selection of information sources in the contextof high scalability. Finally, another objective is to encourage and enhance therelationship between library science and computer science in the area of digitallibrary research.
1.3 AssumptionsThis design is based on several assumptions. First, we assume that �lteringsources iteratively with �ner and �ner grain metadata will yield a su�cientnumber of sources with relevant content. Second, we assume that the classi-�cation system used to summarize collections is reasonably accurate. Third,we assume that querying sources that have a large total number of `relevant'documents, a large percentage of `relevant' documents, or some combination ofthe two, are likely to have documents that contain information that satisfy auser's query. Fourth, we assume that sending a query to a small number ofgood sources is su�cient to acquire desired information. Of these assumptions,we attempt to verify the �rst two. We do not address the second two in thisdissertation.



1.4. 71.4 OutlineIn the next chapter, we discuss background and related work. Then, in Chap-ter 3, we motivate the problem of large-scale information discovery and retrieval,and present an overview of the methodology used by Pharos. Next, we describethe Pharos architecture in detail in Chapter 4. One long-range goal of this workis the construction of a distributed prototype system. However, before begin-ning a prototype, we �rst study the feasibility of our architecture. This studyhas two main components. The �rst is to compare the scalability of Pharoswith that of some other existing or proposed architectures; this is described inChapter 5. Chapter 6 then describes the second feasibility study: to analyzethe expected accuracy of Pharos query results using simulated queries and in-formation sources. Given the results of this work, we describe the beginning ofa prototype in Chapter 7, including an evaluation of its query performance andscalability. Finally, after summarizing the work in Chapter 8, we discuss futuredirections in Chapter 9.
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Chapter 2
Background and Related Work
There are several components to this research in both the design of the archi-tecture and the development of the prototype. There has been work done inmany areas that relate to one or more of these components. In particular, thefollowing general areas are relevant to this research: classi�cation, informationretrieval, search engines, and resource discovery and digital libraries.
2.1 Classi�cationGenerally speaking, a classi�cation is an arrangement according to some sys-tematic division into distinct categories because of certain likenesses or commontraits. Pharos is based on the use of hierarchical classi�cation schemes to sum-marize collections. Moreover, Pharos uses such schemes for many types of in-9



10 CHAPTER 2.formation domains (concepts, geographical regions, images, etc.). While manywell-known classi�cation schemes exist, not all of them are hierarchical. For ex-ample, wines are usually classi�ed along several orthogonal components such astype (table, sparkling, and forti�ed), color (white, red, ros�e), character (sweet,dry), region of origin (Bordeaux, Chianti, Rioja, etc.), and/or type of grape(Chardonnay, Pinot Noir, etc.). For images (e.g. artwork, photographs, satel-lite remote sensing, etc.), there are also several classi�cation schemes. Theseschemes are based on anything from art historical perspectives to subject matter[J�or96], as well as mathematical processes such as wavelet analysis (\texture")and color composition [MM98].A good example of hierarchical classi�cation is in biology, described in Mi-crosoft's Encarta Encyclopedia 98 [Mic97, article entitled \Classi�cation"] asfollows:Classi�cation, in biology, [is] the identi�cation, naming, and group-ing of organisms into a formal system. The vast numbers of livingforms are named and arranged in an orderly manner so that biolo-gists all over the world can be sure they know the exact organismthat is being examined and discussed. Groups of organisms mustbe de�ned by the selection of important characteristics, or sharedtraits, that make the members of each group similar to one anotherand unlike members of other groups. Modern classi�cation schemesalso attempt to place groups into categories that will re
ect an un-derstanding of the evolutionary processes underlying the similaritiesand di�erences among organisms. Such categories form a kind ofpyramid, or hierarchy, in which the di�erent levels should representthe di�erent degrees of evolutionary relationship. The hierarchyextends upward from several million species, each made up of indi-vidual organisms that are closely related, to a few kingdoms, eachcontaining large assemblages of organisms, many of which are only



2.1. 11distantly related.Besides its epistemological use as a description of knowledge, classi�cation hasalso been used for the purpose of organizing and retrieving documents. FrancisMiksa [Mik98, p. 33] states the following:The classi�cation of information-bearing entities is as old as librariesthemselves. Evidence of attempts to group such artifacts can befound among collections of clay tablets in ancient times. These oldere�orts to classify information-bearing entities were characterized bytheir relative simplicity, where categories commonly re
ected prac-tical storage expediencies such as the size of the items or contempo-raneous educational curricula. It was not until the post-Renaissancemodern period, and especially the late nineteenth century, that li-brary classi�cation achieved anything of the complexity that is nowassociated with it, especially in theory and techniques.Of particular relevance to our own research is the potential use of classi�cationschemes, including traditional library classi�cation, for the speci�c purpose ofelectronic document retrieval. Library classi�cation has typically been associ-ated simply with placing and �nding a document on a shelf. In discussing thisissue, Jolande Goldberg of the Library of Congress concludes with this [Gol96,p. 41]:Despite such statements made by Librarians of Congress (in par-ticular, Herbert Putnam, at the inception of the LCC, and LutherEvans, during the planning state of the Law Classi�cation) that theLCC is not intended to serve as a general classi�cation for Americanlibraries, the LCC, in fact, has become the preferred classi�cationfor libraries and educational institutions in the United States andfor many institutions abroad. Their voiced concerns for stability of



12 CHAPTER 2.shelf arrangements by classi�cation has, in the past, markedly inhib-ited the inventive remodelling of the LCC. Ultimately, all e�orts willhave to concentrate on the envisioned function of the electronic LCCas an online retrieval tool. For online browsing and navigation ofelectronically stored information, including the segregation of wholeportions of one class and transfer to another, a knowledge-based,�eld-speci�c structure of the classi�cation is of utmost importance.So, also, is the separation from the shelving function.We make a distinction between traditional classi�cation (partitioning intounique categories) and our approach (fractional allocation among shared cate-gories). We are free from atomic allocation because we are not `putting a bookon a shelf'. We use what we might call probabilistic fractional classi�cation. Itis probabilistic because we are not certain to what degree an object belongs ina particular category, but rather make estimates based on an automated pro-cess. We require automated classi�cation due to the scale of the problem we areaddressing { namely, documents and collections on the Internet. By fractionalclassi�cation, we mean that, rather than considering the objects to be classi�edas discrete entities, we assign fractions of an object to di�erent categories. Wewill describe this methodology in detail in Chapter 7.2.2 Information RetrievalInformation retrieval (IR) is concerned with the systems, evaluation method-ology, and user models involved with a person's locating needed information,usually in an electronic environment. Standard IR techniques include documentindexing and summarization, similarity determination between a query and a



2.2. 13document, and query expansion and relevance feedback [Kan94]. A commonproblem is that of retrieving a set of documents from a given collection thatare `relevant' to a user's query. Although problematic, it is often assumed thatsuch relevant documents are identi�able. In reality, the operational de�nitionof relevancy is some form of mathematical similarity function applied betweena query and the documents in the collection. The query is considered to be aspeci�cation against which documents in a collection are compared. In general,there is not a tight semantic relationship between the automated comparisonfunction and what the user might consider to be document relevancy.There are, in general, three broad views of relevancy [Sch94]: 1) the system view,2) the information view, and 3) the situation view. The �rst view follows alongthe line of a mathematical similarity function and is independent of any user'sperspective. The second view is based on human judgment between a particularquery and document. The third view, simultaneously the most useful and mostsubjective, focuses on the degree to which a query result addresses the overallinformation needs of a user in a particular instance.The concept of relevancy as one component of a searcher's overall informationbehavior is discussed in [Sch94], while [EY72] presents information systems asone component of general decision making. Relevancy is not in general theonly criteria by which users might want to retrieve documents. Other factorsinclude, for example, document length, contextual information such as authoror publication date, and so on. In particular, a decision to stop searching ismore likely determined when the results are satis�cing, that is, good enough[Sim82]. This criteria often relates more to the time and e�ort required for



14 CHAPTER 2.further searching than to any objective measure of the result set.Despite its limitations, measurement of the relevancy of retrieval documents toa given query is used to evaluate the performance of an IR system. Two com-mon benchmarks are precision and recall [Sal89]. Precision is the percentageof returned documents that are relevant to the query. Recall is the percentageof total relevant documents in the collection that are returned. For example,suppose there are T documents in a collection relevant to a user's query. Mdocuments are returned to the user, R of which are relevant to the query. Thenprecision is de�ned as R/M, and recall is de�ned as R/T. In general, if we at-tempt to increase recall (i.e. return a larger percentage of relevant documentswith respect to the entire collection), we do so at the cost of decreasing precision(i.e. we simultaneously return a larger percentage of non-relevant documentswith respect to the retrieval set). This is due to the fact that, in general, inorder to retrieve more relevant documents, we have to loosen the documentselection criteria, which allows more non-relevant documents to be retrieved.Similarly, if we attempt to increase precision, we do so by tightening the doc-ument speci�cation. This generally has the undesirable e�ect of �ltering outrelevant documents, and thus the recall drops. Typically, IR systems return ap-proximately 50% precision for a �xed 50% recall [Har95]. That is, by adjustingthe document speci�cation until half of the relevant documents in a collectionare returned, on average about half of the total retrieved documents are relevantto the query. There has been much work done in the area of automatic textretrieval [Sal89], for example SMART [SM83], Latent Semantic Indexing (LSI)[BDO95], and others involved with the Text REtrieval Conferences (TREC)
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Figure 2.1: Vector Space Model of Information Retrieval
[Har95] run by the National Institute of Standards and Technology (NIST).1One common IR method, used in our experiments, employs what is called thevector space model [Sal89]. This model constructs a high-dimensional vectorspace such that each term occurring in any document of a collection is repre-sented by a di�erent dimension. Each document is assigned a point, or vector,in this space. The component of a document's vector is determined, for exam-ple, by the number of times that the term for that dimension is used in thedocument.1http://www.nist.gov/ and http://trec.nist.gov/



16 CHAPTER 2.Figure 2.1 shows a simpli�ed instance of the vector space model with only threedimensions: `Child', `Freud', and `Nutrition'. A document in the collectiondiscussing Developmental Psychology, containing the words `Freud' and `child',is shown lying on the Freud/child plane. Another document, discussing Pedi-atrics and containing the words `child' and `nutrition', is shown lying on thechild/nutrition plane. Suppose that we want to �nd documents similar to aparticular `query' document, and that this document contains many uses of thewords `nutrition' and `child', and only a very few instances of `Freud'. We placethe query document in the vector space in the same fashion as the documentsin the collection. We then take the cosine of the angle between the query doc-ument and all the other documents in the collection. In this case, we see thatthe angle � between the query and Pediatrics is less than the angle � betweenthe query and Psychology. As a result, the cosine of � is larger than that of�, and we conclude that Pediatrics is more similar to the query document thanDevelopmental Psychology. The result is that we give documents a higher rankdepending on their angular proximity to the query in the vector space. This sim-plistic version of the vector space model can be generalized using methods suchas weighting terms based on their frequency within the entire collection, takinginto account document length, and even using Singular Value Decomposition(SVD) to reduce the dimensionality of the space [BDO95].



2.2. 172.2.1 Networked Information RetrievalMuch work has been done in the area of IR using multiple collections, including,for example, [ACM96, CLC95, CH95, FY95, VF95]. The predominant featureof the majority of this work is that the techniques used are generally limited totext documents, for example distributing inverted term lists. Another aspectof these systems is that it is unclear to what degree they are scalable in termsof the number of sources, the number of users, and the number of documents.None of them experiment with more than a few hundred collections. Finally,although many systems provide for the transfer of collection metadata, they donot specify exactly the content and/or format of the metadata, where speci�cpieces of metadata are to be placed within the network architecture, or theexact metadata transmission methodology involved in the handling of queriesand updates. These factors are all important in the design of an Internet-scalesystem.2.2.2 Applicability of Evaluation MeasuresThe question arises as to how appropriate are evaluation measures such as pre-cision and recall with respect to the documents and knowledge structures foundwithin the Internet. Thomas Walker [Wal96, p. 324] states the following:Are measurements of recall and precision feasible here? Recall, aratio used to describe the ability of a system to retrieve a percentof relevant documents from all relevant documents in a system, isnot useful here because the total number of relevant documents is



18 CHAPTER 2.not knowable. Documents are very 
uid and changing. Being partof such an unsystematic system, the presence and quality [of] manysources depend on the sustained interest of an individual or orga-nization. For instance, in a reference class, I had students use theWeb to locate reproductions of \The Scream" (or \The Cry") byEdvard Munch. One particular site was especially fruitful: a per-son, obviously fascinated by the di�erent forms of this image, hadcreated a \Scream" site, which provided links to many digital ver-sions of the work. This is the work of a volunteer who may beexcited about Munch this moment, but who may not even have aNet account tomorrow or in ten years. There are thousands of suchpassionate collectors. Although students found some images easily,it is impossible to know how many they missed.Precision, which describes the ability of a system not to retrieve ir-relevant documents, may be a more satisfying measure. Many usershave already waded through a considerable amount of Web \trash"and have already carried out informal measurements of precision.Another complication, commonly encountered in recall/precisionmeasurements, is that it is di�cult to de�ne relevance because ithas always been very personal. Measures of recall and precision de-pend on relevance, which can be so unpredictable, so subjective, thatit is di�cult or impossible to verify. For one individual, a documentor information source may be \close enough" to a subject or \goodenough" for a particular use, even though it is not the best or evenclose to the best. If a fee is required, as they are for some of thehighest quality Net resources, will a given user be less likely to useit? If it is necessary to register, will a user be less likely to use avery good source, even if no fee is involved? Will a frustrated userswitch topics rather than carry out an exhaustive Internet search?Will a novice user take the time to learn how the di�erent searchengines work? Several Web search engines allow for Boolean search-ing, but in at least one case, the default operator is \OR," which ofcourse has the potential of delivering results that are hardly precise.These problems are addressed in part by variations of the Principleof Least E�ort: a solution will be judged by a user to be satisfactoryif it is easily found, even if it is not the best available solution, and



2.3. 19perhaps even if it is not a solution at all.
2.3 Search EnginesCurrent WWW indexes, such as AltaVista[Dig97], Lycos [Lyc96], and Yahoo[Yah97], which are designed for locating information on the Internet, are limitedin several ways. Notably, these systems do not scale to handle increasingly largenumbers of search requests due to limited network bandwidth and server power.Furthermore, because they focus on keyword matching, they are usually unableto provide adequate simultaneous precision and recall. Existing WWW index-ing systems utilize either small, hand-made, hierarchical lists, as in Yahoo, orword-matching on huge document-spaces, as in AltaVista. Standard techniquesof automatic text retrieval, such as relevance feedback and local/global termweightings [Sal89], aid in matching query terms to relevant documents; how-ever, these techniques are seldom used for locating sources. Another factor thatlimits most existing WWW indexes is their inability to share index information.This lack of sharing results in highly duplicated document fetching and index-ing. As the number of indexing sites grows, determining which ones contain themost useful information for a given query becomes increasingly di�cult. Fur-thermore, few WWW indexing systems give sources control over how often theyare indexed, or provide for automatic updates when information becomes stale.Another problem with many WWW indexes is that they index the actual textsof documents. This approach is not appropriate for indexing catalogs, especiallythose which list documents which are not available online, and it does not ex-



20 CHAPTER 2.tend to non-text documents, such as maps, images, and sound and video �les.Information sources that make their documents available only as query resultshave no mechanism of including their contents within such indexing systems.
2.4 Resource Discovery and Digital LibrariesProblems of locating sources of information, one form of resource discovery[BDMS94], are of particular interest to the digital library community [FAFL95].Such emerging systems must deal with storing, locating, cataloging, propagat-ing, and retrieving large numbers of diverse documents in a distributed, het-erogeneous environment. Several projects in the NSF/NASA/DARPA DigitalLibrary Initiative Program [CAC95, Nat93] are therefore investigating theseproblems. The Alexandria Digital Library (ADL) Project [ACD+95] is focus-ing on indexing spatial information, as well as on the storage, distribution,and retrieval of large (spatial) images. The Illinois Digital Library Project[Sch95, SMC+96] is building a prototype of the Interspace, which presents theInternet as a single space of highly interlinked, distributed information. TheUniversity of Michigan Digital Library Project [Cru95, ABD+96] is designingan agent-based system; user interface agents, mediation agents, and collectionagents cooperate to allow concurrent searching of multiple collections. Withinthe Stanford Digital Library Project [Sta95, PCGM+96], the gGlOSS resourcediscovery system [GGM95] represents sources by vectors of term frequencies.This work has been extended to the STARTS proposal [GCGMP96] in whichsources extract their own metadata and pass it to intermediaries. Outside the



2.4. 21digital library work, Content Routing [SDW+94] is a system in which queriesget routed to the available servers based on the expected relevance of the serverto the query. Harvest [BDH+94] automatically indexes documents within asource and distributes these indexes. Harvest will be discussed in more detailin Chapter 4.
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Chapter 3
Motivation and Design Overview
3.1 MotivationWe consider a modern Internet environment with a large number of users andinformation sources, including WWW sites, FTP archives, digital libraries, �lesystems, etc. Attempting to locate a small set of sources that best �t userqueries requires detailed knowledge of the holdings at each source. There aretwo extreme approaches for acquiring this metadata. The �rst, which we infor-mally call the remote approach, is to query each source dynamically in turn (orpossibly in parallel) without storing any local metadata. The second, which weinformally call the local approach, is for each user to store locally detailed infor-mation about the holdings of each source and not to request anything remotely(until a �nal set of sources has been selected for direct access). Both of theseextremes are impractical. The remote approach would take too long even for23



24 CHAPTER 3.a single user query, let alone a large number of simultaneous ones. The localapproach needs to have su�cient information for any given query; we believethat the amount of metadata required for accurate source comparison is toolarge to be practical.Our approach is therefore a hybrid one in which we attempt to balance thelocation of the metadata's storage with network tra�c by using an iterative,multi-level query method. A limited amount of metadata about each source ismassively replicated among \high-level" servers. These servers are locally situ-ated within an organization such as a university campus or a corporate network.They receive requests from local users about most or all known sources and re-ply with only enough metadata to allow for a rough comparison of sources.More detailed metadata is stored in specialized, sparsely replicated \mid-level"servers. These servers receive requests from remote users about a relativelysmall set of sources and supply greater detail than the high-level servers. Allhigh-level and mid-level servers store information about each source. However,while all high-level servers store the same metadata, each mid-level server (up toreplication) stores unique metadata within a sub-area of a single, pre-speci�ed,domain-speci�c classi�cation tree, or taxonomy. For example, we expect sepa-rate mid-level servers specializing in subject areas such as history, art, physics;in geographical regions such as North America, Africa, Asia; etc. We call anysuch sub-area of a particular information domain a sub-domain. This designsolves the problem of the remote approach by providing a fast, scalable methodof receiving any needed metadata. It also solves the storage problem of the localapproach by distributing the metadata throughout the network and requiring



3.2. 25only minimal storage within a user's local environment. Finally, network traf-�c is reduced in several ways. Smaller local storage reduces the amount ofbroadcast-type tra�c generated by the sources for update purposes, while themid-level servers reduce the amount of query tra�c to the sources generatedby users. Furthermore, having users communicate with local servers for initialsource �ltering also reduces network tra�c.
3.2 Example Query: An Iterative ApproachAs an example query, suppose that a student is studying the following topic: \AComparison of Political Music in 1967: San Francisco, Shanghai, and Cairo."We performed a search through AltaVista, Lycos, Yahoo, and the Universityof California's Melvyl online general catalog (see Appendix A). AltaVista, Ly-cos, and Yahoo found little of value for this study. Furthermore, the precisionwas very low, on the order of 1%, requiring excessive viewing of many irrele-vant documents in order to locate the rare relevant ones. Melvyl, on the otherhand, returned 44 items of potential interest, such as \When the music's over:the story of political pop," \Female college students in China," \Rhythm andresistance: explorations in the political uses of popular music," \Qira'at mu-nawi'ah" (\Opposition Readings"), and several recordings. How do we informthe student that, in this case, Melvyl is a potentially good information source?In our proposed system, depicted in Figure 3.1, the student attempts to �ndsources as follows. Initially, at the client-side user interface (UI), she speci�es the



26 CHAPTER 3.query in terms of relevant information taxonomies and signi�cant sub-domainswithin them. The taxonomies involved in this search, for example, includesubject, geographical region, and time period. Within each of these generaltaxonomies, the student is prompted to provide more speci�c sub-domains thatmatch her query. For the subject domain, the UI attempts to locate the queryterms or their synonyms within the taxonomy. For example, the phrase politicalmusic might be covered by political science, history, and music; sources thatexcel in these areas are potentially useful for �nding information about herquery. For the geography taxonomy, the student speci�es a longitude/latitudebounding region, or a place-name which is checked against a gazetteer 1 to obtainthe bounding coordinates.Once the student has speci�ed the appropriate sub-domains within the threetaxonomies, the UI then queries the local high-level server and gives highestweights to those sources that contain relatively more information 1) withinthe subject taxonomy, in, say, politics, history, or music; 2) within the timeperiod taxonomy, about the 1960's; and 3) within the geography taxonomy, inSW North America, SE Asia, or NE Africa. From the weightings, the studentselects some initial set of sources, say the best thousand based on the high-levelmetadata. Next, the UI queries the relevant seven remote mid-level serversfor more detailed metadata about the sources included in the initial set: apolitical subject server, a history subject server, a music subject server, a 1960-1969 time period server, and the three geographic region servers covering SWNorth America, SE Asia, and NE Africa. These mid-level servers return their1A standard gazetteer is an index of place names; we are referring to a speci�c typecontaining a mapping from place names to geographical coordinates.
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Figure 3.1: Retrieval Design Overview
detailed and specialized metadata about the requested sources. For example,the political subject server provides metadata about the percentage of holdingsamong the initial set of sources particular to political music; the 1960-1969 timeperiod server provides metadata about the percentage of holdings covering 1967;and the SW North America geographic region server provides metadata aboutthe percentage of holdings dealing with the California area. The UI then mergesthe information returned from the various mid-level servers and presents themto the student. This information can be used to select a small set of sources forfurther (direct) querying. As we discussed in the Introduction, Pharos is notdesigned to query information sources directly with individual user requests.Rather, it is designed to select a su�ciently small set of sources that can then



28 CHAPTER 3.be used by other systems for this purpose, utilizing, for example, traditional IRmethods.It is important to recognize why the user cannot simply query the mid-levelservers initially, bypassing the high-level server completely. A mid-level serverdealing with source information about, say, the subject of music, does not storeany other information. It does not have information about, for example, sourcesthat may have documents geographically related to San Francisco. A user mightquery the music mid-level server to �nd out about the best 100 sources forpolitical music, and a \California" mid-level server to �nd out about the best100 sources with content geographically related to San Francisco. The problemis that there would likely be little or no overlap between these sets. The user istrying to �nd sources that have documents related to both aspects of the query:the subject of political music and the geographical region near San Francisco.The only way to accomplish this is to �rst query the high-level server, whichcan return a list of sources that are known to contain both types of information.This list is then passed to the mid-level servers for more detailed information.Thus a �nal list of 100 can be selected that are hopefully among the best dealingwith both aspects of the query.2Given such a retrieval system, we need a corresponding metadata distributionsystem such that the high-level metadata is distributed widely and the mid-level metadata is distributed selectively. The wide distribution mechanism inPharos is modeled after the distribution of USENET news [Hor83] via NNTP2An alternative approach would be to have the mid-level servers communicate with eachother. We have not explored this possibility due to the anticipated scalability costs it wouldincur.



