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Abstract

Pharos: A Scalable Distributed Architecture for Locating Heterogeneous

Information Sources

by

Ron A. Dolin

Information retrieval over the Internet increasingly requires the filtering of thou-
sands of information sources. As the number of sources increases, new ways
of automatically summarizing, discovering, and selecting sources relevant to a
user’s query are needed. We introduce Pharos, a highly scalable distributed
architecture for locating heterogeneous information sources. Its design is hi-
erarchical, thus allowing it to scale well as the number of information sources
increases. We demonstrate the feasibility of the Pharos architecture using 2500
USENET newsgroups as separate collections. Each newsgroup is summarized
via automated Library of Congress classification. We show that using Pharos as
an intermediate retrieval mechanism provides acceptable accuracy of source se-
lection compared to selecting sources using complete classification information,
while maintaining good scalability.
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Preface

research: careful, systematic, patient study and investigation in some field of

knowledge, undertaken to discover or establish facts or principles.

technology: 1. the science or study of the practical or industrial arts, applied
sciences, etc. 2. applied science. 3. a method, process, etc. for handling
a specific technical problem. 4. the system by which a society provides its

members with those things needed or desired.

progress: 1. a moving forward or onward. 2. forward course; development. 3.

advance toward perfection or to a higher or better state; improvement.

“The little farmers watched debt creep up on them like the tide.
They sprayed the trees and sold no crop, they pruned and grafted
and could not pick the crop. And the men of knowledge have worked,
have considered, and the fruit is rotting on the ground, and the de-
caying mash in the wine vat is poisoning the air. And taste the wine

no grape flavor at all, just sulphur and tannic acid and alcohol.

“This little orchard will be a part of a great holding next year,
for the debt will have choked the owner.

“This vineyard will belong to the bank. Only the great owners
can survive, for they own the canneries, too. And four pears peeled
and cut in half, cooked and canned, still cost fifteen cents. And the
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canned pears do not spoil. They will last for years.

“The decay spreads over the State, and the sweet smell is a great
sorrow on the land. Men who can graft the trees and make the seed
fertile and big can find no way to let the hungry people eat their
produce. Men who have created new fruits in the world cannot
create a system whereby their fruits may be eaten. And the failure
hangs over the State like a great sorrow.”

John Steinbeck, The Grapes of Wrath

“...The last clear definite function of man  muscles aching to
work, minds aching to create beyond the single need this is man.
To build a wall, to build a house, a dam, and in the wall and house
and dam to put something of the wall, the house, the dam; to take
hard muscles from the lifting, to take the clear lines and form from
conceiving. For man, unlike any other thing organic or inorganic in
the universe, grows beyond his work, walks up the stairs of his con-
cepts, emerges ahead of his accomplishments. This you may say of
man — when theories change and crash, when schools, philosophies,
when narrow dark alleys of thought, national, religious, economic,
grow and disintegrate, man reaches, stumbles forward, painfully,
mistakenly sometimes. Having stepped forward, he may slip back,
but only half a step, never the full step back. This you may say and
know it and know it. This you may know when the bombs plum-
met out of the black planes on the market place, when prisoners are
stuck like pigs, when the crushed bodies drain filthily in the dust.
You may know it in this way. If the step were not being taken, if the
stumbling-forward ache were not alive, the bombs would not fall,
the throats would not be cut. Fear the time when the bombs stop
falling while the bombers live — for every bomb is proof that the
spirit has not died. And fear the time when the strikes stop while
the great owners live for every little beaten strike is proof that the
step is being taken. And this you can know fear the time when
Manself will not suffer and die for a concept, for this one quality is
the foundation of Manself, and this one quality is man, distinctive
in the universe.”

John Steinbeck, The Grapes of Wrath
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“It is a grave duty which I now face. In preparing for it, I have
tried to enquire: what great principle or ideal is it that has kept
this Union so long together? And I believe that it was not the mere
matter of separation of the colonies from the motherland, but that
sentiment in the Declaration of Independence which gave liberty to
the people of this country and hope to all the world. This senti-
ment was the fulfillment of an ancient dream, which men have held
through all time, that they might one day shake off their chains and
find freedom in the brotherhood of life. We gained democracy, and
now there is a question of whether it is fit to survive.

“Perhaps we have come to the dreadful day of awakening, and the
dream is ended. If so, I am afraid it must be ended forever. I cannot
believe that ever again will men have the opportunity we have had.
Perhaps we should admit that, and concede that our ideals of liberty
and equality are decadent and doomed. I have heard of an eastern
monarch who once charged his wise men to invent him a sentence
which would be true and appropriate in all times and situations.
They presented him the words, ‘And this too shall pass away.’

“That is a comforting thought in time of affliction — ‘And this
too shall pass away.” And yet — let us believe that it is not true! Let
us live to prove that we can cultivate the natural world that is about
us, and the intellectual and moral world that is within us, so that
we may secure an individual, social and political prosperity, whose
course shall be forward, and which, while the earth endures, shall
not pass away....”

Abraham Lincoln, Farewell Address, 1861, before assuming
the Presidency and the beginning of the U.S. Civil War
(as told by Kurt Vonnegut in “Timequake”)
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Chapter 1

Introduction

Information retrieval over the Internet increasingly requires the filtering of thou-
sands of heterogeneous information sources. Important sources of information
include not only traditional databases with structured data and queries, but
also increasing numbers of non-traditional, semi- or un-structured collections
such as Web sites, FTP archives, and newsgroups. As the number and vari-
ety of information sources increase, new ways of summarizing, discovering, and
selecting collections relevant to a user’s query are needed. One such method
involves the use of classification schemes, such as the Library of Congress Clas-
sification (LCC) [Lib86], with which a collection may be represented based on
aspects of its content, irrespective of the structure of the actual data or docu-
ments. For such a system to be useful in a large-scale distributed environment,
it must be easy to use for both collection managers and users. For collection

managers, it must be possible to classify collections automatically within a clas-
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sification scheme. Furthermore, there must be a straightforward and intuitive
interface with which the user may use the scheme to assist in information re-
trieval (IR). Finally, once the collections are summarized, this information must

be distributed across the network within a clearly defined architecture.

The Alexandria Digital Library (ADL) Project [ACD'95] focuses on geo-ref-
erenced information, whether text, maps, aerial photographs, or satellite im-
ages. As a result, we are interested in techniques that work with both text and
non-text, such as combined textual and graphical queries, multi-dimensional
indexing, and IR methods that are not solely dependent on words or phrases.
Part of this work involves locating relevant online sources of information. In
particular, we have designed and tested aspects of a distributed architecture,
Pharos, which we believe will scale up to ~10° heterogeneous sources [DAE97,
DAED97, DAEP98]. Pharos accommodates heterogeneity in content and for-
mat, both across multiple sources as well as within a single source. That is,
we consider sources to include Web sites, FTP archives, newsgroups, and full
digital libraries; all of these systems can include a wide variety of content and

multimedia data formats.

This dissertation focuses on the selection of collections of documents rather
than on particular documents themselves. Thus, we are not directly addressing
the problem of a user finding a particular document via author, title, keyword,
etc. However, a particular author or title is generally included in one or more
information domains, such as subject area, geographical region, time period,
image feature, type of business, etc. By focusing on finding collections which

are characterized by such domains, we believe that users are likely to find those
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authors and titles which are relevant to the concepts underlying specialized
queries. The reason for such a change in focus is that we believe that locating
collections by domains is a more scalable methodology than locating particular

authors, titles, etc.

Pharos is based on the use of hierarchical classification schemes. These in-
clude not only well-known ‘subject’ (or ‘concept’) based schemes such as the
Dewey Decimal Classification and the LCC, but also, for example, geographic
classifications, which might be constructed as layers of smaller and smaller hier-
archical longitude/latitude boxes. Pharos is designed to work with sophisticated
queries that utilize subjects, geographical locations, temporal specifications, and
other information domains. The Pharos architecture requires that hierarchically
structured collection metadata be extracted so that it can be partitioned in such
a way as to greatly enhance scalability. Automated classification is important
to Pharos because it allows information sources to extract automatically the

requisite collection metadata that must be distributed.

1.1 Significance of the Research

This research focuses on two main themes: scalability and flexibility.

1.1.1 Scalability

We define scalability as the ability (of a system) to accommodate growth while

maintaining acceptable performance (up to a sufficiently large environment). In
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the areas of distributed information systems and resource discovery, scalability
refers both to source parameters as well as to user parameters. Thus, we re-
quire that Pharos is able to accommodate an increasing number of information
sources, increasing sizes of collections, etc. In addition, we require Pharos to be
able to handle an increasing number of users. Our research has been oriented
toward specific scalability goals, such as being able to handle 10° sources and
10® users — in other words, the Internet. We have also attempted to estimate

rigorously the necessary resource utilization.

In many IR systems involving multiple collections, it is straightforward to allow
for growth by allowing retrieval accuracy to degrade (e.g. [MZ94]). However,
scalability requires acceptable performance, including acceptable query results.
This research is important in that a high level of scalability is achieved while
maintaining good retrieval accuracy. In order to accomplish this, we have com-
pletely specified the network architecture of Pharos, including the metadata
structure and placement, and the mechanisms for metadata propagation and
retrieval. Pharos achieves scalability by using a hierarchical metadata struc-
ture and a highly decentralized metadata distribution, storage, and retrieval

mechanism.

1.1.2 Flexibility

In one sense, flexibility can be viewed as another type of scalability — namely,
in accommodating the growing diversity of data and the growing uses and com-

plexity of information systems. Pharos has been designed around a very general
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framework that can work with data that is heterogeneous in both content and
format, including text, maps, images, etc. User queries in Pharos are express-
ible as combinations of different information domains, such as keyword/subject,
geographical region, and time period. In addition, Pharos is designed to extend
user source selection beyond linear ranking, and to give control of the selection
mechanism to the user, rather than some intermediate network server. This al-
lows the user to include not only factors such as number of relevant documents
for a given collection, but also non-content factors such as network parameters,
use charges, etc. These values are made available to the user interface, which
can then make them available to the user in customizable ways to aid in source
selection. Finally, Pharos provides a significant level of autonomy to the in-
formation sources. It allows them a fairly general framework within which to
describe their collections and also permits them to determine their own meta-
data update frequency. Pharos is intended to work with heterogeneity not only
across collections, but also within collections. This diversity includes both data

format and data content.

1.2 Research Objectives

The main goals of this research, as previously discussed, are 1) to develop a
distributed architecture that scales well, and 2) to enhance the selection of
information sources and query flexibility. The architecture must be able to
work with non-text entities such as images, while still being applicable to text

entities. In particular, besides content keywords and/or concepts, queries should
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be able to incorporate temporal and geographical specifications.

As an outgrowth of the need to evaluate the effectiveness of attaining the pri-
mary objectives, a secondary goal of the research is to develop evaluation metrics
to measure the accuracy of the selection of information sources in the context
of high scalability. Finally, another objective is to encourage and enhance the
relationship between library science and computer science in the area of digital

library research.

1.3 Assumptions

This design is based on several assumptions. First, we assume that filtering
sources iteratively with finer and finer grain metadata will yield a sufficient
number of sources with relevant content. Second, we assume that the classi-
fication system used to summarize collections is reasonably accurate. Third,
we assume that querying sources that have a large total number of ‘relevant’
documents, a large percentage of ‘relevant’ documents, or some combination of
the two, are likely to have documents that contain information that satisfy a
user’s query. Fourth, we assume that sending a query to a small number of
good sources is sufficient to acquire desired information. Of these assumptions,
we attempt to verify the first two. We do not address the second two in this

dissertation.



1.4. 7

1.4 Outline

In the next chapter, we discuss background and related work. Then, in Chap-
ter 3, we motivate the problem of large-scale information discovery and retrieval,
and present an overview of the methodology used by Pharos. Next, we describe
the Pharos architecture in detail in Chapter 4. One long-range goal of this work
is the construction of a distributed prototype system. However, before begin-
ning a prototype, we first study the feasibility of our architecture. This study
has two main components. The first is to compare the scalability of Pharos
with that of some other existing or proposed architectures; this is described in
Chapter 5. Chapter 6 then describes the second feasibility study: to analyze
the expected accuracy of Pharos query results using simulated queries and in-
formation sources. Given the results of this work, we describe the beginning of
a prototype in Chapter 7, including an evaluation of its query performance and
scalability. Finally, after summarizing the work in Chapter 8, we discuss future

directions in Chapter 9.






Chapter 2

Background and Related Work

There are several components to this research in both the design of the archi-
tecture and the development of the prototype. There has been work done in
many areas that relate to one or more of these components. In particular, the
following general areas are relevant to this research: classification, information

retrieval, search engines, and resource discovery and digital libraries.

2.1 Classification

Generally speaking, a classification is an arrangement according to some sys-
tematic division into distinct categories because of certain likenesses or common
traits. Pharos is based on the use of hierarchical classification schemes to sum-

marize collections. Moreover, Pharos uses such schemes for many types of in-
9
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formation domains (concepts, geographical regions, images, etc.). While many
well-known classification schemes exist, not all of them are hierarchical. For ex-
ample, wines are usually classified along several orthogonal components such as
type (table, sparkling, and fortified), color (white, red, rosé), character (sweet,
dry), region of origin (Bordeaux, Chianti, Rioja, etc.), and/or type of grape
(Chardonnay, Pinot Noir, etc.). For images (e.g. artwork, photographs, satel-
lite remote sensing, etc.), there are also several classification schemes. These
schemes are based on anything from art historical perspectives to subject matter
[J6r96], as well as mathematical processes such as wavelet analysis (“texture”)

and color composition [MM98].

A good example of hierarchical classification is in biology, described in Mi-
crosoft’s Encarta Encyclopedia 98 [Mic97, article entitled “Classification”] as

follows:

Classification, in biology, [is] the identification, naming, and group-
ing of organisms into a formal system. The vast numbers of living
forms are named and arranged in an orderly manner so that biolo-
gists all over the world can be sure they know the exact organism
that is being examined and discussed. Groups of organisms must
be defined by the selection of important characteristics, or shared
traits, that make the members of each group similar to one another
and unlike members of other groups. Modern classification schemes
also attempt to place groups into categories that will reflect an un-
derstanding of the evolutionary processes underlying the similarities
and differences among organisms. Such categories form a kind of
pyramid, or hierarchy, in which the different levels should represent
the different degrees of evolutionary relationship. The hierarchy
extends upward from several million species, each made up of indi-
vidual organisms that are closely related, to a few kingdoms, each
containing large assemblages of organisms, many of which are only
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distantly related.

Besides its epistemological use as a description of knowledge, classification has
also been used for the purpose of organizing and retrieving documents. Francis

Miksa [Mik98, p. 33] states the following:

The classification of information-bearing entities is as old as libraries
themselves. Evidence of attempts to group such artifacts can be
found among collections of clay tablets in ancient times. These older
efforts to classify information-bearing entities were characterized by
their relative simplicity, where categories commonly reflected prac-
tical storage expediencies such as the size of the items or contempo-
raneous educational curricula. It was not until the post-Renaissance
modern period, and especially the late nineteenth century, that li-
brary classification achieved anything of the complexity that is now
associated with it, especially in theory and techniques.

Of particular relevance to our own research is the potential use of classification
schemes, including traditional library classification, for the specific purpose of
electronic document retrieval. Library classification has typically been associ-
ated simply with placing and finding a document on a shelf. In discussing this
issue, Jolande Goldberg of the Library of Congress concludes with this [Gol96,
p. 41]:

Despite such statements made by Librarians of Congress (in par-
ticular, Herbert Putnam, at the inception of the LCC, and Luther
Evans, during the planning state of the Law Classification) that the
LCC is not intended to serve as a general classification for American
libraries, the LCC, in fact, has become the preferred classification
for libraries and educational institutions in the United States and
for many institutions abroad. Their voiced concerns for stability of
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shelf arrangements by classification has, in the past, markedly inhib-
ited the inventive remodelling of the LCC. Ultimately, all efforts will
have to concentrate on the envisioned function of the electronic LCC
as an online retrieval tool. For online browsing and navigation of
electronically stored information, including the segregation of whole
portions of one class and transfer to another, a knowledge-based,
field-specific structure of the classification is of utmost importance.
So, also, is the separation from the shelving function.

We make a distinction between traditional classification (partitioning into
unique categories) and our approach (fractional allocation among shared cate-
gories). We are free from atomic allocation because we are not ‘putting a book
on a shelf’. We use what we might call probabilistic fractional classification. It
is probabilistic because we are not certain to what degree an object belongs in
a particular category, but rather make estimates based on an automated pro-
cess. We require automated classification due to the scale of the problem we are
addressing — namely, documents and collections on the Internet. By fractional
classification, we mean that, rather than considering the objects to be classified
as discrete entities, we assign fractions of an object to different categories. We

will describe this methodology in detail in Chapter 7.

2.2 Information Retrieval

Information retrieval (IR) is concerned with the systems, evaluation method-
ology, and user models involved with a person’s locating needed information,
usually in an electronic environment. Standard IR techniques include document

indexing and summarization, similarity determination between a query and a
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document, and query expansion and relevance feedback [Kan94]. A common
problem is that of retrieving a set of documents from a given collection that
are ‘relevant’ to a user’s query. Although problematic, it is often assumed that
such relevant documents are identifiable. In reality, the operational definition
of relevancy is some form of mathematical similarity function applied between
a query and the documents in the collection. The query is considered to be a
specification against which documents in a collection are compared. In general,
there is not a tight semantic relationship between the automated comparison

function and what the user might consider to be document relevancy.

There are, in general, three broad views of relevancy [Sch94]: 1) the system view,
2) the information view, and 3) the situation view. The first view follows along
the line of a mathematical similarity function and is independent of any user’s
perspective. The second view is based on human judgment between a particular
query and document. The third view, simultaneously the most useful and most
subjective, focuses on the degree to which a query result addresses the overall

information needs of a user in a particular instance.

The concept of relevancy as one component of a searcher’s overall information
behavior is discussed in [Sch94], while [EY72] presents information systems as
one component of general decision making. Relevancy is not in general the
only criteria by which users might want to retrieve documents. Other factors
include, for example, document length, contextual information such as author
or publication date, and so on. In particular, a decision to stop searching is
more likely determined when the results are satisficing, that is, good enough

[Sim82]. This criteria often relates more to the time and effort required for
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further searching than to any objective measure of the result set.

Despite its limitations, measurement of the relevancy of retrieval documents to
a given query is used to evaluate the performance of an IR system. Two com-
mon benchmarks are precision and recall [Sal89]. Precision is the percentage
of returned documents that are relevant to the query. Recall is the percentage
of total relevant documents in the collection that are returned. For example,
suppose there are T documents in a collection relevant to a user’s query. M
documents are returned to the user, R of which are relevant to the query. Then
precision is defined as R/M, and recall is defined as R/T. In general, if we at-
tempt to increase recall (i.e. return a larger percentage of relevant documents
with respect to the entire collection), we do so at the cost of decreasing precision
(i.e. we simultaneously return a larger percentage of non-relevant documents
with respect to the retrieval set). This is due to the fact that, in general, in
order to retrieve more relevant documents, we have to loosen the document
selection criteria, which allows more non-relevant documents to be retrieved.
Similarly, if we attempt to increase precision, we do so by tightening the doc-
ument specification. This generally has the undesirable effect of filtering out
relevant documents, and thus the recall drops. Typically, IR systems return ap-
proximately 50% precision for a fixed 50% recall [Har95]. That is, by adjusting
the document specification until half of the relevant documents in a collection
are returned, on average about half of the total retrieved documents are relevant
to the query. There has been much work done in the area of automatic text
retrieval [Sal89], for example SMART [SM83], Latent Semantic Indexing (LSI)
[BDO95], and others involved with the Text REtrieval Conferences (TREC)
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Figure 2.1: Vector Space Model of Information Retrieval

[Har95] run by the National Institute of Standards and Technology (NIST).!

One common IR method, used in our experiments, employs what is called the
vector space model [Sal89]. This model constructs a high-dimensional vector
space such that each term occurring in any document of a collection is repre-
sented by a different dimension. Each document is assigned a point, or vector,
in this space. The component of a document’s vector is determined, for exam-
ple, by the number of times that the term for that dimension is used in the

document.

Thttp://www.nist.gov/ and http://trec.nist.gov/
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Figure 2.1 shows a simplified instance of the vector space model with only three
dimensions: ‘Child’, ‘Freud’, and ‘Nutrition’. A document in the collection
discussing Developmental Psychology, containing the words ‘Freud’ and ‘child’,
is shown lying on the Freud/child plane. Another document, discussing Pedi-
atrics and containing the words ‘child’” and ‘nutrition’, is shown lying on the
child /nutrition plane. Suppose that we want to find documents similar to a
particular ‘query’ document, and that this document contains many uses of the
words ‘nutrition’ and ‘child’, and only a very few instances of ‘Freud’. We place
the query document in the vector space in the same fashion as the documents
in the collection. We then take the cosine of the angle between the query doc-
ument and all the other documents in the collection. In this case, we see that
the angle # between the query and Pediatrics is less than the angle o between
the query and Psychology. As a result, the cosine of § is larger than that of
a, and we conclude that Pediatrics is more similar to the query document than
Developmental Psychology. The result is that we give documents a higher rank
depending on their angular proximity to the query in the vector space. This sim-
plistic version of the vector space model can be generalized using methods such
as weighting terms based on their frequency within the entire collection, taking
into account document length, and even using Singular Value Decomposition

(SVD) to reduce the dimensionality of the space [BDO95].
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2.2.1 Networked Information Retrieval

Much work has been done in the area of IR using multiple collections, including,
for example, [ACM96, CLC95, CH95, FY95, VF95]. The predominant feature
of the majority of this work is that the techniques used are generally limited to
text documents, for example distributing inverted term lists. Another aspect
of these systems is that it is unclear to what degree they are scalable in terms
of the number of sources, the number of users, and the number of documents.
None of them experiment with more than a few hundred collections. Finally,
although many systems provide for the transfer of collection metadata, they do
not specify exactly the content and/or format of the metadata, where specific
pieces of metadata are to be placed within the network architecture, or the
exact metadata transmission methodology involved in the handling of queries
and updates. These factors are all important in the design of an Internet-scale

system.

2.2.2 Applicability of Evaluation Measures

The question arises as to how appropriate are evaluation measures such as pre-
cision and recall with respect to the documents and knowledge structures found

within the Internet. Thomas Walker [Wal96, p. 324] states the following:

Are measurements of recall and precision feasible here? Recall, a
ratio used to describe the ability of a system to retrieve a percent
of relevant documents from all relevant documents in a system, is
not useful here because the total number of relevant documents is
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not knowable. Documents are very fluid and changing. Being part
of such an unsystematic system, the presence and quality [of] many
sources depend on the sustained interest of an individual or orga-
nization. For instance, in a reference class, I had students use the
Web to locate reproductions of “The Scream” (or “The Cry”) by
Edvard Munch. One particular site was especially fruitful: a per-
son, obviously fascinated by the different forms of this image, had
created a “Scream” site, which provided links to many digital ver-
sions of the work. This is the work of a volunteer who may be
excited about Munch this moment, but who may not even have a
Net account tomorrow or in ten years. There are thousands of such
passionate collectors. Although students found some images easily,
it is impossible to know how many they missed.

