Multiple Query Optimization by Cache-Aware
Middleware using Query Teamwork

K. O’Gorman D. Agrawal A. El Abbadi
Department of Computer Science
University of California
Santa Barbara, CA 93106
{kogorman,agrawal,amr }@cs.ucsb.edu

August 9, 2002

Abstract

The multiple-query optimization (MQO) problem has been well-studied in the re-
search literature, usually by means of identifying and exploiting the occurence of com-
mon subexpressions, and has required implementation in the database engine. Observ-
ing that common subexpressions derive from common data, and that the amount of data
is usually greatest at the source, we propose an optimization technique that exploits
the presence of sharable access patterns to underlying data, especially scans of large
portions of tables or indexes, in environments where query queueing or batching is an
acceptable approach. We show that simultaneous queries with such sharable accesses
have a tendency to form synchronous groups (teams) which benefit each other through
the operation of the disk cache, in effect using it as an implicit pipeline. We pro-
pose a novel method of optimization, exploiting this tendency by scheduling the queries
to enhance this tendency, and show that this can be accomplished even from outside
the database engine with application server middleware. We present an algorithm for
scheduling from a queue of similar queries, designed to promote such teamwork. This
is implemented as middleware for use with a commercial database engine. Finally, we
present tests using the query mix from the TPC-R benchmark, achieving a speedup of
2.34 over the default scheduling provided by the database.

1 Introduction

When a database system is presented with multiple queries, opportunities arise for opti-
mizing the group of queries as a whole as well as the operations to evaluate the individual
queries. This has been explored as the multiple query optimization (MQO) problem, and
has generally been approached on the basis of batches of queries and detailed analysis of

the query execution plans [Jar85, PS88, Sel88, CLS93, CD98, RSSB00]. A common theme

among most of these proposals is to identify common subexpressions among the queries and
materialize them temporarily so that they can be shared among various queries.

Several variations on this idea have been recently proposed. Tan and Lu propose schedul-
ing query fragments to optimize the use of data left behind in memory, thus reducing disk
usage [TL95], or scheduling symmetric multiprocessors to access the shared data simultane-
ously [TL96]. Our method does not alter the query plans generated by the database engine,
but instead makes use of properties of those plans as generated. Zhao et al. [ZDNS98|
propose new join operators together with pipelining to optimize for particular similarities
that arise in the context of OLAP queries. In contrast, our approach requires no new oper-
ators or other capabilities within the database engine. Dalvi et al. [DSRS01] propose using
pipelining of data between processes accessing the same data or results. The proposed
solution must deal with two deadlock problems associated with the use of pipes. First,
considering the pipes as directed edges in a graph with queries as vertices, directed cycles
represent a deadlock situation; an algorithmic solution is proposed to prevent this configu-
ration. Even then it can happen that the corresponding undirected graph has a cycle, which
may represent deadlock due to bounded buffering in the pipes where the configuration of
pipes constrains consumers and producers of the data in the pipes to operate at different
speeds. The paper assumes this possibility will be addressed by dynamically choosing to
materialize the pipeline contents.

All of these approaches involve rewriting the query plans for the batch of queries, and
thus require modifications to the optimizer or query plan generator of the database engine.
Moreover, these approaches deal with the workload in batches rather than incrementally.
Our method does not suffer from these drawbacks: it can be implemented as an incremental
or batch method without modification to, or extensive knowledge of the internals of, the
database engine. Further, our method involves no constraints between queries and cannot
introduce deadlock; it operates by scheduling groups of queries to begin together, but
enforces nothing beyond that initial synchronization. Finally, although our method requires
information about the query plans to be used by the queries, the same is true of all of the
MQO methods of which we are aware; we will demonstrate how the results can vary with

the amount and kind of information known.

Our approach uses in-memory sharing of objects even though they may be much larger
than the physical memory of the machine, enabled by self-synchronizing queries. We show
that such query behavior arises naturally in queries that share disk access patterns such
as scans, which is related to the characteristics exploited by previous MQO research. The
approach exploits common access patterns to the underlying data, where traditional MQO
approaches exploit common subexpressions; observing that common subexpressions derive
from common data, we expect the approach to be useful in many if not most environments
in which MQO provides benefits. In the experiments reported here, the optimizations are
performed from outside of the database engine, in middleware, so that the method can
be used with existing commercial database products; of course, the method could also be
incorporated into the database engine and one would expect the results to be at least as
good as reported here. Our results show that significant speedups are possible without
rewriting queries, query plans or existing optimizers. Our approach is orthogonal to many
of the existing optimization techniques, and may even be more effective with those that
schedule query fragments.