3.2. 29[KL86]. Unlike the storage mechanism for high-level metadata, mid-level meta-data from di�erent taxonomies in Pharos are not all stored together. Eachmid-level server stores all the metadata about each source that is related to aunique sub-domain of a particular information taxonomy. These servers are notgenerally resident within users' local areas, but are sparsely located at remotesites. When a source sends out its mid-level metadata, it sends the di�erentcomponents to the corresponding servers in a point-to-point manner. The dis-tribution of the mid-level metadata in Pharos is modeled after the distributionof indexes in Harvest [BDH+94], which supports e�cient point-to-point meta-data transfer, server replication, caching, and structured querying of servers.Metadata distribution will be discussed further in Chapter 4.
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Chapter 4
Architecture
In this chapter, we describe the various components of the Pharos architecture.We �rst describe the structure of the metadata and the manner in which it ispartitioned for distribution. We brie
y introduce the process through whichthe metadata is extracted. This will be discussed in detail in Chapter 7. Wethen describe the User Interface (UI). The UI is designed to prompt initiallyfor information about the user which is stored between sessions. Next, theUI must prompt for query information. During the query process, the UI willrequest source metadata from the various servers as needed. Finally, it needs topresent the metadata in a concise and understandable manner during each phaseof the search. Between the extraction and retrieval of the metadata, we havethe massively replicated, localized high-level servers and the sparsely replicated,remote mid-level servers, each receiving and sending appropriate metadata withvery di�erent network characteristics, and hence di�erent underlying network31



32 CHAPTER 4.protocols.
4.1 Metadata StructureThe metadata must be designed to support a multi-level information systemand it should match the intended queries as well as the retrieval system. There-fore, metadata should be grouped according to its informational relationshipand designed around a hierarchical structure, which lends itself to progressivelyre�ned queries. Pharos employs information classi�cations that �t commonquery methods, such as a subject-based hierarchy, a geographical hierarchy,and a temporal hierarchy. Once these hierarchies have been de�ned, we includethe top portions in the high-level metadata, and lower portions in the mid-levelmetadata.4.1.1 Information HierarchiesAn information hierarchy is a topic-based classi�cation tree, as shown in Fig-ure 4.1. In order to describe the collection at a source, we quantify the numberof documents with content relevant to each part of an information hierarchy.As mentioned above, the initial design of Pharos employs three informationhierarchies: subject, geographical, and temporal hierarchies.The subject hierarchy is modeled after the Library of Congress's LC Classi-�cation (LCC) [Lib86], which contains a controlled, hierarchically structured
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(b) Geography DomainFigure 4.1: Information Hierarchiesset of categories. This classi�cation scheme has several advantages: it is fairlyextensive; it is familiar to most of the library classi�cation community; it isopen-ended (in the sense that the structure allows for the inclusion of new top-ics); it is revised frequently; and it is used by most academic libraries in theU.S.A. [Gol96]. While there are problems with using a �xed list for query terms[Dum91], there are several problems with using vocabularies that are based onthe terms found within each document collection. For example, it is di�cult tocompare sources that do not use the same terms, and we cannot expect di�erentcollections to yield the same vocabularies. Moreover, without a controlled setof terms, it is di�cult to construct comparable hierarchical structures that canbe used to build source metadata within a multi-level approach. For a givenquery, the relevant categories must be deduced. The Pharos UI must bridge the



34 CHAPTER 4.gap between the words used by the user and the controlled terms in the sub-ject hierarchy. Techniques such as those described in [CL92, Dum91] addressthe problem of �nding the relationships between query terms and potentiallydi�erent document terms; these techniques also apply to matching query termswith subject categories. We therefore attempt to place users' concepts withinappropriate sub-domains in the subject hierarchy, while at the same time con-trolling the categories so that it is easier to accurately compare sources. Thiscomponent of the UI is included in the prototype discussed in Chapter 7.A simple geography information hierarchy can be composed by tiling the Earth'ssurface into progressively smaller, hierarchical, longitude/latitude squares. Ifthe highest level of the hierarchy represents the regions of the Earth's surfacede�ned by 45��45� grid lines, as in Figure 4.2, the result is 32 top-level tiles. Inthis �gure, the actual data density of the �421; 000 documents of the May, 1996Alexandria Digital Library (ADL) holdings is shown: the lighter the area in atile, the more documents it contains. The next level of the hierarchy is formedby sub-dividing each top-level tile by 5� � 5� grid lines yielding 2,592 sub-tiles.Each top-level tile has 81 sub-tiles. This sub-tiling process is continued to createa spatial hierarchy of desired levels of detail.The temporal domain allows queries to specify date ranges of content (e.g.history of the sixteenth century) as well as publication/creation dates (e.g.aerial photographs taken over a geographical region every 10 years from 1900to present). As a simpli�cation, we refer to content dates. The temporal in-formation hierarchy needs to cover all references to time, including future time.The majority of temporal references, however, deal with the last 300 years.
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Figure 4.2: 45� � 45� Grid, 32 ElementsFor example, Microsoft's Encarta Encyclopedia 98 [Mic97] allows articles to belooked up by \time". Of the 16,366 temporally referenced articles, 4,046 relateto time before the year 1700; 1,879 relate to the 1700's; 6,159 relate to the1800's; and 8,180 relate to the 1900's. We therefore prefer to have a higher levelof granularity for the time periods nearer to `now' than those further away on atime-line. By using a modi�ed logarithmic scale, which is approximately linearbetween the years 1700 and 2000, we can achieve a more even distribution oftime-referenced documents (see Appendix B).
4.1.2 Information TaxonomiesAn information taxonomy is de�ned as a controlled hierarchy within whichdocuments can be classi�ed, usually according to their content. In addition, ataxonomy is assumed to be a tree structure such that each node in the tree has



36 CHAPTER 4.two attributes: a label and a numerical value. The label denotes a word, term,or phrase from an information hierarchy. The numerical value of each node of ataxonomy is called the coverage of the node. It is used to describe a documentcollection by quantifying the number of documents with content relevant to themeaning of the label of the node. Since most documents cannot be classi�edcompletely within a single node of a classi�cation tree, we assign portions of adocument to di�erent nodes in the tree. Thus for each node in the taxonomythere are a total number of document equivalents associated with it. Intuitively,a node's coverage indicates what fraction of a document collection is classi�ablewithin a node's label. In order to calculate this value, we �rst allocate fractionsof each document to nodes in the tree such that not more than 100% of thedocument is allocated. We allocate as much of a document as we can to nodesclosest to the leaves of the tree. In this way, a document is classi�ed as muchas possible within the most speci�c sub-domains of the hierarchy. Once all thedocuments in a collection have been fractionally allocated within the tree, thecoverage values can be computed. The children of a parent node have labels thatrepresent information sub-domains that are wholly or partly contained withinthe sub-domain represented by the label of their parent. By using the notionof coverage, this containment property is captured numerically by de�ning thecoverage at a node to be the sum of the coverages of its children plus the fractionof the collection assigned to it but not to its children. For a leaf node, this is justthe fraction of the collection assigned to it. The number of document equivalentsassociated with a node is its coverage times the total number of documents inthe collection.
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Figure 4.3: 5� � 5� Grid, 2,592 Elements
As an example, consider the geography information hierarchy discussed previ-ously. We create a taxonomy by assigning the 45� � 45� tiles to the depth-1nodes, the 5� � 5� tiles as depth-2 nodes, etc. Within the ADL collectionof �421; 000 documents shown in Figure 4.2, the region over Hawaii, de�nedby the (longitude, latitude) coordinate pair [upper-left=(�180�; 45�), bottom-right=(�135�; 0�)], contains �5; 700 document equivalents. Thus, within thegeography taxonomy, this node is assigned a coverage of �0:014. To calculatethe coverages of the depth-2 nodes, we break down the depth-1 nodes into 5��5�tiles, as shown in Figure 4.3. This �gure shows another view of the same ADLholdings as in Figure 4.2. The three depth-2 nodes which contain the HawaiianIslands contain approximately 1500, 2400, and 1100 document equivalents, andso are assigned coverages of �0:0038, �0:0060, and �0:0028, respectively.Clearly Figure 4.3 gives a much more precise display of the ADL holdings. How-ever, the 2,592 data elements prohibit that level of detail from being included in



38 CHAPTER 4.the high-level metadata, as discussed in more detail in the next section. On theother hand, Figure 4.2 does not necessarily include enough detail to be useful.As a case in point, consider a user looking for information about Hawaii. Thelarge-scale region over Hawaii does not appear to contain a su�cient amountof data to make the ADL an attractive source; the average coverage of the 81depth-2 children is only �0:00017, implying that there are only approximately220 documents for Hawaii. On closer examination, however, the more detailedmap shows that the ADL is potentially a very good source for such a user; thereare actually over 5000 documents for that region. With only 5% of the depth-1node's children containing 97% of its data, a high-level comparison involvingthe ADL might exclude it and the depth-2 metadata would never be requested.This problem of statistically losing lower level information, and hence poten-tially valuable sources, can occur within any information taxonomy whenever asmall fraction of a node's children contain a vast majority of the node's coverage.Even if we kept track of the variance among a node's descendents, we would notbe able to determine which ones held the majority of the information withoutacquiring more metadata. This situation can be considered a special collectionwithin a source's taxonomy. We handle special collections by providing a specialmetadata attribute.The geography taxonomy is very di�erent from the subject taxonomy in that it isnot a word-based hierarchy, but a spatial hierarchy. To put this in perspective,Microsoft's Encarta Encyclopedia 98 [Mic97] allows articles to be looked upby \place". However, while a query on `North America' yields 910 articles,a query on `United States' yields 5,816 articles. These results do not occur



4.1. 39under a geography taxonomy, which would place `United States' within `NorthAmerica'; our de�nition of a taxonomy requires that the spatial nodes coveringNorth America include at least all those articles assigned to the nodes coveringthe continental United States.
4.1.3 Metadata LevelsWe now describe the relevant metadata records that need to be included in thehigh- and mid-level servers. The main constraint in regard to the high-levelserver is size. The total size TH of information distributed to the high-levelservers is the size SH of each high-level metadata record describing a givensource times the total number NS of sources described. The overriding con-straint is that TH not grow beyond some maximum value. Using the newsgroupdistribution as an example, we assume that each high-level server stores under10 GB of data. Assuming that we want to be able to handle a large number ofsources, say NS � 106, we derive a value of SH of roughly 10 KB. A high-levelmetadata record needs to summarize the coverage information related to variousnodes in an information taxonomy. Given these values for NS and SH , and thewidth of the upper levels of the taxonomy trees, we can determine which nodesof the taxonomies should be included in the high-level metadata.1The size of a high-level metadata record is dependent on the number of tax-1In the future, we may allow NS to grow larger by using a single metadata record torepresent a hierarchical collection of related sources (e.g., a `UC' source representing all ofthe University of California campuses). In order to allow this, the structure of a metadatarecord must be independent of the number of sources described.



40 CHAPTER 4.onomies used and the number of nodes that are included from each taxonomy.Although the number of taxonomies a source uses might vary, for a given taxon-omy all sources must always include the same nodes in the high-level metadata.High-level metadata refers to 1) any taxonomy-independent source description,and 2) the high-level portions of all taxonomies within which a source's collectionhas been classi�ed. We determine the number of nodes to include based on ourestimated size, SH , of a high-level record, the number of taxonomies included,NT , and the size, SI , of the taxonomy-independent metadata. For simplicity,we assume that each taxonomy's node metadata is the same size, SN , and thatthe same number of nodes, NH(T ), will be included from each taxonomy T .Thus we have SH = SI + SN �NH(T ) �NT , or NH(T ) = (SH � SI)=(SN �NT ).Assuming SH � 10KB; SI � 1KB; SN � 100B; and NT � 4, we conclude thatNH(T ) � 22. That is, we assume that we can include on the order of 20 to 30nodes from each taxonomy in our high-level metadata records.Tables 4.1 and 4.2 show the portion of the high-level metadata that is indepen-dent of the taxonomies (of size SI). In the Description column, we illustratethe corresponding attribute with an example. Other than the source identi�-cation information, these attributes can be viewed as quality and cost factorsthat are presented to the user through the UI. The user can then consider arange of factors in determining speci�c sources relevant to current queries. The�rst attribute, HL Desc Ver, is the version of the metadata schema and is usedto allow for backward compatibility. The Src * attributes describe basic sourceidenti�cation information. Siz Col describes the size of the collection in MB,pages, and items. These units are used to calculate the fractional assignment



4.1. 41of documents in three units. The reason that we use multiple units is that theymay yield very di�erent ratios. For example, an image library whose imagesmay range from over 100MB/image to less than 10KB/image will show verydi�erent geographic coverages in MB than in items. Siz Cat describes the sizeof the catalog in MB and items. Count Taxon is set to the number of taxonomiesused for classi�cation by the source. Spec is the list of character strings used todescribe special collections, discussed earlier. The set of parameters Net * areincluded for connectivity estimation between the users and the sources [GS95].Count Avg Hits describes the average number of accesses the source receivesper day. Additional attributes are available for various library policies relevantto charging, lending, etc. Finally, Count Src denotes the number of sources in-cluded in a particular metadata record to allow condensed multi-source records.If this value is greater than one, some of the other values might not be included,such as the network parameters.Tables 4.3 and 4.4 show the taxonomy-dependent part of the high-level meta-data. Within the full metadata record for a source, the attribute-values in Table4.3 are repeated once for each taxonomy. Taxon ID and Taxon Desc Ver identifythe taxonomy name and version, respectively. The next attribute, Cov Root,gives the fractional amount of the collection that has been classi�ed within thetaxonomy, with respect to MB, pages, and items. The next four attributes givestatistical information about the root's children (the depth-1 nodes in the tax-onomy). Furthermore, within each taxonomy, the attribute-values of Table 4.4are repeated once for each high-level node in the tree.The geography taxonomy is treated as a special case in order to include factors



42 CHAPTER 4.Attribute Name Type Range Description: ExampleHL Desc Ver String - Metadata descriptor versionnumber: 0.0.7Src ID String - Name of source:Alexandria Digital LibrarySrc Type String - Type of source: DLIBSrc Loc String - Geographical location of source(if relevant): Paris, TexasSrc Sch String - Availability schedule of source(if relevant): Closed MondaysSiz Col Real[3] 0.0+ Collection size in MB, pages,and items: 1.843E6,,8.91E5Siz Cat Real[2] 0.0+ Catalog size in MB and items:2.172E6,3.892E6Table 4.1: Taxonomy-Independent High-Level Metadata, Part AAttribute Name Type Range Description: ExampleCount Taxon Integer 0+ Number of taxonomies used: 3Spec String[M] - List of M Special Collections:Geography:BE16Net Band Real 0+ Network bandwidth (Kbps): 1.5E3Net Avg Util Real 0.0 - 1.0 Avg. network utilization: 0.47Net Avg Delays Integer[N] 0+ Avg. network delay (ms) toN beacons [GS95]: ,200,,521,,,147,Net Avg Thru Integer[N] 0+ Avg. network throughput (Kbps)to N beacons [GS95]: ,117,,,,,246,Count Avg Hits Real 0+ Avg. number of accesses(hits/day): 1.237E5Pol Charg String - Charging Policy: Seehttp://www.lib.ucsb.edu/Pol Lend String - Lending Policy: UC a�liate onlyCount Src Integer 1+ Number of sources: 1Table 4.2: Taxonomy-Independent High-Level Metadata, Part B
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Attribute Name Type Range DescriptionTaxon ID String - Name of taxonomyTaxon Desc Ver String - Taxonomy version numberCov Root Real[3] 0.0 - 1.0 Root node's coveragevalue (MB, pages, items)Cov Avg Real[3] 0.0 - 1.0 Avg. coverage of depth-1 nodesCov SD Real[3] 0.0 - 1.0 Std. Dev. of coverage of depth-1 nodesCov Min Real[3] 0.0 - 1.0 Minimum coverage of depth-1 nodesCov Max Real[3] 0.0 - 1.0 Maximum coverage of depth-1 nodesTable 4.3: High-Level Metadata for Each Taxonomy Ti

Attribute Name Type Range DescriptionNode ID String - Node's labelCov Node Real[3] 0.0 - 1.0 Node's coveragevalue (MB, pages, items)Cov Avg Real[3] 0.0 - 1.0 Avg. coverage of childrenCov SD Real[3] 0.0 - 1.0 Std. Dev. of coverage of childrenCov Min Real[3] 0.0 - 1.0 Minimum coverage of childrenCov Max Real[3] 0.0 - 1.0 Maximum coverage of childrenTable 4.4: Metadata for Each High-Level Node in Ti



44 CHAPTER 4.such as image or map resolution, which are not relevant to most other tax-onomies. This taxonomy is a superset of that in Tables 4.3 and 4.4. Additionalattributes are included to describe image resolution statistics that summarizeall the documents that are associated with the geographical region covered byeach node.Mid-level metadata is not subject to the same space constraints as the high-level metadata for several reasons. First, because mid-level metadata is onlysparsely replicated, there are not as many network constraints in distributingit. Second, each mid-level server handles only a speci�c sub-domain within asingle taxonomy, so it needs to store only a very limited subset of all of themid-level metadata records for any source. Third, because users request thismetadata only after they have already gone through a primary �ltering using thehigh-level metadata, mid-level query results contain data for only a relativelysmall number of sources. The structure of mid-level metadata is similar to thetaxonomy-dependent components of the high-level metadata, but covers nodesof greater depth in the information taxonomies.
4.2 Metadata ExtractionThe process of extracting the metadata from a source begins with a documentcollection, as portrayed in Figure 4.4. This collection is processed by hand orautomatically. For text-based documents, it can be processed by one of sev-eral possible automatic text analysis tools, such as LSI, SMART [Sal89], or



4.2. 45others that are used, for example, in the NIST Text REtrieval Conferences(TREC) [Har95]. Many of these systems read through a collection and build amatrix of weighted frequencies of the number of times a given term occurs ineach document in the collection. From this matrix, documents can be placed ina multi-dimensional term-vector space. Nodes in a taxonomy can also be placedin this space and then be taken as centroids of document clusters. Dependingon the relative closeness of the centroids to the various documents, we assignthe fractional allocation of each document among the nodes in the taxonomyneeded to calculate each node's coverage value. High-level automatic subjectclassi�cation has been shown to be fairly successful, with over a 90% accuracyrate [LH95]. LSI has been shown to be an e�ective tool for automated classi-�cation [Hul94], and experiments on automatically classifying large documentsets within the LC Classi�cation system have yielded correct classi�cations, un-der some conditions, of over 80% of newly entered documents [Lar92]. Theseresults indicate that subject-based automated text classi�cation is su�cientlyaccurate to characterize sources for comparison purposes, where even order ofmagnitude estimates can greatly aid in �ltering out most irrelevant sources. Wewill discuss details of such automated classi�cation in Chapter 7.While the TREC and related work focuses on subject-based text retrieval, onecould use a gazetteer or time-name table to identify geographic or temporal ref-erences within text-based documents, or use more sophisticated techniques suchas those used in GIPSY [WP94]. For maps, aerial photographs, and satelliteimages, documents are often cataloged with spatial extents, and the geographicclustering and classi�cation process is much simpler. Automatically extracting
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cationFigure 4.4: Metadata Extractionsubject information from maps and images, such as identifying vegetation ina map or a particular object in an image, would allow such documents to beautomatically classi�ed within, for example, the LC Classi�cation system; suchcapabilities are ongoing research issues [Mos94, Ric93]. Yet another applicationarea of this process is the incorporation of image feature vectors [MM98]. Givena hierarchical feature vector thesaurus, one could automatically classify imagesin much the same way as text. Although there are several methods of charac-terizing and classifying image features (textures, colors, shapes, etc.), Pharosworks equally well with any (hierarchical) image classi�cation scheme.
4.3 User Interface and Metadata RetrievalThe User Interface (UI) is designed to assist the user in an iterative decision-making process [EY72] in which a �nal small set of sources is chosen through aseries of re�nements on an initial large set. This process uses information aboutthe user, called the User Pro�le, information about the query, called the TaskPro�le [Shn92], and the high- and mid-level metadata about the sources. Al-though the client acquires source metadata through the network from the high-