Precision, which describes the ability of a system not to retrieve ir-
relevant documents, may be a more satisfying measure. Many users
have already waded through a considerable amount of Web “trash”
and have already carried out informal measurements of precision.
Another complication, commonly encountered in recall/precision
measurements, is that it is difficult to define relevance because it
has always been very personal. Measures of recall and precision de-
pend on relevance, which can be so unpredictable, so subjective, that
it is difficult or impossible to verify. For one individual, a document
or information source may be “close enough” to a subject or “good
enough” for a particular use, even though it is not the best or even
close to the best. If a fee is required, as they are for some of the
highest quality Net resources, will a given user be less likely to use
it? If it is necessary to register, will a user be less likely to use a
very good source, even if no fee is involved? Will a frustrated user
switch topics rather than carry out an exhaustive Internet search?
Will a novice user take the time to learn how the different search
engines work? Several Web search engines allow for Boolean search-
ing, but in at least one case, the default operator is “OR,” which of
course has the potential of delivering results that are hardly precise.
These problems are addressed in part by variations of the Principle
of Least Effort: a solution will be judged by a user to be satisfactory
if it is easily found, even if it is not the best available solution, and
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perhaps even if it is not a solution at all.

2.3 Search Engines

Current WWW indexes, such as AltaVista|Dig97], Lycos [Lyc96], and Yahoo
[Yah97], which are designed for locating information on the Internet, are limited
in several ways. Notably, these systems do not scale to handle increasingly large
numbers of search requests due to limited network bandwidth and server power.
Furthermore, because they focus on keyword matching, they are usually unable
to provide adequate simultaneous precision and recall. Existing WWW index-
ing systems utilize either small, hand-made, hierarchical lists, as in Yahoo, or
word-matching on huge document-spaces, as in AltaVista. Standard techniques
of automatic text retrieval, such as relevance feedback and local/global term
weightings [Sal89], aid in matching query terms to relevant documents; how-
ever, these techniques are seldom used for locating sources. Another factor that
limits most existing WWW indexes is their inability to share index information.
This lack of sharing results in highly duplicated document fetching and index-
ing. As the number of indexing sites grows, determining which ones contain the
most useful information for a given query becomes increasingly difficult. Fur-
thermore, few WWW indexing systems give sources control over how often they
are indexed, or provide for automatic updates when information becomes stale.
Another problem with many WWW indexes is that they index the actual texts
of documents. This approach is not appropriate for indexing catalogs, especially

those which list documents which are not available online, and it does not ex-
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tend to non-text documents, such as maps, images, and sound and video files.
Information sources that make their documents available only as query results

have no mechanism of including their contents within such indexing systems.

2.4 Resource Discovery and Digital Libraries

Problems of locating sources of information, one form of resource discovery
[BDMS94], are of particular interest to the digital library community [FAFL95].
Such emerging systems must deal with storing, locating, cataloging, propagat-
ing, and retrieving large numbers of diverse documents in a distributed, het-
erogeneous environment. Several projects in the NSF/NASA/DARPA Digital
Library Initiative Program [CAC95, Nat93| are therefore investigating these
problems. The Alexandria Digital Library (ADL) Project [ACD*95] is focus-
ing on indexing spatial information, as well as on the storage, distribution,
and retrieval of large (spatial) images. The Illinois Digital Library Project
[Sch95, SMCT96] is building a prototype of the Interspace, which presents the
Internet as a single space of highly interlinked, distributed information. The
University of Michigan Digital Library Project [Cru95, ABD'96] is designing
an agent-based system; user interface agents, mediation agents, and collection
agents cooperate to allow concurrent searching of multiple collections. Within
the Stanford Digital Library Project [Sta95, PCGM™196|, the ¢GIOSS resource
discovery system [GGMO95] represents sources by vectors of term frequencies.
This work has been extended to the STARTS proposal [GCGMP96] in which

sources extract their own metadata and pass it to intermediaries. Outside the
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digital library work, Content Routing [SDW'94] is a system in which queries
get routed to the available servers based on the expected relevance of the server
to the query. Harvest [BDH'94] automatically indexes documents within a
source and distributes these indexes. Harvest will be discussed in more detail

in Chapter 4.
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Chapter 3

Motivation and Design Overview

3.1 Motivation

We consider a modern Internet environment with a large number of users and
information sources, including WWW sites, FTP archives, digital libraries, file
systems, etc. Attempting to locate a small set of sources that best fit user
queries requires detailed knowledge of the holdings at each source. There are
two extreme approaches for acquiring this metadata. The first, which we infor-
mally call the remote approach, is to query each source dynamically in turn (or
possibly in parallel) without storing any local metadata. The second, which we
informally call the local approach, is for each user to store locally detailed infor-
mation about the holdings of each source and not to request anything remotely
(until a final set of sources has been selected for direct access). Both of these

extremes are impractical. The remote approach would take too long even for
23
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a single user query, let alone a large number of simultaneous ones. The local
approach needs to have sufficient information for any given query; we believe
that the amount of metadata required for accurate source comparison is too

large to be practical.

Our approach is therefore a hybrid one in which we attempt to balance the
location of the metadata’s storage with network traffic by using an iterative,
multi-level query method. A limited amount of metadata about each source is
massively replicated among “high-level” servers. These servers are locally situ-
ated within an organization such as a university campus or a corporate network.
They receive requests from local users about most or all known sources and re-
ply with only enough metadata to allow for a rough comparison of sources.
More detailed metadata is stored in specialized, sparsely replicated “mid-level”
servers. 'These servers receive requests from remote users about a relatively
small set of sources and supply greater detail than the high-level servers. All
high-level and mid-level servers store information about each source. However,
while all high-level servers store the same metadata, each mid-level server (up to
replication) stores unique metadata within a sub-area of a single, pre-specified,
domain-specific classification tree, or tazonomy. For example, we expect sepa-
rate mid-level servers specializing in subject areas such as history, art, physics;
in geographical regions such as North America, Africa, Asia; etc. We call any
such sub-area of a particular information domain a sub-domain. This design
solves the problem of the remote approach by providing a fast, scalable method
of receiving any needed metadata. It also solves the storage problem of the local

approach by distributing the metadata throughout the network and requiring
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only minimal storage within a user’s local environment. Finally, network traf-
fic is reduced in several ways. Smaller local storage reduces the amount of
broadcast-type traffic generated by the sources for update purposes, while the
mid-level servers reduce the amount of query traffic to the sources generated
by users. Furthermore, having users communicate with local servers for initial

source filtering also reduces network traffic.

3.2 Example Query: An Iterative Approach

As an example query, suppose that a student is studying the following topic: “A
Comparison of Political Music in 1967: San Francisco, Shanghai, and Cairo.”
We performed a search through AltaVista, Lycos, Yahoo, and the University
of California’s Melvyl online general catalog (see Appendix A). AltaVista, Ly-
cos, and Yahoo found little of value for this study. Furthermore, the precision
was very low, on the order of 1%, requiring excessive viewing of many irrele-
vant, documents in order to locate the rare relevant ones. Melvyl, on the other
hand, returned 44 items of potential interest, such as “When the music’s over:
the story of political pop,” “Female college students in China,” “Rhythm and
resistance: explorations in the political uses of popular music,” “Qira’at mu-
nawi’ah” (“Opposition Readings”), and several recordings. How do we inform

the student that, in this case, Melvyl is a potentially good information source?

In our proposed system, depicted in Figure 3.1, the student attempts to find

sources as follows. Initially, at the client-side user interface (UI), she specifies the
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query in terms of relevant information taxonomies and significant sub-domains
within them. The taxonomies involved in this search, for example, include
subject, geographical region, and time period. Within each of these general
taxonomies, the student is prompted to provide more specific sub-domains that
match her query. For the subject domain, the Ul attempts to locate the query
terms or their synonyms within the taxonomy. For example, the phrase political
music might be covered by political science, history, and music; sources that
excel in these areas are potentially useful for finding information about her
query. For the geography taxonomy, the student specifies a longitude/latitude
bounding region, or a place-name which is checked against a gazetteer! to obtain

the bounding coordinates.

Once the student has specified the appropriate sub-domains within the three
taxonomies, the Ul then queries the local high-level server and gives highest
weights to those sources that contain relatively more information 1) within
the subject taxonomy, in, say, politics, history, or music; 2) within the time
period taxonomy, about the 1960’s; and 3) within the geography taxonomy, in
SW North America, SE Asia, or NE Africa. From the weightings, the student
selects some initial set of sources, say the best thousand based on the high-level
metadata. Next, the Ul queries the relevant seven remote mid-level servers
for more detailed metadata about the sources included in the initial set: a
political subject server, a history subject server, a music subject server, a 1960-
1969 time period server, and the three geographic region servers covering SW

North America, SE Asia, and NE Africa. These mid-level servers return their

'A standard gazetteer is an index of place names; we are referring to a specific type
containing a mapping from place names to geographical coordinates.
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Figure 3.1: Retrieval Design Overview

detailed and specialized metadata about the requested sources. For example,
the political subject server provides metadata about the percentage of holdings
among the initial set of sources particular to political music; the 1960-1969 time
period server provides metadata about the percentage of holdings covering 1967;
and the SW North America geographic region server provides metadata about
the percentage of holdings dealing with the California area. The UI then merges
the information returned from the various mid-level servers and presents them
to the student. This information can be used to select a small set of sources for
further (direct) querying. As we discussed in the Introduction, Pharos is not
designed to query information sources directly with individual user requests.

Rather, it is designed to select a sufficiently small set of sources that can then
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be used by other systems for this purpose, utilizing, for example, traditional IR

methods.

It is important to recognize why the user cannot simply query the mid-level
servers initially, bypassing the high-level server completely. A mid-level server
dealing with source information about, say, the subject of music, does not store
any other information. It does not have information about, for example, sources
that may have documents geographically related to San Francisco. A user might
query the music mid-level server to find out about the best 100 sources for
political music, and a “California” mid-level server to find out about the best
100 sources with content geographically related to San Francisco. The problem
is that there would likely be little or no overlap between these sets. The user is
trying to find sources that have documents related to both aspects of the query:
the subject of political music and the geographical region near San Francisco.
The only way to accomplish this is to first query the high-level server, which
can return a list of sources that are known to contain both types of information.
This list is then passed to the mid-level servers for more detailed information.
Thus a final list of 100 can be selected that are hopefully among the best dealing
with both aspects of the query.?

Given such a retrieval system, we need a corresponding metadata distribution
system such that the high-level metadata is distributed widely and the mid-
level metadata is distributed selectively. The wide distribution mechanism in

Pharos is modeled after the distribution of USENET news [Hor83] via NNTP

2An alternative approach would be to have the mid-level servers communicate with each
other. We have not explored this possibility due to the anticipated scalability costs it would
incur.
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[KL86]. Unlike the storage mechanism for high-level metadata, mid-level meta-
data from different taxonomies in Pharos are not all stored together. Each
mid-level server stores all the metadata about each source that is related to a
unique sub-domain of a particular information taxonomy. These servers are not,
generally resident within users’ local areas, but are sparsely located at remote
sites. When a source sends out its mid-level metadata, it sends the different
components to the corresponding servers in a point-to-point manner. The dis-
tribution of the mid-level metadata in Pharos is modeled after the distribution
of indexes in Harvest [BDH194], which supports efficient point-to-point meta-
data transfer, server replication, caching, and structured querying of servers.

Metadata distribution will be discussed further in Chapter 4.
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Chapter 4

Architecture

In this chapter, we describe the various components of the Pharos architecture.
We first describe the structure of the metadata and the manner in which it is
partitioned for distribution. We briefly introduce the process through which
the metadata is extracted. This will be discussed in detail in Chapter 7. We
then describe the User Interface (UI). The Ul is designed to prompt initially
for information about the user which is stored between sessions. Next, the
UI must prompt for query information. During the query process, the UI will
request source metadata from the various servers as needed. Finally, it needs to
present the metadata in a concise and understandable manner during each phase
of the search. Between the extraction and retrieval of the metadata, we have
the massively replicated, localized high-level servers and the sparsely replicated,
remote mid-level servers, each receiving and sending appropriate metadata with

very different network characteristics, and hence different underlying network

31



32 CHAPTER 4.

protocols.

4.1 Metadata Structure

The metadata must be designed to support a multi-level information system
and it should match the intended queries as well as the retrieval system. There-
fore, metadata should be grouped according to its informational relationship
and designed around a hierarchical structure, which lends itself to progressively
refined queries. Pharos employs information classifications that fit common
query methods, such as a subject-based hierarchy, a geographical hierarchy,
and a temporal hierarchy. Once these hierarchies have been defined, we include
the top portions in the high-level metadata, and lower portions in the mid-level

metadata.

4.1.1 Information Hierarchies

An information hierarchy is a topic-based classification tree, as shown in Fig-
ure 4.1. In order to describe the collection at a source, we quantify the number
of documents with content relevant to each part of an information hierarchy.
As mentioned above, the initial design of Pharos employs three information

hierarchies: subject, geographical, and temporal hierarchies.

The subject hierarchy is modeled after the Library of Congress’s LC Classi-
fication (LCC) [Lib86], which contains a controlled, hierarchically structured
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Figure 4.1: Information Hierarchies

set of categories. This classification scheme has several advantages: it is fairly
extensive; it is familiar to most of the library classification community; it is
open-ended (in the sense that the structure allows for the inclusion of new top-
ics); it is revised frequently; and it is used by most academic libraries in the
U.S.A. [Gol96]. While there are problems with using a fixed list for query terms
[Dum91], there are several problems with using vocabularies that are based on
the terms found within each document collection. For example, it is difficult to
compare sources that do not use the same terms, and we cannot expect different
collections to yield the same vocabularies. Moreover, without a controlled set
of terms, it is difficult to construct comparable hierarchical structures that can
be used to build source metadata within a multi-level approach. For a given

query, the relevant categories must be deduced. The Pharos UI must bridge the
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gap between the words used by the user and the controlled terms in the sub-
ject hierarchy. Techniques such as those described in [CL92, Dum91] address
the problem of finding the relationships between query terms and potentially
different document terms; these techniques also apply to matching query terms
with subject categories. We therefore attempt to place users’ concepts within
appropriate sub-domains in the subject hierarchy, while at the same time con-
trolling the categories so that it is easier to accurately compare sources. This

component of the Ul is included in the prototype discussed in Chapter 7.

A simple geography information hierarchy can be composed by tiling the Earth’s
surface into progressively smaller, hierarchical, longitude/latitude squares. If
the highest level of the hierarchy represents the regions of the Earth’s surface
defined by 45° x 45° grid lines, as in Figure 4.2, the result is 32 top-level tiles. In
this figure, the actual data density of the ~421, 000 documents of the May, 1996
Alexandria Digital Library (ADL) holdings is shown: the lighter the area in a
tile, the more documents it contains. The next level of the hierarchy is formed
by sub-dividing each top-level tile by 5° x 5° grid lines yielding 2,592 sub-tiles.
Each top-level tile has 81 sub-tiles. This sub-tiling process is continued to create

a spatial hierarchy of desired levels of detail.

The temporal domain allows queries to specify date ranges of content (e.g.
history of the sixteenth century) as well as publication/creation dates (e.g.
aerial photographs taken over a geographical region every 10 years from 1900
to present). As a simplification, we refer to content dates. The temporal in-
formation hierarchy needs to cover all references to time, including future time.

The majority of temporal references, however, deal with the last 300 years.
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Figure 4.2: 45° x 45° Grid, 32 Elements

For example, Microsoft’s Encarta Encyclopedia 98 [Mic97] allows articles to be
looked up by “time”. Of the 16,366 temporally referenced articles, 4,046 relate
to time before the year 1700; 1,879 relate to the 1700’s; 6,159 relate to the
1800’s; and 8,180 relate to the 1900’s. We therefore prefer to have a higher level
of granularity for the time periods nearer to ‘now’ than those further away on a
time-line. By using a modified logarithmic scale, which is approximately linear
between the years 1700 and 2000, we can achieve a more even distribution of

time-referenced documents (see Appendix B).

4.1.2 Information Taxonomies

An information tazxonomy is defined as a controlled hierarchy within which
documents can be classified, usually according to their content. In addition, a

taxonomy is assumed to be a tree structure such that each node in the tree has
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two attributes: a label and a numerical value. The label denotes a word, term,
or phrase from an information hierarchy. The numerical value of each node of a
taxonomy is called the coverage of the node. It is used to describe a document
collection by quantifying the number of documents with content relevant to the
meaning of the label of the node. Since most documents cannot be classified
completely within a single node of a classification tree, we assign portions of a
document to different nodes in the tree. Thus for each node in the taxonomy
there are a total number of document equivalents associated with it. Intuitively,
a node’s coverage indicates what fraction of a document collection is classifiable
within a node’s label. In order to calculate this value, we first allocate fractions
of each document to nodes in the tree such that not more than 100% of the
document is allocated. We allocate as much of a document as we can to nodes
closest to the leaves of the tree. In this way, a document is classified as much
as possible within the most specific sub-domains of the hierarchy. Once all the
documents in a collection have been fractionally allocated within the tree, the
coverage values can be computed. The children of a parent node have labels that
represent information sub-domains that are wholly or partly contained within
the sub-domain represented by the label of their parent. By using the notion
of coverage, this containment property is captured numerically by defining the
coverage at a node to be the sum of the coverages of its children plus the fraction
of the collection assigned to it but not to its children. For a leaf node, this is just
the fraction of the collection assigned to it. The number of document equivalents
associated with a node is its coverage times the total number of documents in

the collection.
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As an example, consider the geography information hierarchy discussed previ-
ously. We create a taxonomy by assigning the 45° x 45° tiles to the depth-1
nodes, the 5° x 5° tiles as depth-2 nodes, etc. Within the ADL collection
of ~421,000 documents shown in Figure 4.2, the region over Hawaii, defined
by the (longitude, latitude) coordinate pair [upper-left=(—180°,45°), bottom-
right=(—135°,0°)], contains ~5,700 document equivalents. Thus, within the
geography taxonomy, this node is assigned a coverage of ~0.014. To calculate
the coverages of the depth-2 nodes, we break down the depth-1 nodes into 5° x 5°
tiles, as shown in Figure 4.3. This figure shows another view of the same ADL
holdings as in Figure 4.2. The three depth-2 nodes which contain the Hawaiian
Islands contain approximately 1500, 2400, and 1100 document equivalents, and

so are assigned coverages of ~0.0038, ~0.0060, and ~0.0028, respectively.

Clearly Figure 4.3 gives a much more precise display of the ADL holdings. How-
ever, the 2,592 data elements prohibit that level of detail from being included in
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the high-level metadata, as discussed in more detail in the next section. On the
other hand, Figure 4.2 does not necessarily include enough detail to be useful.
As a case in point, consider a user looking for information about Hawaii. The
large-scale region over Hawaii does not appear to contain a sufficient amount
of data to make the ADL an attractive source; the average coverage of the 81
depth-2 children is only ~0.00017, implying that there are only approximately
220 documents for Hawaii. On closer examination, however, the more detailed
map shows that the ADL is potentially a very good source for such a user; there
are actually over 5000 documents for that region. With only 5% of the depth-1
node’s children containing 97% of its data, a high-level comparison involving
the ADL might exclude it and the depth-2 metadata would never be requested.
This problem of statistically losing lower level information, and hence poten-
tially valuable sources, can occur within any information taxonomy whenever a
small fraction of a node’s children contain a vast majority of the node’s coverage.
Even if we kept track of the variance among a node’s descendents, we would not
be able to determine which ones held the majority of the information without
acquiring more metadata. This situation can be considered a special collection
within a source’s taxonomy. We handle special collections by providing a special

metadata attribute.

The geography taxonomy is very different from the subject taxonomy in that it is
not a word-based hierarchy, but a spatial hierarchy. To put this in perspective,
Microsoft’s Encarta Encyclopedia 98 [Mic97] allows articles to be looked up
by “place”. However, while a query on ‘North America’ yields 910 articles,

a query on ‘United States’ yields 5,816 articles. These results do not occur
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under a geography taxonomy, which would place ‘United States” within ‘North
America’; our definition of a taxonomy requires that the spatial nodes covering
North America include at least all those articles assigned to the nodes covering

the continental United States.

4.1.3 Metadata Levels

We now describe the relevant metadata records that need to be included in the
high- and mid-level servers. The main constraint in regard to the high-level
server is size. The total size Ty of information distributed to the high-level
servers is the size Sy of each high-level metadata record describing a given
source times the total number Ng of sources described. The overriding con-
straint is that 7'y not grow beyond some maximum value. Using the newsgroup
distribution as an example, we assume that each high-level server stores under
10 GB of data. Assuming that we want to be able to handle a large number of
sources, say Ng < 10%, we derive a value of Sy of roughly 10 KB. A high-level
metadata record needs to summarize the coverage information related to various
nodes in an information taxonomy. Given these values for Ng and Sg, and the
width of the upper levels of the taxonomy trees, we can determine which nodes

of the taxonomies should be included in the high-level metadata.'

The size of a high-level metadata record is dependent on the number of tax-

'In the future, we may allow Ng to grow larger by using a single metadata record to
represent a hierarchical collection of related sources (e.g., a ‘UC’ source representing all of
the University of California campuses). In order to allow this, the structure of a metadata
record must be independent of the number of sources described.
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onomies used and the number of nodes that are included from each taxonomy.
Although the number of taxonomies a source uses might vary, for a given taxon-
omy all sources must always include the same nodes in the high-level metadata.
High-level metadata refers to 1) any taxonomy-independent source description,
and 2) the high-level portions of all taxonomies within which a source’s collection
has been classified. We determine the number of nodes to include based on our
estimated size, Sy, of a high-level record, the number of taxonomies included,
Ny, and the size, S;, of the taxonomy-independent metadata. For simplicity,
we assume that each taxonomy’s node metadata is the same size, Sy, and that
the same number of nodes, Ng(7T), will be included from each taxonomy T
Thus we have Sy = S; + Sy * Ny (T) * Ny, or Ny(T) = (Syg — S;1)/(Sy * Np).
Assuming Sy ~ 10KB; S; =~ 1KB; Sy =~ 100B; and Ny < 4, we conclude that
Ny (T) =~ 22. That is, we assume that we can include on the order of 20 to 30

nodes from each taxonomy in our high-level metadata records.