The rest of the paper is organized as follows. Section 2 provides motivation and some
initial results. Section 3 supports the claim that queries autonomously form cooperating
teams under favorable conditions. Section 4 presents an algorithm to schedule queries from
a queue, promoting team formation. Section 5 presents the performance comparison results.

Section 6 discusses the results.

2 Motivation and Initial Experiments

In general queries are thought to compete for resources, specifically for use of the disk
cache, and to thereby interfere with and impede each other’s execution. This situation
can be alleviated in various ways, as when caches are used to exploit the sharing of data
between queries. For instance, small tables (relative to memory size) can be shared in a
single-thread environment, mediated by scheduling fragments of the original query plans
[TL95]. We explore the scheduling of concurrent processes to a similar end, but without

size limits or query fragmentation. We include in this section the results of some initial

experiments, by way of motivation and showing the feasibility of our approach.

2.1 Experimental Setup

We explored the behavior of the 22 queries of the TCP-H benchmark [Tra]. These queries
are parameterized templates, and are accompanied by a query generator program to supply
randomly chosen parameter values. This program, QGEN, was used to generate a set of
40 query streams, some of which were used in the tests described here. The instances of
a given query in the several query streams were parameterized differently by QGEN, with
parameters which affected selection and join criteria in the query. As a result no two queries
in any run were identical, because queries from the same template were always instantiated
with different constants.

Because the initial results showed unreasonably bad performance for three queries even
when run in isolation, we modified these queries, so as to improve performance of each one
by at least a factor of two [OAA00]. We reasoned that such bad query plans would be fixed
in a similar way in any installation interested enough in performance to use the methods
presented here, but our own reason was that as it stood, these three queries dominated
the time of the runs, and made initial verification of our setup difficult because of the
huge timeouts required. The queries changed were as follows: Query 4 was rewritten to
replace a coordinated EXISTS subquery with a join. Query 8 was rewritten by adding an
optimizer hint to its subquery, resulting in a full table scan, which was much faster than
the lookup through an index used by the original query. Query 20 was rewritten to replace
the coordinated IN subquery with a join to a subquery.

Our initial experiments, described in the next section, were run on a system with a single
IDE hard drive. All other experiments were run on 4 identical systems with dual Pentium-
IIT processors, 1GB RAM, an IDE hard drive, and 4 SCSI hard drives, and the main results
presented are the mean value of the runs on all 4 systems. For these main results, the
operating system and Oracle were stored on the IDE drive, and the Oracle system and user
schemas were stored on the SCSI drives; the LINEITEM table had one SCSI drive, the other
tables shared a drive, and all indexes shared a third. All other database objects were stored

on a fourth SCSI drive. Rather than using the normal Linux ext2 filesystem format, the

Query Teaming Query Teaming
Number Speedup Number Speedup
1 3.78 12 4.96
2 3.07 13 1.17
3 4.91 14 5.01
4 4.95 15 4.95
5 2.20 16 3.06
6 1.24 17 3.43
7 4.77 18 3.87
8 4.96 19 1.48
9 3.11 20 3.43
10 3.41 21 4.89
11 2.96 22 4.68

Figure 1: Team Formation of Individual Query Types. Five instances of each query were
started 2 seconds apart, and again sequentially to determine the speedup.

user schema and temporary files were stored in raw partitions on the SCSI drives, so that
all buffering occurred in the Oracle buffer pool, and the Linux buffer pool was bypassed.
The Oracle buffer pool was set at 10,000 8K blocks, or 80 megabytes, or about 2.5% of the
size of the database and indexes. We reasoned that this ratio was reasonably representative
of buffer sizes for large databases. The systems have 1GB of RAM each, so that using the
Linux buffer pool could have buffered over 25% of the database, had we allowed this.

2.2 Initial Experiments

We tested the tendency of the TPC queries to cooperate by running five instances of each
query running almost simultaneously, i.e. started 2 seconds apart over a period of 8 sec-
onds. The instances were parameterized as indicated for query streams 1 through 5 in the
benchmark, so that queries were instantiated with different constants. The running times
for the set of five queries was compared to the running time for the five instances running
sequentially. Figure 1 shows the results of the test. Since the CPU was observed to be less
than 50% utilized throughout the tests, and the system had a single hard disk, the speed
improvements reflect the change in the number of physical I/O requests. For example, the
entry for Query 1 is 3.78, indicating that the 5 queries running sequentially took 3.78 times
as long as it took to run them concurrently. The speedup ranged from a low of 1.17 for
Query 13, which did not benefit much from this sharing, to a high of 5.01 for Query 14. One
would expect a theoretical maximum of 5, so we ascribe the additional 0.01 to measurement
error. This team advantage appeared even though most queries access more data from disk
than will fit in the disk cache. In effect, the teams were synchronizing their operations so

that the limited disk cache could be used as a data pipeline shared within the team.