4.3. 47and mid-level servers, it acquires user and query information through the UI.Besides acquiring this information, the UI must also present metadata aboutmany sources to the user in a concise and understandable manner. This allowsthe user to interact with that data and to select source subsets for further meta-data retrieval. Figure 4.5 illustrates the key components of the UI subsystemin Pharos. User and Task Pro�les are initialized by the user. When a queryis issued, these pro�les are used to send an initial metadata request to a localhigh-level server. The metadata returned includes information about the likelycandidate sources that best match the query, subject to the User and Task Pro-�le. The metadata is then visualized to the user within the UI. The visualizationincludes default but tailorable quality and cost factors. Given this information,the user then selects a set of sources, perhaps those with the highest `value'.From this set, a new metadata request is issued to the speci�c mid-level serversthat store information relevant to the user's query. The returned metadata isagain visualized, but with greater accuracy and detail. Finally, the query resultsare narrowed down to a reasonably small set of sources, which are then directlyqueried.The User Pro�le information in Pharos is used to determine which metadataparameters to retrieve, how to compare sources, and how to display the results.The user can assign relative weights to any parameter to adjust the comparisonresults. Other pro�le information includes interface parameters such as whichtaxonomies to use by default. As the set of sources becomes small enough, fac-tors can be considered that require direct communication with each source, suchas the number of network hops between the user and the sources. The Task
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Pro�le includes all parameters needed to specify the source search criteria. Theuser must decide which taxonomies to use. For each taxonomy included, theuser selects one or more sub-domains either by entering keywords, or by travers-ing the tree directly and selecting particular sub-domains. The UI must dealwith keyword entries di�erently for each taxonomy. For the subject hierarchy,techniques used in text retrieval, such as by LSI [BDO95], can aid in matchingquery terms with terms found in the hierarchy. The geography taxonomy re-quires a gazetteer, and the time-period taxonomy requires the equivalent of agazetteer for time-names. Finally, as the set of sources becomes small enough,the UI attempts to match keywords with any special collections included in theset.Since there are a large number of sources, it is impractical to list the results of aquery in a text-based, tabular fashion. The level of detail of the display of each
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Figure 4.6: Simple Metadata Visualization



50 CHAPTER 4.source is adjusted depending on the total number of sources being displayed.Initially, we can display each source as a point in a two-dimensional scatterplot, as depicted in Figure 4.6. There are several ways of assigning positions tosources. One possibility is to use a quality versus cost approach to visualize theeconomic value of the sources [Whi76]. The quality and cost dimension of eachsource is computed as a weighted sum of the relevant attributes and each sourceis depicted as a point in the Quality/Cost plane. The user can then graphicallyselect sources which are above a minimum quality (regions 1, 2, and 3), belowa maximum cost (regions 1, 2, and 4), and/or have the highest value (region1). Many other forms of weightings and attribute combination are possible. Forexample, the ranges of values that each attribute may attain vary widely bothbetween di�erent attributes and also, for a given attribute, between di�erentsources. We therefore can use normalized attribute values by dividing each oneby the maximum value of that attribute among all the sources. Furthermore,for values such as network bandwidth and collection size, we can compare thenormalized logarithm of the values so that large values do not overly dominate.Similarly, many other visualizations are possible, especially as the number ofsources is reduced after �ltering.
4.4 High-Level Metadata ServersOnce the metadata at each site has been compiled, it needs to be distributedover the network according to the intended storage and retrieval architecture.As previously stated, the high-level metadata needs to be widely distributed and



4.4. 51replicated, while the mid-level metadata is very selectively distributed. Becauseof these storage di�erences, di�erent distribution protocols are more e�cient forthe di�erent metadata levels. All high-level metadata is sent to each high-levelserver.We brie
y compared the distribution of the high-level metadata to the distri-bution of USENET news [Hor83] via NNTP [KL86] in Chapter 3. NNTP usesa 
ooding protocol which has proved to be very robust and e�cient for widelydistributed, massively replicated data. In fact, rather than create a completelynew protocol and transport system, we plan to distribute the high-level meta-data in Pharos by using a new newsgroup hierarchy. This can be accomplished,for example, by having each source send out their high-level metadata as a newsarticle. There are several advantages to this approach. First of all, it ful�lls thebasic design criteria of massive metadata replication. Second, NNTP providesa fast, reliable, and reasonably e�cient mechanism of developing a prototypesystem. Third, this approach poses little or no degradation to the news systembecause news servers not wishing to store this information may selectively notreceive a `feed' for it, just as they can turn o� reception of any other news-group hierarchy. Fourth, USENET provides a hierarchical naming conventionamong the newsgroups, which could be exploited by the source metadata de-sign. For example, collections could be characterized based on theme, such asdl.medicine for MEDLINE, and dl.physics and dl.computer-science for INSPEC,so that servers within speci�c organizations can retrieve metadata tailored totheir interests. Finally, those sites running a news server within their local areaare prime candidates for high-level server locations.



52 CHAPTER 4.A potential problem with this type of posting is that anyone could post articleswith bogus metadata about a given source, such as the Library of Congressor the National Institutes of Health. This problem can be avoided by usingmoderated newsgroups and a standard electronic signature. When a sourceregisters itself, it provides either a public encryption key or a place on thenetwork where it can be found. Each posting is sent to an automated moderatorthat checks the signature against the source's key for veri�cation before postingit.Another consideration, as with the mid-level metadata, is the amount of infor-mation that can be handled. NNTP tra�c generally generates approximately400 MB per day or more. By cutting o� unwanted newsgroups, news serverscan substantially reduce the tra�c coming to them. Recall that the total sizeof all the high-level metadata combined is on the order of several gigabytes.We imagine that most sources' statistical compositions of documents probablydo not change dramatically over a short period of time. Therefore weekly ormonthly updates are su�cient to keep high-level servers up-to-date to the levelneeded to assist users in the high-level, rough �ltering of sources. We anticipatethat this entire news hierarchy would not generate more than a small fractionof the normal NNTP tra�c.



4.5. 534.5 Mid-Level Metadata ServersMid-level metadata is not massively replicated, but rather stored on one orperhaps a few mirror sites. As such, a 
ood protocol is neither necessary nore�cient. Instead, a point-to-point metadata distribution system is more appro-priate. Each source registers at each mid-level server for which the source hasrelevant metadata, and sends updates as needed. The sources in Pharos areresponsible for keeping their distributed metadata up-to-date. This approachminimizes network tra�c and guarantees that the mid-level servers receive newmetadata only when necessary.Harvest [BDH+94] provides a suitable transport mechanism for distributingand storing mid-level metadata in Pharos. Harvest is a generalized system forautomatically indexing documents within a source and distributing the meta-data. In Harvest terminology, sources of information are called providers. Indexmetadata is extracted by gatherers. The gatherer is broken down into two com-ponents, one that extracts the metadata, and the other, gatherd (gather dae-mon), that handles the gatherer-side communication necessary for distributingit. The structured indexing information that the gatherer collects is representedas a list of attribute-value pairs using the Summary Object Interchange Format(SOIF). This metadata is then served to brokers, who collect it via collectors(which communicate with a gatherer's gatherd) and provide a query interface tothe indexes. Brokers can collect metadata either from gatherers or from otherbrokers, and thus lend themselves to hierarchical metadata propagation.Although we must perform our own metadata extraction (or gathering), incor-



54 CHAPTER 4.porating the results into SOIF records is straightforward. Each source con-structs a SOIF record for each taxonomy sub-tree used by a mid-level server.Each source builds a standard Harvest SOIF database and runs gatherd. Eachmid-level server runs a standard broker that collects the appropriate recordsfrom each source. This collection is e�cient in Harvest because of the broker'sability to use structured queries that can specify boolean combinations of at-tribute/value pairs. For example, a broker would retrieve a record by specifying`(Taxon ID : Subject) AND (Top Node : Physics)'. Finally, the brokersrunning on the servers are designed not only to collect the metadata, but alsoto handle sophisticated queries. Therefore, this software already facilitates thecommunication between the UI and mid-level servers.There are several bene�ts of using Harvest for distributing and storing mid-levelmetadata. First, Harvest uses very e�cient network protocols and compressionfor exchanging metadata records. Second, it allows us to place several logicalmid-level servers on the same physical server; we need only change the querybetween the server's broker and the sources so that multiple SOIF records aretransferred. Additionally, Harvest includes metadata timestamps and auto-matic server updates for expired information. Each source is able to set its owntimestamps and thus regulate its own update frequency. Further, Harvest'sability to chain brokers allows us to incorporate a more sophisticated mid-levelnetwork model than requiring that each source directly communicate with eachserver. Instead, we can arrange the sources in a hierarchical network structureby placing intermediate brokers between the sources and the servers.2 Finally,2In this sense, the mid-level servers can be viewed as the point between physically struc-turing the metadata based on network topology and physically structuring it based on infor-



4.5. 55Harvest includes both a replication and caching system. The replication allowsus to automate the process of mirroring the mid-level servers. Moreover, thecaching allows us to take advantage of possible speed-ups by grouping togethersimilar sources as pre-packaged sets within the UI; such query results might stayin a server's cache.

mation topology.
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Chapter 5
Comparison to Other Models
As previously mentioned, prior to constructing a prototype, we �rst wanted todetermine the feasibility of the Pharos architecture presented in the previouschapter. The feasibility study is comprised of two components. The �rst is acomparison between Pharos and other architectures, presented in this chapter.The second, presented in the next chapter, is an estimate of the accuracy ofPharos query results. This chapter presents a systematic description of possiblenetwork architectures that support the discovery of information sources, andanalyzes their di�erences. The �rst section describes relevant concepts such asquery routing and the extraction, propagation, and retrieval of metadata. Basedon these concepts, di�erent models of locating and querying relevant informationsources are presented within three broad classes. Finally, we estimate severalimportant characteristics of these models and classes as well as their expectedscalability. 57



58 CHAPTER 5.5.1 Terminology
We �rst describe the terms that will be used in the network models. We de-�ne a document operationally as an atomic entity that can be searched for,retrieved, and viewed, though not necessarily stored, as a single unit, electron-ically or otherwise. A document is not required to be stored atomically, noris it necessarily always used atomically; although one can access sections of adocument, a document must be available as an atomic entity. A collection refersto a well-de�ned set of documents. A query refers to a document speci�cationagainst which documents in a collection can be compared for relative similarity.A query generator is a system that electronically creates and transmits queries;they are represented as circles, �, in the model diagrams. A search engine is aninterface that accepts as input a query about a particular collection and returnsas output a query result, which is a subset of the collection that the searchengine has determined contains documents relevant to the query. The subsetmay not contain the actual documents, but rather pointers to, and possiblydescriptions of, the documents. A single collection may have multiple searchengines associated with it, but by de�nition a search engine can work on onlya single collection (i.e. we do not require a collection to be an input parameterto a search engine). An information source, or source, refers to a particular[collection, search engine] pair. Sources are represented as triangles, 4, in themodel diagrams. We point out that collection refers only to a set of documents,while source refers more generally to a machine, including its documents, searchengine, metadata, etc.



5.1. 59Metadata refers to the description of an object. We make a distinction betweendocument metadata and collection metadata. The former is information aboutindividual documents, while the latter is summary information about an entirecollection and possibly other descriptive information about the machine, net-work parameters, etc. Unless otherwise stated, metadata will refer to collectionmetadata in this discussion. Therefore, a query result is the document metadatathat would be returned by a search engine given a particular query. It is notnecessarily returned directly by a search engine, but by any system that givesthe same document subset, as explained below.Finally, an intermediary, drawn as a small or large box, 2, in the model dia-grams, is a logical machine on the network that provides a level of indirectionbetween a request for information and the original supplier of the result, usuallyan information source. A query intermediary acts as a pseudo search engine;it takes queries as input and provides query results as output. However, aquery intermediary di�ers from a search engine in that 1) it does not necessar-ily have direct access to any document collection, and 2) it may return queryresults for several sources simultaneously. A metadata intermediary accepts arequest for either document or collection metadata and supplies the relevant re-sult. Intermediaries may store information locally, or may dynamically requestinformation either from another intermediary or from a source.Our network models describe several common activities. Query propagation orquery routing is the process of passing a query from a query generator to eithera source or a query intermediary. This action is expected to result in resultretrieval, which returns a query result to the query generator. Result merging



60 CHAPTER 5.involves combining query results for a query sent simultaneously to multiplesources. Documents in a result set are often ranked within that set; resultmerging can include rank merging where the union of the multiple result setsare re-ranked for the entire union. Result merging can also include duplicatedetection, in which an attempt is made to detect if the same document has beenreturned by multiple sources.Metadata extraction denotes the process of deriving either document or collec-tion metadata. Document metadata extraction can take place either at a sourceor at an intermediary which has direct access to a source's documents. Collec-tion metadata extraction is generally done only directly at a source, thoughthere is no requirement for this. Metadata propagation involves the `pushing'of metadata by a source to any other machine. Metadata retrieval involves the`pulling' of metadata by an intermediary or a query generator that either storesit locally for long-term use or else uses it immediately to help resolve a queryand then discards it. The models that follow have examples of both long-termand short-term use of both document and collection metadata. An update isthe process of bringing up-to-date all stored metadata across the entire networkabout a particular source.
5.2 Network ModelsThis section describes three classes of network models that encompass the dis-covery and querying of information sources. The classes, in increasing complex-



5.2. 61ity, use 1) no intermediary, 2) a single intermediary, and 3) multiple intermedi-aries.5.2.1 DirectThe models in Class 1, the Direct models, do not include an intermediary. Wedescribe three architectures; these are not intended to be realistic for a large-scale network, but rather exemplary of particular problems of scalability whichwill be discussed in Section 5.3.The Simple Model is the most basic model, which contains one or more querygenerators but only a single information source. Queries are sent directly tothe information source and the results are sent back directly to the generator ofeach query. This model does not di�erentiate between simple, one-site sources,and complex, multi-site sources with a single query point. The Simple Modelis overly simplistic and does not shed much light on scalability problems; wetherefore do not consider it further. Next, the Remote Model allows for multiplesources by simply adding them in and not worrying about which sources arequeried nor how a query generator should merge the results. It is implicitlyassumed that each query will be propagated to all sources.Neither the Simple Model nor the Remote Model include the use of any col-lection metadata. The next model, the Local Model, requires that each querygenerator pre-collect su�cient metadata about each source so that the bestsources can be decided locally at the generator without �rst contacting any re-mote site. To handle a query, the only tra�c generated in this model is that
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Figure 5.1: Local Model Queryused to query the most relevant sources and retrieve their results. This modelassumes that there is a standard method with which metadata can be retrievedand merged by the query generators. This model is shown in Figure 5.1.5.2.2 Single IntermediaryWithin Class 2, the Single Intermediary models, we describe two architec-tures: the Brute-Force (BF) Model and the STARTS Model [GCGMP96]. Boththese models maintain a single intermediary between the query generators andsources. This intermediary handles both query and metadata tra�c, thoughthere is not necessarily any synchronization between its reception of a queryand its metadata retrieval. Although there may be several intermediaries onthe network simultaneously in this class of models, they do not communicate or



5.2. 63coordinate with each other. A query generator must decide which intermediaryto use for a given query, though by de�nition, no method is provided for assist-ing in this decision. This uncertainty a�ects estimates of query network tra�c,as will be discussed in Section 5.3.2.The simpler of the two models described in this class, the BF Model, is thesystem used by most, if not all, current WWW index sites and is depictedin Figure 5.2. In this model, an intermediary performs metadata extractionby gathering all documents available at all sources. Current implementationsextract only limited document metadata to reduce storage space, and no collec-tion metadata. In principle some collection metadata could be extracted also.This process is driven completely by the intermediary; the sources have no con-trol over the frequency of metadata collection nor over the type of metadataextracted. Queries are sent to the intermediary, which uses its pre-collectedmetadata to determine which of the documents it has analyzed are relevant,and then returns a (possibly ranked) result set to the query generator. Queriesare not propagated to the sources, and results include information only aboutdocuments which have been analyzed directly by the intermediary.Another approach is the STARTS Model [GCGMP96], shown in Figure 5.3. Inthis model, built on a gGlOSS [GGM95] framework, each source performs itsown metadata extraction. The intermediary then gathers this metadata ratherthan extracting its own. Queries in the STARTS Model are of a keyword match-ing nature, although the design allows for extensions to this query structure.When an intermediary receives a query, it analyzes its pre-collected metadataand chooses a small set of `best' sources. The query is then propagated to these
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Figure 5.2: Brute-Force Model Query
sources in a standard format and they return the results (document metadataretrieval), also in a standard format, back to the intermediary. The intermedi-ary is then responsible for merging the results from all the queried sources andpassing a single, ranked list of results back to the query generator.The major di�erences that the STARTS Model has from the BF Model arethat 1) it allows (actually, requires) each source to extract its own metadata,and 2) there are standard formats for information exchange (metadata, queries,and results). The STARTS Model does not require that an intermediary storedocument metadata as does the BF Model. Instead, it retrieves documentmetadata at query time, including, for example, an abstract where applicable.
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Figure 5.3: STARTS Model Query5.2.3 Multiple IntermediariesWithin Class 3, the Multiple Intermediaries models, there are several knownframeworks such as Content Routing [SDW+94], hGlOSS [GGM95], and Har-vest [BDH+94]. These systems provide for multiple intermediaries within aDAG-like network structure by allowing intermediaries to be nested; collectionsof source summaries can be viewed as single collections by higher-level interme-diaries. However, these systems do not describe the actual network architecture.Furthermore, although hGlOSS takes its metadata structure from the under-lying text-based vector spaces, the other two do not specify the nature of themetadata. We seek to exemplify this class with a model that highlights andbene�ts from the relationship between the metadata structure and the networkarchitecture.