Tables 4.1 and 4.2 show the portion of the high-level metadata that is indepen-
dent of the taxonomies (of size Sy). In the Description column, we illustrate
the corresponding attribute with an example. Other than the source identifi-
cation information, these attributes can be viewed as quality and cost factors
that are presented to the user through the UL. The user can then consider a
range of factors in determining specific sources relevant to current queries. The
first attribute, HL_Desc_Ver, is the version of the metadata schema and is used
to allow for backward compatibility. The Src_* attributes describe basic source
identification information. Siz_Col describes the size of the collection in MB,

pages, and items. These units are used to calculate the fractional assignment
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of documents in three units. The reason that we use multiple units is that they
may yield very different ratios. For example, an image library whose images
may range from over 100MB/image to less than 10KB/image will show very
different geographic coverages in MB than in items. Siz_Cat describes the size
of the catalog in MB and items. Count_Taxon is set to the number of taxonomies
used for classification by the source. Spec is the list of character strings used to
describe special collections, discussed earlier. The set of parameters Net_x are
included for connectivity estimation between the users and the sources [GS95].
Count_Avg Hits describes the average number of accesses the source receives
per day. Additional attributes are available for various library policies relevant
to charging, lending, etc. Finally, Count_Src denotes the number of sources in-
cluded in a particular metadata record to allow condensed multi-source records.
If this value is greater than one, some of the other values might not be included,

such as the network parameters.

Tables 4.3 and 4.4 show the taxonomy-dependent part of the high-level meta-
data. Within the full metadata record for a source, the attribute-values in Table
4.3 are repeated once for each taxonomy. Taxon_ID and Taxon_Desc_Ver identify
the taxonomy name and version, respectively. The next attribute, Cov_Root,
gives the fractional amount of the collection that has been classified within the
taxonomy, with respect to MB, pages, and items. The next four attributes give
statistical information about the root’s children (the depth-1 nodes in the tax-
onomy). Furthermore, within each taxonomy, the attribute-values of Table 4.4

are repeated once for each high-level node in the tree.

The geography taxonomy is treated as a special case in order to include factors
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‘ Attribute Name ‘ Type ‘ Range ‘ Description: FEzample ‘

HL_Desc_Ver ‘ String ‘ - Metadata descriptor version
number: 0.0.7

Src_ID ‘ String ‘ - Name of source:
Alexandria Digital Library

Src_Type String - Type of source: DLIB

Src_Loc String - Geographical location of source
(if relevant): Paris, Texas

Src_Sch ‘ String ‘ - Availability schedule of source
(if relevant): Closed Mondays

Siz_Col ‘ Real[3] ‘ 0.0+ | Collection size in MB, pages,
and items: 1.843F6,,8.91E5

Siz_Cat | Real[2] | 0.0+ | Catalog size in MB and items:
2.172E6,3.892E6

Table 4.1: Taxonomy-Independent High-Level Metadata, Part A

Attribute Name ‘ Type

‘ Range ‘ Description: FEzample

Count_Taxon Integer 0+ Number of taxonomies used: 3
Spec String[M] - List of M Special Collections:
Geography:BE16
Net_Band Real 0+ Network bandwidth (Kbps): 1.5E3
Net_Avg_Util Real 0.0 - 1.0 | Avg. network utilization: 0.47
Net_Avg_Delays Integer|[N] 0+ Avg. network delay (ms) to
N beacons [GS95]: ,200,,521,,,147,
Net_Avg_Thru | Integer[N] | 0+ Avg. network throughput (Kbps)
to N beacons [GS95]: ,117,,,,,246,
Count_Avg_Hits ‘ Real ‘ 0+ Avg. number of accesses
(hits/day): 1.237E5
Pol_Charg ‘ String ‘ - Charging Policy: See
http://www.lib.ucsb. edu/
Pol_Lend String - Lending Policy: UC affiliate only
Count_Src Integer 1+ Number of sources: 1

Table 4.2: Taxonomy-Independent High-Level Metadata, Part B
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‘Attribute Name‘ Type ‘ Range | Description

Taxon_ID String - Name of taxonomy
Taxon_Desc_Ver String - Taxonomy version number
Cov_Root Real[3] | 0.0 - 1.0 | Root node’s coverage

value (MB, pages, items)

Cov_Avg Real[3] | 0.0 - 1.0 | Avg. coverage of depth-1 nodes
Cov_SD Real[3] | 0.0 - 1.0 | Std. Dev. of coverage of depth-1 nodes
Cov_Min Real[3] | 0.0 - 1.0 | Minimum coverage of depth-1 nodes
Cov_Max Real[3] | 0.0 - 1.0 | Maximum coverage of depth-1 nodes

Table 4.3: High-Level Metadata for Each Taxonomy T;

‘ Attribute Name ‘ Type ‘ Range ‘ Description

Node_ID String - Node’s label
Cov_Node Real[3] | 0.0 - 1.0 | Node’s coverage
value (MB, pages, items)

Cov_Avg Real[3] | 0.0 - 1.0 | Avg. coverage of children

Cov_SD Real[3] | 0.0 - 1.0 | Std. Dev. of coverage of children

Cov_Min Real[3] | 0.0 - 1.0 | Minimum coverage of children
3]

Cov_Max Real[3] | 0.0 - 1.0 | Maximum coverage of children

Table 4.4: Metadata for Each High-Level Node in T}
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such as image or map resolution, which are not relevant to most other tax-
onomies. This taxonomy is a superset of that in Tables 4.3 and 4.4. Additional
attributes are included to describe image resolution statistics that summarize
all the documents that are associated with the geographical region covered by

each node.

Mid-level metadata is not subject to the same space constraints as the high-
level metadata for several reasons. First, because mid-level metadata is only
sparsely replicated, there are not as many network constraints in distributing
it. Second, each mid-level server handles only a specific sub-domain within a
single taxonomy, so it needs to store only a very limited subset of all of the
mid-level metadata records for any source. Third, because users request this
metadata only after they have already gone through a primary filtering using the
high-level metadata, mid-level query results contain data for only a relatively
small number of sources. The structure of mid-level metadata is similar to the
taxonomy-dependent components of the high-level metadata, but covers nodes

of greater depth in the information taxonomies.

4.2 Metadata Extraction

The process of extracting the metadata from a source begins with a document
collection, as portrayed in Figure 4.4. This collection is processed by hand or
automatically. For text-based documents, it can be processed by one of sev-

eral possible automatic text analysis tools, such as LSI, SMART [Sal89], or
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others that are used, for example, in the NIST Text REtrieval Conferences
(TREC) [Har95]. Many of these systems read through a collection and build a
matrix of weighted frequencies of the number of times a given term occurs in
each document in the collection. From this matrix, documents can be placed in
a multi-dimensional term-vector space. Nodes in a taxonomy can also be placed
in this space and then be taken as centroids of document clusters. Depending
on the relative closeness of the centroids to the various documents, we assign
the fractional allocation of each document among the nodes in the taxonomy
needed to calculate each node’s coverage value. High-level automatic subject
classification has been shown to be fairly successful, with over a 90% accuracy
rate [LH95]. LSI has been shown to be an effective tool for automated classi-
fication [Hul94], and experiments on automatically classifying large document
sets within the LC Classification system have yielded correct classifications, un-
der some conditions, of over 80% of newly entered documents [Lar92]. These
results indicate that subject-based automated text classification is sufficiently
accurate to characterize sources for comparison purposes, where even order of
magnitude estimates can greatly aid in filtering out most irrelevant sources. We

will discuss details of such automated classification in Chapter 7.

While the TREC and related work focuses on subject-based text retrieval, one
could use a gazetteer or time-name table to identify geographic or temporal ref-
erences within text-based documents, or use more sophisticated techniques such
as those used in GIPSY [WP94]. For maps, aerial photographs, and satellite
images, documents are often cataloged with spatial extents, and the geographic

clustering and classification process is much simpler. Automatically extracting
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Figure 4.4: Metadata Extraction

subject information from maps and images, such as identifying vegetation in
a map or a particular object in an image, would allow such documents to be
automatically classified within, for example, the LC Classification system; such
capabilities are ongoing research issues [Mo0s94, Ric93|. Yet another application
area of this process is the incorporation of image feature vectors [MM98]. Given
a hierarchical feature vector thesaurus, one could automatically classify images
in much the same way as text. Although there are several methods of charac-
terizing and classifying image features (textures, colors, shapes, etc.), Pharos

works equally well with any (hierarchical) image classification scheme.

4.3 User Interface and Metadata Retrieval

The User Interface (UI) is designed to assist the user in an iterative decision-
making process [EY72] in which a final small set of sources is chosen through a
series of refinements on an initial large set. This process uses information about
the user, called the User Profile, information about the query, called the Task
Profile [Shn92], and the high- and mid-level metadata about the sources. Al-

though the client acquires source metadata through the network from the high-
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and mid-level servers, it acquires user and query information through the UL
Besides acquiring this information, the Ul must also present metadata about
many sources to the user in a concise and understandable manner. This allows
the user to interact with that data and to select source subsets for further meta-
data retrieval. Figure 4.5 illustrates the key components of the Ul subsystem
in Pharos. User and Task Profiles are initialized by the user. When a query
is issued, these profiles are used to send an initial metadata request to a local
high-level server. The metadata returned includes information about the likely
candidate sources that best match the query, subject to the User and Task Pro-
file. The metadata is then visualized to the user within the UI. The visualization
includes default but tailorable quality and cost factors. Given this information,
the user then selects a set of sources, perhaps those with the highest ‘value’.
From this set, a new metadata request is issued to the specific mid-level servers
that store information relevant to the user’s query. The returned metadata is
again visualized, but with greater accuracy and detail. Finally, the query results
are narrowed down to a reasonably small set of sources, which are then directly

queried.

The User Profile information in Pharos is used to determine which metadata
parameters to retrieve, how to compare sources, and how to display the results.
The user can assign relative weights to any parameter to adjust the comparison
results. Other profile information includes interface parameters such as which
taxonomies to use by default. As the set of sources becomes small enough, fac-
tors can be considered that require direct communication with each source, such

as the number of network hops between the user and the sources. The Task
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Figure 4.5: Pharos Client Components

Profile includes all parameters needed to specify the source search criteria. The
user must decide which taxonomies to use. For each taxonomy included, the
user selects one or more sub-domains either by entering keywords, or by travers-
ing the tree directly and selecting particular sub-domains. The Ul must deal
with keyword entries differently for each taxonomy. For the subject hierarchy,
techniques used in text retrieval, such as by LSI [BDO95], can aid in matching
query terms with terms found in the hierarchy. The geography taxonomy re-
quires a gazetteer, and the time-period taxonomy requires the equivalent of a
gazetteer for time-names. Finally, as the set of sources becomes small enough,
the Ul attempts to match keywords with any special collections included in the

set.

Since there are a large number of sources, it is impractical to list the results of a

query in a text-based, tabular fashion. The level of detail of the display of each
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Figure 4.6: Simple Metadata Visualization
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source is adjusted depending on the total number of sources being displayed.
Initially, we can display each source as a point in a two-dimensional scatter
plot, as depicted in Figure 4.6. There are several ways of assigning positions to
sources. One possibility is to use a quality versus cost approach to visualize the
economic value of the sources [Whi76]. The quality and cost dimension of each
source is computed as a weighted sum of the relevant attributes and each source
is depicted as a point in the Quality /Cost plane. The user can then graphically
select sources which are above a minimum quality (regions 1, 2, and 3), below
a maximum cost (regions 1, 2, and 4), and/or have the highest value (region
1). Many other forms of weightings and attribute combination are possible. For
example, the ranges of values that each attribute may attain vary widely both
between different attributes and also, for a given attribute, between different
sources. We therefore can use normalized attribute values by dividing each one
by the maximum value of that attribute among all the sources. Furthermore,
for values such as network bandwidth and collection size, we can compare the
normalized logarithm of the values so that large values do not overly dominate.
Similarly, many other visualizations are possible, especially as the number of

sources is reduced after filtering.

4.4 High-Level Metadata Servers

Once the metadata at each site has been compiled, it needs to be distributed
over the network according to the intended storage and retrieval architecture.

As previously stated, the high-level metadata needs to be widely distributed and
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replicated, while the mid-level metadata is very selectively distributed. Because
of these storage differences, different distribution protocols are more efficient for
the different metadata levels. All high-level metadata is sent to each high-level

server.

We briefly compared the distribution of the high-level metadata to the distri-
bution of USENET news [Hor83] via NNTP [KL86] in Chapter 3. NNTP uses
a flooding protocol which has proved to be very robust and efficient for widely
distributed, massively replicated data. In fact, rather than create a completely
new protocol and transport system, we plan to distribute the high-level meta-
data in Pharos by using a new newsgroup hierarchy. This can be accomplished,
for example, by having each source send out their high-level metadata as a news
article. There are several advantages to this approach. First of all, it fulfills the
basic design criteria of massive metadata replication. Second, NNTP provides
a fast, reliable, and reasonably efficient mechanism of developing a prototype
system. Third, this approach poses little or no degradation to the news system
because news servers not wishing to store this information may selectively not
receive a ‘feed’ for it, just as they can turn off reception of any other news-
group hierarchy. Fourth, USENET provides a hierarchical naming convention
among the newsgroups, which could be exploited by the source metadata de-
sign. For example, collections could be characterized based on theme, such as
dl.medicine for MEDLINE, and dl.physics and dl.computer-science for INSPEC,
so that servers within specific organizations can retrieve metadata tailored to
their interests. Finally, those sites running a news server within their local area

are prime candidates for high-level server locations.
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A potential problem with this type of posting is that anyone could post articles
with bogus metadata about a given source, such as the Library of Congress
or the National Institutes of Health. This problem can be avoided by using
moderated newsgroups and a standard electronic signature. When a source
registers itself, it provides either a public encryption key or a place on the
network where it can be found. Each posting is sent to an automated moderator
that checks the signature against the source’s key for verification before posting

it.

Another consideration, as with the mid-level metadata, is the amount of infor-
mation that can be handled. NNTP traffic generally generates approximately
400 MB per day or more. By cutting off unwanted newsgroups, news servers
can substantially reduce the traffic coming to them. Recall that the total size
of all the high-level metadata combined is on the order of several gigabytes.
We imagine that most sources’ statistical compositions of documents probably
do not change dramatically over a short period of time. Therefore weekly or
monthly updates are sufficient to keep high-level servers up-to-date to the level
needed to assist users in the high-level, rough filtering of sources. We anticipate

that this entire news hierarchy would not generate more than a small fraction

of the normal NNTP traffic.
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4.5 Mid-Level Metadata Servers

Mid-level metadata is not massively replicated, but rather stored on one or
perhaps a few mirror sites. As such, a flood protocol is neither necessary nor
efficient. Instead, a point-to-point metadata distribution system is more appro-
priate. Each source registers at each mid-level server for which the source has
relevant metadata, and sends updates as needed. The sources in Pharos are
responsible for keeping their distributed metadata up-to-date. This approach
minimizes network traffic and guarantees that the mid-level servers receive new

metadata only when necessary.

Harvest [BDH'94| provides a suitable transport mechanism for distributing
and storing mid-level metadata in Pharos. Harvest is a generalized system for
automatically indexing documents within a source and distributing the meta-
data. In Harvest terminology, sources of information are called providers. Index
metadata is extracted by gatherers. The gatherer is broken down into two com-
ponents, one that extracts the metadata, and the other, gatherd (gather dae-
mon), that handles the gatherer-side communication necessary for distributing
it. The structured indexing information that the gatherer collects is represented
as a list of attribute-value pairs using the Summary Object Interchange Format
(SOIF). This metadata is then served to brokers, who collect it via collectors
(which communicate with a gatherer’s gatherd) and provide a query interface to
the indexes. Brokers can collect metadata either from gatherers or from other

brokers, and thus lend themselves to hierarchical metadata propagation.

Although we must perform our own metadata extraction (or gathering), incor-
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porating the results into SOIF records is straightforward. Each source con-
structs a SOIF record for each taxonomy sub-tree used by a mid-level server.
Each source builds a standard Harvest SOIF database and runs gatherd. Each
mid-level server runs a standard broker that collects the appropriate records
from each source. This collection is efficient in Harvest because of the broker’s
ability to use structured queries that can specify boolean combinations of at-
tribute /value pairs. For example, a broker would retrieve a record by specifying
“(Taxon_ID : Subject) AND (Top_Node : Physics)’. Finally, the brokers
running on the servers are designed not only to collect the metadata, but also
to handle sophisticated queries. Therefore, this software already facilitates the

communication between the Ul and mid-level servers.

There are several benefits of using Harvest for distributing and storing mid-level
metadata. First, Harvest uses very efficient network protocols and compression
for exchanging metadata records. Second, it allows us to place several logical
mid-level servers on the same physical server; we need only change the query
between the server’s broker and the sources so that multiple SOIF records are
transferred. Additionally, Harvest includes metadata timestamps and auto-
matic server updates for expired information. Each source is able to set its own
timestamps and thus regulate its own update frequency. Further, Harvest’s
ability to chain brokers allows us to incorporate a more sophisticated mid-level
network model than requiring that each source directly communicate with each
server. Instead, we can arrange the sources in a hierarchical network structure

by placing intermediate brokers between the sources and the servers.? Finally,

2In this sense, the mid-level servers can be viewed as the point between physically struc-
turing the metadata based on network topology and physically structuring it based on infor-
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Harvest includes both a replication and caching system. The replication allows
us to automate the process of mirroring the mid-level servers. Moreover, the
caching allows us to take advantage of possible speed-ups by grouping together
similar sources as pre-packaged sets within the Ul; such query results might stay

in a server’s cache.

mation topology.
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Chapter 5

Comparison to Other Models

As previously mentioned, prior to constructing a prototype, we first wanted to
determine the feasibility of the Pharos architecture presented in the previous
chapter. The feasibility study is comprised of two components. The first is a
comparison between Pharos and other architectures, presented in this chapter.
The second, presented in the next chapter, is an estimate of the accuracy of
Pharos query results. This chapter presents a systematic description of possible
network architectures that support the discovery of information sources, and
analyzes their differences. The first section describes relevant concepts such as
query routing and the extraction, propagation, and retrieval of metadata. Based
on these concepts, different models of locating and querying relevant information
sources are presented within three broad classes. Finally, we estimate several
important characteristics of these models and classes as well as their expected

scalability.

o7
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5.1 Terminology

We first describe the terms that will be used in the network models. We de-
fine a document operationally as an atomic entity that can be searched for,
retrieved, and viewed, though not necessarily stored, as a single unit, electron-
ically or otherwise. A document is not required to be stored atomically, nor
is it necessarily always used atomically; although one can access sections of a
document, a document must be available as an atomic entity. A collection refers
to a well-defined set of documents. A query refers to a document specification
against which documents in a collection can be compared for relative similarity.
A query generator is a system that electronically creates and transmits queries;
they are represented as circles, o, in the model diagrams. A search engine is an
interface that accepts as input a query about a particular collection and returns
as output a query result, which is a subset of the collection that the search
engine has determined contains documents relevant to the query. The subset
may not contain the actual documents, but rather pointers to, and possibly
descriptions of, the documents. A single collection may have multiple search
engines associated with it, but by definition a search engine can work on only
a single collection (i.e. we do not require a collection to be an input parameter
to a search engine). An information source, or source, refers to a particular
[collection, search engine] pair. Sources are represented as triangles, A, in the
model diagrams. We point out that collection refers only to a set of documents,
while source refers more generally to a machine, including its documents, search

engine, metadata, etc.
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Metadata refers to the description of an object. We make a distinction between
document metadata and collection metadata. The former is information about
individual documents, while the latter is summary information about an entire
collection and possibly other descriptive information about the machine, net-
work parameters, etc. Unless otherwise stated, metadata will refer to collection
metadata in this discussion. Therefore, a query result is the document metadata
that would be returned by a search engine given a particular query. It is not
necessarily returned directly by a search engine, but by any system that gives

the same document subset, as explained below.

Finally, an intermediary, drawn as a small or large box, O, in the model dia-
grams, is a logical machine on the network that provides a level of indirection
between a request for information and the original supplier of the result, usually
an information source. A query intermediary acts as a pseudo search engine;
it takes queries as input and provides query results as output. However, a
query intermediary differs from a search engine in that 1) it does not necessar-
ily have direct access to any document collection, and 2) it may return query
results for several sources simultaneously. A metadata intermediary accepts a
request for either document or collection metadata and supplies the relevant re-
sult. Intermediaries may store information locally, or may dynamically request

information either from another intermediary or from a source.

Our network models describe several common activities. Query propagation or
query routing is the process of passing a query from a query generator to either
a source or a query intermediary. This action is expected to result in result

retrieval, which returns a query result to the query generator. Result merging
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involves combining query results for a query sent simultaneously to multiple
sources. Documents in a result set are often ranked within that set; result
merging can include rank merging where the union of the multiple result sets
are re-ranked for the entire union. Result merging can also include duplicate
detection, in which an attempt is made to detect if the same document has been

returned by multiple sources.

Metadata extraction denotes the process of deriving either document or collec-
tion metadata. Document metadata extraction can take place either at a source
or at an intermediary which has direct access to a source’s documents. Collec-
tion metadata extraction is generally done only directly at a source, though
there is no requirement for this. Metadata propagation involves the ‘pushing’
of metadata by a source to any other machine. Metadata retrieval involves the
‘pulling’ of metadata by an intermediary or a query generator that either stores
it locally for long-term use or else uses it immediately to help resolve a query
and then discards it. The models that follow have examples of both long-term
and short-term use of both document and collection metadata. An update is
the process of bringing up-to-date all stored metadata across the entire network

about a particular source.

5.2 Network Models

This section describes three classes of network models that encompass the dis-

covery and querying of information sources. The classes, in increasing complex-
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ity, use 1) no intermediary, 2) a single intermediary, and 3) multiple intermedi-

aries.

5.2.1 Direct

The models in Class 1, the Direct models, do not include an intermediary. We
describe three architectures; these are not intended to be realistic for a large-
scale network, but rather exemplary of particular problems of scalability which

will be discussed in Section 5.3.

The Simple Model is the most basic model, which contains one or more query
generators but only a single information source. Queries are sent directly to
the information source and the results are sent back directly to the generator of
each query. This model does not differentiate between simple, one-site sources,
and complex, multi-site sources with a single query point. The Simple Model
is overly simplistic and does not shed much light on scalability problems; we
therefore do not consider it further. Next, the Remote Model allows for multiple
sources by simply adding them in and not worrying about which sources are
queried nor how a query generator should merge the results. It is implicitly

assumed that each query will be propagated to all sources.

Neither the Simple Model nor the Remote Model include the use of any col-
lection metadata. The next model, the Local Model, requires that each query
generator pre-collect sufficient metadata about each source so that the best
sources can be decided locally at the generator without first contacting any re-

mote site. To handle a query, the only traffic generated in this model is that
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Figure 5.1: Local Model Query

used to query the most relevant sources and retrieve their results. This model
assumes that there is a standard method with which metadata can be retrieved

and merged by the query generators. This model is shown in Figure 5.1.

5.2.2 Single Intermediary

Within Class 2, the Single Intermediary models, we describe two architec-
tures: the Brute-Force (BF) Model and the STARTS Model [GCGMP96]. Both
these models maintain a single intermediary between the query generators and
sources. This intermediary handles both query and metadata traffic, though
there is not necessarily any synchronization between its reception of a query
and its metadata retrieval. Although there may be several intermediaries on

the network simultaneously in this class of models, they do not communicate or
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coordinate with each other. A query generator must decide which intermediary
to use for a given query, though by definition, no method is provided for assist-
ing in this decision. This uncertainty affects estimates of query network traffic,

as will be discussed in Section 5.3.2.

The simpler of the two models described in this class, the BF Model, is the
system used by most, if not all, current WWW index sites and is depicted
in Figure 5.2. In this model, an intermediary performs metadata extraction
by gathering all documents available at all sources. Current implementations
extract only limited document metadata to reduce storage space, and no collec-
tion metadata. In principle some collection metadata could be extracted also.
This process is driven completely by the intermediary; the sources have no con-
trol over the frequency of metadata collection nor over the type of metadata
extracted. Queries are sent to the intermediary, which uses its pre-collected
metadata to determine which of the documents it has analyzed are relevant,
and then returns a (possibly ranked) result set to the query generator. Queries
are not propagated to the sources, and results include information only about

documents which have been analyzed directly by the intermediary.

Another approach is the STARTS Model [GCGMP96], shown in Figure 5.3. In
this model, built on a ¢GIOSS [GGM95] framework, each source performs its
own metadata extraction. The intermediary then gathers this metadata rather
than extracting its own. Queries in the STARTS Model are of a keyword match-
ing nature, although the design allows for extensions to this query structure.
When an intermediary receives a query, it analyzes its pre-collected metadata

and chooses a small set of ‘best” sources. The query is then propagated to these
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Figure 5.2: Brute-Force Model Query

sources in a standard format and they return the results (document metadata
retrieval), also in a standard format, back to the intermediary. The intermedi-
ary is then responsible for merging the results from all the queried sources and

passing a single, ranked list of results back to the query generator.

The major differences that the STARTS Model has from the BF Model are
that 1) it allows (actually, requires) each source to extract its own metadata,
and 2) there are standard formats for information exchange (metadata, queries,
and results). The STARTS Model does not require that an intermediary store
document metadata as does the BF Model. Instead, it retrieves document

metadata at query time, including, for example, an abstract where applicable.
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5.2.3 Multiple Intermediaries

Within Class 3, the Multiple Intermediaries models, there are several known
frameworks such as Content Routing [SDW*94], hGIOSS [GGM95], and Har-
vest [BDH'94]. These systems provide for multiple intermediaries within a
DAG-like network structure by allowing intermediaries to be nested; collections
of source summaries can be viewed as single collections by higher-level interme-
diaries. However, these systems do not describe the actual network architecture.
Furthermore, although hGIOSS takes its metadata structure from the under-
lying text-based vector spaces, the other two do not specify the nature of the
metadata. We seek to exemplify this class with a model that highlights and
benefits from the relationship between the metadata structure and the network

architecture.
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Thus we define three extensions to standard metadata, which have been incor-
porated into the Pharos architecture described in Chapter 4. The first extension
is hierarchical metadata, which means that the collection metadata is organized
in a tree-like structure. Information at a parent node in the tree contains some
form of summary of the information of all its children, though possibly with
less detail. The second extension is that of shared metadata, in which meta-
data is partitioned, rather than simply replicated, between several cooperating
intermediaries. Thus, depending on the architecture, an intermediary can col-
lect unique metadata about many sources; other systems can then retrieve that
specialized information if and when they need it without having to communi-
cate with the separate sources directly. The last extension is that of non-text
metadata, which describes non-text aspects of documents and collections. For
example, documents that either include or consist entirely of images, sounds,
or maps may not be best described by the text associated with them (if any).
Many of these non-text documents, as well as many text documents, are also
characterized by, for example, image feature-vectors, geographical coordinates,
temporal information, etc. All these metadata extensions are used by Pharos,

shown in Figure 3.1.

Pharos, described in detail in the last chapter, is designed to select a small set
of (highly relevant) sources from among a large set. While Pharos separates
the query activity (query propagation and result retrieval) from the metadata
propagation, as in the previous models, it differs from them in that it synchro-
nizes this activity with the collection metadata retrieval. Metadata is extracted

by the source, as in the STARTS Model, but here the metadata is composed of
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a small amount of non-hierarchical information and a relatively large amount
of hierarchical information defined by one or more information taxonomies. A

source propagates its metadata as needed to the relevant intermediaries.

5.3 Model Comparison

Some of the criteria that we might use to compare these different models and
classes, especially from an implementation point of view, are scalability, flex-
ibility, and complexity. Increases in design and processing complexity should
be warranted by corresponding increases in either scalability or flexibility. The
performance of these models depends on factors such as the number of queries,
the number of sources, and the size of a collection. We attempt to estimate
several important characteristics of each model as well as the three classes in
general. We have selected several model parameters and estimated their corre-
sponding order of magnitude values. We then use these parameters to derive
equations for network traffic, storage requirements, and the number of accesses.
Next, we use the sample values to check that these equations are realistic and
to identify potential problems. Finally, we discuss how these characteristics are

likely to change with the future growth of the Internet.

5.3.1 Model Parameters

Tables 5.1 and 5.2 list all model parameters used in our derivations. All values

in this and the following tables are written in log;,(x). We first list the values
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Symbol | Small | Large | Typical ‘ Description ‘
Np 9 3 4 Numb?r of documents in a single
collection
Nuo 1 4 9 Nu.mber of releyant documents from
a single collection
Ng 2 7 5 Number of sources
NpBs 0 2 1 Number of ‘best’ sources
Number of relevant sources (i.e.
Ngs 0 5 2 sources with any relevant docu-
ments): assumed to be ~Ng/500
Noa 2 8 6 Number of query generators
Number of independent
Nit L 4 2 intermediaries (Class 2)
Number of unique mid-level
N, 1 2
ML 3 intermediaries (Pharos)
N 0 9 0 Number of duplicate mid-level
M intermediaries per ‘topic’ (Pharos)
Number of high-level
Nivi 2 g 3 intermediaries (Pharos)
N 1 4 3 Number of sources selected by
HLE high-level filter (Pharos)
Noi 0 1 0 Number of taxonomy nodes in a

query (Pharos)

Table 5.1: Model Parameters, Part A (all values are log,,(z))
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Sym ‘ Sml ‘ Lrg ‘ Typ ‘ Description

Sp 2 8 5 Size of a non-specific document
Spr 2 6 4 Size of a text (ASCII) document
Size of a collection of non-specific
Sc 4 14 ) documents: Np * Sp
Size of a collection of text (ASCII
Ser 4 12 8 documents: Np * Spr ( )
S 1 3 2 Size of a query
Size of a query result (returned metadata
Swmr 1 4 3 | record) for a single document (e.g. [title,
author, date, keywords, abstract))
Sk 1 g 5 Size of a query result (all relevant docu-
i ments) from a single source: Npp * Sy
g 4 9 6 Size of full (text) collection metadata at a
©rs source (STARTS): see Equations 5.3.1 5.3.3
Size of full collection metadata for all
Scrr 6 14 11 | sources, at an intermediary (STARTS):
see Equation 5.3.4
Size of information for each node in
SN 0 2 1
a taxonomy (Pharos)
Size of full collection metadata at a
Scps 4 6 5 source (Pharos): Spy* (nodes/taxonomy)
* (taxonomies/source)
Size of full collection high-level metadata
Sups 1 4 3 at a source (Pharos): extracted from ~25
depth-1 nodes of the taxonomy trees
Size of full collection mid-level metadata
Sups 2 5 4 at a source (Pharos): extracted from ~252
depth-2+4+ nodes of the taxonomy trees
g 4 10 g Size of metadata at a high-level intermedi-
HLI ary for all sources (Pharos): ~Sypg * Ng
Size of combined metadata of all unique
Sy 6 11 9 mid-level intermediaries for all
sources (Pharos): ~ Sy ps * Ng

69

Table 5.2: Model Parameters, Part B (all values are log,,(z); sizes in bytes)
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used to describe quantities such as the number of documents in a collection
and the number of sources. Next we list the values used to describe, in bytes,
quantities such as the size of a document and the size of a query result. These
tables include estimates of what might be considered a parameter’s small, large,
and typical order of magnitude. For example, Np, the number of documents in
a single collection, is estimated to range from 102 to 108, and a typical collection

is estimated to contain 10* documents.’

Several of these parameters are specialized and need some further explanation.
In Pharos, queries are based on one or more topics chosen from several infor-
mation classifications, and the number of topics chosen per query, Ng;, affects
how many mid-level intermediaries are involved in handling a query: one inter-
mediary per topic. We differentiate Spr, the size of an ASCII text document,
from Sp, the size of a non-specific document, because architectures such as the
BF and STARTS models are designed for text documents; ASCII documents

tend to be smaller than, for example, images.

All sizes in Table 5.2 after Sy are related to metadata. It is difficult to estimate
these sizes; as an example, we derive two of them. For text-based vector analysis
[GGMO95, Sal89], the size Scpg of the full collection metadata at a source is a
function of the number of unique words, ¢, in its collection, which is generally a
function of the total number of words in the collection, N. Fort = f(NV), clearly
f(N) is greater than log(N) and less than N. Salton [Sal89] gives ¢t = kNP,
for constants k and (3, 10 < k < 20, and 0.5 < # < 0.6. We take £ = 15

!The 1987 Annual Report of the Library of Congress lists approximately 86 million items
in its collection; INSPEC contains well over a million articles.
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and # = 0.55. Next, we must estimate N as a function of Sgp, the size of a
collection of ASCII text documents. Salton points out that, while average word
length for distinct English words is 8.1 characters, the average word length in
ordinary English text (with many repeated words) is 4.7 characters. Since we
are not assuming ordinary English text necessarily (or even English, let alone
text), we take the average number of bytes per word, L, as 6. Finally, assuming
that each word requires at least three 4-byte numbers in the metadata?, we

derive the following estimate:

SCTS Z (12 + L) * 1 (531)
~ [(12+ L) = k)/L°] * (Scr)? (5.3.2)
~ 100 * (Scp)™ (5.3.3)

with t = k x N® and N = S¢y /L.

An intermediary is required to maintain this metadata for each source, regard-
less of whether the words from a source have already appeared in an interme-

diary’s global list of unique words. Thus

SCTI =~ SCTS * NS (534)

where Scry is the size of metadata at an intermediary and Ng is the number of

sources from which the intermediary has collected information.

2The metadata may require, for example, the number of documents in which each word
occurs, the total number of occurrences of the word in the entire collection, fields in which
the word occurs, etc.



72 CHAPTER 5.

5.3.2 Analysis

Estimates for several characteristics of each model are given in Estimate Ta-
bles 5.3 5.6, where all expressions are derived from the model parameters de-
scribed in the previous section. Values are derived by applying the constant
‘typical’ values in Tables 5.1 and 5.2 to the expressions in each Estimate Ta-
ble. Any column which is not applicable to the corresponding model is marked
‘N/A’; such is the case, for example, of metadata quantities for the Remote
Model, which has no metadata. This is different from columns which poten-
tially apply to a model but for which the particular model has a zero quantity,

marked ‘-none-’.

Table 5.3 gives estimates for remote network traffic generated by a single query
and by a single update. We assume that network traffic is sent efficiently (e.g.
text compression is ~50%), but this does not greatly affect order-of-magnitude
estimates. We specify remote traffic because we do not include in these estimates
any traffic assumed to travel between machines within the same local area. This
excludes, for example, traffic in the Pharos Model between a query generator and
its corresponding local high-level metadata server. Table 5.4 gives estimates for
long-term metadata storage requirements. Metadata storage is required at the
query generator in the Local Model only. However, Pharos stores some metadata
at high-level servers within a query generator’s local area; there are a total of
Nprr such servers, and this storage requirement is listed as residing at the query
generator. In our numerical estimates, we assume that each Class 2 intermediary

retrieves metadata from every source. In reality, some intermediaries collect



Single Query

Single Update

Typical Typical
Model Expression Value Expression Value | Comments
Remote Ng * (Sq + Skr) 10 N/A N/A No metadata
Assumes STARTS-style
Local Nps * (Sg + Sk) 6 Nge * Sors 12
metadata (i.e. text only)
Query result assumes
BF SQ—F(NRS*SR) 7 NII*SCT 10
no duplicate detection
Sox(1+ N
sraprs [ (9er (1F Ns)) 6 Nt % Sers 8
+ (2 % SR kS NBS)
~ Ngrr * Nor xS Nurr* S
Pharos ( HLF Qr * Stn) 6 (Nurr* Suaps) 6

+ (NBS * (SQ + SR))

+ (Nym * Spps)

Table 5.3: Estimates of Remote Network Traffic (in bytes; all values are log;,(z))
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Combined Typical Values
Query Combined Average per
Model | Generators Intermediaries Storage Site | Total | Comments
Remote -none- N/A -none- -none- | No metadata
Local Nog * Serr N/A " 17 Assumes STARTS-style
metadata (i.e. text only)
BF -none- Nir# (Np * Ng * Syr) 11 13 Assumes smaller S,
STARTS -none- Nir* Serr 11 13
Pharos Nygrr*Sunr Niwe % Sunr 8 11

Table 5.4: Estimates of Metadata Storage Requirements (in bytes; all values are log,,(z))
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Combined Typical Values

(Remote) Combined Average per
Model Intermediaries Sources Intermediary | Source | Total | Comments
Remote N/A Ngi * Ng N/A 6 11
Local N/A Noi * Nps N/A 2 7
BE Noa (Nga * Ngs A 5 - Assumes retrieval

* Nrp)/1000 of 0.1% documents

STARTS Noa Noe * Nps 4 2 7
Pharos Nor * Nga Nga * Nps 4 2 7

Table 5.5: Estimates of Query Accesses (one query per generator; all values are log,,(z))
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Combined Typical Values
(Remote) Average per
Model Intermediaries | Intermediary | Total | Comments
Remote N/A N/A N/A | No metadata
Local Nga * Ng 5t 11 Query generator is intermediary
BF Np * Nir* Ng 9 11
STARTS Nyr % Ng 5 7
Pharos (Naws + No) + 5 8

(NMLI * Ny NS)

Table 5.6: Estimates of Update Accesses (one update per source; all values are log,,(x))
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more than others, and as a result, many queries are propagated to multiple
intermediaries by users trying to find as good information as is practical. The
amount of duplicate query generation is difficult to estimate and we do not
attempt to do so. Tables 5.5 and 5.6 give the total number of accesses generated
assuming that each query generator issues a single query, and each source issues
a single update, respectively. Thus the total number of queries and updates
are determined by the number of query generators, Ny, and sources, Ng,

respectively.

The BF Model returns metadata about relevant documents from all relevant
sources a potentially much larger set than that returned by STARTS or Pharos,
which deal only with the ‘best’ sources. If the BF Model does not accurately
rank the documents in its result set, users must fetch many documents in order
to determine their relevancy. Even with a ranked list, however, a lack of docu-
ment duplicate detection would require needless document fetches. We account
for the need to check documents in our estimates of the BF Model by assuming
that the top 0.1% of the documents returned by an intermediary is checked for

relevance, and therefore included in the query access count in Table 5.5.

As an example, we derive the Single Query Expression for the STARTS Model
in Table 5.3. The query, of size Sq, is first propagated to the intermediary,
which matches it against its metadata and selects the best sources to query
directly. These Npgg sources are then handed the query. So far the query has
generated Sg * (14 Npg) bytes of remote network traffic. The next action is the
result retrieval process. Each queried source will send back its own query result

assumed to be of size Sg. The intermediary in STARTS will perform only
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limited result merging: rank merging, but no duplicate detection. Thus, the
same amount of traffic sent to the intermediary is bundled together and re-sent
to the query generator, for a total result retrieval of (2% Sg* Npg) bytes. While
one might consider the factor of 2 to be superfluous, it is negligible in the order-
of-magnitude estimate anyway. Thus, the total amount of traffic generated by
a single query in the STARTS Model is (Sg * (1 + Nps)) + (2% Sg* Npg) bytes,
as shown in the table. In fact, in all the models, traffic caused by queries is
dominated by multiplicative factors of Sy, with the best being Sp * Npg in
STARTS and Pharos.

5.3.3 Scalability Estimates

We first discuss our estimates assuming the parameters take on values that
might be currently considered typical, as were listed in Tables 5.1 and 5.2.

After that, we increase three key values and re-compare some of the models.

Typical Current Values

We intuitively expect that Class 1 should show the greatest scalability problems.
Each model in this class breaks down in a different way. If the characteristics
we are estimating are the most relevant ones, we expect that some of these rea-
sons will show up in one or more of the Estimate Tables 5.3-5.6. For example,
Table 5.5 shows that sources in the Remote model receive orders of magnitude

more query accesses than in the other models because each query is propagated
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to every source. The last model discussed in this class, the Local Model, shows
problems with, for example, the amount of traffic needed to perform a single
update. The model also does poorly in terms of storage and total update ac-
cesses. Total storage is a problem because the model must assume that each

query generator has its own copy of all metadata in order to be in Class 1.

The models discussed in Class 2 are the closest to present working systems. It is
important to distinguish behavior evidenced in a particular model from behavior
inherent in the class. Both BF and STARTS, for example, have high storage
requirements, as seen in Table 5.4. However, this is a result of the fact that
the size of the collection metadata used in these models is a function of the size
of the collection. Pharos uses a classification-based metadata structure whose
size is independent of the collection size, and thus yields smaller storage values.
Such a metadata structure is not inconsistent with Class 2. The BF Model is
particularly problematic in the number of update accesses, shown in Table 5.6.
This is because the model requires that the intermediaries separately fetch each
document from a source rather than fetching a single, albeit large, collection
metadata record as in the STARTS Model. STARTS achieves the reasonable

goal that each intermediary is accessed no more than once per update.

One of the advantages of Class 3 in general is that it allows intermediary meta-
data to be less than linear with respect to the number of sources; this is not
possible in Class 1 or 2. Several resource discovery models [BDHT94, GGM95,
SDW™94|, including Pharos, allow intermediaries to collect information from
other intermediaries, including metadata describing a collection of collections,

rather than just a collection of documents. An appropriate network hierarchy of
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intermediaries could arbitrarily reduce the size of the metadata, at the cost of
loss of discrimination between different sources. Furthermore, grouping sources
behind particular intermediaries reduces the number of update accesses per in-

termediary, at the cost of maintaining more of them.

The only Class 3 model we have discussed is Pharos. Pharos performs well in
the estimates for several reasons. Network traffic is minimized for updates for
the same reason that storage is minimized; as stated, the metadata size is in-
dependent of the collection size. Pharos stratifies metadata within a collection.
Because of this layering, it can send pieces of metadata selectively to different
intermediaries; this allows a large number of sources to be coarsely described in
a compact way. This type of metadata partitioning is possible only if the infor-
mation itself is hierarchically structured. It can be utilized only within Class 3,
since its benefit arises from having intermediaries hierarchically arranged in a

way that matches the hierarchy within which a collection is classified.

Typical Future Values

We have chosen typical values for our estimates based more or less on the current
(1997) Internet environment. It is generally expected that several parameters
will experience fairly rapid growth over the next few years, some improving
system performance and others degrading it. For example, performance is im-
proved as network bandwidth, storage capacity, and processing power increase,
while the growth in the volume of data and numbers of users and sources tend to

degrade it. However, we expect that factors relating to computer-human inter-
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action such as query response time and browsable result size cannot drastically
change if a resource discovery system is to continue to be useful. Therefore, it is
important to recognize which models are likely to experience future scalability
problems based on parameter dependencies. We ignore the Class 1 models in
this section since they were already problematic with the previous parameter

values.

First, we change the three model parameters which most closely relate to the
number of users, the number of sources, and the data volume: Ngq, Ng, and
Np, respectively. We increase the first two by two orders of magnitude and
the third by one, yielding approximately 10® query generators, 107 sources, and
an average of 10° documents per collection. These changes require changes in

seven other parameters: Ngrg, Sc, Scr, Scrs, Scrr. Surr, and Syrr.

We now allow for two cases of the models to handle these increases. In the
first, Case 1, we keep the number of intermediaries the same; in the second,
Case 2, we increase them. Increasing the number of intermediaries in Class 2
is a simple matter of increasing N;;, which we do by two orders of magnitude
to 10%. For Pharos, we have two coordinated sets of intermediaries. The mid-
level servers are the most similar to the intermediaries in the other models.
Thus for Case 2 we increase N;,;, the number of times each unique mid-level
server is replicated, by two orders of magnitude to 102. The high-level servers,
however, act like news servers and are expected to serve a local area network.
Moreover, any replication of this type of service within a local area is irrelevant
to our model, which is looking only at remote traffic. Therefore, we increase the

number of high-level servers, N7, only one order of magnitude to 10%; that is,
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we roughly expect that the increase in the number of high-level servers grows

approximately as the square root of the growth in the number of users.

The results are shown in Table 5.7. This table shows the re-computed estimates
of all values in Tables 5.3-5.6 as a result of the increases in Ng¢, Ng, and Np.
For each model, the column labeled ‘Orig’ shows the values from the original
tables. The column labeled ‘Case 1’ shows the Case 1 values, where the number
of intermediaries is left as it was. The column labeled ‘Case 2’ shows the values
for which the number of intermediaries was increased as previously discussed.
Certain scalability problems become evident in this table. For example, be-
cause the metadata in BF and STARTS grows with the size of the collection
as well as with the number of intermediaries, the amount of traffic generated
by a single update grows by as much as three orders of magnitude. In Pharos,
the increase is dominated by the extra number of high-level servers, and so the
result is much smaller: only one order of magnitude. Pharos also scales well
with respect to storage; this is not only because, as before, the metadata size
per source is constant, but also because only a portion of it is sent to any par-
ticular intermediary. Finally, STARTS scales the best for the number of update
accesses, since it requires only one access between each source and intermediary,

and has relatively few intermediaries.



Estimate

BF

STARTS

Pharos

New Values

New Values

New Values

Orig | Case 1 | Case 2 | Orig | Case 1 | Case 2 | Orig | Case 1 | Case 2
Network Traffic (Tables 5.3):
Query 7 9 9 6 6 6 6 6 6
Update 10 11 13 8 9 11 6 6 7
Metadata Storage (Table 5.4):
Avg 11 14 14 11 14 14 8 10 10
Total 13 16 18 13 16 18 11 13 14
Query Accesses (Table 5.5):
Avg Int 4 6 4 4 6 4 4 6 4
Avg Src 2 4 4 2 2 2 2 2 2
Total 7 11 11 7 9 9 7 9 9
Update Accesses (Table 5.6):
Avg Int 9 12 12 5 7 7 Y 7 7
Total 11 14 16 7 9 11 8 10 11

Table 5.7: Estimates for Large Parameters (all values are log,,(z))
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5.4 Discussion

This chapter presented a classification of network architectures for locating in-
formation sources. These models have been grouped into three broad classes:
Direct, Single Intermediary, and Multiple Intermediaries. We discussed the rel-
evant parameters for these models, derived estimates for several of their char-
acteristics, and compared them based on these estimates. Each class has been
shown to have certain scalability characteristics for all its models. We believe
that each increase in design and processing complexity among the classes and
models is warranted by the corresponding increase in scalability. In general,
the estimates we derived indicate the need for collection metadata whose size
is not a function of the size of the collection. Moreover, utilizing multiple in-
termediary models that rely on metadata summaries can avoid a linear growth
of metadata size with respect to the number of sources. Limiting the growth
of collection metadata in these two ways should more easily accommodate the

expected expansion of the Internet.