66 CHAPTER 5.Thus we de�ne three extensions to standard metadata, which have been incor-porated into the Pharos architecture described in Chapter 4. The �rst extensionis hierarchical metadata, which means that the collection metadata is organizedin a tree-like structure. Information at a parent node in the tree contains someform of summary of the information of all its children, though possibly withless detail. The second extension is that of shared metadata, in which meta-data is partitioned, rather than simply replicated, between several cooperatingintermediaries. Thus, depending on the architecture, an intermediary can col-lect unique metadata about many sources; other systems can then retrieve thatspecialized information if and when they need it without having to communi-cate with the separate sources directly. The last extension is that of non-textmetadata, which describes non-text aspects of documents and collections. Forexample, documents that either include or consist entirely of images, sounds,or maps may not be best described by the text associated with them (if any).Many of these non-text documents, as well as many text documents, are alsocharacterized by, for example, image feature-vectors, geographical coordinates,temporal information, etc. All these metadata extensions are used by Pharos,shown in Figure 3.1.Pharos, described in detail in the last chapter, is designed to select a small setof (highly relevant) sources from among a large set. While Pharos separatesthe query activity (query propagation and result retrieval) from the metadatapropagation, as in the previous models, it di�ers from them in that it synchro-nizes this activity with the collection metadata retrieval. Metadata is extractedby the source, as in the STARTS Model, but here the metadata is composed of



5.3. 67a small amount of non-hierarchical information and a relatively large amountof hierarchical information de�ned by one or more information taxonomies. Asource propagates its metadata as needed to the relevant intermediaries.
5.3 Model ComparisonSome of the criteria that we might use to compare these di�erent models andclasses, especially from an implementation point of view, are scalability, 
ex-ibility, and complexity. Increases in design and processing complexity shouldbe warranted by corresponding increases in either scalability or 
exibility. Theperformance of these models depends on factors such as the number of queries,the number of sources, and the size of a collection. We attempt to estimateseveral important characteristics of each model as well as the three classes ingeneral. We have selected several model parameters and estimated their corre-sponding order of magnitude values. We then use these parameters to deriveequations for network tra�c, storage requirements, and the number of accesses.Next, we use the sample values to check that these equations are realistic andto identify potential problems. Finally, we discuss how these characteristics arelikely to change with the future growth of the Internet.5.3.1 Model ParametersTables 5.1 and 5.2 list all model parameters used in our derivations. All valuesin this and the following tables are written in log10(x). We �rst list the values
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Symbol Small Large Typical DescriptionND 2 8 4 Number of documents in a singlecollectionNRD 1 4 2 Number of relevant documents froma single collectionNS 2 7 5 Number of sourcesNBS 0 2 1 Number of `best' sourcesNRS 0 5 2 Number of relevant sources (i.e.sources with any relevant docu-ments): assumed to be �NS=500NQG 2 8 6 Number of query generatorsNII 1 4 2 Number of independentintermediaries (Class 2)NMLI 1 3 2 Number of unique mid-levelintermediaries (Pharos)NIM 0 2 0 Number of duplicate mid-levelintermediaries per `topic' (Pharos)NHLI 2 5 3 Number of high-levelintermediaries (Pharos)NHLF 1 4 3 Number of sources selected byhigh-level �lter (Pharos)NQI 0 1 0 Number of taxonomy nodes in aquery (Pharos)Table 5.1: Model Parameters, Part A (all values are log10(x))



5.3. 69Sym Sml Lrg Typ DescriptionSD 2 8 5 Size of a non-speci�c documentSDT 2 6 4 Size of a text (ASCII) documentSC 4 14 9 Size of a collection of non-speci�cdocuments: ND � SDSCT 4 12 8 Size of a collection of text (ASCII)documents: ND � SDTSQ 1 3 2 Size of a querySM 1 4 3 Size of a query result (returned metadatarecord) for a single document (e.g. [title,author, date, keywords, abstract])SR 1 8 5 Size of a query result (all relevant docu-ments) from a single source: NRD � SMSCTS 4 9 6 Size of full (text) collection metadata at asource (STARTS): see Equations 5.3.1{5.3.3SCTI 6 14 11 Size of full collection metadata for allsources, at an intermediary (STARTS):see Equation 5.3.4STN 0 2 1 Size of information for each node ina taxonomy (Pharos)SCPS 4 6 5 Size of full collection metadata at asource (Pharos): STN� (nodes/taxonomy)� (taxonomies/source)SHPS 1 4 3 Size of full collection high-level metadataat a source (Pharos): extracted from �25depth-1 nodes of the taxonomy treesSMPS 2 5 4 Size of full collection mid-level metadataat a source (Pharos): extracted from �252depth-2+ nodes of the taxonomy treesSHLI 4 10 8 Size of metadata at a high-level intermedi-ary for all sources (Pharos): �SHPS �NSSMLI 6 11 9 Size of combined metadata of all uniquemid-level intermediaries for allsources (Pharos): �SMPS �NSTable 5.2: Model Parameters, Part B (all values are log10(x); sizes in bytes)



70 CHAPTER 5.used to describe quantities such as the number of documents in a collectionand the number of sources. Next we list the values used to describe, in bytes,quantities such as the size of a document and the size of a query result. Thesetables include estimates of what might be considered a parameter's small, large,and typical order of magnitude. For example, ND, the number of documents ina single collection, is estimated to range from 102 to 108, and a typical collectionis estimated to contain 104 documents.1Several of these parameters are specialized and need some further explanation.In Pharos, queries are based on one or more topics chosen from several infor-mation classi�cations, and the number of topics chosen per query, NQI, a�ectshow many mid-level intermediaries are involved in handling a query: one inter-mediary per topic. We di�erentiate SDT , the size of an ASCII text document,from SD, the size of a non-speci�c document, because architectures such as theBF and STARTS models are designed for text documents; ASCII documentstend to be smaller than, for example, images.All sizes in Table 5.2 after SR are related to metadata. It is di�cult to estimatethese sizes; as an example, we derive two of them. For text-based vector analysis[GGM95, Sal89], the size SCTS of the full collection metadata at a source is afunction of the number of unique words, t, in its collection, which is generally afunction of the total number of words in the collection, N . For t = f(N), clearlyf(N) is greater than log(N) and less than N . Salton [Sal89] gives t = kN�,for constants k and �, 10 � k � 20, and 0:5 � � � 0:6. We take k = 151The 1987 Annual Report of the Library of Congress lists approximately 86 million itemsin its collection; INSPEC contains well over a million articles.



5.3. 71and � = 0:55. Next, we must estimate N as a function of SCT , the size of acollection of ASCII text documents. Salton points out that, while average wordlength for distinct English words is 8.1 characters, the average word length inordinary English text (with many repeated words) is 4.7 characters. Since weare not assuming ordinary English text necessarily (or even English, let alonetext), we take the average number of bytes per word, L, as 6. Finally, assumingthat each word requires at least three 4-byte numbers in the metadata2, wederive the following estimate:SCTS & (12 + L) � t (5.3.1)� [((12 + L) � k)=L�] � (SCT )� (5.3.2)� 100 � (SCT )0:55 (5.3.3)with t = k �N� and N = SCT=L.An intermediary is required to maintain this metadata for each source, regard-less of whether the words from a source have already appeared in an interme-diary's global list of unique words. ThusSCTI � SCTS �NS (5.3.4)where SCTI is the size of metadata at an intermediary and NS is the number ofsources from which the intermediary has collected information.2The metadata may require, for example, the number of documents in which each wordoccurs, the total number of occurrences of the word in the entire collection, �elds in whichthe word occurs, etc.



72 CHAPTER 5.5.3.2 AnalysisEstimates for several characteristics of each model are given in Estimate Ta-bles 5.3{5.6, where all expressions are derived from the model parameters de-scribed in the previous section. Values are derived by applying the constant`typical' values in Tables 5.1 and 5.2 to the expressions in each Estimate Ta-ble. Any column which is not applicable to the corresponding model is marked`N/A'; such is the case, for example, of metadata quantities for the RemoteModel, which has no metadata. This is di�erent from columns which poten-tially apply to a model but for which the particular model has a zero quantity,marked `-none-'.Table 5.3 gives estimates for remote network tra�c generated by a single queryand by a single update. We assume that network tra�c is sent e�ciently (e.g.text compression is �50%), but this does not greatly a�ect order-of-magnitudeestimates. We specify remote tra�c because we do not include in these estimatesany tra�c assumed to travel between machines within the same local area. Thisexcludes, for example, tra�c in the Pharos Model between a query generator andits corresponding local high-level metadata server. Table 5.4 gives estimates forlong-term metadata storage requirements. Metadata storage is required at thequery generator in the Local Model only. However, Pharos stores some metadataat high-level servers within a query generator's local area; there are a total ofNHLI such servers, and this storage requirement is listed as residing at the querygenerator. In our numerical estimates, we assume that each Class 2 intermediaryretrieves metadata from every source. In reality, some intermediaries collect
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Single Query Single UpdateTypical TypicalModel Expression Value Expression Value CommentsRemote NS � (SQ + SR) 10 N/A N/A No metadataLocal NBS � (SQ + SR) 6 NQG � SCTS 12 Assumes STARTS-stylemetadata (i.e. text only)BF SQ + (NRS � SR) 7 NII � SCT 10 Query result assumesno duplicate detectionSTARTS (SQ � (1 +NBS))+ (2 � SR �NBS) 6 NII � SCTS 8Pharos (� NHLF �NQI � STN)+ (NBS � (SQ + SR)) 6 (NHLI � SHPS)+ (NIM � SMPS) 6Table 5.3: Estimates of Remote Network Tra�c (in bytes; all values are log10(x))
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Combined Typical ValuesQuery Combined Average perModel Generators Intermediaries Storage Site Total CommentsRemote -none- N/A -none- -none- No metadataLocal NQG � SCTI N/A 11 17 Assumes STARTS-stylemetadata (i.e. text only)BF -none- NII � (ND �NS � SM) 11 13 Assumes smaller SMSTARTS -none- NII � SCTI 11 13Pharos NHLI � SHLI NIM � SMLI 8 11Table 5.4: Estimates of Metadata Storage Requirements (in bytes; all values are log10(x))
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Combined Typical Values(Remote) Combined Average perModel Intermediaries Sources Intermediary Source Total CommentsRemote N/A NQG �NS N/A 6 11Local N/A NQG �NBS N/A 2 7BF NQG (NQG �NRS�NRD)=1000 4 2 7 Assumes retrievalof 0.1% documentsSTARTS NQG NQG �NBS 4 2 7Pharos NQI �NQG NQG �NBS 4 2 7Table 5.5: Estimates of Query Accesses (one query per generator; all values are log10(x))
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Combined Typical Values(Remote) Average perModel Intermediaries Intermediary Total CommentsRemote N/A N/A N/A No metadataLocal NQG �NS 5 11 Query generator is intermediaryBF ND �NII �NS 9 11STARTS NII �NS 5 7Pharos (NHLI �NS) +(NMLI �NIM �NS) 5 8Table 5.6: Estimates of Update Accesses (one update per source; all values are log10(x))



5.3. 77more than others, and as a result, many queries are propagated to multipleintermediaries by users trying to �nd as good information as is practical. Theamount of duplicate query generation is di�cult to estimate and we do notattempt to do so. Tables 5.5 and 5.6 give the total number of accesses generatedassuming that each query generator issues a single query, and each source issuesa single update, respectively. Thus the total number of queries and updatesare determined by the number of query generators, NQG, and sources, NS,respectively.The BF Model returns metadata about relevant documents from all relevantsources { a potentially much larger set than that returned by STARTS or Pharos,which deal only with the `best' sources. If the BF Model does not accuratelyrank the documents in its result set, users must fetch many documents in orderto determine their relevancy. Even with a ranked list, however, a lack of docu-ment duplicate detection would require needless document fetches. We accountfor the need to check documents in our estimates of the BF Model by assumingthat the top 0.1% of the documents returned by an intermediary is checked forrelevance, and therefore included in the query access count in Table 5.5.As an example, we derive the Single Query Expression for the STARTS Modelin Table 5.3. The query, of size SQ, is �rst propagated to the intermediary,which matches it against its metadata and selects the best sources to querydirectly. These NBS sources are then handed the query. So far the query hasgenerated SQ � (1+NBS) bytes of remote network tra�c. The next action is theresult retrieval process. Each queried source will send back its own query resultassumed to be of size SR. The intermediary in STARTS will perform only



78 CHAPTER 5.limited result merging: rank merging, but no duplicate detection. Thus, thesame amount of tra�c sent to the intermediary is bundled together and re-sentto the query generator, for a total result retrieval of (2�SR �NBS) bytes. Whileone might consider the factor of 2 to be super
uous, it is negligible in the order-of-magnitude estimate anyway. Thus, the total amount of tra�c generated bya single query in the STARTS Model is (SQ � (1+NBS))+ (2 �SR �NBS) bytes,as shown in the table. In fact, in all the models, tra�c caused by queries isdominated by multiplicative factors of SR, with the best being SR � NBS inSTARTS and Pharos.
5.3.3 Scalability EstimatesWe �rst discuss our estimates assuming the parameters take on values thatmight be currently considered typical, as were listed in Tables 5.1 and 5.2.After that, we increase three key values and re-compare some of the models.Typical Current ValuesWe intuitively expect that Class 1 should show the greatest scalability problems.Each model in this class breaks down in a di�erent way. If the characteristicswe are estimating are the most relevant ones, we expect that some of these rea-sons will show up in one or more of the Estimate Tables 5.3{5.6. For example,Table 5.5 shows that sources in the Remote model receive orders of magnitudemore query accesses than in the other models because each query is propagated



5.3. 79to every source. The last model discussed in this class, the Local Model, showsproblems with, for example, the amount of tra�c needed to perform a singleupdate. The model also does poorly in terms of storage and total update ac-cesses. Total storage is a problem because the model must assume that eachquery generator has its own copy of all metadata in order to be in Class 1.The models discussed in Class 2 are the closest to present working systems. It isimportant to distinguish behavior evidenced in a particular model from behaviorinherent in the class. Both BF and STARTS, for example, have high storagerequirements, as seen in Table 5.4. However, this is a result of the fact thatthe size of the collection metadata used in these models is a function of the sizeof the collection. Pharos uses a classi�cation-based metadata structure whosesize is independent of the collection size, and thus yields smaller storage values.Such a metadata structure is not inconsistent with Class 2. The BF Model isparticularly problematic in the number of update accesses, shown in Table 5.6.This is because the model requires that the intermediaries separately fetch eachdocument from a source rather than fetching a single, albeit large, collectionmetadata record as in the STARTS Model. STARTS achieves the reasonablegoal that each intermediary is accessed no more than once per update.One of the advantages of Class 3 in general is that it allows intermediary meta-data to be less than linear with respect to the number of sources; this is notpossible in Class 1 or 2. Several resource discovery models [BDH+94, GGM95,SDW+94], including Pharos, allow intermediaries to collect information fromother intermediaries, including metadata describing a collection of collections,rather than just a collection of documents. An appropriate network hierarchy of



80 CHAPTER 5.intermediaries could arbitrarily reduce the size of the metadata, at the cost ofloss of discrimination between di�erent sources. Furthermore, grouping sourcesbehind particular intermediaries reduces the number of update accesses per in-termediary, at the cost of maintaining more of them.The only Class 3 model we have discussed is Pharos. Pharos performs well inthe estimates for several reasons. Network tra�c is minimized for updates forthe same reason that storage is minimized; as stated, the metadata size is in-dependent of the collection size. Pharos strati�es metadata within a collection.Because of this layering, it can send pieces of metadata selectively to di�erentintermediaries; this allows a large number of sources to be coarsely described ina compact way. This type of metadata partitioning is possible only if the infor-mation itself is hierarchically structured. It can be utilized only within Class 3,since its bene�t arises from having intermediaries hierarchically arranged in away that matches the hierarchy within which a collection is classi�ed.Typical Future ValuesWe have chosen typical values for our estimates based more or less on the current(1997) Internet environment. It is generally expected that several parameterswill experience fairly rapid growth over the next few years, some improvingsystem performance and others degrading it. For example, performance is im-proved as network bandwidth, storage capacity, and processing power increase,while the growth in the volume of data and numbers of users and sources tend todegrade it. However, we expect that factors relating to computer-human inter-



5.3. 81action such as query response time and browsable result size cannot drasticallychange if a resource discovery system is to continue to be useful. Therefore, it isimportant to recognize which models are likely to experience future scalabilityproblems based on parameter dependencies. We ignore the Class 1 models inthis section since they were already problematic with the previous parametervalues.First, we change the three model parameters which most closely relate to thenumber of users, the number of sources, and the data volume: NQG, NS, andND, respectively. We increase the �rst two by two orders of magnitude andthe third by one, yielding approximately 108 query generators, 107 sources, andan average of 105 documents per collection. These changes require changes inseven other parameters: NRS, SC , SCT , SCTS, SCTI, SHLI , and SMLI .We now allow for two cases of the models to handle these increases. In the�rst, Case 1, we keep the number of intermediaries the same; in the second,Case 2, we increase them. Increasing the number of intermediaries in Class 2is a simple matter of increasing NII , which we do by two orders of magnitudeto 104. For Pharos, we have two coordinated sets of intermediaries. The mid-level servers are the most similar to the intermediaries in the other models.Thus for Case 2 we increase NIM , the number of times each unique mid-levelserver is replicated, by two orders of magnitude to 102. The high-level servers,however, act like news servers and are expected to serve a local area network.Moreover, any replication of this type of service within a local area is irrelevantto our model, which is looking only at remote tra�c. Therefore, we increase thenumber of high-level servers, NHLI , only one order of magnitude to 104; that is,



82 CHAPTER 5.we roughly expect that the increase in the number of high-level servers growsapproximately as the square root of the growth in the number of users.The results are shown in Table 5.7. This table shows the re-computed estimatesof all values in Tables 5.3{5.6 as a result of the increases in NQG, NS, and ND.For each model, the column labeled `Orig' shows the values from the originaltables. The column labeled `Case 1' shows the Case 1 values, where the numberof intermediaries is left as it was. The column labeled `Case 2' shows the valuesfor which the number of intermediaries was increased as previously discussed.Certain scalability problems become evident in this table. For example, be-cause the metadata in BF and STARTS grows with the size of the collectionas well as with the number of intermediaries, the amount of tra�c generatedby a single update grows by as much as three orders of magnitude. In Pharos,the increase is dominated by the extra number of high-level servers, and so theresult is much smaller: only one order of magnitude. Pharos also scales wellwith respect to storage; this is not only because, as before, the metadata sizeper source is constant, but also because only a portion of it is sent to any par-ticular intermediary. Finally, STARTS scales the best for the number of updateaccesses, since it requires only one access between each source and intermediary,and has relatively few intermediaries.
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BF STARTS PharosNew Values New Values New ValuesEstimate Orig Case 1 Case 2 Orig Case 1 Case 2 Orig Case 1 Case 2Network Tra�c (Tables 5.3):Query 7 9 9 6 6 6 6 6 6Update 10 11 13 8 9 11 6 6 7Metadata Storage (Table 5.4):Avg 11 14 14 11 14 14 8 10 10Total 13 16 18 13 16 18 11 13 14Query Accesses (Table 5.5):Avg Int 4 6 4 4 6 4 4 6 4Avg Src 2 4 4 2 2 2 2 2 2Total 7 11 11 7 9 9 7 9 9Update Accesses (Table 5.6):Avg Int 9 12 12 5 7 7 5 7 7Total 11 14 16 7 9 11 8 10 11Table 5.7: Estimates for Large Parameters (all values are log10(x))



84 CHAPTER 5.5.4 DiscussionThis chapter presented a classi�cation of network architectures for locating in-formation sources. These models have been grouped into three broad classes:Direct, Single Intermediary, and Multiple Intermediaries. We discussed the rel-evant parameters for these models, derived estimates for several of their char-acteristics, and compared them based on these estimates. Each class has beenshown to have certain scalability characteristics for all its models. We believethat each increase in design and processing complexity among the classes andmodels is warranted by the corresponding increase in scalability. In general,the estimates we derived indicate the need for collection metadata whose sizeis not a function of the size of the collection. Moreover, utilizing multiple in-termediary models that rely on metadata summaries can avoid a linear growthof metadata size with respect to the number of sources. Limiting the growthof collection metadata in these two ways should more easily accommodate theexpected expansion of the Internet.



Chapter 6
Simulation Studies
We now complete the feasibility study of the Pharos architecture. The lastchapter presented a comparison of Pharos with other models. In this chapter,we estimate the accuracy of Pharos query results.
6.1 Simulation ParametersIn order to evaluate the expected performance of Pharos, we tested it by gen-erating simulated sources and queries and estimating the degree of success of�nding the `best sources' for each query.1 Such an estimate requires the quanti�-cation of a few parameters. When dealing with a standard, single text documentdatabase, precision usually gives a measure of how many of the returned docu-1For the simulations, we de�ne `best sources' as the sources with the greatest number ofdocuments associated with the same node in a taxonomy as the query node.85



86 CHAPTER 6.ments are considered to be relevant to the query [Har95]. This de�nition doesnot extend naturally to the problem of locating sources. A source could beconsidered relevant if it contains even a single relevant document, resulting ina relevance test that is too broad and unintuitive. Instead, we are interested ina measure that is higher for sources that contain a relatively larger number ofrelevant documents. For simulation simplicity, we consider measures similar tothe weights associated with documents based on vector analysis [Dum91, Sal89],which lead to a ranked list of documents. Assuming that we have a weightingsystem which will lead to a ranked list of sources, we have several options forde�ning the precision of the results. We �rst introduce two such de�nitions andshow how they are problematic, leading us to a �nal, more intuitive de�nition.First, we could de�ne source precision of a �nal set of k sources as the fractionof the k best sources; however, this gives too small a value when, for example,the (k + 1) best source is substituted for the kth best source in the �nal set.Next, if we de�ne source precision so as to include the value of such sources, wemight use kXi=1 ikXi=1 estiwhere esti is the true rank of the estimated ith best source. The resulting valuewould be unreasonably small, however, whenever a particularly poor source isselected, even if the other k� 1 sources are the best ones. Therefore, we de�ne



6.1. 87source precision, PS, as follows:PS � kXi=1 1=estikXi=1 1=i (6.1.1)where esti is the true rank of the estimated ith best source, and k is the numberof sources selected in the �nal set. Clearly 0:0 < PS � 1:0. As an example,if we select the best 10 out of 1000 sources, k = 10, and the denominator is1=1 + 1=2 + � � �+ 1=10 = 2:93. Suppose that for a given query, we return a setwith the following source rankings: f1,3,4,7,9,14,17,20,27,103g. The numeratorbecomes 1=1 + 1=3 + 1=4 + � � � + 1=103 = 2:06. The source precision is then2:06=2:93 = 0:70. The �rst de�nition would have yielded 0.50 instead, and thesecond de�nition would have yielded 0.27.The next parameters we need to quantify are the source weightings. Pharosis designed for a more complex method of source comparison than a linearranking, as discussed in Chapter 4. However, for the purposes of simplifyingthe simulation, we restrict comparisons to such a ranking, based on the numberof documents at each source which are associated with the query. Thus ourcurrent weighting is based solely on estimating which sources have the greatestnumber of associated documents.2 A source's true weight is di�erent from itsestimated weight. The former is a function of the actual number of documentsand in general is not determinable from a user's machine. The latter is based on2Other methods, for example, involve using a conspectus rating or estimates of how wella source covers a subject, region, etc., as well as using any of the taxonomy-independentmetadata (see Section 4.3).



88 CHAPTER 6.the information available through the high-level and mid-level metadata. Theseweights are complicated by the fact that we cannot assume that all documentsin a collection have been classi�ed within each taxonomy. For simulation andevaluation, we compare the rankings based on the true source weights to thoseobtained from the estimated weights in order to calculate the source precision.We de�ne the weight of a source for a query involving multiple taxonomies, butsimplify it here by excluding multiple nodes within any single taxonomy. Queriesare then considered to be one node from each of the one or more taxonomiesused in the query, limited by the total number t of taxonomies known to Pharos.We currently limit t to 3. A multi-taxonomy query is considered to be a logicalAND of the individual nodes within each separate taxonomy. Furthermore, weassume that documents are uniformly distributed among a query node's childrenwithin a taxonomy. Therefore, we estimate that the total number of documentsthat are relevant to a query is the product of the total number of documentsin the collection times the individual fractions of the collection within eachquery component. For example, consider a two-taxonomy query with a subjectcomponent of political music and a geographical component of San Francisco.If 80% of the documents in a collection match the subject component and 30%of the documents in the collection match the geographical component, then weassume that 24% of the documents in the collection match the query. Therefore,we use the product of the coverages to derive the following true source weightingfor a given query: SC � tYi=1 
i (6.1.2)where SC is the size of the collection at the source, t is the number of taxonomies



6.1. 89in the query, and 
i is the coverage at the query node ni for taxonomy i.The �nal parameter we need to de�ne is the estimated source weighting. Thisweight is calculated from the high-level and mid-level metadata. For the tax-onomy nodes which de�ne a given query, the corresponding metadata are thehigh-level and mid-level ancestors of those nodes in the respective taxonomies.If the query node is actually a high-level node, the mid-level `ancestor' is de�nedto be the query node itself. We make a slight modi�cation from Equation 6.1.2to account for the fact that the metadata gives a more accurate estimate ofnodes which are higher in the taxonomy than those which are lower. The num-ber of nodes which are represented by a high-level (mid-level) node is a functionof two factors: 1) �h, the di�erence in height between the query node and itshigh-level (mid-level) ancestor, and 2) Nc, the number of children per node inthe taxonomy. For simplicity, we assume here that Nc is a constant for eachtaxonomy. The number of descendents of the query node's high-level (mid-level)ancestor which are at the query node's height in the tree is then (Nc)�h. Inorder to give more relative weight to query nodes which are higher in their re-spective trees, we divide the product factor in Equation 6.1.2 by Nc ��h. Thisdivisor is a compromise between just using the height di�erence and using thefull dilution of (Nc)�h. Therefore, the high-level (mid-level) estimated sourceweighting is SC � tYi=1 � 
0i(Nc ��hi)� (6.1.3)where SC is the size of the collection at the source, t is the number of taxonomiesin the query, 
0i is the coverage at the high-level (mid-level) ancestor ai of the



90 CHAPTER 6.Tax / Number of AverageQuery Queries Precision1 320 0.76 � 0.192 337 0.63 � 0.213 343 0.58 � 0.23Table 6.1: Precision as a Function of the Number of Taxonomies per Queryquery node ni for taxonomy i, Nc is the number of children per node in i, and�hi is the di�erence in height between ni and ai, or 1=Nc if ni equals ai. It shouldbe noted that the dilution factor used in this estimate makes no di�erence forsingle-taxonomy queries. Equation 6.1.3 is a heuristical equation which needsto be compared with other estimated weighting schemes.
6.2 Simulation ResultsUsing the performance measures developed in Equations 6.1.1-6.1.3, we ran ex-periments with 1000 simulated sources. The sources were generated with 3taxonomies per source, 8 children per node, and a taxonomy depth of 4 (i.e.4681 nodes per taxonomy). High-level (mid-level) metadata were considered tobe the level-1 (level-2) nodes in the taxonomies. Collection sizes ranged from102 to 108, with a higher probability3 given to 105. Finally, the coverages of3The exponent was chosen as the random variate by averaging two values taken uniformlybetween 2.0 and 8.0.
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Taxonomies per QueryFigure 6.1: Simulation Precisiona node's children were chosen such that they summed exactly to the coverageof that node. However, we increased the variability of the children by using anon-uniform probability distribution. Our experiment generated 1000 queries.Each query was randomly chosen to use 1, 2, or 3 taxonomy query components.Furthermore, the actual taxonomy to use for the �rst, second, or third compo-nent was randomly selected as needed, although we disallowed using the sametaxonomy more than once per query. Query nodes were chosen uniformly amongall nodes in the tree, giving a higher probability that nodes were chosen fromamong the leaf nodes. By using Equation 6.1.3, we selected approximately 100sources with the high-level metadata, and then from that set and the mid-levelversion of the same equation, selected a �nal set of 10 sources. For each query,we used Equation 6.1.2 to rank the 1000 sources. Finally, we derived the sourceprecision for each query using Equation 6.1.1.The overall average precision was 0:66� 0:22. In Table 6.1 we show the break-



92 CHAPTER 6.Query Number of AverageDepth Queries Precision1 0 N/A2 3 1.00 � 0.003 39 0.84 � 0.174 278 0.75 � 0.19Table 6.2: Precision as a Function of Query Node Depth
down of the results based on the number of taxonomies per query; the resultsare shown graphically in Figure 6.1. In Table 6.2 we show the breakdown ofthe results based on the node depth for the single taxonomy queries. We alsocalculated the average best and worst ranked source in the �nal selected sets.The former is 1.5; the latter is 324. These numbers indicate that in the vastmajority of cases, the source which was assigned the highest or second highesttrue source weight was in the �nal set, and that on average the worst source inthe �nal set was within the top 32%.For proper perspective, precision measurements generally must be compared totheir corresponding recall values, which we have not yet de�ned. While workfrom TREC [Har95] generally shows the state-of-the-art of document retrievalto be around 50% precision for 50% recall, these values are for document queryresults from single collections. We informally de�ne source recall as the fractionof total documents in a sub-domain that are contained in the �nal set of theselected sources. Clearly this is a non-trivial value to determine. One study by



6.2. 93the Research Libraries Group of top research libraries in the U.S.A. indicatedthat the best source alone can provide well over 70% source recall, and that afew su�cient sources can provide a source recall of over 90% [Mos85].It is di�cult to know how these values might be extrapolated from tens ofresearch libraries to tens of thousands of digital information sources; they do,however, help put the simulation results in some perspective. They indicate thepotential importance of �nding several of the best sources, as our simulationsdo for most of the �nal sets. Considering that each source in a �nal set, onceselected, would be directly handed the query, we �nd these results reasonable.They indicate that a su�cient number of good sources could be located withthe Pharos architecture so that the majority of relevant documents could beretrieved. We note that there is a drop of precision as the number of taxonomiesper query is increased; while this result is not unintuitive, further work is neededto more de�nitively explain it. It is also worth noting that the results for 1000queries are not signi�cantly di�erent than for only 100 queries, including thestandard deviations. This indicates that the results are stable, though clearlymore experimentation is needed to clarify parameter dependencies. Finally, thenext section presents simulation parameters and results for the case of collectionsthat are only partially classi�ed.



94 CHAPTER 6.6.3 Simulation Parameters under Partial Clas-si�cationWe distinguish a document that has been determined not to relate to a particularinformation hierarchy from one for which no determination has been made atall. Those documents that do not relate to a taxonomy can be considered to fallunder a special `excluded' child of the root node. But we must extrapolate fromthe measured coverage values within the taxonomy (i.e. from those documentsthat have been classi�ed) to the expected coverages of the entire collection (i.e.including those documents that have not yet been classi�ed). A simple way todo this would be to consider as unrelated all those documents not yet classi�ed.Another simple method would be to ignore the fact that not all documents havebeen classi�ed and to assume that the expected coverages is a simple linearextrapolation of the measured values. Neither of these approaches is likely togive the best estimate of the true coverages of the entire collection within ataxonomy.Instead, since we have no reason to assume otherwise, we make the a prioriassumption that the unclassi�ed documents are most likely to be uniformlydistributed within the taxonomy. After all, if only a small fraction of documentshave yet been classi�ed, it is di�cult to accurately extrapolate to the entirecollection. Correspondingly, if a large fraction of documents have already beenclassi�ed, then assuming a uniform distribution of documents for the remainderof the collection will not change the existing coverages signi�cantly. Let �ibe the fraction of classi�ed documents within taxonomy i. For query node ni



6.3. 95of i, the number of documents which would be counted in its coverage of theremaining 1��i documents under a uniform distribution is simply the numberof nodes under ni's sub-tree divided by the total number of nodes in i. We callthis the fractional area of ni and denote it as fi. Therefore, in order to weightthe sources for a given (possibly multi-taxonomy) query, we use the productderived in Equation 6.1.2 of Section 6.1 for those documents which have beenclassi�ed, and a uniform distribution for the remainder of the documents. Thuswe derive the following true source weighting for a given query:SC � tYi=1n(
i�i) + �fi � (1� �i)�o (6.3.1)where SC is the size of the collection at the source, t is the number of taxonomiesin the query, 
i is the coverage at the query node ni for taxonomy i, �i isthe fraction of the collection which has been classi�ed within i, and fi is thefractional area of ni.The high-level (mid-level) estimated source weighting, then, becomes the follow-ing: SC � tYi=1((
0i�i) + �f 0i � (1� �i)�(Nc ��hi) ) (6.3.2)where SC is the size of the collection at the source, t is the number of taxonomiesin the query, 
0i is the coverage at the high-level (mid-level) ancestor ai of thequery node ni for taxonomy i, �i is the fraction of the collection which has beenclassi�ed within i, f 0i is the fractional area of ai, Nc is the number of childrenper node in i, and �hi is the di�erence in height between ni and ai, or 1=Nc ifni equals ai.



96 CHAPTER 6.By using Equations 6.3.1-6.3.2 in place of Equations 6.1.2-6.1.3, respectively,and assigning a U[0,1] random variate representing the fraction of a collec-tion's documents classi�ed within a taxonomy, the average precision rose from0:66 � 0:22 to 0:79 � 0:16. This new value is misleadingly high. The problemhere is that by using a U[0,1] random variate, we are uniformly distributing,on average, half of our data. This tends to smooth out the variability of thesimulated taxonomies, which erroneously makes the high- and mid-level esti-mates better. As an example of an extreme case, we ran 1000 queries against1000 sources, but used a U[0,0.01] random variate (i.e. 99.5% of the data wasuniformly distributed). The result, as expected, is that the precision went to1:00� 0:00; both the estimated and true weightings were ranked solely on thecollection sizes. We are currently experimenting with other methods of simu-lating partially classi�ed collections.4 Equations 6.3.1 and 6.3.2, however, arestill accurate.

4In particular, we use two trees for each taxonomy: one for the true weights and the otherfor the estimated weights.



Chapter 7
Metadata Extraction: Prototypeand Evaluation
Given that the results of the feasibility studies described in Chapters 5 and 6were acceptable, we could then proceed to begin implementation of a proto-type. Arguably the most di�cult, yet important, component of Pharos is thatwhich is responsible for the automated extraction of collection metadata. Aswill be described in detail below, we experimented with the use of newsgroupsas collections. We built an initial prototype that automatically classi�ed andsummarized them within the Library of Congress Classi�cation (LCC).1 Theprototype used electronic library catalog records as a `training set' and LatentSemantic Indexing (LSI) [Dum91] for information retrieval (IR). We used thetraining set to build a rich set of classi�cation terminology, and associated these1The prototype can be tested at http://pharos.alexandria.ucsb.edu/demos/.97



98 CHAPTER 7.terms with the relevant categories in the LCC. This association between termsand classi�cation categories allowed us to relate users' queries to nodes in theLCC so that users could select appropriate query categories. Newsgroups weresimilarly associated with classi�cation categories. Pharos then matched thecategories selected by users to relevant newsgroups. In principle, this approachallows users to exclude newsgroups that might have been selected based on anunintended meaning of a query term, and to include newsgroups with relevantcontent even though the exact query terms may not have been used. This workis extensible to other types of classi�cation, including geographical, temporal,and image feature.
7.1 Source Summarization: MethodologyHierarchical classi�cation is fundamental to the way that Pharos uses metadatafor collection summarization and selection. Pharos is dependent on each sourceextracting and distributing this information about its collection. For classi�-cation to be practical as an aid to distributed source selection, it must be anautomated procedure at the source. Since we wanted to show that automatedclassi�cation could be successfully applied, we processed our collections (e.g.,newsgroups in our experiments) in the same manner that we would expect tohappen at individual information sources. Geographical classi�cation within aspatial database, where each document has spatial coordinates associated withit, is straightforward. However, classifying semi- or un-structured digital textwithin a subject classi�cation is more di�cult. As discussed in Chapter 4,



7.1. 99automated text-based subject classi�cation has been shown to be fairly suc-cessful, using techniques such as sublanguage terms [LH95], LSI [Hul94], andinverted term lists [Lar92]. These results indicate that at least some subject-based automated classi�cation is su�ciently accurate to characterize sources forcomparison purposes, where even order of magnitude estimates can greatly aidin �ltering out most irrelevant sources.In general, automated classi�cation requires several components. First andforemost of these is the collection itself; clearly this must be in a digital form tofacilitate content-based classi�cation. The second component is a classi�cationscheme, often a hierarchical tree, which organizes the concepts of a particularinformation domain. The third is a pre-classi�ed training set of documents,which the system uses to characterize each node of the classi�cation scheme.This characterization is generally some type of abstract space within whichclassi�cation nodes are placed. The position of the nodes in this space serves tospecify syntactically the semantics of the nodes. For example, such a space mayconsist of a large dimensional term space where documents are placed based onthe term frequencies of their content. The fourth and �nal component is an IRsystem.The IR system serves two purposes. First, it actually builds the abstract spacevia some type of mapping or index structure, and then places the classi�cationnodes as reference points within the space. The second purpose of the IR systemis to accept queries as input and return a set of ranked classi�cation nodes asoutput, where the ranking is determined by the relevancy of the nodes to thequery. This is the step which actually classi�es new documents within the



100 CHAPTER 7.classi�cation scheme. While these components are su�cient to automaticallyclassify a single collection, Pharos additionally requires that a summarization, orpro�le, of each collection be built so that multiple collections can be compared.This is accomplished by taking the classi�cation results of each document in acollection and aggregating them into the individual collection-wide pro�le.For this experiment, we implemented this abstraction as follows. We used 2500USENET newsgroups as individual collections, each newsgroup being considereda separate information source,2 and used the LCC as the classi�cation scheme.We used newsgroups for several reasons. First, they are an easily availablesource of thousands of di�erent collections. Second, newsgroups are typicallyuncontrolled, and their content tends to be based on a distributed consensus;in other words, they are messy, consisting of many unrelated articles, `spams',misspellings, etc.3 In that sense, newsgroups represent an extreme of digitalcollection that could be most chaotic. Hence, if we can bring order to thischaos, then it should be easier to deal with more structured digital collections,which are typically administered by a professional (i.e., if we can work withnewsgroups, we can work with anything). Third, the name of a newsgroupgives some quick check on the relevance of the returned collections to the users'queries.For the classi�cation scheme, we chose the top portion of the LCC scheme2The newsgroups included the following hierarchies in alphabetical order: alt.politics,comp, misc, rec, sci, and soc. Only non-empty newsgroups were used, taken from a two-weekperiod.3A `spam' is a message that is broadcast to hundreds or thousands of newsgroups, generallyto advertise some product or service. These spams are more often than not completelyunrelated to the central theme of the newsgroups to which they are posted.



7.1. 101(the LCC Outline). We use the LCC Outline because it is a wide, multi-topichierarchy (at least it is reasonably hierarchical among the 4214 nodes in theupper part of the tree that form the Outline). As a training set, we used1.5 million electronic catalog records from the UCSB library. These recordswere in \MAchine-Readable Cataloging" (MARC) format. Each MARC recordcontains information about a single holding, including its LCC call number (anotation based on LCC, chosen by a cataloger, representing the major topic ofthe item). MARC records also generally contain a holding's title, descriptions ofits subject matter, an indication of its authorship and creation date, and otherbibliographic information. The subject matter in MARC records is derived fromthe controlled vocabulary of the Library of Congress Subject Headings (LCSH).Finally, we used LSI [Dum91] for the IR system, a commonly used IR researchtool.
7.1.1 Building an Online LCC OutlineAs previously discussed, we require an online classi�cation scheme in orderto classify documents automatically. The LCC contains 21 top-level subjectcategories, such as \Science", \Law", and \Political Science". Each top-levelcategory is assigned a single letter, such as \Q" for Science. Beneath each ofthese are sub-categories, usually with a two-letter notation; for example, \Q:Science" includes \QC: Physics", \QE: Geology", and ten others. After the two-letter notation, further di�erentiation is usually denoted by way of numericalranges. For example, \QC 221-246" denotes \Acoustics, Sound", while \QC



102 CHAPTER 7.501-766" denotes \Electricity and Magnetism". This hierarchy continues downmany levels.Once we chose the LCC, we could not �nd an electronic version of it.4 Below,we describe some of the details of building an online version of the LCC Outlinebecause some of the di�culties of doing so involved the structure of the LCCitself, rather than simply being a result of normal programming problems.At �rst, we hoped to use only the �rst and second letters in the outline, such as\H: Social Sciences", and \HG: Finance". However, it soon became apparentthat this would not provide su�cient detail. For example, \BF" is describedas \Psychology, Parapsychology, Occult Sciences", putting too many disparatetopics together in a single node. Computer Science is buried �ve levels downin the tree, beneath \QA: Mathematics"; in fact, it is deeper in the tree than\Slide Rules", which is only four levels down. Clearly we needed, as a minimum,the nodes listed in the full LCC Outline.The development of a \machine-readable" version of the LCC is available fromthe Library of Congress' Cataloging Distribution Service and is entitled, \Clas-si�cation Plus" [Gue96]. However, this distribution does not include a program-ming interface; it is distributed via CD-ROM and accessible only through theuser interface provided. As a result, this information was basically useless to us.We located a few versions of the LCC Outline on the Web. These were in a 
atformat, with one page for each of the 21 major LCC categories. After parsingthese pages to remove the HTML and correcting misspellings and numerical4Although the Library of Congress publishes the complete LCC on CD-ROM, it is notbuilt with a programming interface.



7.1. 103range errors, we were left with 21 lists of the form shown in Table 7.1.While we were able to work around problems with the layout of this data and,in particular, decipher the nesting structure of the letters and numerical ranges,other problems were not as straightforward. Most of the LCC places classi�-cation numbers with two alphabetic characters as children of those with onealphabetic character in the tree; in the \K" section this extends to three be-neath two. For example, in the above list, \AC" is a child of \A" in the tree.Similarly, \KGC" is a child of \KG". However, the exceptions to this rule makethe automatic parsing of the data di�cult. For example, \DAW" is a child of\D", placed between \DA" and \DB". \E" has no other letters beneath it at all,just numbers. Most top-level categories repeat the one-letter symbol as its �rstchild, so that, for example, \R: Medicine (General)" is a child of \R: Medicine".The \K"s were by far the worst. For example, both \KK" and \KKA" are chil-dren of \KJ". Also troublesome is that several nodes in the tree were completelyunlabeled and left out, so that a parent node and its grandchildren exist with-out an intermediate level being explicitly noted. In order to impose a somewhatrigorous tree structure, all these situations had to be manually discovered andcorrected, including not only the data, but also the classi�cation scheme itself.
7.1.2 Building an LCC Vector SpaceAfter constructing an online version of the LCC Outline, we next needed to con-struct a relationship between terms and the LCC categories. For example, thecategory \RJ 1-570: Pediatrics" might be associated with terms such as \chil-
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A General WorksAC 1-999 Collections, Series, Collected Works1-195 Collections of Monographs, Essays, etc.801-895 Inaugural and Program Dissertations901-995 Pamphlet Collections999 ScrapbooksAE 1-90 Encyclopedias (General). . .B Philosophy, Psychology, ReligionB 1-5739 Philosophy (General).108-708 Ancient. . .Table 7.1: LCC Outline Data Format



7.1. 105dren", \hospital", and \measles", while the category \QA 75.5-76.95: Elec-tronic Computers, Computer Science" might be associated with \database",\algorithm", and \cryptography". Although we chose to use a vector spacemodel, which follows closely the techniques used by LSI in TREC [Har95], anyIR system could have been substituted, as explained below. We present a moredetailed description of the process of constructing such a term-category associ-ation using MARC records and LSI.The general design of this component is shown in Figure 7.1. We want to asso-ciate each of the 4214 categories (nodes) in the LCC Outline with a set of termsthat are representative of that category. In order to build such a term repre-sentation, we begin with a training set, such as MARC records. Each record isprocessed by a program (\Vector Builder") that extracts the appropriate termsfrom it and assigns them to the corresponding LCC category. We end up witha representative `document' for each LCC category (\LCC Vectors") consistingof the terms from all the MARC records that were associated with that cate-gory. These LCC Vector documents are used as input to LSI. LSI constructs ahigh-dimensional vector space such that each unique term is represented by adi�erent dimension. It places each LCC category as a point, or vector, in thisspace. Each component of a vector is determined by the number of times thatthe term for that dimension is used in the category's term-based representa-tion (adjusted by various term weighting schemes). LSI then employs singularvalue decomposition to reduce the dimensionality to approximately 100 dimen-sions whose orientations are some linear combination of the original axes. LSImaintains an index of all the terms with their position vectors in the reduced
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Figure 7.1: Building an LCC Term Vector Space
space. The LCC categories can then be viewed as items in a collection thatLSI attempts to retrieve based on their relevance to queries. The end productof this component, the \LCC Vector Space", is used by LSI in both classifyingnewsgroups and in processing queries.Suppose, for example, that instead of using an LSI-based vector space, we usedan inverted term index, as does Cheshire[LMO+96]. We would need this indexboth at the source, to build the pro�le, and at the client, to handle the subjectquery-mapping. We would not, however, need to retrieve this index at query-time. The acquisition of the index (or LSI space, etc.) is required only once.In other words, Pharos is independent of the particular IR system used. Asdiscussed in [IT95], other IR methods may have certain advantages over thevector-based LSI approach. As there are advantages and disadvantages withany IR system, and our work is not focused speci�cally on IR, LSI was su�cientfor our purposes.