Chapter 6

Simulation Studies

We now complete the feasibility study of the Pharos architecture. The last
chapter presented a comparison of Pharos with other models. In this chapter,

we estimate the accuracy of Pharos query results.

6.1 Simulation Parameters

In order to evaluate the expected performance of Pharos, we tested it by gen-
erating simulated sources and queries and estimating the degree of success of
finding the ‘best sources’ for each query.! Such an estimate requires the quantifi-
cation of a few parameters. When dealing with a standard, single text document

database, precision usually gives a measure of how many of the returned docu-

'For the simulations, we define ‘best sources’ as the sources with the greatest number of
documents associated with the same node in a taxonomy as the query node.

85
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ments are considered to be relevant to the query [Har95]. This definition does
not extend naturally to the problem of locating sources. A source could be
considered relevant if it contains even a single relevant document, resulting in
a relevance test that is too broad and unintuitive. Instead, we are interested in
a measure that is higher for sources that contain a relatively larger number of
relevant documents. For simulation simplicity, we consider measures similar to
the weights associated with documents based on vector analysis [Dum91, Sal89],
which lead to a ranked list of documents. Assuming that we have a weighting
system which will lead to a ranked list of sources, we have several options for
defining the precision of the results. We first introduce two such definitions and
show how they are problematic, leading us to a final, more intuitive definition.
First, we could define source precision of a final set of k£ sources as the fraction
of the k best sources; however, this gives too small a value when, for example,
the (k + 1) best source is substituted for the k' best source in the final set.
Next, if we define source precision so as to include the value of such sources, we

might use

k
>
i=1
k
Z est;

i=1

where est; is the true rank of the estimated i"* best source. The resulting value
would be unreasonably small, however, whenever a particularly poor source is

selected, even if the other k¥ — 1 sources are the best ones. Therefore, we define
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source precision, Ps, as follows:

k

Z 1/est;

Py = ——— (6.1.1)

> /i

i=1
where est; is the true rank of the estimated i*" best source, and k is the number
of sources selected in the final set. Clearly 0.0 < Pg < 1.0. As an example,
if we select the best 10 out of 1000 sources, £ = 10, and the denominator is
1/14+1/24---41/10 = 2.93. Suppose that for a given query, we return a set
with the following source rankings: {1,3,4,7,9,14,17,20,27,103}. The numerator
becomes 1/1+1/3 4+ 1/4 + ---+1/103 = 2.06. The source precision is then
2.06/2.93 = 0.70. The first definition would have yielded 0.50 instead, and the
second definition would have yielded 0.27.

The next parameters we need to quantify are the source weightings. Pharos
is designed for a more complex method of source comparison than a linear
ranking, as discussed in Chapter 4. However, for the purposes of simplifying
the simulation, we restrict comparisons to such a ranking, based on the number
of documents at each source which are associated with the query. Thus our
current weighting is based solely on estimating which sources have the greatest
number of associated documents.? A source’s true weight is different from its
estimated weight. The former is a function of the actual number of documents

and in general is not determinable from a user’s machine. The latter is based on

20ther methods, for example, involve using a conspectus rating or estimates of how well
a source covers a subject, region, etc., as well as using any of the taxonomy-independent
metadata (see Section 4.3).
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the information available through the high-level and mid-level metadata. These
weights are complicated by the fact that we cannot assume that all documents
in a collection have been classified within each taxonomy. For simulation and
evaluation, we compare the rankings based on the true source weights to those
obtained from the estimated weights in order to calculate the source precision.
We define the weight of a source for a query involving multiple taxonomies, but
simplify it here by excluding multiple nodes within any single taxonomy. Queries
are then considered to be one node from each of the one or more taxonomies
used in the query, limited by the total number ¢ of taxonomies known to Pharos.
We currently limit ¢ to 3. A multi-taxonomy query is considered to be a logical
AND of the individual nodes within each separate taxonomy. Furthermore, we
assume that documents are uniformly distributed among a query node’s children
within a taxonomy. Therefore, we estimate that the total number of documents
that are relevant to a query is the product of the total number of documents
in the collection times the individual fractions of the collection within each
query component. For example, consider a two-taxonomy query with a subject
component of political music and a geographical component of San Francisco.
If 80% of the documents in a collection match the subject component and 30%
of the documents in the collection match the geographical component, then we
assume that 24% of the documents in the collection match the query. Therefore,
we use the product of the coverages to derive the following true source weighting

for a given query:

t
Se x H% (6.1.2)
=1

where S¢ is the size of the collection at the source, ¢ is the number of taxonomies



6.1. 89

in the query, and ~; is the coverage at the query node n; for taxonomy 1.

The final parameter we need to define is the estimated source weighting. This
weight is calculated from the high-level and mid-level metadata. For the tax-
onomy nodes which define a given query, the corresponding metadata are the
high-level and mid-level ancestors of those nodes in the respective taxonomies.
If the query node is actually a high-level node, the mid-level ‘ancestor’ is defined
to be the query node itself. We make a slight modification from Equation 6.1.2
to account for the fact that the metadata gives a more accurate estimate of
nodes which are higher in the taxonomy than those which are lower. The num-
ber of nodes which are represented by a high-level (mid-level) node is a function
of two factors: 1) Ah, the difference in height between the query node and its
high-level (mid-level) ancestor, and 2) N,, the number of children per node in
the taxonomy. For simplicity, we assume here that N, is a constant for each
taxonomy. The number of descendents of the query node’s high-level (mid-level)
ancestor which are at the query node’s height in the tree is then (N.)2". In
order to give more relative weight to query nodes which are higher in their re-
spective trees, we divide the product factor in Equation 6.1.2 by N, Ah. This
divisor is a compromise between just using the height difference and using the

full dilution of (N.)2". Therefore, the high-level (mid-level) estimated source

weighting is

Sc * ﬁ{(NZTh)} (6.1.3)

=1

where S¢ is the size of the collection at the source, ¢ is the number of taxonomies

in the query, ! is the coverage at the high-level (mid-level) ancestor a; of the
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Tax / | Number of | Average
Query Queries Precision
1 320 0.76 + 0.19
2 337 0.63 + 0.21
3 343 0.58 £+ 0.23

Table 6.1: Precision as a Function of the Number of Taxonomies per Query

query node n; for taxonomy i, N, is the number of children per node in 7, and
Ah; is the difference in height between n; and a;, or 1/N, if n; equals a;. It should
be noted that the dilution factor used in this estimate makes no difference for
single-taxonomy queries. Equation 6.1.3 is a heuristical equation which needs

to be compared with other estimated weighting schemes.

6.2 Simulation Results

Using the performance measures developed in Equations 6.1.1-6.1.3, we ran ex-
periments with 1000 simulated sources. The sources were generated with 3
taxonomies per source, 8 children per node, and a taxonomy depth of 4 (i.e.
4681 nodes per taxonomy). High-level (mid-level) metadata were considered to
be the level-1 (level-2) nodes in the taxonomies. Collection sizes ranged from

102 to 10®, with a higher probability® given to 10°. Finally, the coverages of

3The exponent was chosen as the random variate by averaging two values taken uniformly
between 2.0 and 8.0.
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Figure 6.1: Simulation Precision

a node’s children were chosen such that they summed exactly to the coverage
of that node. However, we increased the variability of the children by using a
non-uniform probability distribution. Our experiment generated 1000 queries.
Each query was randomly chosen to use 1, 2, or 3 taxonomy query components.
Furthermore, the actual taxonomy to use for the first, second, or third compo-
nent, was randomly selected as needed, although we disallowed using the same
taxonomy more than once per query. Query nodes were chosen uniformly among
all nodes in the tree, giving a higher probability that nodes were chosen from
among the leaf nodes. By using Equation 6.1.3, we selected approximately 100
sources with the high-level metadata, and then from that set and the mid-level
version of the same equation, selected a final set of 10 sources. For each query,
we used Equation 6.1.2 to rank the 1000 sources. Finally, we derived the source

precision for each query using Equation 6.1.1.

The overall average precision was 0.66 + 0.22. In Table 6.1 we show the break-
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Query | Number of | Average
Depth Queries Precision
1 0 N/A
2 3 1.00 £+ 0.00
3 39 0.84 + 0.17
4 278 0.75 £ 0.19

Table 6.2: Precision as a Function of Query Node Depth

down of the results based on the number of taxonomies per query; the results
are shown graphically in Figure 6.1. In Table 6.2 we show the breakdown of
the results based on the node depth for the single taxonomy queries. We also
calculated the average best and worst ranked source in the final selected sets.
The former is 1.5; the latter is 324. These numbers indicate that in the vast
majority of cases, the source which was assigned the highest or second highest
true source weight was in the final set, and that on average the worst source in

the final set was within the top 32%.

For proper perspective, precision measurements generally must be compared to
their corresponding recall values, which we have not yet defined. While work
from TREC [Har95] generally shows the state-of-the-art of document retrieval
to be around 50% precision for 50% recall, these values are for document query
results from single collections. We informally define source recall as the fraction
of total documents in a sub-domain that are contained in the final set of the

selected sources. Clearly this is a non-trivial value to determine. One study by
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the Research Libraries Group of top research libraries in the U.S.A. indicated
that the best source alone can provide well over 70% source recall, and that a

few sufficient sources can provide a source recall of over 90% [Mos85].

It is difficult to know how these values might be extrapolated from tens of
research libraries to tens of thousands of digital information sources; they do,
however, help put the simulation results in some perspective. They indicate the
potential importance of finding several of the best sources, as our simulations
do for most of the final sets. Considering that each source in a final set, once
selected, would be directly handed the query, we find these results reasonable.
They indicate that a sufficient number of good sources could be located with
the Pharos architecture so that the majority of relevant documents could be
retrieved. We note that there is a drop of precision as the number of taxonomies
per query is increased; while this result is not unintuitive, further work is needed
to more definitively explain it. It is also worth noting that the results for 1000
queries are not significantly different than for only 100 queries, including the
standard deviations. This indicates that the results are stable, though clearly
more experimentation is needed to clarify parameter dependencies. Finally, the
next section presents simulation parameters and results for the case of collections

that are only partially classified.
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6.3 Simulation Parameters under Partial Clas-

sification

We distinguish a document that has been determined not to relate to a particular
information hierarchy from one for which no determination has been made at
all. Those documents that do not relate to a taxonomy can be considered to fall
under a special ‘excluded’ child of the root node. But we must extrapolate from
the measured coverage values within the taxonomy (i.e. from those documents
that have been classified) to the expected coverages of the entire collection (i.e.
including those documents that have not yet been classified). A simple way to
do this would be to consider as unrelated all those documents not yet classified.
Another simple method would be to ignore the fact that not all documents have
been classified and to assume that the expected coverages is a simple linear
extrapolation of the measured values. Neither of these approaches is likely to
give the best estimate of the true coverages of the entire collection within a

taxonomy.

Instead, since we have no reason to assume otherwise, we make the a priori
assumption that the unclassified documents are most likely to be uniformly
distributed within the taxonomy. After all, if only a small fraction of documents
have yet been classified, it is difficult to accurately extrapolate to the entire
collection. Correspondingly, if a large fraction of documents have already been
classified, then assuming a uniform distribution of documents for the remainder
of the collection will not change the existing coverages significantly. Let «;

be the fraction of classified documents within taxonomy . For query node n;
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of 7, the number of documents which would be counted in its coverage of the
remaining 1 — «; documents under a uniform distribution is simply the number
of nodes under n;’s sub-tree divided by the total number of nodes in 7. We call
this the fractional area of n; and denote it as f;. Therefore, in order to weight
the sources for a given (possibly multi-taxonomy) query, we use the product
derived in Equation 6.1.2 of Section 6.1 for those documents which have been
classified, and a uniform distribution for the remainder of the documents. Thus

we derive the following true source weighting for a given query:

Sc * ﬁ{(%%‘) + [fix(1— Olz)]} (6.3.1)

i=1
where S¢ is the size of the collection at the source, ¢ is the number of taxonomies
in the query, 7; is the coverage at the query node n; for taxonomy i, «; is
the fraction of the collection which has been classified within i, and f; is the

fractional area of n;.

The high-level (mid-level) estimated source weighting, then, becomes the follow-

ing:

S Ges) + [f o+ (1 — o)
S Ul{ i (NE*Ahi) }} (6.3.2)

where S is the size of the collection at the source, t is the number of taxonomies
in the query, ! is the coverage at the high-level (mid-level) ancestor a; of the
query node n; for taxonomy ¢, «; is the fraction of the collection which has been
classified within 4, f/ is the fractional area of a;, IV, is the number of children

per node in i, and Ah; is the difference in height between n; and a;, or 1/N, if

n; equals a;.
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By using Equations 6.3.1-6.3.2 in place of Equations 6.1.2-6.1.3, respectively,
and assigning a U[0,1] random variate representing the fraction of a collec-
tion’s documents classified within a taxonomy, the average precision rose from
0.66 + 0.22 to 0.79 + 0.16. This new value is misleadingly high. The problem
here is that by using a U[0,1] random variate, we are uniformly distributing,
on average, half of our data. This tends to smooth out the variability of the
simulated taxonomies, which erroneously makes the high- and mid-level esti-
mates better. As an example of an extreme case, we ran 1000 queries against
1000 sources, but used a U[0,0.01] random variate (i.e. 99.5% of the data was
uniformly distributed). The result, as expected, is that the precision went to
1.00 £+ 0.00; both the estimated and true weightings were ranked solely on the
collection sizes. We are currently experimenting with other methods of simu-
lating partially classified collections.* Equations 6.3.1 and 6.3.2, however, are

still accurate.

“In particular, we use two trees for each taxonomy: one for the true weights and the other
for the estimated weights.



Chapter 7

Metadata Extraction: Prototype

and Evaluation

Given that the results of the feasibility studies described in Chapters 5 and 6
were acceptable, we could then proceed to begin implementation of a proto-
type. Arguably the most difficult, yet important, component of Pharos is that
which is responsible for the automated extraction of collection metadata. As
will be described in detail below, we experimented with the use of newsgroups
as collections. We built an initial prototype that automatically classified and
summarized them within the Library of Congress Classification (LCC).! The
prototype used electronic library catalog records as a ‘training set’ and Latent
Semantic Indexing (LSI) [Dum91] for information retrieval (IR). We used the

training set to build a rich set of classification terminology, and associated these

'The prototype can be tested at http://pharos.alexandria.ucsb.edu/demos/ .
97
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terms with the relevant categories in the LCC. This association between terms
and classification categories allowed us to relate users’ queries to nodes in the
LCC so that users could select appropriate query categories. Newsgroups were
similarly associated with classification categories. Pharos then matched the
categories selected by users to relevant newsgroups. In principle, this approach
allows users to exclude newsgroups that might have been selected based on an
unintended meaning of a query term, and to include newsgroups with relevant
content even though the exact query terms may not have been used. This work
is extensible to other types of classification, including geographical, temporal,

and image feature.

7.1 Source Summarization: Methodology

Hierarchical classification is fundamental to the way that Pharos uses metadata
for collection summarization and selection. Pharos is dependent on each source
extracting and distributing this information about its collection. For classifi-
cation to be practical as an aid to distributed source selection, it must be an
automated procedure at the source. Since we wanted to show that automated
classification could be successfully applied, we processed our collections (e.g.,
newsgroups in our experiments) in the same manner that we would expect to
happen at individual information sources. Geographical classification within a
spatial database, where each document has spatial coordinates associated with
it, is straightforward. However, classifying semi- or un-structured digital text

within a subject classification is more difficult. As discussed in Chapter 4,
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automated text-based subject classification has been shown to be fairly suc-
cessful, using techniques such as sublanguage terms [LH95], LST [Hul94|, and
inverted term lists [Lar92]. These results indicate that at least some subject-
based automated classification is sufficiently accurate to characterize sources for
comparison purposes, where even order of magnitude estimates can greatly aid

in filtering out most irrelevant sources.

In general, automated classification requires several components. First and
foremost of these is the collection itself; clearly this must be in a digital form to
facilitate content-based classification. The second component is a classification
scheme, often a hierarchical tree, which organizes the concepts of a particular
information domain. The third is a pre-classified training set of documents,
which the system uses to characterize each node of the classification scheme.
This characterization is generally some type of abstract space within which
classification nodes are placed. The position of the nodes in this space serves to
specify syntactically the semantics of the nodes. For example, such a space may
consist of a large dimensional term space where documents are placed based on
the term frequencies of their content. The fourth and final component is an IR

system.

The IR system serves two purposes. First, it actually builds the abstract space
via some type of mapping or index structure, and then places the classification
nodes as reference points within the space. The second purpose of the IR system
is to accept queries as input and return a set of ranked classification nodes as
output, where the ranking is determined by the relevancy of the nodes to the

query. This is the step which actually classifies new documents within the
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classification scheme. While these components are sufficient to automatically
classify a single collection, Pharos additionally requires that a summarization, or
profile, of each collection be built so that multiple collections can be compared.
This is accomplished by taking the classification results of each document in a

collection and aggregating them into the individual collection-wide profile.

For this experiment, we implemented this abstraction as follows. We used 2500
USENET newsgroups as individual collections, each newsgroup being considered
a separate information source,? and used the LCC as the classification scheme.
We used newsgroups for several reasons. First, they are an easily available
source of thousands of different collections. Second, newsgroups are typically
uncontrolled, and their content tends to be based on a distributed consensus;
in other words, they are messy, consisting of many unrelated articles, ‘spams’,
misspellings, etc.> In that sense, newsgroups represent an extreme of digital
collection that could be most chaotic. Hence, if we can bring order to this
chaos, then it should be easier to deal with more structured digital collections,
which are typically administered by a professional (i.e., if we can work with
newsgroups, we can work with anything). Third, the name of a newsgroup
gives some quick check on the relevance of the returned collections to the users’

queries.

For the classification scheme, we chose the top portion of the LCC scheme

2The newsgroups included the following hierarchies in alphabetical order: alt.politics,
comp, misc, rec, sci, and soc. Only non-empty newsgroups were used, taken from a two-week
period.

3A ‘spam’ is a message that is broadcast to hundreds or thousands of newsgroups, generally
to advertise some product or service. These spams are more often than not completely
unrelated to the central theme of the newsgroups to which they are posted.
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(the LCC Outline). We use the LCC Outline because it is a wide, multi-topic
hierarchy (at least it is reasonably hierarchical among the 4214 nodes in the
upper part of the tree that form the Outline). As a training set, we used
1.5 million electronic catalog records from the UCSB library. These records
were in “MAchine-Readable Cataloging” (MARC) format. Each MARC record
contains information about a single holding, including its LCC call number (a
notation based on LCC, chosen by a cataloger, representing the major topic of
the item). MARC records also generally contain a holding’s title, descriptions of
its subject matter, an indication of its authorship and creation date, and other
bibliographic information. The subject matter in MARC records is derived from
the controlled vocabulary of the Library of Congress Subject Headings (LCSH).
Finally, we used LSI [Dum91] for the IR system, a commonly used IR research

tool.

7.1.1 Building an Online LCC Outline

As previously discussed, we require an online classification scheme in order
to classify documents automatically. The LCC contains 21 top-level subject
categories, such as “Science”, “Law”, and “Political Science”. Each top-level
category is assigned a single letter, such as “Q” for Science. Beneath each of
these are sub-categories, usually with a two-letter notation; for example, “Q:
Science” includes “QC: Physics”, “QE: Geology”, and ten others. After the two-
letter notation, further differentiation is usually denoted by way of numerical

ranges. For example, “QC 221-246" denotes “Acoustics, Sound”, while “QC
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501-766" denotes “Electricity and Magnetism”. This hierarchy continues down

many levels.

Once we chose the LCC, we could not find an electronic version of it.* Below,
we describe some of the details of building an online version of the LCC Outline
because some of the difficulties of doing so involved the structure of the LCC

itself, rather than simply being a result of normal programming problems.

At first, we hoped to use only the first and second letters in the outline, such as
“H: Social Sciences”, and “HG: Finance”. However, it soon became apparent
that this would not provide sufficient detail. For example, “BF” is described
as “Psychology, Parapsychology, Occult Sciences”, putting too many disparate
topics together in a single node. Computer Science is buried five levels down
in the tree, beneath “QA: Mathematics”; in fact, it is deeper in the tree than
“Slide Rules”, which is only four levels down. Clearly we needed, as a minimum,

the nodes listed in the full LCC Outline.

The development of a “machine-readable” version of the LCC is available from
the Library of Congress’ Cataloging Distribution Service and is entitled, “Clas-
sification Plus” [Gue96]. However, this distribution does not include a program-
ming interface; it is distributed via CD-ROM and accessible only through the
user interface provided. As a result, this information was basically useless to us.
We located a few versions of the LCC Outline on the Web. These were in a flat
format, with one page for each of the 21 major LCC categories. After parsing

these pages to remove the HTML and correcting misspellings and numerical

4Although the Library of Congress publishes the complete LCC on CD-ROM, it is not
built with a programming interface.
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range errors, we were left with 21 lists of the form shown in Table 7.1.

While we were able to work around problems with the layout of this data and,
in particular, decipher the nesting structure of the letters and numerical ranges,
other problems were not as straightforward. Most of the LCC places classifi-
cation numbers with two alphabetic characters as children of those with one
alphabetic character in the tree; in the “K” section this extends to three be-
neath two. For example, in the above list, “AC” is a child of “A” in the tree.
Similarly, “KGC” is a child of “KG”. However, the exceptions to this rule make
the automatic parsing of the data difficult. For example, “DAW?” is a child of
“D”, placed between “DA” and “DB”. “E” has no other letters beneath it at all,
just numbers. Most top-level categories repeat the one-letter symbol as its first
child, so that, for example, “R: Medicine (General)” is a child of “R: Medicine”.
The “K”s were by far the worst. For example, both “KK” and “KKA” are chil-
dren of “K.J”. Also troublesome is that several nodes in the tree were completely
unlabeled and left out, so that a parent node and its grandchildren exist with-
out an intermediate level being explicitly noted. In order to impose a somewhat
rigorous tree structure, all these situations had to be manually discovered and

corrected, including not only the data, but also the classification scheme itself.