7.1. 107We prefer LSI because it indexes based on term groupings, rather than onindividual terms. Thus \investment" might be associated with documents whichcontain \bank" and \�nance" even if the word \investment" does not actuallyappear in all those documents. Also, LSI is language-independent, so it worksequally well with both English and non-English terms. For example, by defaultLSI uses no word stemming, a technique that is generally highly dependent onlanguage syntax such as pluralization rules. One big disadvantage of LSI is thatit is not capable of working with multi-term phrases; each term is consideredindependently. This is not an inherent problem with vector-based IR, but simplywith the implementation employed by LSI. By default, when LSI builds its termvector space, it �rst removes the following:� punctuation;� words of less than three characters;� numbers not of the form 18nn or 19nn;� entries in its standard stop-word list of 437 common words.We added \journal" and \proceedings" to the stop-word list, as these wordsare common in MARC records and do not help much in di�erentiating betweensubjects. We also included hyphens as allowable punctuation, and kept num-bers.Building the relationships between the terms and the LCC nodes requires atraining set which associates terms with LCC categories. One way of doing



108 CHAPTER 7.this is simply to use the descriptive text associated with each category, such as\Pediatrics" associated with \RJ 1-570" as described above. While we did in-corporate these terms, they did not provide a rich enough set of words. In orderto enhance this set, we used the 2 million MARC records for the items held atthe UCSB library (of which 1.5 million were usable). MARC record format5 is anational standard for the exchange and distribution of cataloging data, backedby the Library of Congress.6 These records contain a series of numericallytagged �elds and alphabetic sub�elds. For example, �eld 050 contains the LCCcall number assigned by the Library of Congress. Within the subject �elds, the600's, subject terms are assigned from the Library of Congress Subject Headings(LCSH). Sub�elds for the 600's include, for example, $y for temporal informa-tion and $z for geographical information. From each record, we extracted theLCC number, title, and subject heading information. We do not take duplicateterms from within the title nor from within the subject headings, so that eachMARC record can add a given term no more than twice. This restriction is in-tended to base term frequencies on term occurrences between many documents,rather than, for example, repetitive uses from multiple subject headings for thesame document. We take hyphenated words as a special case. For example, theterm \anglo-saxon" will generate the following terms: \anglo-saxon", \anglo",\saxon", and \anglosaxon". This last form is for including non-hyphenatedversions of words such as \on-line" and \e-mail".We assign the terms from the title and subject heading �elds to the LCC cat-5http://lcweb.loc.gov/marc/bibliographic/ecbdhome.html6Technically, MARC is an international standard, and USMARC is the U.S. version. Wework only with USMARC records.



7.1. 109Frequency Term141 children101 child67 infants66 pediatrics65 health43 mental42 feeding30 nutrition29 care27 breastTable 7.2: Ten Most Frequent Terms for \RJ 1-570: Pediatrics"
egory associated with the LCC number. In so doing, we acquired over 410,000unique terms for the 4214 node LCC hierarchy. On average, there were 371MARC records per node, with a median of 43; 414 nodes had zero MARCrecords. For example, there were 229 MARC records that were placed directlyinto \RJ 1-570: Pediatrics", as well as 1679 records distributed among its 14children. These 229 records generated, after removing duplicates within eachrecord, over 2600 terms. These consisted of, after removing stop-words, over700 unique terms, including the ten most frequent terms shown in Table 7.2 indecreasing order by frequency.The distribution of the 1.5 million MARC records among the nodes in the LCC



110 CHAPTER 7.Outline, shown in Table 7.3, follows roughly Zipf's rank-frequency law [Sal89].That is, �rst group LCC nodes which are assigned the same number of MARCrecords per node,M . Then sort these byM and number them in order, assigninga rank number, R. If we count the number of nodes, N(R), in the LCC Outlinewhich are placed in the same rank (i.e. received the same number of MARCrecords), we �nd that for the 1254 nodes which received less than 10 recordseach, the following holds: R �N(R) ' 450� 60. In fact, averaging over all the915 rank values yields R �N(R) � 714. This average is pushed up by the longtail of the curve, with 512 nodes having a large but unique number of MARCrecords, and thus each receiving a large, unique rank value.Given that so many nodes had very few MARC records, we could increase thisset of terms by using MARC records from, for example, the UC-wide Melvylonline catalog system. This sets contain tens of millions of MARC records froma variety of di�erent types of libraries, and so we would be able to greatlyenhance our term-based representation of each LCC category.
7.1.3 Automatically Classifying the NewsgroupsOnce we have constructed the LSI term vector space, we use this data to char-acterize newsgroups within the LCC and use the resulting collection pro�le asrequired by Pharos. Each newsgroup, which is treated as a separate collection,requires its own pro�le. A pro�le is compiled by processing the individual newsarticles (treated as `documents') within each newsgroup. The articles are passedas queries to (MARC/LCC seeded) LSI, which returns a ranked list of LCC cat-
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Number ofMARC Records Number ofRank per Node R Nodes Node DescriptionR M N(R) R �N(R) (if only one node)1 0 414 4142 1 178 3563 2 139 4174 3 103 4125 4 96 4806 5 90 5407 6 69 4838 7 63 5049 8 58 52210 9 44 440... ... ... ...913 36011 1 913 Spanish Literature914 61986 1 914 English Literature915 90067 1 915 American LiteratureTable 7.3: Distribution of MARC Records within the LCC Outline



112 CHAPTER 7.egories for each article. In e�ect, this procedure treats the article as if it werea query and automatically classi�es the query { or article { into the LCC. Thearticles are then compiled into a pro�le in the form of an LCC tree where eachnode contains the percentage of articles in that newsgroup associated with thatnode in the tree.We �rst pre-process each article, mainly to strip its headers (and remove punc-tuation). The only header information we keep is the content of the subjectline, which in principle the author wrote intentionally to describe the message'scontent. The reason that we strip the headers is to avoid using the name of thenewsgroup and the cross-posting groups, which appear in the headers, as an aidto classi�cation. In this way, we attempt to be as unbiased as we reasonablycan, since the purpose of the experiment is to attempt to classify by contentonly. We exclude articles that have no terms which match our list from theMARC records; these articles include rare aberrations, less than 0.1% of thearticles, such as one article whose subject was \s" and whose entire content was\1".LSI queries take the form of `documents' or free text. The terms of the queryde�ne a new vector in the LCC vector space in the same manner as the originaldocuments. LSI then returns a weighted list of similar documents. In our case,this list is a set of LCC categories whose weights indicate some measure ofrelevance between the query terms and the categories. In e�ect, this procedureautomatically classi�es the query into the LCC. As shown in Figure 7.2, eachnews article is given as a query to LSI, which returns the weighted list of LCC
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Figure 7.2: Automatically Classifying the Newsgroupsnodes.7 We then keep all nodes which have a weight above a threshold value(currently 0.25). Suppose we are returned four nodes with the following weights:Node A: 0.8; Node B: 0.8; Node C: 0.4; and Node D: 0.1. We �rst drop Node D,since its weight is below our threshold value. We then normalize the remainingweights so that exactly 100% of the article is divided between the remainingnodes; thus the article is assigned 40% to Node A, 40% to Node B, and 20% toNode C.For each newsgroup, we construct a classi�cation-based collection pro�le in theform of an LCC tree where each node contains the percentage of articles in thatnewsgroup associated with that node in the tree. As an example, Figure 7.3shows a collection pro�le where 19% of the collection falls under the Physicsnode or its children in the classi�cation, 6% falls under Mechanics, etc. Thevalues in parentheses denote articles which fall under a particular node but not7These values range from 0 to 1 because we are using cosine weighting.



114 CHAPTER 7.

Figure 7.3: Newsgroup Summary: Pharos Taxonomy
under any of that node's children.We process each article in the newsgroup as above, and then allocate it amongthe nodes such that 100% of it is added in. If we assume that there are 10documents in a collection, then each document adds a total of 0.1 to its collectionpro�le. Hence, if we were adding the article from the above example to thispro�le, we would add 0.04 to the document count of Node A, 0.04 to Node B,and 0.02 to Node C. After processing each article in a newsgroup, we end upwith the total number of document equivalents associated with each of the 4214nodes in the LCC tree. One newsgroup pro�le is generated in this manner foreach newsgroup.



7.1. 1157.1.4 Pharos Query ProcessingGiven the newsgroup pro�les, we must allow users to retrieve those newsgroupsthat are most relevant to their queries. This requires a semantic mechanismthat enables users to map their query concepts into the LCC tree. From here,they can decide which nodes in the tree best represent their search criteria. Weaccomplish this in two ways. The obvious and perhaps most straightforwardway is to provide users with an online version of the LCC and allow them towalk up and down the tree until they �nd the correct node. But as has beenpointed out in the literature [Dum91], this is a di�cult process for the user.For example, if someone is looking for the subject of prostate cancer, there arerelevant nodes in distant parts of the tree. These include not only \surgery"and \internal medicine", both beneath \medicine", but also \immunology" and\anatomy", beneath \science". Thus, using the classi�cation scheme e�ectivelyrequires a more sophisticated understanding of its structure than most users,particularly casual ones, typically possess. Clearly, a more e�ective approach isrequired.We, therefore, provide a more sophisticated mechanism of searching the LCC, asoutlined in Figure 7.4. We �rst map the user's query terms into the previouslyconstructed LCC term vector space, and then return to the user a ranked listof nodes in the tree (LCC categories) that receive the highest weighting fromLSI. These categories are linked to the online LCC Outline in the interface, sothat the user can then navigate the speci�c parts of the tree that are likely tobe relevant to the query. This component of the UI is similar to the work of
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Figure 7.4: Pharos Query ProcessingChen [CLBN93].Three questions should be re-examined: 1) why, given that the entire news-groups are available to us online, do we pass queries through an intermediatestructure such as a classi�cation scheme? 2) given that we can not use an entireonline collection, why use a classi�cation mechanism rather than some otherindexing scheme, in particular one which is built directly from the content ofthe individual collection? and 3) why, given that the entire taxonomies areavailable to us, do we use only part of that information? The basic answer toall these questions comes down to one main issue: extensive scalability. Thisexperiment uses newsgroups an example of what could easily be over a milliondynamic collections; it is not feasible to attempt to store them all locally, evenif they were not constantly changing. Second, while using collection-dependentintermediate index structures might be more e�cient as a means of retrieving



7.1. 117actual documents from individual collections, the accumulated e�ect of doing soresults in very large index sizes and increased complexity. Finally, even using agreatly reduced �xed index structure such as the LCC Outline incurs too greata storage and/or retrieval cost if the entire index must be available for search-ing at query time. Thus, in a real-world distributed environment with manylarge information sources, Pharos would process a keyword-based query by �rsthelping a user map it to an appropriate classi�cation tree (or trees) and then,within that tree, map it to relevant query nodes. This leads to the selection ofappropriate collections for more direct searching.Within the prototype, once the user has selected a node in the LCC tree, we thenwish to return an appropriate set of newsgroups. This function of Pharos, inthe simple version used in the current prototype, linearly ranks the newsgroupsbased on their collection pro�les. The Pharos client would select the appropriatehigh-level and mid-level ancestor nodes of the query node in the tree.8 It wouldthen send the high-level node as a query to a high-level server available to eachclient within their local area (similar to a news server). This server would sortthe collections based on the di�erent weighting schemes (discussed below). Itwould then send back to the client one ranked list of sources for each weightingscheme. The user (or client) would then select a greatly reduced sub-set of thetotal number of known sources (via an appropriate graphical user interface), areduction of, say, from �106 to �103.9 The client would then send the mid-levelnode and the reduced lists to the mid-level server responsible for the mid-level8If the query node is actually a high-level node, the mid-level `ancestor' is de�ned to bethe node itself.9The reason that mid-level nodes are selected from the high-level results relates to multi-classi�cation querying, as discussed in Chapter 3.



118 CHAPTER 7.node. This mid-level server would pass back to the client the source lists ithad received, but now sorted based on the weighting values for the particularmid-level node. The user (or client) would then select from these lists the �nalset of 10-100 sources to query directly, potentially independent of the originalquery node or classi�cation structure. We present an example of this querymechanism in the next section.We currently use three di�erent weighting schemes. The �rst is to use theabsolute counts of documents among all the pro�les. Thus the newsgroupswith the largest numbers of articles for the selected node are given the highestweights. However, we �nd that newsgroups with large numbers of articles tendto dominate this list, even if they are fairly irrelevant overall. So we also weightthe newsgroups based on the relative counts. That is, we give the highest weightsto those newsgroups which have the largest percentage of their articles containedin the query node. A third, more sophisticated combined weighting algorithm,multiplies the log of the absolute count (plus one) with the relative count. Thisis one of many possible ways of attempting to return those newsgroups withboth large relative and large absolute document counts.
7.2 Source Selection and EvaluationOnce we have constructed Pharos taxonomies for each newsgroup, we need toevaluate the use of these taxonomies for source selection. Before examiningthe accuracy of the automated classi�cation, we �rst demonstrate the use of



7.2. 119these pro�les in processing Pharos queries. Then, assuming for the purposesof the experiment that the classi�cation is generally sound, we investigate thee�ectiveness of the taxonomy summaries as an indicator of relevant newsgroups.Such an evaluation seeks to determine how well the upper parts of the collec-tion taxonomies estimate the lower parts of the taxonomies. This is importantbecause the Pharos architecture widely distributes only the top parts of the tax-onomies for a �rst-round �lter (i.e. via high-level servers), then the next leveldown for a �ner-grain �lter (i.e. via mid-level servers), etc. If the upper parts ofthe taxonomies are not accurate indicators of the lower parts, Pharos will endup selecting incorrect sources. Thus, it is important to evaluate the accuracyof the Pharos multi-level querying mechanism.
7.2.1 Representative Query ResultsAs an example of a successful query, we show the result of querying the prototypewith the keywords \prostate cancer". The top ten LCC nodes returned by thesystem are shown in Table 7.4, in decreasing order of relevance. In this case,the system was able to match the query terms quite accurately to nodes in theclassi�cation tree. These nodes are distributed beneath four main nodes in thetree: \RM: Therapeutics, Pharmacology", \RC: Internal Medicine, Practice ofMedicine", and \QR: Microbiology". Upon choosing, for example, \RC 254-282: Neoplasms, Tumors, Oncology (including cancer and carcinogens)" as thequery node, the next step is to select the relevant collections.The top ten newsgroups selected by sorting based directly on the actual query
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LCC ID LCC Category DescriptionRM 270-282 Serum Therapy, ImmunotherapyRC 254-282 Neoplasms, Tumors, Oncology (including cancerand carcinogens)QR 189-189.5 VaccinesQR 201 Pathogenic Micro-Organisms, By Disease, A-ZQR 186 Immune ResponseQR 186.5-186.6 AntigensRC 633-647.5 Diseases of the Blood and Blood-Forming OrgansQR 186.7-186.85 Antibodies, ImmunoglobulinsQR 180-189.5 ImmunologyQR 355-502 VirologyTable 7.4: Top Ten LCC Categories Related to `Prostate Cancer'



7.2. 121node \RC 254-282" are shown in Table 7.5, in decreasing rank order for eachweighting scheme. The majority of newsgroups suggested in this manner arerelevant to the query and potentially good sources of information. However, asseen in list of newsgroups under the absolute weighting scheme, newsgroups suchas misc.jobs.o�ered and rec.sport.pro-wrestling are not highly relevant overall.They are included because of the large number of articles in the newsgroup,some of which touch on topics related to the query (treated as two individualword parameters: \prostate" and \cancer"). In any case, although the selectednewsgroups are fairly relevant overall, Pharos would not have that informationdirectly available in a distributed environment. It would �rst use the high-levelancestor of this node, \R: Medicine", and sort the newsgroups based on thatnode's coverage values: the aggregated document count for all of its descen-dents in the taxonomy, for each of the three weighting schemes. Out of the top,say 250, newsgroups from these sorted lists, Pharos would then re-sort thesesubsets based on the mid-level node, \RC 31-1245: Internal Medicine, Prac-tice of Medicine". From this �nal sorting, we might select a �nal set of, say,25 newsgroups for each weighting scheme. The top ten newsgroups selectedby sorting based on high-level and mid-level nodes are shown in Table 7.6, indecreasing rank order for each weighting scheme. This example shows that inthis case, Pharos is able to select many relevant collections. In particular, thehighest ranked newsgroups were included in the Pharos estimated lists. As withprevious results, however, absolute weighting continues to lead to several lessrelevant newsgroups.
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Relative Combined Absolutesci.med.diseases.cancer sci.med.diseases.cancer sci.medsci.med.immunology sci.med misc.jobs.o�eredsci.med.prostate.cancer sci.med.pharmacy sci.med.diseases.lymesci.med.aids sci.med.diseases.lyme sci.med.nutritionsci.med.diseases.hepatitis misc.health.alternative sci.med.pharmacymisc.health.aids misc.health.aids sci.med.diseases.cancersci.med.prostate.prostatitis sci.med.diseases.hepatitis rec.pets.dogs.healthsci.med.laboratory sci.med.prostate.prostatitis misc.health.alternativesci.med.diseases.als sci.med.aids rec.arts.comics.marketplacesci.med.pharmacy sci.med.cardiology rec.sport.pro-wrestlingTable 7.5: True Top Ten Newsgroups, by Weighting Scheme, for Query Node \RC 254-282: Neoplasms,Tumors, Oncology (including cancer and carcinogens)"
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Relative Combined Absolutesci.med.diseases.cancer sci.med misc.jobs.o�eredsci.med.orthopedics sci.med.pharmacy misc.jobs.contractsci.med.cardiology sci.med.diseases.lyme sci.medsci.med.pharmacy sci.med.diseases.cancer rec.sport.pro-wrestlingsci.med.immunology misc.health.alternative sci.med.diseases.lymesoc.support.depression.treatment sci.med.nutrition soc.mensoc.support.depression.manic sci.med.cardiology sci.med.pharmacysci.med.diseases.hepatitis soc.support.depression.treatment soc.womensci.med.psychobiology sci.med.diseases.hepatitis rec.pets.dogs.behaviorsci.med.aids misc.health.aids rec.food.cookingTable 7.6: Pharos Estimated Top Ten Newsgroups, by Weighting Scheme, for Query Node \RC 254-282:Neoplasms, Tumors, Oncology (including cancer and carcinogens)"



124 CHAPTER 7.Windsur�ngSuppose, instead, a user is attempting to �nd newsgroups related to windsur�ng.The query, \windsur�ng", returns with the top-ranked LCC node \GV 770.3{840: Water Sports: Canoeing, Sailing, Yachting, etc.", which seems appropriate.However, in the lists of newsgroups suggested for this node, rec.windsurfingis ranked at most 96 (using the relative weighting scheme). In fact, this nodeis the top one within which this newsgroup gets classi�ed, implying that ourclassi�cation scheme is closely associating this newsgroup with this classi�ca-tion node. Even the node \GV 200.6: Water Oriented Recreation" ranks thisnewsgroup with a maximum of 48 (using the combined weighting scheme). Infact, the only node which ranks this newsgroup among its top ten is \G 540{550:Seafaring Life, Ocean Travel, etc." The problem is that windsur�ng gets lost inthe more general topic of water-based recreational activities, even though the�rst two nodes mentioned are both at the bottom of the LCC Outline tree. Inother words, these two nodes are as speci�c in these subjects as the classi�ca-tion outline gets. This is a problem of a mismatch between the speci�city ofthe query with that of the level of the classi�cation scheme used here. Usinga more detailed version of LCC (beyond the Outline) would help in queryingcollections locally available such as with the prototype. However, it would nothelp in the distributed environment for which Pharos is designed, where nodesdeep in the tree are not available to the high- and mid-level servers. Using morespecialized trees would help in both instances, though (for this query, one thatspecializes in, say, recreation and leisure activities).



7.2. 125Investment ClubsIn another query, \investment clubs", a user was attempting to locate infor-mation about clubs that deal with personal �nancial investment. The queryresponse included the seemingly appropriate LCC node \HG 179: Personal Fi-nance". However, at the time the query was posed, the \misc" newsgroups hadnot yet been processed, including, for example, misc.invest, misc.invest.-mutual-funds, etc. Clearly the system can do no better than the content ofthe digital collections available to it. Once these newsgroups had been included,they showed up prominently in the set of suggested newsgroups. It is not clearthough that even the investment newsgroups would be appropriate sources forthis particular query. In this case, the system is limited by the sources available,and there is nothing that the system can do about it. This query is important interms of the standard IR benchmark recall. As pointed out in the Introduction,the user has no way of knowing how many relevant sources may exist. A sourcethat has not been included appears the same to a user as if that source did notexist.History of Environmental SciencesSuppose we want information about \History of Environmental Sciences", andby traversing the LCC, select \GE 50: History" (of environmental sciences).We �nd that the newsgroups suggested have little to do with the history ofenvironmental science, but rather more to do with history in general. Thereare two reasons for this. The �rst is that we have no MARC records for this



126 CHAPTER 7.category in our training set, so the only association between the category andterms comes from the descriptive text of the category itself. This leads to thesecond reason for the problem { namely, that the term \history" is insu�cientto describe \history of environmental science". Thus the only term associatedwith this category is \history". A larger or more diverse collection of MARCrecords would help prevent this problem. We could also include terms fromparents and children of nodes for which we have no MARC records.JobsOne problem that occurs with the selection of newsgroups is that weightingswhich involve the absolute number of articles tend to be overly dominated byvery large newsgroups. The suggested newsgroups are currently presented to theuser in three columns, corresponding to the three di�erent weighting schemesbeing used: relative, absolute, and combined (rel � log(1+ abs)). It is apparentafter looking over several of the results that one newsgroup completely domi-nates the absolute weighting: misc.jobs.offered. Even though there are onaverage approximately 400 articles per newsgroup that we have processed so far,the median is much lower, approximately 100. However, there are over 50,000articles in misc.jobs.offered, by far the greatest amount of any of the cur-rently processed newsgroups. Another problem is that this newsgroup is fairlyheterogeneous, with job listings related to all areas of the classi�cation. As aresult, if there is even a slight relevance of a small fraction of these articles toany topic, this newsgroup can receive the highest absolute weighting. In fact,it often has a weighting one or two orders of magnitude higher than the next



7.2. 127newsgroup, and therefore would even show up among the best newsgroups basedon the combined weighting scheme. Using a di�erent combined algorithm helpssolve the problem. For example, we actually use a minimum relative weightingwhich is allowed in the combined weighting scheme; thus if a newsgroup does notreceive, say, at least a 0.1% relative weighting, it can not be included in the com-bined weighting scheme. This type of restriction removes misc.jobs.offeredfrom most of the LCC categories under the combined weighting scheme, exceptfor those which have an emphasis in the newsgroup. While this problem mightseem particular to this newsgroup, it is in fact likely to be a common problemamong general digital sources of information, where collection sizes vary widely,as do their degree of heterogeneity. This problem will have to be addressed if wehope to direct users and their queries to sources that they will consider useful.
7.2.2 Classi�cation AccuracyWe now describe an evaluation of the accuracy of the automated classi�cation.The main component of this evaluation is to examine the ability of the system toclassify the building blocks of the training set { the MARC records themselves.The second component of the evaluation is an attempt to estimate the accuracyof the news article classi�cation.



128 CHAPTER 7.Classi�cation Accuracy of MARC RecordsDue to size constraints, we �rst partitioned the 2 million MARC records (ofwhich only 1.5 million were valid for our experiments) into 20 unique groupsof 100,000 records each. From four such groups, we randomly selected at least100 MARC records. This selection was generated di�erently for each of thefour groups. We then removed the bad MARC records, as described below,and, if necessary, re-did the selection if we had to remove so many that we wereleft with under 100 usable MARC records. After making the measurementsdescribed below, we then re-did the experiments using more MARC recordsfrom each of the four groups in order to obtain a better con�dence level for ourvalues.We excluded all MARC records that didn't have a classi�cation category (a050 or 090 tag). Also, we excluded MARC records for which the category wasinvalid: either it began with I, O, W, X, or Y (not part of the LCC), or else, otherthan the K's, excluded three alphabetic characters in a row in the beginning ofthe category label. We could in principle lose the DAW's (a relatively minorloss), but none of these appeared in the randomized samples anyway.For each set of MARC records selected, we compared the classi�cation categorylisted in the MARC record with the categories selected by the automated system.In this case, we used the entire MARC record as the query to LSI. That is, weused all �elds and did not limit the number of times that any word in therecords could be used. The �rst value we measured was the location of the trueclassi�cation category in the ranked list generated by the automated procedure.



7.2. 129For example, the true value might show up 100th in the sorted list of 4200categories. We then measured the mean, median, and mode of this value foreach set of approximately 100 MARC records. A value of 1 means that theautomated procedure placed the true category at the top of the list. If werandomly assigned ranks to the categories, we would expect that the mean,median, and mode would all be approximately 2100. A perfect classi�cationwould set all the values to 1. The average median came out to 12:9� 2:8. Themode was exactly 1. The average mean was 84� 19. The average sample sizewas 118 MARC records.We then re-did the experiments using more MARC records. We �rst extracted2700 records. After throwing out the bad records as described above, we endedup with the following usable number of records from each of the four sets:2453, 2414, 891, and 1456. Thus we used 7214 MARC records total, withan average of 344 MARC records from each of the 21 major categories of theLCC. The median value was 216 MARC records per category. In this case,the (unweighted) average median came out to 13:0� 3:9, the mode, again, wasexactly 1, and the average mean was 76� 19. Another important characteristicof these values is that approximately 2=3 of the time (66:7%� 5:1%), the bestvalue was within an estimated rank of 30.As an example of the ranks given to the assigned category, we show their distri-bution for the fourth set of MARC records. We used this set of MARC recordsbecause it contains fairly average values. Figure 7.5a shows the probabilitymass function, which plots the fraction of records that received a particularrank value. Figure 7.5b shows the cumulative density function, which sums the
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7.2. 131roughly the same as for the aggregated source summaries. The conclusion isthe same, though. We care about the probability that the best source receivesthe query, not how far away in the list the best source is if it does not receivethe query. This implies that we were able to automatically classify the MARCrecords with a high degree of accuracy.Classi�cation Accuracy of News ArticlesClassifying MARC records is very di�erent than classifying Internet news arti-cles, and not just because the MARC records composed the training set. MARCrecords contain speci�c terms, such as subject headings, that are not only spelledcorrectly (for the most part), but also rich in meaning. This is quite a contrastto news articles, which, as was pointed out, contain many misspellings, spams,and o�-topic comments and discussions.After performing the previous analysis on the MARC records, we hoped to esti-mate the accuracy of the news article classi�cation. Unlike the MARC recordsin the training set, the news articles were not previously classi�ed. As a result,we did not have a `true' classi�cation category for them with which to com-pare the classi�cation categories suggested by our system. We therefore hopedto use professional (i.e. human) catalogers from the UCSB library to classifya representative set of articles. Once these articles were classi�ed, we couldthen compare the human classi�cation with the automated classi�cation to es-timate the accuracy of the automated system. Unfortunately, the results of thisexperiment were inconclusive; they are discussed in Appendix C.



132 CHAPTER 7.7.2.3 Source PrecisionThe question we address in this section is how well the selection of newsgroupsvia Pharos compares to that of selecting newsgroups based on the weights fromthe actual query node. This set of experiments consisted of selecting a set ofnodes from the LCC Outline to use as Pharos queries against 2500 newsgroups,and then calculating the average evaluation metrics from the entire set. Inthese tests, for each query node we �rst selected 250 newsgroups using thehigh-level information which represented that node. That is, we selected the250 newsgroups which had the highest aggregated weighting at the depth 1ancestor of the query node. Then, from this set of 250, we further selecteda �nal set of 25 newsgroups using the mid-level information representing thatnode. We then compared these 25 to the list of newsgroups sorted directly bythe weighting of the query node itself. We use the same de�nition of sourceprecision as given in Equation 6.1.1.As previously noted, a query of the form \prostate cancer" would be mapped toan LCC node such as \RC 254-282: Neoplasms, Tumors, Oncology (includingcancer and carcinogens)" before being propagated within the Pharos distributedretrieval mechanism. Therefore, it is possible to map all possible queries in thisexperiment to one of the nodes of the LCC Outline. As a result, we can estimatethe overall accuracy of queries within this system by averaging the results of all4214 nodes in the outline.We show the general results in Tables 7.7 and 7.8. The di�erent rows show thedi�erence between the results of using only the high-level metadata compared



7.2. 133Absolute Relative CombinedHigh-Level 0.74 0.44 0.49Mid-Level 0.85 0.58 0.64Table 7.7: Average Source Precision as a Function of Weighting SchemeAbsolute Relative CombinedHigh-Level 1.4 38.8 10.9Mid-Level 1.2 14.6 7.7Table 7.8: Average Best Source as a Function of Weighting Scheme
to the results using both high- and mid-level metadata. The di�erent columnsshow the results of using the three di�erent weighting schemes. The �rst tableshows the overall source precision averaged over all query nodes. These valuescan range from 0 to 1, with 1 being the best. The second table shows theaverage best source averaged over all query nodes. These values can range from1 to �2500, with 1 being the best. In all cases, values improved in going fromhigh-level to mid-level results. For the best source, the mid-level values are allwell within the top 1% (i.e. 25) of the 2500 possible newsgroups selected.For proper perspective, we recall the argument made at the end of Chapter 6.There we stated that, at least for research libraries, best source can alone providewell over 70% source recall, and that a few su�cient sources can provide asource recall of over 90% [Mos85]. To the degree that these values are a result



134 CHAPTER 7.of redundancy across collections, this is probably only minimally exemplaryof newsgroups. On the other hand, to the degree that they are a result oflarge di�erences in collection sizes, this is likely to be even more the case innewsgroups. In any case, these values indicate the potential importance of�nding several of the best sources, as is the case in most of the �nal sets.Considering that each source in a �nal set, once selected, would be directlyhanded the query, we �nd these results promising. They indicate that a su�cientnumber of good sources would be located with the Pharos architecture so thata large fraction of relevant documents could be retrieved.It is worth noting the di�erence between the di�erent weighting schemes. At�rst glance, considering these metrics alone would clearly indicate that a pref-erence be given to the absolute weighting scheme. It should be pointed out,however, that the e�ectiveness of the weighting schemes is dependent on thesearch capabilities of the information source. If we are selecting sources such asdigital libraries, we expect that users should be able to select relevant documentseven though these comprise a small fraction of the total number of documentsin the collection. For newsgroups, however, this may not be the case. Notethat in the `prostate cancer' example, misc.jobs.o�ered shows up prominently;this is due to the fact that this newsgroup has 50,000 articles while half thenewsgroups have under 100 articles. It would perhaps be challenging to extractthe few articles out of the 50,000 that relate to the query. Therefore, eventhough the precision is lower for the other weighting schemes, it is still likelythat users may �nd better collections using them, depending on the nature ofthe information sources included in the query set.



7.2. 135We expect absolute weighting to yield better precision than relative weight-ing due to its decreased sensitivity to minor di�erences. The spread amongthe weightings of the selected set of newsgroups using the absolute scheme isgenerally two orders of magnitude, while the spread using the relative schemeis usually within a factor of two. Thus small 
uctuations of, say, 1%, makelittle di�erence when considering absolute document counts, but make largedi�erence between relative document counts. This inevitably shows up as a de-terioration of the source precision since the sensitivity of the upper levels of thetaxonomies is a�ected by this. Consider the following example. Newsgroup Ahas 100 articles, the query node has an absolute weighting of 1.5, its parent 10.6,and its only sibling 9.1. Newsgroup B has 1000 articles, the query node has anabsolute weighting of 11, its parent 107, and its only sibling 96. According tothe absolute scheme, Pharos will select newsgroup B based on the parent node,and, since the actual query node has 11 compared to newsgroup A's 1.5, this isa correct selection. Using the relative scheme, Pharos will still select newsgroupB based on the parent node's 10.7% weight (107 out of 1000), as compared to10.6% for newsgroup A (10.6 out of 100). In this case, however, the query nodein newsgroup A has a higher relative value of 1.5% compared to newsgroup B's1.1%. This weighting scheme would lead to the wrong newsgroup being selected,lowering the overall precision. Other, more complicated, functional dependen-cies, such as the depth of the query node and the number of MARC recordsused, are further examined in the next section. In summary, multi-level query-ing provides satisfactory result accuracy. However, it is important to comparethis accuracy to the scalability requirements.



136 CHAPTER 7.7.2.4 Functional DependenciesThe evaluation metrics are potentially functionally dependent on many factorsbeyond the source weighting scheme used, such as the size and distribution ofthe classi�cation training set, the depth of the query nodes in the LCC Outline,the number of documents in the collections, etc. We �rst show the dependenceof source precision on query node depth. Figure 7.6 shows the average sourceprecision as a function of the depth of the query nodes, for each of the threeweighting schemes. It is clear from these plots that the depth of the query nodein the classi�cation tree has a potentially large e�ect on the resulting sourceprecision. A query at depth 1 always yields a precision of 1.0 because it isits own high-level node, and thus Pharos always selects collections correctly.Similarly, the depth 2 nodes will yield much better results than nodes deeperin the tree because they are their own mid-level nodes. Since depth 8 has onlya single node, we concentrate on depths 3-7. We �rst show the distributionof total and average documents from the newsgroups as a function of depth.Figure 7.7a shows the distribution of nodes in the tree. Dividing the total,Figure 7.7b, by the number of nodes, we derive the average per node for eachlevel of depth in the tree, as shown in Figure 7.7c. The high-level and mid-level estimates in Pharos are determined by the total number of documentsbeneath them. Pharos assumes a uniform distribution of documents in makingits estimates. If we look at the actual distribution of documents per node, we cancompare the expected (average) value to the actual value. This ratio is shownin Figure 7.8. We see that depths 5 and 6 have almost 10% less documents pernode than the expected average of 204. As a result, the high- and mid-level



7.2. 137aggregate values are less accurate indicators for these levels, and the precisiondrops. This interpretation is supported by the rise in precision at depth 7, whichhas within 1% of the expected number of documents per node. It is importantto remember that these are general trends across the entire classi�cation tree,and that there can be sizable variability in precision between individual querynodes at the same depth due to peculiarities in the taxonomies, classi�cationtree, etc. As explained below, however, there is another factor that tends todecrease precision with increasing depth.Another factor we consider is the number of MARC records assigned to eachnode in the LCC Outline. Approximately 10% of the nodes have no MARCrecords, and thus the association between a document's content and these nodesis based solely on the textual descriptions within the LCC Outline. Some ofthese are fairly discriminatory, such as \BF 173-175: Psychoanalysis". Others,however, are poor representations of their semantics when taken out of contextof the classi�cation. For example, beneath \GE 1-140 Environmental Sciences"is \GE 50: History", which covers only the history of environmental sciences, notgeneral history. Using this description alone to associate documents with thisnode would likely lead to classi�cation errors. On the other hand, a node whichhas hundreds of MARC records assigned to it will involve a large vocabularywith which to relate it to documents, greatly aiding in the automated assignmentof documents to that node. While the number of MARC records might clearlyimpact the e�ectiveness of the automated classi�cation, it is less apparent howthis might a�ect the query precision. We estimated this by varying our metricsas a function of the training set (TS) size (i.e. the number of MARC records
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of the query set consisting of all nodes with at least four MARC records is 3380.By removing every 5th node, we select a control set with 3372 nodes. Thesenodes are roughly equally distributed among tree depth as the actual set, butinclude nodes with arbitrary numbers of MARC records. Figure 7.9a shows thedi�erence in the distributions of query node depths between the control set andthe actual set of nodes with at least four MARC records each. It is clear thatthe distributions are basically equivalent. Figure 7.9b shows the di�erence inthe total number of query nodes between the control sets and the actual setswith varying numbers of minimum training set sizes. These �gures demonstratethat the control sets are very similar in nature to the actual sets except thatthey include arbitrary training set sizes per node.Once we have established the control sets, we can determine the a�ect of TSsize on average source precision. This is shown in Figure 7.10 for each of the



142 CHAPTER 7.three weighting schemes. The e�ects of too small a TS size show an overalldegradation in source precision of approximately 0.05. Similarly, the e�ectson the best source are shown in Figure 7.11. These results indicate that foroptimizing precision with Pharos-style querying, training sets sizes of at least4 should be used. In fact, a minimal training set for each node is required foraccurate classi�cation anyway, although we not elaborate on that point here.These e�ects manifest themselves into the relationship between precision anddepth. The reason may be seen by looking at Figure 7.12. By dividing the totalTS size per level by the number of nodes per level (Figure 7.7a), we see that theaverage TS size per node drops with increasing depth. As a result, it is morelikely that there are query nodes with a small TS size at greater depths in theclassi�cation tree. Therefore, removing nodes with a small TS size increasinglyimproves the precision at greater depths. This trend is evidenced in Figure 7.13,where we compare nodes the TS size > 4 to a control set with roughly the samenumber of nodes with arbitrary TS sizes.In conclusion, we have shown a few of the relevant functional dependencieswhich a�ect the overall precision of query handling in Pharos. We have alsoseen that the metrics we have used are at least roughly consistent with ourintuitive understanding of the accuracy of query results.
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Tree Depth(b) TS Size per NodeFigure 7.12: Depth-related Parameters (Average per Node)7.3 Scalability AnalysisIn this section, we examine the relationship between source precision and re-source utilization. Intuitively, one might expect that as we increase the sizeof collection metadata for each source, we should be able to summarize andselect sources more accurately. Clearly this would come at the cost of increasedstorage and network requirements. Indeed, there are two extreme cases. The�rst case is to replicate completely all collections at every client. The precisionwould be high, but the costs of storage and network tra�c due to updates areprohibitive. The other extreme case is to use no intermediate information at all,and simply pass all queries to all sources. Ignoring problems of result merging,the potentially high accuracy of this case is prohibited by the costs of networktra�c at query time. Therefore, there is a trade-o� between attainable queryprecision and reasonable resource utilization. Such a trade-o� is seen, for exam-
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7.3. 147ple, in a report from the Third TREC Conference [MZ94]. In order to evaluatethis relationship in Pharos, we ran two types of experiments.10The �rst experiment ignores the mid-level servers in the Pharos architectureand assumes that all metadata must be sent to all high-level servers. Themethodology involves �rst selecting a query node, Q, in the classi�cation tree,say at depth 5. Assume that its depth 1 ancestor is node A. The true rankingsof the sources in this case are based on Q, while the estimated rankings arebased on A. We then calculate the source precision using Equation 6.1.1. Next,we use the depth 2 ancestor of node Q, compute the new estimated rankingsfor the sources, and calculate a new source precision. We continue doing thisuntil A reaches Q in the tree, at which point the source precision, by de�nition,is exactly 1.0. We then perform the same procedure for all other depth 5 querynodes, and average the results. These results are presented in Figure 7.14a,which shows the average source precision for all query nodes at depth 5, as afunction of the depth of the query node's ancestor.At �rst glance, it might seem feasible to distribute the entire classi�cation meta-data. However, for metadata at the depth of A in the tree to be available tousers, we require that all nodes in the tree at or above this depth be distributedto all the high-level servers across the network. The number of nodes in aclassi�cation tree grows roughly exponentially as a function of depth. Henceincreasing the depth of A, even by one, substantially increases the number ofnodes in the metadata. Figure 7.14b shows the same data as Figure 7.14a, but10Results of both experiments are presented using the \relative" weighting scheme. Thisscheme shows the largest variability in precision and usually yields the most semanticallyrelevant results.
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Update Traffic per Source(b) Metadata Update Network Traf-�c (bytes)Figure 7.15: High-Level Only: Average Source Precision for Query Nodes atDepth 5storage requirements for a single high-level server. It is clear that as soon as wego beyond the 21 nodes at depth 1 in the tree, we require at least 100 GB ofstorage at each high-level server.Similarly, the network cost associated with a complete metadata update froma single source is SH times the number of high-level servers. From Chapter 5,we take this to be 104 servers. Figure 7.15b shows the estimated network tra�cgenerated by a single, complete metadata update from a source to all the servers.Again, as we go beyond the nodes at depth 1, updates require at least 1 GBof network tra�c. As a result, we see that there is a large cost associated withdistributing metadata from nodes deeper in the classi�cation tree if we use onlythe high-level servers.The second experiment incorporates both the high-level and mid-level servers in



150 CHAPTER 7.the Pharos architecture. We again select a query node, Q, in the classi�cationtree, say at depth 5. In this case, however, we select the depth 1 ancestor (high-level node), A1, of Q, as well as the depth 2 ancestor (mid-level node), A2, ofQ. We follow the Pharos procedure of �rst selecting 250 newsgroups of the 2500based on A1, then selecting 25 newsgroups of the 250 based on A2. Again, wecalculate the source precision as before. The next step is to drop A2 down onelevel in the tree, without changing A1, and re-calculating the source precision.We continue like this until A2 reaches Q. In this case, the best source precisionthat we can achieve is, in general, less than 1.0. This is because the sourcesselected based on A2 are a subset of the list generated from A1, and the A1 listdoes not necessarily include the best sources for Q. We show similar plots tothe �rst experiment in Figures 7.16a and 7.16b, using the depth of A2 for thex-axis.11The storage requirements at a mid-level server is equal to NS, the numberof sources, times SM , the size of the mid-level metadata at each source. Weagain assume that NS is � 106. The major di�erence here is that the mid-levelmetadata is not replicated among the mid-level servers. Instead, it is partitionedbetween them. That is, each mid-level server is responsible for a particular nodeor set of nodes, and no other mid-level server receives or stores that metadata.Since all the mid-level metadata comes directly from the classi�cation trees, wehave SM = NC � SN �NM , where NC and SN are the same as before, and NMis the number of nodes sent to a particular mid-level server. We assume that11For completeness, we show these plots beginning with the mid-level node starting atdepth 1, which makes the �rst value the equivalent of ignoring the mid-level component.
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7.3. 153design in the second experiment, however, requires only that the mid-level meta-data be partitioned and distributed only once to a single mid-level server. Thisallows us to keep the high-level metadata relatively small. Even though theoriginal metadata is the same size, the resource utilization is much less. It isalso worth noting that since this metadata is based on a static classi�cationscheme, its size is independent of the size of the collection. As a result, it be-comes possible to distribute fairly detailed collection metadata without greatlya�ecting scalability.