7.1.2 Building an LCC Vector Space

After constructing an online version of the LCC Outline, we next needed to con-
struct a relationship between terms and the LCC categories. For example, the

category “RJ 1-570: Pediatrics” might be associated with terms such as “chil-
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A General Works

AC 1-999 Collections, Series, Collected Works
1-195 Collections of Monographs, Essays, etc.
801-895 Inaugural and Program Dissertations
901-995 Pamphlet Collections

999 Scrapbooks

AE 1-90 Encyclopedias (General)

B Philosophy, Psychology, Religion
B 1-5739 Philosophy (General).
108-708 Ancient

Table 7.1: LCC Outline Data Format
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dren”, “hospital”, and “measles”, while the category “QA 75.5-76.95: Elec-
tronic Computers, Computer Science” might be associated with “database”,
“algorithm”, and “cryptography”. Although we chose to use a vector space
model, which follows closely the techniques used by LST in TREC [Har95], any
IR system could have been substituted, as explained below. We present a more

detailed description of the process of constructing such a term-category associ-

ation using MARC records and LSI.

The general design of this component is shown in Figure 7.1. We want to asso-
ciate each of the 4214 categories (nodes) in the LCC Outline with a set of terms
that are representative of that category. In order to build such a term repre-
sentation, we begin with a training set, such as MARC records. Each record is
processed by a program (“Vector Builder”) that extracts the appropriate terms
from it and assigns them to the corresponding LCC category. We end up with
a representative ‘document’ for each LCC category (“LCC Vectors”) consisting
of the terms from all the MARC records that were associated with that cate-
gory. These LCC Vector documents are used as input to LSI. LSI constructs a
high-dimensional vector space such that each unique term is represented by a
different dimension. It places each LCC category as a point, or vector, in this
space. Each component of a vector is determined by the number of times that
the term for that dimension is used in the category’s term-based representa-
tion (adjusted by various term weighting schemes). LSI then employs singular
value decomposition to reduce the dimensionality to approximately 100 dimen-
sions whose orientations are some linear combination of the original axes. LSI

maintains an index of all the terms with their position vectors in the reduced



106 CHAPTER 7.

Figure 7.1: Building an LCC Term Vector Space

space. The LCC categories can then be viewed as items in a collection that
LSI attempts to retrieve based on their relevance to queries. The end product
of this component, the “LCC Vector Space”, is used by LSI in both classifying

newsgroups and in processing queries.

Suppose, for example, that instead of using an LSI-based vector space, we used
an inverted term index, as does Cheshire[LMOT96]. We would need this index
both at the source, to build the profile, and at the client, to handle the subject
query-mapping. We would not, however, need to retrieve this index at query-
time. The acquisition of the index (or LSI space, etc.) is required only once.
In other words, Pharos is independent of the particular IR system used. As
discussed in [IT95], other IR methods may have certain advantages over the
vector-based LSI approach. As there are advantages and disadvantages with
any IR system, and our work is not focused specifically on IR, L.SI was sufficient

for our purposes.
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We prefer LLSI because it indexes based on term groupings, rather than on
individual terms. Thus “investment” might be associated with documents which
contain “bank” and “finance” even if the word “investment” does not actually
appear in all those documents. Also, LSI is language-independent, so it works
equally well with both English and non-English terms. For example, by default
LST uses no word stemming, a technique that is generally highly dependent on
language syntax such as pluralization rules. One big disadvantage of LSI is that
it is not capable of working with multi-term phrases; each term is considered
independently. This is not an inherent problem with vector-based IR, but simply
with the implementation employed by LSI. By default, when LSI builds its term

vector space, it first removes the following:

punctuation;

words of less than three characters;

e numbers not of the form 18nn or 19nn;

entries in its standard stop-word list of 437 common words.

We added “journal” and “proceedings” to the stop-word list, as these words
are common in MARC records and do not help much in differentiating between
subjects. We also included hyphens as allowable punctuation, and kept num-

bers.

Building the relationships between the terms and the LCC nodes requires a

training set which associates terms with LCC categories. One way of doing
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this is simply to use the descriptive text associated with each category, such as
“Pediatrics” associated with “RJ 1-570” as described above. While we did in-
corporate these terms, they did not provide a rich enough set of words. In order
to enhance this set, we used the 2 million MARC records for the items held at
the UCSB library (of which 1.5 million were usable). MARC record format® is a
national standard for the exchange and distribution of cataloging data, backed

6 These records contain a series of numerically

by the Library of Congress.
tagged fields and alphabetic subfields. For example, field 050 contains the LCC
call number assigned by the Library of Congress. Within the subject fields, the
600’s, subject terms are assigned from the Library of Congress Subject Headings
(LCSH). Subfields for the 600’s include, for example, $y for temporal informa-
tion and $z for geographical information. From each record, we extracted the
LCC number, title, and subject heading information. We do not take duplicate
terms from within the title nor from within the subject headings, so that each
MARC record can add a given term no more than twice. This restriction is in-
tended to base term frequencies on term occurrences between many documents,
rather than, for example, repetitive uses from multiple subject headings for the
same document. We take hyphenated words as a special case. For example, the
term “anglo-saxon” will generate the following terms: “anglo-saxon”, “anglo”,
“saxon”, and “anglosaxon”. This last form is for including non-hyphenated

versions of words such as “on-line” and “e-mail”.

We assign the terms from the title and subject heading fields to the LCC cat-

Shttp://leweb.loc.gov/marc/bibliographic/ecbdhome.html
6Technically, MARC is an international standard, and USMARC is the U.S. version. We
work only with USMARC records.
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Frequency Term

141 children
101 child
67 infants
66 pediatrics
65 health
43 mental
42 feeding
30  nutrition
29 care

27 breast

Table 7.2: Ten Most Frequent Terms for “RJ 1-570: Pediatrics”

egory associated with the LCC number. In so doing, we acquired over 410,000
unique terms for the 4214 node LCC hierarchy. On average, there were 371
MARC records per node, with a median of 43; 414 nodes had zero MARC
records. For example, there were 229 MARC records that were placed directly
into “RJ 1-570: Pediatrics”, as well as 1679 records distributed among its 14
children. These 229 records generated, after removing duplicates within each
record, over 2600 terms. These consisted of, after removing stop-words, over
700 unique terms, including the ten most frequent terms shown in Table 7.2 in

decreasing order by frequency.

The distribution of the 1.5 million MARC records among the nodes in the LCC
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Outline, shown in Table 7.3, follows roughly Zipf’s rank-frequency law [Sal89].
That is, first group LCC nodes which are assigned the same number of MARC
records per node, M. Then sort these by M and number them in order, assigning
a rank number, R. If we count the number of nodes, N(R), in the LCC Outline
which are placed in the same rank (i.e. received the same number of MARC
records), we find that for the 1254 nodes which received less than 10 records
each, the following holds: R N(R) ~ 450 £ 60. In fact, averaging over all the
915 rank values yields R« N(R) = 714. This average is pushed up by the long
tail of the curve, with 512 nodes having a large but unique number of MARC

records, and thus each receiving a large, unique rank value.

Given that so many nodes had very few MARC records, we could increase this
set of terms by using MARC records from, for example, the UC-wide Melvyl
online catalog system. This sets contain tens of millions of MARC records from
a variety of different types of libraries, and so we would be able to greatly

enhance our term-based representation of each LCC category.

7.1.3 Automatically Classifying the Newsgroups

Once we have constructed the LSI term vector space, we use this data to char-
acterize newsgroups within the LCC and use the resulting collection profile as
required by Pharos. Each newsgroup, which is treated as a separate collection,
requires its own profile. A profile is compiled by processing the individual news

articles (treated as ‘documents’) within each newsgroup. The articles are passed

as queries to (MARC/LCC seeded) LSI, which returns a ranked list of LCC cat-
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Number of

MARC Records Number of

Rank per Node R Nodes Node Description
R M N(R) R« N(R) (if only one node)
1 0 414 414
2 1 178 356
3 2 139 417
4 3 103 412
5 4 96 480
6 5 90 540
7 6 69 483
8 7 63 504
9 8 58 522
10 9 44 440

913 36011 1 913 Spanish Literature
914 61986 1 914 English Literature
915 90067 1 915 American Literature

Table 7.3: Distribution of MARC Records within the LCC Outline
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egories for each article. In effect, this procedure treats the article as if it were
a query and automatically classifies the query or article into the LCC. The
articles are then compiled into a profile in the form of an LCC tree where each
node contains the percentage of articles in that newsgroup associated with that

node in the tree.

We first pre-process each article, mainly to strip its headers (and remove punc-
tuation). The only header information we keep is the content of the subject
line, which in principle the author wrote intentionally to describe the message’s
content. The reason that we strip the headers is to avoid using the name of the
newsgroup and the cross-posting groups, which appear in the headers, as an aid
to classification. In this way, we attempt to be as unbiased as we reasonably
can, since the purpose of the experiment is to attempt to classify by content
only. We exclude articles that have no terms which match our list from the
MARC records; these articles include rare aberrations, less than 0.1% of the

articles, such as one article whose subject was “s” and whose entire content was

“177

LSI queries take the form of ‘documents’ or free text. The terms of the query
define a new vector in the LCC vector space in the same manner as the original
documents. LSI then returns a weighted list of similar documents. In our case,
this list is a set of LCC categories whose weights indicate some measure of
relevance between the query terms and the categories. In effect, this procedure
automatically classifies the query into the LCC. As shown in Figure 7.2, each

news article is given as a query to LSI, which returns the weighted list of LCC
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Figure 7.2: Automatically Classifying the Newsgroups

7

nodes.” We then keep all nodes which have a weight above a threshold value

(currently 0.25). Suppose we are returned four nodes with the following weights:
Node A: 0.8; Node B: 0.8; Node C: 0.4; and Node D: 0.1. We first drop Node D,
since its weight is below our threshold value. We then normalize the remaining
weights so that exactly 100% of the article is divided between the remaining
nodes; thus the article is assigned 40% to Node A, 40% to Node B, and 20% to
Node C.

For each newsgroup, we construct a classification-based collection profile in the
form of an LCC tree where each node contains the percentage of articles in that
newsgroup associated with that node in the tree. As an example, Figure 7.3
shows a collection profile where 19% of the collection falls under the Physics
node or its children in the classification, 6% falls under Mechanics, etc. The

values in parentheses denote articles which fall under a particular node but not

"These values range from 0 to 1 because we are using cosine weighting.
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Fluid Dynatmcs
1%

Figure 7.3: Newsgroup Summary: Pharos Taxonomy

under any of that node’s children.

We process each article in the newsgroup as above, and then allocate it among
the nodes such that 100% of it is added in. If we assume that there are 10
documents in a collection, then each document adds a total of 0.1 to its collection
profile. Hence, if we were adding the article from the above example to this
profile, we would add 0.04 to the document count of Node A, 0.04 to Node B,
and 0.02 to Node C. After processing each article in a newsgroup, we end up
with the total number of document equivalents associated with each of the 4214
nodes in the LCC tree. One newsgroup profile is generated in this manner for

each newsgroup.
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7.1.4 Pharos Query Processing

Given the newsgroup profiles, we must allow users to retrieve those newsgroups
that are most relevant to their queries. This requires a semantic mechanism
that enables users to map their query concepts into the LCC tree. From here,
they can decide which nodes in the tree best represent their search criteria. We
accomplish this in two ways. The obvious and perhaps most straightforward
way is to provide users with an online version of the LCC and allow them to
walk up and down the tree until they find the correct node. But as has been
pointed out in the literature [Dum91], this is a difficult process for the user.
For example, if someone is looking for the subject of prostate cancer, there are
relevant nodes in distant parts of the tree. These include not only “surgery”
and “internal medicine”, both beneath “medicine”, but also “immunology” and
“anatomy”, beneath “science”. Thus, using the classification scheme effectively
requires a more sophisticated understanding of its structure than most users,
particularly casual ones, typically possess. Clearly, a more effective approach is

required.

We, therefore, provide a more sophisticated mechanism of searching the LCC, as
outlined in Figure 7.4. We first map the user’s query terms into the previously
constructed LCC term vector space, and then return to the user a ranked list
of nodes in the tree (LCC categories) that receive the highest weighting from
LSI. These categories are linked to the online LCC Outline in the interface, so
that the user can then navigate the specific parts of the tree that are likely to

be relevant to the query. This component of the Ul is similar to the work of
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Figure 7.4: Pharos Query Processing

Chen [CLBN93].

Three questions should be re-examined: 1) why, given that the entire news-
groups are available to us online, do we pass queries through an intermediate
structure such as a classification scheme? 2) given that we can not use an entire
online collection, why use a classification mechanism rather than some other
indexing scheme, in particular one which is built directly from the content of
the individual collection? and 3) why, given that the entire taxonomies are
available to us, do we use only part of that information? The basic answer to
all these questions comes down to one main issue: extensive scalability. This
experiment uses newsgroups an example of what could easily be over a million
dynamic collections; it is not feasible to attempt to store them all locally, even
if they were not constantly changing. Second, while using collection-dependent

intermediate index structures might be more efficient as a means of retrieving
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actual documents from individual collections, the accumulated effect of doing so
results in very large index sizes and increased complexity. Finally, even using a
greatly reduced fixed index structure such as the LCC Outline incurs too great
a storage and/or retrieval cost if the entire index must be available for search-
ing at query time. Thus, in a real-world distributed environment with many
large information sources, Pharos would process a keyword-based query by first
helping a user map it to an appropriate classification tree (or trees) and then,
within that tree, map it to relevant query nodes. This leads to the selection of

appropriate collections for more direct searching.

Within the prototype, once the user has selected a node in the LCC tree, we then
wish to return an appropriate set of newsgroups. This function of Pharos, in
the simple version used in the current prototype, linearly ranks the newsgroups
based on their collection profiles. The Pharos client would select the appropriate
high-level and mid-level ancestor nodes of the query node in the tree.® It would
then send the high-level node as a query to a high-level server available to each
client within their local area (similar to a news server). This server would sort
the collections based on the different weighting schemes (discussed below). It
would then send back to the client one ranked list of sources for each weighting
scheme. The user (or client) would then select a greatly reduced sub-set of the
total number of known sources (via an appropriate graphical user interface), a
reduction of, say, from ~10°® to ~103.% The client would then send the mid-level

node and the reduced lists to the mid-level server responsible for the mid-level

8If the query node is actually a high-level node, the mid-level ‘ancestor’ is defined to be
the node itself.

9The reason that mid-level nodes are selected from the high-level results relates to multi-
classification querying, as discussed in Chapter 3.
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node. This mid-level server would pass back to the client the source lists it
had received, but now sorted based on the weighting values for the particular
mid-level node. The user (or client) would then select from these lists the final
set of 10-100 sources to query directly, potentially independent of the original
query node or classification structure. We present an example of this query

mechanism in the next section.

We currently use three different weighting schemes. The first is to use the
absolute counts of documents among all the profiles. Thus the newsgroups
with the largest numbers of articles for the selected node are given the highest
weights. However, we find that newsgroups with large numbers of articles tend
to dominate this list, even if they are fairly irrelevant overall. So we also weight
the newsgroups based on the relative counts. That is, we give the highest weights
to those newsgroups which have the largest percentage of their articles contained
in the query node. A third, more sophisticated combined weighting algorithm,
multiplies the log of the absolute count (plus one) with the relative count. This
is one of many possible ways of attempting to return those newsgroups with

both large relative and large absolute document counts.

7.2 Source Selection and Evaluation

Once we have constructed Pharos taxonomies for each newsgroup, we need to
evaluate the use of these taxonomies for source selection. Before examining

the accuracy of the automated classification, we first demonstrate the use of
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these profiles in processing Pharos queries. Then, assuming for the purposes
of the experiment that the classification is generally sound, we investigate the
effectiveness of the taxonomy summaries as an indicator of relevant newsgroups.
Such an evaluation seeks to determine how well the upper parts of the collec-
tion taxonomies estimate the lower parts of the taxonomies. This is important
because the Pharos architecture widely distributes only the top parts of the tax-
onomies for a first-round filter (i.e. via high-level servers), then the next level
down for a finer-grain filter (i.e. via mid-level servers), etc. If the upper parts of
the taxonomies are not accurate indicators of the lower parts, Pharos will end
up selecting incorrect sources. Thus, it is important to evaluate the accuracy

of the Pharos multi-level querying mechanism.

7.2.1 Representative Query Results

As an example of a successful query, we show the result of querying the prototype
with the keywords “prostate cancer”. The top ten LCC nodes returned by the
system are shown in Table 7.4, in decreasing order of relevance. In this case,
the system was able to match the query terms quite accurately to nodes in the
classification tree. These nodes are distributed beneath four main nodes in the
tree: “RM: Therapeutics, Pharmacology”, “RC: Internal Medicine, Practice of
Medicine”, and “QR: Microbiology”. Upon choosing, for example, “RC 254-
282: Neoplasms, Tumors, Oncology (including cancer and carcinogens)” as the

query node, the next step is to select the relevant collections.

The top ten newsgroups selected by sorting based directly on the actual query
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LCC ID LCC Category Description
RM 270-282 Serum Therapy, Immunotherapy
RC 254-282 Neoplasms, Tumors, Oncology (including cancer

and carcinogens)
QR 189-189.5 Vaccines
QR 201 Pathogenic Micro-Organisms, By Disease, A-Z
QR 186 Immune Response
QR 186.5-186.6  Antigens
RC 633-647.5 Diseases of the Blood and Blood-Forming Organs
QR 186.7-186.85 Antibodies, Immunoglobulins
QR 180-189.5 Immunology
QR 355-502 Virology

Table 7.4: Top Ten LCC Categories Related to ‘Prostate Cancer’
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node “RC 254-282" are shown in Table 7.5, in decreasing rank order for each
weighting scheme. The majority of newsgroups suggested in this manner are
relevant to the query and potentially good sources of information. However, as
seen in list of newsgroups under the absolute weighting scheme, newsgroups such
as misc.jobs.offered and rec.sport.pro-wrestling are not highly relevant overall.
They are included because of the large number of articles in the newsgroup,
some of which touch on topics related to the query (treated as two individual
word parameters: “prostate” and “cancer”). In any case, although the selected
newsgroups are fairly relevant overall, Pharos would not have that information
directly available in a distributed environment. It would first use the high-level
ancestor of this node, “R: Medicine”, and sort the newsgroups based on that
node’s coverage values: the aggregated document count for all of its descen-
dents in the taxonomy, for each of the three weighting schemes. Out of the top,
say 250, newsgroups from these sorted lists, Pharos would then re-sort these
subsets based on the mid-level node, “RC 31-1245: Internal Medicine, Prac-
tice of Medicine”. From this final sorting, we might select a final set of, say,
25 newsgroups for each weighting scheme. The top ten newsgroups selected
by sorting based on high-level and mid-level nodes are shown in Table 7.6, in
decreasing rank order for each weighting scheme. This example shows that in
this case, Pharos is able to select many relevant collections. In particular, the
highest ranked newsgroups were included in the Pharos estimated lists. As with
previous results, however, absolute weighting continues to lead to several less

relevant newsgroups.
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Combined

¢cl

Absolute

sci.med.diseases.cancer
sci.med.immunology
sci.med.prostate.cancer
sci.med.aids
sci.med.diseases.hepatitis
misc.health.aids
sci.med.prostate.prostatitis
sci.med.laboratory
sci.med.diseases.als

sci.med.pharmacy

sci.med.diseases.cancer
sci.med

sci.med.pharmacy
sci.med.diseases.lyme
misc.health.alternative
misc.health.aids
sci.med.diseases.hepatitis
sci.med.prostate.prostatitis
sci.med.aids

sci.med.cardiology

sci.med

misc.jobs.offered
sci.med.diseases.lyme
sci.med.nutrition
sci.med.pharmacy
sci.med.diseases.cancer
rec.pets.dogs.health
misc.health.alternative
rec.arts.comics.marketplace

rec.sport.pro-wrestling

Table 7.5: True Top Ten Newsgroups, by Weighting Scheme, for Query Node “RC 254-282: Neoplasms,
Tumors, Oncology (including cancer and carcinogens)”
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Combined

Absolute

sci.med.diseases.cancer
sci.med.orthopedics
sci.med.cardiology
sci.med.pharmacy
sci.med.immunology
soc.support.depression.treatment
soc.support.depression.manic
sci.med.diseases.hepatitis
sci.med.psychobiology

sci.med.aids

sci.med

sci.med.pharmacy
sci.med.diseases.lyme
sci.med.diseases.cancer
misc.health.alternative
sci.med.nutrition
sci.med.cardiology
soc.support.depression.treatment
sci.med.diseases.hepatitis

misc.health.aids

misc.jobs.offered
misc.jobs.contract
sci.med
rec.sport.pro-wrestling
sci.med.diseases.lyme
soc.men
sci.med.pharmacy
soc.women
rec.pets.dogs.behavior

rec.food.cooking

¢

Table 7.6: Pharos Estimated Top Ten Newsgroups, by Weighting Scheme, for Query Node “RC 254-282:
Neoplasms, Tumors, Oncology (including cancer and carcinogens)”

€cl
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Windsurfing

Suppose, instead, a user is attempting to find newsgroups related to windsurfing.
The query, “windsurfing”, returns with the top-ranked LCC node “GV 770.3

840: Water Sports: Canoeing, Sailing, Yachting, etc.”, which seems appropriate.
However, in the lists of newsgroups suggested for this node, rec.windsurfing
is ranked at most 96 (using the relative weighting scheme). In fact, this node
is the top one within which this newsgroup gets classified, implying that our
classification scheme is closely associating this newsgroup with this classifica-
tion node. Even the node “GV 200.6: Water Oriented Recreation” ranks this
newsgroup with a maximum of 48 (using the combined weighting scheme). In
fact, the only node which ranks this newsgroup among its top ten is “G 540-550:
Seafaring Life, Ocean Travel, etc.” The problem is that windsurfing gets lost in
the more general topic of water-based recreational activities, even though the
first two nodes mentioned are both at the bottom of the LCC Outline tree. In
other words, these two nodes are as specific in these subjects as the classifica-
tion outline gets. This is a problem of a mismatch between the specificity of
the query with that of the level of the classification scheme used here. Using
a more detailed version of LCC (beyond the Outline) would help in querying
collections locally available such as with the prototype. However, it would not
help in the distributed environment for which Pharos is designed, where nodes
deep in the tree are not available to the high- and mid-level servers. Using more
specialized trees would help in both instances, though (for this query, one that

specializes in, say, recreation and leisure activities).
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Investment Clubs

In another query, “investment clubs”, a user was attempting to locate infor-
mation about clubs that deal with personal financial investment. The query
response included the seemingly appropriate LCC node “HG 179: Personal Fi-
nance”. However, at the time the query was posed, the “misc” newsgroups had
not yet been processed, including, for example, misc.invest, misc.invest.-
mutual-funds, etc. Clearly the system can do no better than the content of
the digital collections available to it. Once these newsgroups had been included,
they showed up prominently in the set of suggested newsgroups. It is not clear
though that even the investment newsgroups would be appropriate sources for
this particular query. In this case, the system is limited by the sources available,
and there is nothing that the system can do about it. This query is important in
terms of the standard IR benchmark recall. As pointed out in the Introduction,
the user has no way of knowing how many relevant sources may exist. A source
that has not been included appears the same to a user as if that source did not

exist.