154



Chapter 8
Conclusion
We have presented Pharos, a scalable, distributed architecture for locating het-erogeneous information sources. We demonstrated the feasibility of the archi-tecture by �rst comparing its scalability with other systems, and second byshowing the expected accuracy of Pharos query results via simulation. We thenconstructed a prototype of an automated classi�cation system for extractingsubject-based Pharos collection metadata from text collections. Based on theanalysis of the classi�cation accuracy, as well as the source precision of thePharos system, we have demonstrated that Pharos is a feasible model for wide-scale, distributed discovery of information sources.We decided to use subject classi�cation of text documents in our prototype be-cause it was crucial to demonstrate that the Pharos architecture could work withtext and a keyword style query. However, as pointed out in Chapters 4 and 7,automated classi�cation is equally applicable to other classi�cation domains,155



156 CHAPTER 8.such as geographical and temporal.Automated classi�cation is equally applicable to any digital text collection,including web sites, �le systems, and FTP text archives. It is an interestingsearch technique that may add precision to many types of searches at web searchengines. If integrated into existing search engines, it could provide anotheravenue into the mass of documents available for retrieval.Another interesting result of this work is that job postings were classi�ed. Asmentioned, the newsgroup with the most articles was misc.jobs.offered, withover 50,000 articles for the two-week period for which we took our snapshot. Theclassi�cation of this newsgroup indicated what type of jobs were being o�eredover the Internet during this time period. For example, the four LCC nodeswhich received the highest weightings in this newsgroup were \HF5546-5548.6:O�ce Organization and Management", \TS155-194: Production Management",\T58.6-58.62: Management Information Systems", and \QA76.75-76.765: Com-puter Software". Clearly these are popular positions in the current (1998) jobmarket. This is a simple method of compiling a rough pro�le on the currentjob market. Furthermore, applying IR techniques directly to this newsgroupwould assist job searchers in �ltering the 50,000 job o�ers to extract ones whichmore or less meet their criteria. It is also interesting to note that the top cat-egories of misc.jobs.offered had a very high overlap with the top categoriesof misc.jobs.resumes.While this work is clearly important to the development of Pharos, it shouldbe noted that it is also important in the overall development of a digital library



157framework. This work helps to bring some of the body of knowledge of libraryscience into the electronic environment, and gathers together years of semanticdevelopment (the Library of Congress Classi�cation) as an immediately usefulclassi�cation tool for digital collections.
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Chapter 9
Future Work
9.1 Implementation IssuesThe implementation of Pharos consists of three main components: 1) metadataextraction at the information sources, 2) metadata distribution between thesources and the intermediate high-level and mid-level servers, and 3) the UserInterface.Metadata ExtractionGiven an arbitrary collection at an information source, the high-level and mid-level metadata must be extracted before it can be propagated to the appropri-ate servers. As previously described, we have already developed a prototype forsubject-based classi�cation metadata within a text collection. Developing this159



160 CHAPTER 9.into a cross-platform turn-key software module will require substantial softwaredevelopment. Furthermore, the current model is built on LSI, which may ormay not be either the best IR method to use or licensable for free distribution.Beyond this type of classi�cation, we also need to develop automated geograph-ical and temporal classi�cation systems. We would like to develop a completesoftware package for metadata extraction. In addition, we would like automat-ically to extract metadata from non-textual collections.Intermediate ServersOnce the metadata at each site has been extracted, it needs to be distributedover the network according to the intended storage and retrieval architecture.As previously stated, the high-level metadata needs to be widely distributedand replicated, while the mid-level metadata is very selectively distributed.High-level metadata consists of the upper parts of the classi�cation-based sum-maries, as well as source information such as network and usage statistics. Thisinformation must be formatted similarly to that described in Chapter 4. Thedistribution of high-level metadata will be based on the distribution of USENETnews via NNTP by having each source post their high-level metadata as a newsarticle. Thus the high-level metadata will be available at any news server wish-ing to include such metadata information. The distribution of the mid-levelmetadata is not replicated, and hence a point-to-point distribution scheme ismore e�cient. Harvest [BDH+94] provides a suitable transport mechanism fordistributing and storing mid-level metadata in Pharos. While utilizing NNTPand Harvest for the metadata distribution saves development time and leverages



9.1. 161existing technology, there are substantial design and implementation challengesto provide a smoothly running distribution scheme. For example, Harvest re-quires that data be transferred via SOIF records, where each record sent by asource contains the metadata stored at a particular topic-based mid-level server.Another important aspect of the server implementation is the manner in whichthe clients and sources locate the appropriate mid-level servers. Since this typeof information is relatively stable, a single, possibly replicated, mid-level serverdirectory broker, in conjunction with appropriate caching, is su�cient to handlethis task.The servers themselves need to be set up to handle server updates and clientrequests. The high-level servers need to regularly examine incoming sourceUSENET postings, then extract and integrate new source metadata.1 AlthoughHarvest provides a framework and tools for the mid-level servers, it does notspecify the format of stored data. Harvest provides a client{broker communi-cation protocol for query handling, but does not specify the details requiredwithin the Pharos architecture.User InterfaceThe User Interface (UI) serves three main functions. First, it interacts withthe user, aiding in query formulation and source selection with correspondinguser and task pro�ling. Query formulation requires aiding the user in selectingappropriate taxonomies. For example, if a user query contains the keywords1This information cannot reside in the standard newsgroup directory structure since mostnews servers delete articles fairly quickly.



162 CHAPTER 9.\software veri�cation", the UI might suggest to the user that a subject taxonomyoriented around computer science is more appropriate than a general subjecttaxonomy such as the LCC. A utility such as this is similar in nature to the waythat the existing Pharos prototype aids in deciding which classi�cation categoryis appropriate. The IR techniques used in the prototype could be extendedto this problem. Second, the UI is responsible for the query-time metadataretrieval between the client and the intermediate servers. Finally, the UI mustvisualize the retrieved metadata in a user-customizable manner. Although theUI is currently the least speci�ed component of Pharos, the metadata retrievalmechanism, based on USENET and Harvest, is fairly straightforward. Theother aspects of the UI should be able to build o� of the latest versions of ADL,for example, which already have both graphical and textual components foruser query speci�cation and several types of result display. We would like tointegrate Pharos into the ADL system.
9.2 Research IssuesArchitecture EnhancementsIn order to scale beyond 106 sources, the architecture may be enhanced in sev-eral ways. For example, the levels of hierarchy can be extended beyond two,up to perhaps four without unduly burdening users. Furthermore, the num-ber of sources may be increased if several sources combine their metadata intosingle records. High-level metadata would then include multi-source records,



9.2. 163while mid-level metadata would separate out the sources as needed. In order toaccommodate a growing user base, the mid-level servers could easily be repli-cated. This feature is already built into the Harvest system and would thereforebe fairly straightforward to implement. This replication, handled by the serversthemselves, would have little or no impact on the update tra�c delivered bythe sources.Extensions from Text to SoftwareIn his Ph.D. dissertation [PD85], Prieto-D��az lays out the groundwork for amulti-faceted classi�cation system for computer software. Although this frame-work is poly-hierarchical, it could in principle be extended into the Pharosarchitecture. This would allow software modules to be retrieved in much thesame manner as documents within any other information domain. ExtendingPharos to software modules would greatly facilitate the brokering necessary inmany current global computing models, which are only beginning to addressresource discovery issues.Enhanced Model ComparisonsIn the process of developing the automated classi�cation prototype, we built anassociation of terms with classi�cation categories. As a result of this associa-tion data, we are now able to map keyword queries to subject queries. Sucha mapping enables us to enhance the comparisons between networked informa-tion retrieval architectures described in Chapter 5. In particular, we can select



164 CHAPTER 9.random terms and associate them with subject categories. Query performancecan then be compared between the keyword methodology of STARTS with theclassi�cation methodology of Pharos.Enhancing the Automated Classi�cationOne interesting research area is to attempt to continually update newsgroupsnapshots so that the classi�cation is always current. Discussions in the news-groups vary widely even within a single newsgroup, and so the classi�cationpotentially changes regularly. The classi�cation currently takes much too longfor this to be feasible. It would be interesting to attempt to partially updatethe classi�cation for each incoming news article.Another topic of interest involves the interface into the classi�cation categories.The current interface to this system �rst maps keywords to subject categories.It should be possible, similarly, to map author and institution information inthe MARC records to LCC subject categories as an interesting and useful wayof accessing not only Pharos sources, but also general catalog information in alibrary setting. Once the interface has mapped these into the LCC, we obtain thesame scalable retrieval mechanism as before. Beyond these extensions, however,we would like to extract the geographical and temporal sub�elds from withinthe subject areas of the MARC records. We believe that this information couldbe used to construct geographical and temporal pro�les which would allow thetype of extended, multi-pro�le searching for which Pharos is designed.It is perhaps worth noting that once an association between documents and a



9.2. 165classi�cation hierarchy has been made, the UI can be built in any language.There is no reason that the query side and the document side need to be in thesame language, since they both get mapped into an intermediate tree structurewhich is independent of either side. The only requirement is the availability ofa training set (e.g. MARC records) in the languages of choice.
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Appendix A
Example Query Details
We searched for the topic of political music during 1967 in San Francisco, Shang-hai, and Cairo. Each search engine requires a di�erent format. Searches wereperformed on July 1, 1996. We describe each search separately. Because in-dex sites are changing fairly rapidly, all descriptions below can be assumed tobe accurate only up through July, 1996, including the number of documentsreferenced, the index site collection methodology, and so forth.AltaVista regularly re-indexes the full text of the 30 million documents it refer-ences, and follows links to discover new pages. A `simple search' on AltaVistaconsisting simply of the string `political music' resulted in \about 500000 match-ing" documents which contained either the word `political' or the word `music'.While higher ranking was given to documents with both words, this approachwas not appropriate for AltaVista. The top ten ranked documents yielded threerelated to political music: one was in Dutch about a Dutch foundation for po-167



168 APPENDIX A.litical music and the other two were about current music. Changing the searchto ` \political music" ' (i.e. double quoted) resulted in a match of 73 documents.The top ten documents included the following: an article from the online ver-sion of Mother Jones magazine, which was almost relevant to the original query,entitled \Rock 'n' Revolution: Dave Marsh on 20 years of political music" (thearticle consisted of a list of 20 songs very brie
y annotated); an order form forCD's or descriptions for current bands or soloists; a magazine review site whichlisted two magazines partially related to political music; a long legal documenton Vietnamese taxation which mentioned `discs for political music programmes'in a sub-sub-section about turnover tax rates; a university dissertation about a1977 Swedish musical dramatical production group; and the same Dutch foun-dation that was referenced in the unquoted query results. Several of the linksin the set of 73 documents were no longer available, and some links pointed tothe same document or copies thereof. Furthermore, the precision of the docu-ment set was well below 50%, especially since many documents contained thestring \political music" once, but did not actually deal with the topic, and alsobecause many pages were random people's personal home pages. An interest-ing document from East Tennessee State University described their archives ofAppalachia music and included a `Suggested Reading List'. There was also abrief description of a book entitled Nineteenth Century Romanticism in Mu-sic, 3/e. While several links were relevant to trends in, and activities around,current political music, there was little in the way of any comprehensive, letalone historical, discussion. Finally, an `advanced search' of AltaVista was per-formed using the following search string: `(political NEAR music) AND (196)AND (\San Francisco" OR Shanghai OR Cairo)'. This query resulted in 3



169documents, none of which had any bearing on political music or the 1960's.AltaVista does not support subject-based searching.Lycos regularly re-indexes the full text of the 50 million documents it references,and follows links to discover new pages. The search on Lycos was less successfulthan on AltaVista. The simple search for `political music' (unquoted), gave thehighest weight to pages with the greatest number of occurrences of either word;the highest ranking went to a page with the word music in it several times butno occurrence of the word political. There were four documents of the top tenthat contained both words, two of which dealt with some type of political music.One was a modern American satire group and the other was a publisher's briefsummary of a book about a political musician that did not directly mentionthe exact years and place of the musician's compositions (though it appearedto be early Twentieth Century in Western Europe). Double quoting the phrase,` \political music" ', did not a�ect the search results. A `customized' search thatrequired both words to appear on the same document resulted in 12 documents.Other than the top 4 documents which were included in the top ten of theprevious query, the remaining 8 had little if anything to do with political music.The subject category `Entertainment & Leisure:Music:Genres' did not havea particular class for political music. The genres `Pop/Rock/Alternative',`Country & Folk', and `Other' had no mention of the word `political' exceptfor a single link to one artist. No other genres seemed to be related to politicalmusic.Yahoo is more oriented toward subject-based searching than the other two indexsites. It does not follow links to discover new pages, but automatically follows



170 APPENDIX A.announcement site listings for new web sites. Yahoo does not regularly checklinks to validate that URL's are up-to-date, and does not state the number ofpages it has indexed. One relevant topic, `Arts:Humanities:History:Music',had nothing about political music of the 1960's, with the possible exception of alink to someone compiling a list of all songs played at every Grateful Dead con-cert. A search of this section for the word `political' yielded no matches. Whilethere was no `Political' topic under `Entertainment:Music:Genres', there wasa `Folk' topic; none of the links from this page, however, were relevant. A searchof the entire Music section for `political' resulted in 11 links, none of which wererelated to the original query. The topic `Arts:Humanities:History:AmericanHistory:20th Century:1960s' had 4 links. Three were not relevant, but one,entitled \Wild Bohemians { an archive of historical information about Bohemianmovements in the US during the 20th century," led, through a series of links, tothe WWW site of the o�cial \Museum of the City of San Francisco". This siteincluded a chronology of Rock music and political events in the 1960's, and acomplete bibliography about the Haight-Ashbury district, with over 60 highlyrelevant works, including, for example, \San Francisco nights: the psychedelicmusic trip, 1965-1968". A global search of all of the Yahoo pages for `politicalmusic' resulted in 38 hits which contained both `political' and `music'. Yahoodoes not seem to be able to specify `political music' as a single two-word phrase.Furthermore, a Yahoo query searches only a document's title and one- or two-line description; there is no method available for full text searching, as with theother two indexes. None of the 38 hits appeared to be relevant to the originalquery.



Appendix B
Temporal Information Hierarchy
Table B.1 shows the top-level sub-domains of a temporal information hierarchy.This hierarchy has 33 top-level periods, which cover all past, present, and fu-ture time. Since the majority of existing documents have been written duringor regarding the last few hundred years, these periods are given a higher level ofgranularity than, for example, cosmological, geological, or anthropological peri-ods. Such a partitioning of the time-line provides for a more equal distributionof the number of documents likely to be classi�ed within each period.
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APPENDIXB.

Period Range (year) Period Range (year) Period Range (year)1 < �109 2 �109  ! �107 3 �107  ! �1064 �106  ! �105 5 �105  ! �104 6 �104  ! �10017 �1000 ! 999 8 1000 ! 1199 9 1200 ! 139910 1400 ! 1499 11 1500 ! 1599 12 1600 ! 169913 1700 ! 1749 14 1750 ! 1799 15 1800 ! 184916 1850 ! 1899 17 1900 ! 1909 18 1910 ! 191919 1920 ! 1929 20 1930 ! 1939 21 1940 ! 194922 1950 ! 1959 23 1960 ! 1969 24 1970 ! 197925 1980 ! 1989 26 1990 ! 1999 27 2000 ! 200928 2010 ! 2019 29 2020 ! 2049 30 2050 ! 209931 2100 ! 2499 32 2500 ! 2999 33 � 3000Table B.1: Top-Level Temporal Information Hierarchy



Appendix C
Evaluation of News ArticleClassi�cation
The evaluation of the automated classi�cation of the news articles was inconclu-sive. We discuss the the experiment for two reasons: 1) it is important to showthat an attempt was made in this vein, and 2) it is worth noting some of thedi�culties encountered when humans are included in the evaluation process.Since we wanted to use human catalogers in determining the best classi�cationcategory for news articles, we were very limited as to how many articles we coulduse in our experiments. We were able to have hand classi�ed only a small frac-tion of the approximately 800,000 articles we had classi�ed automatically. Werandomly selected 42 articles to distribute to three catalogers. Each catalogerreceived their own unique set of 8 articles. Each pair of catalogers (i.e. threeunique pairings of three catalogers) received a di�erent set of 6 articles. Thus173



174 APPENDIX C.each cataloger received 20 articles, 8 unique, and a set of 6 shared with each ofthe other two catalogers. The overlap was for the purpose of cross-checking thehuman classi�cation assignments.For each article, we �rst asked the catalogers three questions. The �rst was torate the degree to which the article was classi�able at all, on a scale from 1to 5, with 1 meaning `easy to classify' and 5 meaning `impossible to classify'.Assuming that they found the article classi�able, we asked them to let us knowtheir degree of competency of cataloging in the subject area of the article (asdetermined by them). Third, we asked them to determine the best classi�cationcategory for the article. With each article, we also supplied a list of the 30 topranked automatically generated classi�cation categories. Given the results fromthe MARC record classi�cation in the previous section, we assumed that therewas approximately a 67% chance of �nding the true best classi�cation cate-gory for those articles which were found to be easily classi�able. We asked thecatalogers to rate each of the 30 categories from 1 to 5, with 1 meaning `very rel-evant classi�cation category' and 5 meaning `completely unrelated classi�cationcategory'.The results were inconclusive. First of all, we were only able to get two ofthe three sets of articles returned to us, leaving at most 34 articles to be handclassi�ed. The next problem was basically our estimate of how long it would takefor the catalogers to complete the task. We based our estimates on discussionswith one of the three catalogers (cataloger \A") after she had looked over oneof the sets of 20 articles. She estimated that it would take approximately 5minutes per article, thus requiring at most 2 hours for the set. In the end, it



175appears that performing the tasks we had requested in such a time-frame yieldsvery questionable results, as explained below. On the other hand, the othercataloger (cataloger \B") took much longer on each article, and stopped afterprocessing only 6 articles. Even then, there were su�cient discrepancies thatthe results were invalidated.As an example of some of the classi�cation problems, we describe a few articlesand their individual results. The �rst article, from misc.transport.rail.americas(although the cataloger was not told the newsgroup), is as follows:Subject: Wheel bearings againYet more wheel bearing questions for the group. What is the typicalaxle load for heavy haul tra�c? I.e. coal and mineral trains. Howoften does hot boxes and collapsed bearings occur on these types oftrains? Particularly interested in hearing from experienced engineerswith a few miles under their belts.Cataloger A rated this article as classi�able with a 2 out of 5, with 1 beingthe best possible. She also rated herself as 3 out of 5 in terms of competencyin classifying in this subject area. She then assigned the best LC classi�cationcategory as \TF 600-606: Railroad Cars (Utilization and Care)", under \TF501-668: Railway Operation and Management". This is under \TF 1-1620:Railroad Engineering and Operation". One problem with this classi�cation isthat it shows that the catalogers went deeper into the LCC than we had intended{ we were looking for detail only down through the LCC Outline, which stopsat \TF 501-668". Thus the catalogers were taking longer than necessary anddecreased the probability that the category they chose would be in our list.



176 APPENDIX C.A more serious problem from this article is the rating given to the automaticallygenerated categories. The cataloger gave a value of 3 out of 5 (with 1 the best)to \TF 501-668", but gave a value of 2 out of 5 to \TF 1-1620". Clearly this isinconsistent with her own selection of \TF 600-606" being the best, since thecategory closer to this in LCC was given the lower rating. This type of inconsis-tency was not uncommon. Another example of this is seen in an article aboutprostatitis. The cataloger assigned the best category as \RC 899: Prostatitis",but gave the automatically generated category \RC 870-923: Diseases of theGenitourinary System, Urology" a 5 out of 5 (with 5 the worst).The �nal example, from cataloger B, deals with an article about how \New Yearcake" is made in Singapore. The cataloger rated this article as classi�able with a1 out of 5, and rated her competency as 2. She assigned the category \TX 643-840: Cookery". The automated classi�cation system also gave this categorythe highest rank. However, when the cataloger rated the top automaticallygenerated categories, she rated this category with a 2, with 1 the best. It isdi�cult to understand how this category would not qualify for a 1.In the end, what was clear from this experiment was that including a conclusiveuser study in this research, even a limited one as we attempted, would haverequired much more time and e�ort than was available. We would need towork much more closely with the catalogers and develop a more consistentrating system. We would also need to �nd a better way to balance the timecommitment of the catalogers with the need to have a su�cient number ofarticles accurately classi�ed.



177The evaluation of the classi�cation accuracy of the MARC records gives an in-dication of the success of this component of the prototype. While de�nitiveresults from the catalogers would have been relevant to the evaluation of theprototype, they need to be viewed from the overall perspective of the Pharosarchitecture. The prototype is one instantiation of an overall framework, whichis designed to accommodate a wide variety of data types, classi�cation schemes,training sets, IR systems, and collections. The success or failure of a particularcombination of parameter values in the design space is not necessarily indica-tive of the e�ectiveness of a di�erent combination. In more general terms, theinter-model comparison (Chapter 5), the simulations (Chapter 6), and the scal-ability analysis (Section 7.3), are more relevant to the evaluation of the overallarchitecture.
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