History of Environmental Sciences

Suppose we want information about “History of Environmental Sciences”, and
by traversing the LCC, select “GE 50: History” (of environmental sciences).
We find that the newsgroups suggested have little to do with the history of
environmental science, but rather more to do with history in general. There

are two reasons for this. The first is that we have no MARC records for this



126 CHAPTER 7.

category in our training set, so the only association between the category and
terms comes from the descriptive text of the category itself. This leads to the

)

second reason for the problem — namely, that the term “history” is insufficient
to describe “history of environmental science”. Thus the only term associated
with this category is “history”. A larger or more diverse collection of MARC
records would help prevent this problem. We could also include terms from

parents and children of nodes for which we have no MARC records.

Jobs

One problem that occurs with the selection of newsgroups is that weightings
which involve the absolute number of articles tend to be overly dominated by
very large newsgroups. The suggested newsgroups are currently presented to the
user in three columns, corresponding to the three different weighting schemes
being used: relative, absolute, and combined (rel xlog(1 + abs)). It is apparent
after looking over several of the results that one newsgroup completely domi-
nates the absolute weighting: misc.jobs.offered. Even though there are on
average approximately 400 articles per newsgroup that we have processed so far,
the median is much lower, approximately 100. However, there are over 50,000
articles in misc. jobs.offered, by far the greatest amount of any of the cur-
rently processed newsgroups. Another problem is that this newsgroup is fairly
heterogeneous, with job listings related to all areas of the classification. As a
result, if there is even a slight relevance of a small fraction of these articles to
any topic, this newsgroup can receive the highest absolute weighting. In fact,

it often has a weighting one or two orders of magnitude higher than the next
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newsgroup, and therefore would even show up among the best newsgroups based
on the combined weighting scheme. Using a different combined algorithm helps
solve the problem. For example, we actually use a minimum relative weighting
which is allowed in the combined weighting scheme; thus if a newsgroup does not
receive, say, at least a 0.1% relative weighting, it can not be included in the com-
bined weighting scheme. This type of restriction removes misc. jobs.offered
from most of the LCC categories under the combined weighting scheme, except
for those which have an emphasis in the newsgroup. While this problem might
seem particular to this newsgroup, it is in fact likely to be a common problem
among general digital sources of information, where collection sizes vary widely,
as do their degree of heterogeneity. This problem will have to be addressed if we

hope to direct users and their queries to sources that they will consider useful.

7.2.2 Classification Accuracy

We now describe an evaluation of the accuracy of the automated classification.
The main component of this evaluation is to examine the ability of the system to
classify the building blocks of the training set — the MARC records themselves.
The second component of the evaluation is an attempt to estimate the accuracy

of the news article classification.
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Classification Accuracy of MARC Records

Due to size constraints, we first partitioned the 2 million MARC records (of
which only 1.5 million were valid for our experiments) into 20 unique groups
of 100,000 records each. From four such groups, we randomly selected at least
100 MARC records. This selection was generated differently for each of the
four groups. We then removed the bad MARC records, as described below,
and, if necessary, re-did the selection if we had to remove so many that we were
left with under 100 usable MARC records. After making the measurements
described below, we then re-did the experiments using more MARC records
from each of the four groups in order to obtain a better confidence level for our

values.

We excluded all MARC records that didn’t have a classification category (a
050 or 090 tag). Also, we excluded MARC records for which the category was
invalid: either it began with I, O, W, X, or Y (not part of the LCC), or else, other
than the K’s, excluded three alphabetic characters in a row in the beginning of
the category label. We could in principle lose the DAW’s (a relatively minor

loss), but none of these appeared in the randomized samples anyway.

For each set of MARC records selected, we compared the classification category
listed in the MARC record with the categories selected by the automated system.
In this case, we used the entire MARC record as the query to LSI. That is, we
used all fields and did not limit the number of times that any word in the
records could be used. The first value we measured was the location of the true

classification category in the ranked list generated by the automated procedure.
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For example, the true value might show up 100th in the sorted list of 4200
categories. We then measured the mean, median, and mode of this value for
each set of approximately 100 MARC records. A value of 1 means that the
automated procedure placed the true category at the top of the list. If we
randomly assigned ranks to the categories, we would expect that the mean,
median, and mode would all be approximately 2100. A perfect classification
would set all the values to 1. The average median came out to 12.9 + 2.8. The
mode was exactly 1. The average mean was 84 + 19. The average sample size

was 118 MARC records.

We then re-did the experiments using more MARC records. We first extracted
2700 records. After throwing out the bad records as described above, we ended
up with the following usable number of records from each of the four sets:
2453, 2414, 891, and 1456. Thus we used 7214 MARC records total, with
an average of 344 MARC records from each of the 21 major categories of the
LCC. The median value was 216 MARC records per category. In this case,
the (unweighted) average median came out to 13.0 + 3.9, the mode, again, was
exactly 1, and the average mean was 76 + 19. Another important characteristic
of these values is that approximately 2/3 of the time (66.7% + 5.1%), the best

value was within an estimated rank of 30.

As an example of the ranks given to the assigned category, we show their distri-
bution for the fourth set of MARC records. We used this set of MARC records
because it contains fairly average values. Figure 7.5a shows the probability
mass function, which plots the fraction of records that received a particular

rank value. Figure 7.5b shows the cumulative density function, which sums the
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Figure 7.5: Typical Distribution of Best Classification’s Rank

first plot. This plot quickly approaches a value of 0.7 after only rank 30 out of
4214.

The median is more important than the mean for the classification evaluation.
The important issue is whether or not a good source will receive a user’s query.
It either will or will not, and the issue of how close a source almost might have
received the query is irrelevant to the user (and therefore to the architecture).
Suppose that we send the query to the top, say, 15, sources in our estimated list
of ranked sources. If, for example, we want the best source to receive the query,
it must be among this set of top 15. Then we simply want to know what is the
probability that this will be the case. In this case, we get a value of, say, 50%. If
the user goes another round, sending the query to the second set of 15, then the
probability goes to, say, 70% that the best source would be included. Of course,
this is assuming that the rank distribution for the sample of MARC records is
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roughly the same as for the aggregated source summaries. The conclusion is
the same, though. We care about the probability that the best source receives
the query, not how far away in the list the best source is if it does not receive
the query. This implies that we were able to automatically classify the MARC

records with a high degree of accuracy.

Classification Accuracy of News Articles

Classifying MARC records is very different than classifying Internet news arti-
cles, and not just because the MARC records composed the training set. MARC
records contain specific terms, such as subject headings, that are not only spelled
correctly (for the most part), but also rich in meaning. This is quite a contrast
to news articles, which, as was pointed out, contain many misspellings, spams,

and off-topic comments and discussions.

After performing the previous analysis on the MARC records, we hoped to esti-
mate the accuracy of the news article classification. Unlike the MARC records
in the training set, the news articles were not previously classified. As a result,
we did not have a ‘true’ classification category for them with which to com-
pare the classification categories suggested by our system. We therefore hoped
to use professional (i.e. human) catalogers from the UCSB library to classify
a representative set of articles. Once these articles were classified, we could
then compare the human classification with the automated classification to es-
timate the accuracy of the automated system. Unfortunately, the results of this

experiment were inconclusive; they are discussed in Appendix C.
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7.2.3 Source Precision

The question we address in this section is how well the selection of newsgroups
via Pharos compares to that of selecting newsgroups based on the weights from
the actual query node. This set of experiments consisted of selecting a set of
nodes from the LCC Outline to use as Pharos queries against 2500 newsgroups,
and then calculating the average evaluation metrics from the entire set. In
these tests, for each query node we first selected 250 newsgroups using the
high-level information which represented that node. That is, we selected the
250 newsgroups which had the highest aggregated weighting at the depth 1
ancestor of the query node. Then, from this set of 250, we further selected
a final set of 25 newsgroups using the mid-level information representing that
node. We then compared these 25 to the list of newsgroups sorted directly by
the weighting of the query node itself. We use the same definition of source

precision as given in Equation 6.1.1.

As previously noted, a query of the form “prostate cancer” would be mapped to
an LCC node such as “RC 254-282: Neoplasms, Tumors, Oncology (including
cancer and carcinogens)” before being propagated within the Pharos distributed
retrieval mechanism. Therefore, it is possible to map all possible queries in this
experiment to one of the nodes of the LCC Outline. As a result, we can estimate
the overall accuracy of queries within this system by averaging the results of all

4214 nodes in the outline.

We show the general results in Tables 7.7 and 7.8. The different rows show the

difference between the results of using only the high-level metadata compared
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Absolute | Relative | Combined

High-Level 0.74 0.44 0.49

Mid-Level 0.85 0.58 0.64

Table 7.7: Average Source Precision as a Function of Weighting Scheme

Absolute | Relative | Combined

High-Level 1.4 38.8 10.9

Mid-Level 1.2 14.6 7.7

Table 7.8: Average Best Source as a Function of Weighting Scheme

to the results using both high- and mid-level metadata. The different columns
show the results of using the three different weighting schemes. The first table
shows the overall source precision averaged over all query nodes. These values
can range from 0 to 1, with 1 being the best. The second table shows the
average best source averaged over all query nodes. These values can range from
1 to ~2500, with 1 being the best. In all cases, values improved in going from
high-level to mid-level results. For the best source, the mid-level values are all

well within the top 1% (i.e. 25) of the 2500 possible newsgroups selected.

For proper perspective, we recall the argument made at the end of Chapter 6.
There we stated that, at least for research libraries, best source can alone provide
well over 70% source recall, and that a few sufficient sources can provide a

source recall of over 90% [Mos85]. To the degree that these values are a result
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of redundancy across collections, this is probably only minimally exemplary
of newsgroups. On the other hand, to the degree that they are a result of
large differences in collection sizes, this is likely to be even more the case in
newsgroups. In any case, these values indicate the potential importance of
finding several of the best sources, as is the case in most of the final sets.
Considering that each source in a final set, once selected, would be directly
handed the query, we find these results promising. They indicate that a sufficient
number of good sources would be located with the Pharos architecture so that

a large fraction of relevant documents could be retrieved.

It is worth noting the difference between the different weighting schemes. At
first glance, considering these metrics alone would clearly indicate that a pref-
erence be given to the absolute weighting scheme. It should be pointed out,
however, that the effectiveness of the weighting schemes is dependent on the
search capabilities of the information source. If we are selecting sources such as
digital libraries, we expect that users should be able to select relevant documents
even though these comprise a small fraction of the total number of documents
in the collection. For newsgroups, however, this may not be the case. Note
that in the ‘prostate cancer’ example, misc.jobs.offered shows up prominently;
this is due to the fact that this newsgroup has 50,000 articles while half the
newsgroups have under 100 articles. It would perhaps be challenging to extract
the few articles out of the 50,000 that relate to the query. Therefore, even
though the precision is lower for the other weighting schemes, it is still likely
that users may find better collections using them, depending on the nature of

the information sources included in the query set.
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We expect absolute weighting to yield better precision than relative weight-
ing due to its decreased sensitivity to minor differences. The spread among
the weightings of the selected set of newsgroups using the absolute scheme is
generally two orders of magnitude, while the spread using the relative scheme
is usually within a factor of two. Thus small fluctuations of, say, 1%, make
little difference when considering absolute document counts, but make large
difference between relative document counts. This inevitably shows up as a de-
terioration of the source precision since the sensitivity of the upper levels of the
taxonomies is affected by this. Consider the following example. Newsgroup A
has 100 articles, the query node has an absolute weighting of 1.5, its parent 10.6,
and its only sibling 9.1. Newsgroup B has 1000 articles, the query node has an
absolute weighting of 11, its parent 107, and its only sibling 96. According to
the absolute scheme, Pharos will select newsgroup B based on the parent node,
and, since the actual query node has 11 compared to newsgroup A’s 1.5, this is
a correct selection. Using the relative scheme, Pharos will still select newsgroup
B based on the parent node’s 10.7% weight (107 out of 1000), as compared to
10.6% for newsgroup A (10.6 out of 100). In this case, however, the query node
in newsgroup A has a higher relative value of 1.5% compared to newsgroup B’s
1.1%. This weighting scheme would lead to the wrong newsgroup being selected,
lowering the overall precision. Other, more complicated, functional dependen-
cies, such as the depth of the query node and the number of MARC records
used, are further examined in the next section. In summary, multi-level query-
ing provides satisfactory result accuracy. However, it is important to compare

this accuracy to the scalability requirements.
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7.2.4 Functional Dependencies

The evaluation metrics are potentially functionally dependent on many factors
beyond the source weighting scheme used, such as the size and distribution of
the classification training set, the depth of the query nodes in the LCC Outline,
the number of documents in the collections, etc. We first show the dependence
of source precision on query node depth. Figure 7.6 shows the average source
precision as a function of the depth of the query nodes, for each of the three
weighting schemes. It is clear from these plots that the depth of the query node
in the classification tree has a potentially large effect on the resulting source
precision. A query at depth 1 always yields a precision of 1.0 because it is
its own high-level node, and thus Pharos always selects collections correctly.
Similarly, the depth 2 nodes will yield much better results than nodes deeper
in the tree because they are their own mid-level nodes. Since depth 8 has only
a single node, we concentrate on depths 3-7. We first show the distribution
of total and average documents from the newsgroups as a function of depth.
Figure 7.7a shows the distribution of nodes in the tree. Dividing the total,
Figure 7.7b, by the number of nodes, we derive the average per node for each
level of depth in the tree, as shown in Figure 7.7c. The high-level and mid-
level estimates in Pharos are determined by the total number of documents
beneath them. Pharos assumes a uniform distribution of documents in making
its estimates. If we look at the actual distribution of documents per node, we can
compare the expected (average) value to the actual value. This ratio is shown
in Figure 7.8. We see that depths 5 and 6 have almost 10% less documents per
node than the expected average of 204. As a result, the high- and mid-level
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aggregate values are less accurate indicators for these levels, and the precision
drops. This interpretation is supported by the rise in precision at depth 7, which
has within 1% of the expected number of documents per node. It is important
to remember that these are general trends across the entire classification tree,
and that there can be sizable variability in precision between individual query
nodes at the same depth due to peculiarities in the taxonomies, classification
tree, etc. As explained below, however, there is another factor that tends to

decrease precision with increasing depth.

Another factor we consider is the number of MARC records assigned to each
node in the LCC Outline. Approximately 10% of the nodes have no MARC
records, and thus the association between a document’s content and these nodes
is based solely on the textual descriptions within the LCC Outline. Some of
these are fairly discriminatory, such as “BF 173-175: Psychoanalysis”. Others,
however, are poor representations of their semantics when taken out of context
of the classification. For example, beneath “GE 1-140 Environmental Sciences”
is “GE 50: History”, which covers only the history of environmental sciences, not
general history. Using this description alone to associate documents with this
node would likely lead to classification errors. On the other hand, a node which
has hundreds of MARC records assigned to it will involve a large vocabulary
with which to relate it to documents, greatly aiding in the automated assignment
of documents to that node. While the number of MARC records might clearly
impact the effectiveness of the automated classification, it is less apparent how
this might affect the query precision. We estimated this by varying our metrics

as a function of the training set (TS) size (i.e. the number of MARC records
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per node).

The initial set of query nodes used was the entire 4214 nodes in the LCC Outline.
The metrics were calculated separately for each of the three weighting schemes.
We then removed the 414 nodes with zero MARC records and recalculated the
metrics. Next, we additionally removed the 178 nodes with only one MARC
record, and so on. We continued in this manner until we had removed the 1254
nodes with 9 or less MARC records, leaving 2960 query nodes. Clearly as we
removed nodes from the LCC Outline due to an insufficient number of MARC
records, we made the query set size smaller. It was possible that any change
in evaluation metrics could have resulted simply from varying the size of the
query set. Therefore, as a control set, we also removed a roughly equivalent
number of elements more randomly and compared results with the actual sets.
The control sets were chosen by calculating the largest NV such that by removing
every Nth node from the LCC Outline during a depth-first search traversal of

the tree, we ended up with a smaller set than the actual. For example, the size
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of the query set consisting of all nodes with at least four MARC records is 3380.
By removing every 5th node, we select a control set with 3372 nodes. These
nodes are roughly equally distributed among tree depth as the actual set, but
include nodes with arbitrary numbers of MARC records. Figure 7.9a shows the
difference in the distributions of query node depths between the control set and
the actual set of nodes with at least four MARC records each. It is clear that
the distributions are basically equivalent. Figure 7.9b shows the difference in
the total number of query nodes between the control sets and the actual sets
with varying numbers of minimum training set sizes. These figures demonstrate
that the control sets are very similar in nature to the actual sets except that

they include arbitrary training set sizes per node.

Once we have established the control sets, we can determine the affect of TS

size on average source precision. This is shown in Figure 7.10 for each of the
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three weighting schemes. The effects of too small a TS size show an overall
degradation in source precision of approximately 0.05. Similarly, the effects
on the best source are shown in Figure 7.11. These results indicate that for
optimizing precision with Pharos-style querying, training sets sizes of at least
4 should be used. In fact, a minimal training set for each node is required for

accurate classification anyway, although we not elaborate on that point here.

These effects manifest themselves into the relationship between precision and
depth. The reason may be seen by looking at Figure 7.12. By dividing the total
TS size per level by the number of nodes per level (Figure 7.7a), we see that the
average TS size per node drops with increasing depth. As a result, it is more
likely that there are query nodes with a small TS size at greater depths in the
classification tree. Therefore, removing nodes with a small TS size increasingly
improves the precision at greater depths. This trend is evidenced in Figure 7.13,
where we compare nodes the TS size > 4 to a control set with roughly the same

number of nodes with arbitrary TS sizes.

In conclusion, we have shown a few of the relevant functional dependencies
which affect the overall precision of query handling in Pharos. We have also
seen that the metrics we have used are at least roughly consistent with our

intuitive understanding of the accuracy of query results.
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Figure 7.12: Depth-related Parameters (Average per Node)

7.3 Scalability Analysis

In this section, we examine the relationship between source precision and re-
source utilization. Intuitively, one might expect that as we increase the size
of collection metadata for each source, we should be able to summarize and
select sources more accurately. Clearly this would come at the cost of increased
storage and network requirements. Indeed, there are two extreme cases. The
first case is to replicate completely all collections at every client. The precision
would be high, but the costs of storage and network traffic due to updates are
prohibitive. The other extreme case is to use no intermediate information at all,
and simply pass all queries to all sources. Ignoring problems of result merging,
the potentially high accuracy of this case is prohibited by the costs of network
traffic at query time. Therefore, there is a trade-off between attainable query

precision and reasonable resource utilization. Such a trade-off is seen, for exam-
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ple, in a report from the Third TREC Conference [MZ94]. In order to evaluate

this relationship in Pharos, we ran two types of experiments.'’

The first experiment ignores the mid-level servers in the Pharos architecture
and assumes that all metadata must be sent to all high-level servers. The
methodology involves first selecting a query node, Q, in the classification tree,
say at depth 5. Assume that its depth 1 ancestor is node A. The true rankings
of the sources in this case are based on , while the estimated rankings are
based on A. We then calculate the source precision using Equation 6.1.1. Next,
we use the depth 2 ancestor of node @, compute the new estimated rankings
for the sources, and calculate a new source precision. We continue doing this
until A reaches Q in the tree, at which point the source precision, by definition,
is exactly 1.0. We then perform the same procedure for all other depth 5 query
nodes, and average the results. These results are presented in Figure 7.14a,
which shows the average source precision for all query nodes at depth 5, as a

function of the depth of the query node’s ancestor.

At first glance, it might seem feasible to distribute the entire classification meta-
data. However, for metadata at the depth of A in the tree to be available to
users, we require that all nodes in the tree at or above this depth be distributed
to all the high-level servers across the network. The number of nodes in a
classification tree grows roughly exponentially as a function of depth. Hence
increasing the depth of A, even by one, substantially increases the number of

nodes in the metadata. Figure 7.14b shows the same data as Figure 7.14a, but

10Results of both experiments are presented using the “relative” weighting scheme. This
scheme shows the largest variability in precision and usually yields the most semantically
relevant results.
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Figure 7.14: High-Level Only: Average Source Precision for Query Nodes at
Depth 5

as a function of the number of nodes at or above the depth of the ancestor.
Such an increase in the number of nodes translates to a similar increase in the
amount of collection metadata that must be transmitted to and stored at the
servers. In order to estimate the resource costs of this metadata distribution,

we must first assume the values of a few network parameters.

The storage requirements at a high-level server is equal to Ng, the number
of sources, times Sy, the size of the high-level metadata at each source. We
assume that Ng is ~ 10%. From Chapter 4, Sy = S;+ N¢ * Sy * Ny, where S; is
high-level metadata independent of classification summaries, N¢ is the number
of classification trees used at a source, Sy is the size of the metadata for a single
node in the tree, and Ny is the number of nodes from each tree included in the
high-level metadata. We assume that S; is ~ 1KB, N¢ is 3, and Sy is ~ 100B.
Ny is taken from the data in Figure 7.14b. Figure 7.15a shows the estimated
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Figure 7.15: High-Level Only: Average Source Precision for Query Nodes at
Depth 5

storage requirements for a single high-level server. It is clear that as soon as we
go beyond the 21 nodes at depth 1 in the tree, we require at least 100 GB of

storage at each high-level server.

Similarly, the network cost associated with a complete metadata update from
a single source is Sy times the number of high-level servers. From Chapter 5,
we take this to be 10* servers. Figure 7.15b shows the estimated network traffic
generated by a single, complete metadata update from a source to all the servers.
Again, as we go beyond the nodes at depth 1, updates require at least 1 GB
of network traffic. As a result, we see that there is a large cost associated with
distributing metadata from nodes deeper in the classification tree if we use only

the high-level servers.

The second experiment incorporates both the high-level and mid-level servers in
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the Pharos architecture. We again select a query node, QQ, in the classification
tree, say at depth 5. In this case, however, we select the depth 1 ancestor (high-
level node), Al, of Q, as well as the depth 2 ancestor (mid-level node), A2, of
Q. We follow the Pharos procedure of first selecting 250 newsgroups of the 2500
based on A1, then selecting 25 newsgroups of the 250 based on A2. Again, we
calculate the source precision as before. The next step is to drop A2 down one
level in the tree, without changing A1, and re-calculating the source precision.
We continue like this until A2 reaches Q. In this case, the best source precision
that we can achieve is, in general, less than 1.0. This is because the sources
selected based on A2 are a subset of the list generated from A1, and the A1 list
does not necessarily include the best sources for Q. We show similar plots to
the first experiment in Figures 7.16a and 7.16b, using the depth of A2 for the

x-axis. !

The storage requirements at a mid-level server is equal to Ng, the number
of sources, times Sy, the size of the mid-level metadata at each source. We
again assume that Ng is ~ 10%. The major difference here is that the mid-level
metadata is not replicated among the mid-level servers. Instead, it is partitioned
between them. That is, each mid-level server is responsible for a particular node
or set, of nodes, and no other mid-level server receives or stores that metadata.
Since all the mid-level metadata comes directly from the classification trees, we
have Sy, = N¢ x Sy * Ny, where No and Sy are the same as before, and Ny,

is the number of nodes sent to a particular mid-level server. We assume that

1For completeness, we show these plots beginning with the mid-level node starting at
depth 1, which makes the first value the equivalent of ignoring the mid-level component.
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Figure 7.16: High- and Mid-Level: Average Source Precision for Query Nodes
at Depth 5

there are a maximum of 1000 mid-level servers.!? As a result, with N¢ set to 3,
Ny is a maximum of 12 (that is, 4000 nodes per tree, with 3 trees, partitioned
among 1000 servers). Figure 7.17a shows the estimated storage requirements
for a single mid-level server. The high-level storage requirements remain at the
same constant level as the depth 1 case from the first experiment. We see that,
in the second experiment, the storage requirements for the mid-level servers is
roughly 1 GB, substantially less than that required for the high-level servers

while providing an opportunity of allowing for higher precision query results.

Similarly, the network cost associated with a complete metadata update is
greatly reduced as well. In fact, most of this cost is associated with the dis-

tribution of the high-level metadata. The high-level is replicated and hence

2We do not allow the number of mid-level servers to be greater than the number of nodes
used in the mid-level metadata.
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Figure 7.17: High- and Mid-Level: Average Source Precision for Query Nodes
at Depth 5

the associated network traffic is linearly dependent on the number of high-level
servers. The fact that the mid-level metadata is partitioned means that the
mid-level network traffic is independent of the number of mid-level servers. Fig-
ure 7.17b shows the estimated network traffic generated by a single, complete
metadata update from a source to all the servers. In this case, as we go beyond
the nodes at depth 1, each node’s metadata is transmitted only once, and hence
it remains fairly small. As a result, we see that there is a relatively small cost
associated with distributing metadata from nodes deeper in the classification

tree if we use the mid-level servers.

The difference between the first and second experiment is that they incorporate
very different network architectures. The design in the first experiment requires

that all the metadata be sent to all the high-level servers on the network. The
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design in the second experiment, however, requires only that the mid-level meta-
data be partitioned and distributed only once to a single mid-level server. This
allows us to keep the high-level metadata relatively small. Even though the
original metadata is the same size, the resource utilization is much less. It is
also worth noting that since this metadata is based on a static classification
scheme, its size is independent of the size of the collection. As a result, it be-
comes possible to distribute fairly detailed collection metadata without greatly

affecting scalability.
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Chapter 8

Conclusion

We have presented Pharos, a scalable, distributed architecture for locating het-
erogeneous information sources. We demonstrated the feasibility of the archi-
tecture by first comparing its scalability with other systems, and second by
showing the expected accuracy of Pharos query results via simulation. We then
constructed a prototype of an automated classification system for extracting
subject-based Pharos collection metadata from text collections. Based on the
analysis of the classification accuracy, as well as the source precision of the
Pharos system, we have demonstrated that Pharos is a feasible model for wide-

scale, distributed discovery of information sources.

We decided to use subject classification of text documents in our prototype be-
cause it was crucial to demonstrate that the Pharos architecture could work with
text and a keyword style query. However, as pointed out in Chapters 4 and 7,
automated classification is equally applicable to other classification domains,
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such as geographical and temporal.

Automated classification is equally applicable to any digital text collection,
including web sites, file systems, and FTP text archives. It is an interesting
search technique that may add precision to many types of searches at web search
engines. If integrated into existing search engines, it could provide another

avenue into the mass of documents available for retrieval.

Another interesting result of this work is that job postings were classified. As
mentioned, the newsgroup with the most articles was misc. jobs.offered, with
over 50,000 articles for the two-week period for which we took our snapshot. The
classification of this newsgroup indicated what type of jobs were being offered
over the Internet during this time period. For example, the four LCC nodes
which received the highest weightings in this newsgroup were “HF5546-5548.6:
Office Organization and Management”, “TS155-194: Production Management”,
“T58.6-58.62: Management Information Systems”, and “QA76.75-76.765: Com-
puter Software”. Clearly these are popular positions in the current (1998) job
market. This is a simple method of compiling a rough profile on the current
job market. Furthermore, applying IR techniques directly to this newsgroup
would assist job searchers in filtering the 50,000 job offers to extract ones which
more or less meet their criteria. It is also interesting to note that the top cat-
egories of misc. jobs.offered had a very high overlap with the top categories

of misc. jobs.resumes.

While this work is clearly important to the development of Pharos, it should

be noted that it is also important in the overall development of a digital library
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framework. This work helps to bring some of the body of knowledge of library
science into the electronic environment, and gathers together years of semantic
development (the Library of Congress Classification) as an immediately useful

classification tool for digital collections.
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Chapter 9

Future Work

9.1 Implementation Issues

The implementation of Pharos consists of three main components: 1) metadata
extraction at the information sources, 2) metadata distribution between the
sources and the intermediate high-level and mid-level servers, and 3) the User

Interface.

Metadata Extraction

Given an arbitrary collection at an information source, the high-level and mid-
level metadata must be extracted before it can be propagated to the appropri-
ate servers. As previously described, we have already developed a prototype for

subject-based classification metadata within a text collection. Developing this
159
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into a cross-platform turn-key software module will require substantial software
development. Furthermore, the current model is built on LSI, which may or
may not be either the best IR method to use or licensable for free distribution.
Beyond this type of classification, we also need to develop automated geograph-
ical and temporal classification systems. We would like to develop a complete
software package for metadata extraction. In addition, we would like automat-

ically to extract metadata from non-textual collections.

Intermediate Servers

Once the metadata at each site has been extracted, it needs to be distributed
over the network according to the intended storage and retrieval architecture.
As previously stated, the high-level metadata needs to be widely distributed
and replicated, while the mid-level metadata is very selectively distributed.
High-level metadata consists of the upper parts of the classification-based sum-
maries, as well as source information such as network and usage statistics. This
information must be formatted similarly to that described in Chapter 4. The
distribution of high-level metadata will be based on the distribution of USENET
news via NNTP by having each source post their high-level metadata as a news
article. Thus the high-level metadata will be available at any news server wish-
ing to include such metadata information. The distribution of the mid-level
metadata is not replicated, and hence a point-to-point distribution scheme is
more efficient. Harvest [BDH'94] provides a suitable transport mechanism for
distributing and storing mid-level metadata in Pharos. While utilizing NNTP

and Harvest for the metadata distribution saves development time and leverages
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existing technology, there are substantial design and implementation challenges
to provide a smoothly running distribution scheme. For example, Harvest re-
quires that data be transferred via SOIF records, where each record sent by a
source contains the metadata stored at a particular topic-based mid-level server.
Another important aspect of the server implementation is the manner in which
the clients and sources locate the appropriate mid-level servers. Since this type
of information is relatively stable, a single, possibly replicated, mid-level server
directory broker, in conjunction with appropriate caching, is sufficient to handle

this task.

The servers themselves need to be set up to handle server updates and client
requests. The high-level servers need to regularly examine incoming source
USENET postings, then extract and integrate new source metadata.® Although
Harvest provides a framework and tools for the mid-level servers, it does not
specify the format of stored data. Harvest provides a client broker communi-
cation protocol for query handling, but does not specify the details required

within the Pharos architecture.

User Interface

The User Interface (UI) serves three main functions. First, it interacts with
the user, aiding in query formulation and source selection with corresponding
user and task profiling. Query formulation requires aiding the user in selecting

appropriate taxonomies. For example, if a user query contains the keywords

!This information cannot reside in the standard newsgroup directory structure since most
news servers delete articles fairly quickly.
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“software verification”, the Ul might suggest to the user that a subject taxonomy
oriented around computer science is more appropriate than a general subject
taxonomy such as the LCC. A utility such as this is similar in nature to the way
that the existing Pharos prototype aids in deciding which classification category
is appropriate. The IR techniques used in the prototype could be extended
to this problem. Second, the UI is responsible for the query-time metadata
retrieval between the client and the intermediate servers. Finally, the Ul must
visualize the retrieved metadata in a user-customizable manner. Although the
Ul is currently the least specified component of Pharos, the metadata retrieval
mechanism, based on USENET and Harvest, is fairly straightforward. The
other aspects of the Ul should be able to build off of the latest versions of ADL,
for example, which already have both graphical and textual components for
user query specification and several types of result display. We would like to

integrate Pharos into the ADL system.

9.2 Research Issues

Architecture Enhancements

In order to scale beyond 10° sources, the architecture may be enhanced in sev-
eral ways. For example, the levels of hierarchy can be extended beyond two,
up to perhaps four without unduly burdening users. Furthermore, the num-
ber of sources may be increased if several sources combine their metadata into

single records. High-level metadata would then include multi-source records,
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while mid-level metadata would separate out the sources as needed. In order to
accommodate a growing user base, the mid-level servers could easily be repli-
cated. This feature is already built into the Harvest system and would therefore
be fairly straightforward to implement. This replication, handled by the servers
themselves, would have little or no impact on the update traffic delivered by

the sources.

Extensions from Text to Software

In his Ph.D. dissertation [PD85], Prieto-Diaz lays out the groundwork for a
multi-faceted classification system for computer software. Although this frame-
work is poly-hierarchical, it could in principle be extended into the Pharos
architecture. This would allow software modules to be retrieved in much the
same manner as documents within any other information domain. Extending
Pharos to software modules would greatly facilitate the brokering necessary in
many current global computing models, which are only beginning to address

resource discovery issues.

Enhanced Model Comparisons

In the process of developing the automated classification prototype, we built an
association of terms with classification categories. As a result of this associa-
tion data, we are now able to map keyword queries to subject queries. Such
a mapping enables us to enhance the comparisons between networked informa-

tion retrieval architectures described in Chapter 5. In particular, we can select
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random terms and associate them with subject categories. Query performance
can then be compared between the keyword methodology of STARTS with the

classification methodology of Pharos.

Enhancing the Automated Classification

One interesting research area is to attempt to continually update newsgroup
snapshots so that the classification is always current. Discussions in the news-
groups vary widely even within a single newsgroup, and so the classification
potentially changes regularly. The classification currently takes much too long
for this to be feasible. It would be interesting to attempt to partially update

the classification for each incoming news article.

Another topic of interest involves the interface into the classification categories.
The current interface to this system first maps keywords to subject categories.
It should be possible, similarly, to map author and institution information in
the MARC records to LCC subject categories as an interesting and useful way
of accessing not only Pharos sources, but also general catalog information in a
library setting. Once the interface has mapped these into the LCC, we obtain the
same scalable retrieval mechanism as before. Beyond these extensions, however,
we would like to extract the geographical and temporal subfields from within
the subject areas of the MARC records. We believe that this information could
be used to construct geographical and temporal profiles which would allow the

type of extended, multi-profile searching for which Pharos is designed.

It is perhaps worth noting that once an association between documents and a
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classification hierarchy has been made, the Ul can be built in any language.
There is no reason that the query side and the document side need to be in the
same language, since they both get mapped into an intermediate tree structure
which is independent of either side. The only requirement is the availability of

a training set (e.g. MARC records) in the languages of choice.
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Appendix A

Example Query Details

We searched for the topic of political music during 1967 in San Francisco, Shang-
hai, and Cairo. Each search engine requires a different format. Searches were
performed on July 1, 1996. We describe each search separately. Because in-
dex sites are changing fairly rapidly, all descriptions below can be assumed to
be accurate only up through July, 1996, including the number of documents

referenced, the index site collection methodology, and so forth.

AltaVista regularly re-indexes the full text of the 30 million documents it refer-
ences, and follows links to discover new pages. A ‘simple search’ on AltaVista
consisting simply of the string ‘political music’ resulted in “about 500000 match-
ing” documents which contained either the word ‘political’ or the word ‘music’.
While higher ranking was given to documents with both words, this approach
was not appropriate for AltaVista. The top ten ranked documents yielded three
related to political music: one was in Dutch about a Dutch foundation for po-
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litical music and the other two were about current music. Changing the search
to ¢ “political music” ’ (i.e. double quoted) resulted in a match of 73 documents.
The top ten documents included the following: an article from the online ver-
sion of Mother Jones magazine, which was almost relevant to the original query,
entitled “Rock m’ Revolution: Dave Marsh on 20 years of political music” (the
article consisted of a list of 20 songs very briefly annotated); an order form for
CD’s or descriptions for current bands or soloists; a magazine review site which
listed two magazines partially related to political music; a long legal document
on Vietnamese taxation which mentioned ‘discs for political music programmes’
in a sub-sub-section about turnover tax rates; a university dissertation about a
1977 Swedish musical dramatical production group; and the same Dutch foun-
dation that was referenced in the unquoted query results. Several of the links
in the set of 73 documents were no longer available, and some links pointed to
the same document or copies thereof. Furthermore, the precision of the docu-
ment set was well below 50%, especially since many documents contained the
string “political music” once, but did not actually deal with the topic, and also
because many pages were random people’s personal home pages. An interest-
ing document from East Tennessee State University described their archives of
Appalachia music and included a ‘Suggested Reading List’. There was also a
brief description of a book entitled Nineteenth Century Romanticism in Mu-
sic, 8/e. While several links were relevant to trends in, and activities around,
current political music, there was little in the way of any comprehensive, let
alone historical, discussion. Finally, an ‘advanced search’ of AltaVista was per-
formed using the following search string: ‘(political NEAR music) AND (196)
AND (“San Francisco” OR Shanghai OR Cairo)’. This query resulted in 3
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documents, none of which had any bearing on political music or the 1960’s.

AltaVista does not support subject-based searching.

Lycos regularly re-indexes the full text of the 50 million documents it references,
and follows links to discover new pages. The search on Lycos was less successful
than on AltaVista. The simple search for ‘political music’ (unquoted), gave the
highest weight to pages with the greatest number of occurrences of either word;
the highest ranking went to a page with the word music in it several times but
no occurrence of the word political. There were four documents of the top ten
that contained both words, two of which dealt with some type of political music.
One was a modern American satire group and the other was a publisher’s brief
summary of a book about a political musician that did not directly mention
the exact years and place of the musician’s compositions (though it appeared
to be early Twentieth Century in Western Europe). Double quoting the phrase,
‘ “political music” ’, did not affect the search results. A ‘customized’ search that
required both words to appear on the same document resulted in 12 documents.
Other than the top 4 documents which were included in the top ten of the
previous query, the remaining 8 had little if anything to do with political music.
The subject category ‘Entertainment & Leisure:Music:Genres’ did not have
a particular class for political music. The genres ‘Pop/Rock/Alternative’,
‘Country & Folk’, and ‘Other’ had no mention of the word ‘political” except
for a single link to one artist. No other genres seemed to be related to political

music.

Yahoo is more oriented toward subject-based searching than the other two index

sites. It does not follow links to discover new pages, but automatically follows
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announcement site listings for new web sites. Yahoo does not regularly check
links to validate that URL’s are up-to-date, and does not state the number of
pages it has indexed. One relevant topic, ‘Arts:Humanities:History:Music’,
had nothing about political music of the 1960’s, with the possible exception of a
link to someone compiling a list of all songs played at every Grateful Dead con-
cert. A search of this section for the word ‘political’” yielded no matches. While
there was no ‘Political’ topic under ‘Entertainment:Music:Genres’, there was
a ‘Folk’ topic; none of the links from this page, however, were relevant. A search
of the entire Music section for ‘political’ resulted in 11 links, none of which were
related to the original query. The topic ‘Arts:Humanities:History:American
History:20th Century:1960s’ had 4 links. Three were not relevant, but one,
entitled “Wild Bohemians an archive of historical information about Bohemian
movements in the US during the 20th century,” led, through a series of links, to
the WWW site of the official “Museum of the City of San Francisco”. This site
included a chronology of Rock music and political events in the 1960’s, and a
complete bibliography about the Haight-Ashbury district, with over 60 highly
relevant works, including, for example, “San Francisco nights: the psychedelic
music trip, 1965-1968”. A global search of all of the Yahoo pages for ‘political
music’ resulted in 38 hits which contained both ‘political’ and ‘music’. Yahoo
does not seem to be able to specify ‘political music’ as a single two-word phrase.
Furthermore, a Yahoo query searches only a document’s title and one- or two-
line description; there is no method available for full text searching, as with the

other two indexes. None of the 38 hits appeared to be relevant to the original

query.
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Temporal Information Hierarchy

Table B.1 shows the top-level sub-domains of a temporal information hierarchy.
This hierarchy has 33 top-level periods, which cover all past, present, and fu-
ture time. Since the majority of existing documents have been written during
or regarding the last few hundred years, these periods are given a higher level of
granularity than, for example, cosmological, geological, or anthropological peri-
ods. Such a partitioning of the time-line provides for a more equal distribution

of the number of documents likely to be classified within each period.
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Period | Range (year) || Period | Range (year) || Period | Range (year)
1 < —10? 2 —10% +— —107 3 —107 +— —105
4 —10% +— —10° 5 —10° +— —10* 6 —10* +— —1001
7 —1000 <— 999 8 1000 +— 1199 9 1200 +— 1399
10 1400 <— 1499 11 1500 +— 1599 12 1600 <+— 1699
13 1700 +— 1749 14 1750 +— 1799 15 1800 +— 1849
16 1850 +— 1899 17 1900 «+— 1909 18 1910 <— 1919
19 1920 <— 1929 20 1930 +— 1939 21 1940 <+— 1949
22 1950 +— 1959 23 1960 +— 1969 24 1970 +— 1979
25 1980 +— 1989 26 1990 +— 1999 27 2000 <— 2009
28 2010 «+— 2019 29 2020 +— 2049 30 2050 «— 2099
31 2100 +— 2499 32 2500 +— 2999 33 > 3000

Table B.1: Top-Level Temporal Information Hierarchy
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Appendix C

Evaluation of News Article

Classification

The evaluation of the automated classification of the news articles was inconclu-
sive. We discuss the the experiment for two reasons: 1) it is important to show
that an attempt was made in this vein, and 2) it is worth noting some of the

difficulties encountered when humans are included in the evaluation process.

Since we wanted to use human catalogers in determining the best classification
category for news articles, we were very limited as to how many articles we could
use in our experiments. We were able to have hand classified only a small frac-
tion of the approximately 800,000 articles we had classified automatically. We
randomly selected 42 articles to distribute to three catalogers. Each cataloger
received their own unique set of 8 articles. Each pair of catalogers (i.e. three

unique pairings of three catalogers) received a different set of 6 articles. Thus
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each cataloger received 20 articles, 8 unique, and a set of 6 shared with each of
the other two catalogers. The overlap was for the purpose of cross-checking the

human classification assignments.

For each article, we first asked the catalogers three questions. The first was to
rate the degree to which the article was classifiable at all, on a scale from 1
to 5, with 1 meaning ‘easy to classify’ and 5 meaning ‘impossible to classify’.
Assuming that they found the article classifiable, we asked them to let us know
their degree of competency of cataloging in the subject area of the article (as
determined by them). Third, we asked them to determine the best classification
category for the article. With each article, we also supplied a list of the 30 top
ranked automatically generated classification categories. Given the results from
the MARC record classification in the previous section, we assumed that there
was approximately a 67% chance of finding the true best classification cate-
gory for those articles which were found to be easily classifiable. We asked the
catalogers to rate each of the 30 categories from 1 to 5, with 1 meaning ‘very rel-
evant classification category’ and 5 meaning ‘completely unrelated classification

category’.

The results were inconclusive. First of all, we were only able to get two of
the three sets of articles returned to us, leaving at most 34 articles to be hand
classified. The next problem was basically our estimate of how long it would take
for the catalogers to complete the task. We based our estimates on discussions
with one of the three catalogers (cataloger “A”) after she had looked over one
of the sets of 20 articles. She estimated that it would take approximately 5

minutes per article, thus requiring at most 2 hours for the set. In the end, it



175

appears that performing the tasks we had requested in such a time-frame yields
very questionable results, as explained below. On the other hand, the other
cataloger (cataloger “B”) took much longer on each article, and stopped after
processing only 6 articles. Even then, there were sufficient discrepancies that

the results were invalidated.

As an example of some of the classification problems, we describe a few articles
and their individual results. The first article, from misc.transport.rail.americas

(although the cataloger was not told the newsgroup), is as follows:

Subject: Wheel bearings again

Yet more wheel bearing questions for the group. What is the typical
axle load for heavy haul traffic? I.e. coal and mineral trains. How
often does hot boxes and collapsed bearings occur on these types of
trains? Particularly interested in hearing from experienced engineers
with a few miles under their belts.

Cataloger A rated this article as classifiable with a 2 out of 5, with 1 being
the best possible. She also rated herself as 3 out of 5 in terms of competency
in classifying in this subject area. She then assigned the best LC classification
category as “TF 600-606: Railroad Cars (Utilization and Care)”, under “TF
501-668: Railway Operation and Management”. This is under “TF 1-1620:
Railroad Engineering and Operation”. One problem with this classification is
that it shows that the catalogers went deeper into the LCC than we had intended
— we were looking for detail only down through the LCC Outline, which stops
at “TF 501-668". Thus the catalogers were taking longer than necessary and
decreased the probability that the category they chose would be in our list.
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A more serious problem from this article is the rating given to the automatically
generated categories. The cataloger gave a value of 3 out of 5 (with 1 the best)
to “TF 501-668”, but gave a value of 2 out of 5 to “TF 1-1620”. Clearly this is
inconsistent with her own selection of “TF 600-606” being the best, since the
category closer to this in LCC was given the lower rating. This type of inconsis-
tency was not uncommon. Another example of this is seen in an article about
prostatitis. The cataloger assigned the best category as “RC 899: Prostatitis”,
but gave the automatically generated category “RC 870-923: Diseases of the
Genitourinary System, Urology” a 5 out of 5 (with 5 the worst).

The final example, from cataloger B, deals with an article about how “New Year
cake” is made in Singapore. The cataloger rated this article as classifiable with a
1 out of 5, and rated her competency as 2. She assigned the category “TX 643-
840: Cookery”. The automated classification system also gave this category
the highest rank. However, when the cataloger rated the top automatically
generated categories, she rated this category with a 2, with 1 the best. It is

difficult to understand how this category would not qualify for a 1.

In the end, what was clear from this experiment was that including a conclusive
user study in this research, even a limited one as we attempted, would have
required much more time and effort than was available. We would need to
work much more closely with the catalogers and develop a more consistent
rating system. We would also need to find a better way to balance the time
commitment of the catalogers with the need to have a sufficient number of

articles accurately classified.
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The evaluation of the classification accuracy of the MARC records gives an in-
dication of the success of this component of the prototype. While definitive
results from the catalogers would have been relevant to the evaluation of the
prototype, they need to be viewed from the overall perspective of the Pharos
architecture. The prototype is one instantiation of an overall framework, which
is designed to accommodate a wide variety of data types, classification schemes,
training sets, IR systems, and collections. The success or failure of a particular
combination of parameter values in the design space is not necessarily indica-
tive of the effectiveness of a different combination. In more general terms, the
inter-model comparison (Chapter 5), the simulations (Chapter 6), and the scal-
ability analysis (Section 7.3), are more relevant to the evaluation of the overall

architecture.
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