Inter-Stream

Initial Stream 1|Ending Separations | Total
Separation Time 1-2[2-3[3-4] 4-5 |Time
0 689 0 ol o 0| 689

10 736 0 ol O 0| 737

20 752 0 ol o 0| 752

30 748 0| O] O 0 748

40 750 0 o] o 0| 750

50 1683 (188 74 8 0| 1953

60 1607 |230| 88| 23 0| 1948

70 1547|273 (105| 38 0| 1963

80 1486|304 120| 51 3| 1964

Figure 2: Teaming behavior with different initial time separations. The execution time of
the first query is shown, then the time separations to the completion of the rest of the
queries, and the total time for the run. Nonzero values of +1 or -1, which represent the
measurement granularity, have been set to zero.

The team advantage persists in the presence of the 2-second delays between starting
the queries, indicating that this behavior is reasonably robust in the presence of scheduling
disturbances. Figure 2 illustrates the change in teaming behavior of one of the queries! with
different time separations between the instances; happily this was the first query template we
investigated — a few of the others would actually have shown interference between instances
from the same template. The figure may be best explained by example; consider the line
with an “initial separation” of 50. This line describes the behavior of five instances of the
query, started at 0, 50, 100, 150 and 200 seconds into the test run. The first query finished
1683 seconds into the run, the second query finished 188 seconds later, the third query
finished 74 seconds after that, and the fourth query finished in another 8 seconds. The final
query finished with no delay after the fourth. Accordingly, the run lasted for 1953 seconds.
We interpret these numbers to say that the 5th query instance had overcome the 50 second
head start and had “caught up” to the 4th query instance; moreover, this pair had nearly
caught up to the 3rd query instance, so that this line shows team formation in operation.
The team advantage persists even when the teams are not that obvious; even at the 80
second separation, the total time is some 40% less than for a sequential execution. In this
example, the team advantage was present even in queries started 80 seconds apart; however,

in general we have found the advantage degrades with delays of 10 seconds or more.

!The query is anonymous because we are prohibited from publishing actual times for any particular query.
These results represent 5 instantiations of one of the TPC queries in which processing time was dominated

by a full table scan.

1 2 3 4 5 6 7 8 9| 10| 11 12| 13| 14| 15| 16| 17| 18] 19| 20| 21| 22
2.02
1.06|0.97
1.00(1.00(1.00
1.16{1.09|1.00(1.03
1.25]1.34|1.00(1.09|1.27
1.04|0.91{1.00(0.91]0.81|0.90
1.00(1.00(1.00|{1.00(1.00|1.00(1.01
1.00(1.00(1.00{1.00(1.00{1.00|1.00|1.01
1.2811.44(1.00(0.87]0.96(1.01|1.00|1.00(1.27
10//1.29|1.07|1.00(1.22|1.04({0.93|1.00|1.00(1.03|1.48
11|/1.04|0.90|1.00(1.20|0.98(0.73|1.00|1.00(1.37|1.27|0.93
12(/1.00{1.00{1.00(1.00|1.00(1.00(1.00{1.00{1.00|1.00|1.001.10
13]/1.5411.04|1.00(1.06|1.18(1.08(1.00|1.00(1.14|1.39|1.19(1.00|0.67
14|/1.00{1.00{1.00(1.00|1.00{1.00|1.00{1.00(1.00|1.00(1.00(|1.00|1.00(1.01
15//1.00|1.00{1.00(1.00|1.00(1.00(1.00|1.01{1.01|1.00{1.00({1.00|1.00|1.001.00
16(/1.12{1.02|1.00(1.21|1.39(0.94|1.00|1.00|1.25|1.54(0.99|1.00|1.05(1.00|1.00|0.89
17]/1.02|0.97|1.00(0.82|0.89(1.00|1.00{1.00(1.42|0.92|0.92(1.00|1.04(1.00|1.00|1.001.00
18(/1.37|0.99|1.00(0.75|0.89(0.87|1.00{1.00(1.08|1.01|1.07(1.00|1.68(1.00|1.00{1.17(0.92|0.88
19((1.01|1.00|1.03(1.00|1.00(1.00|1.02({1.02|1.00{1.00|1.00({1.01|1.00(1.02|1.03(1.00|1.00(1.00|1.02
20//1.00(1.00(1.00|1.00(1.00{1.00({1.00|{1.00(1.00{1.00|1.00|1.00|1.00|{1.00|1.00{1.00|1.00{1.00|1.02(1.02
21((1.26/1.01|1.00|0.75|0.83|0.82(1.00|1.00{0.93(0.97|1.05|1.00(1.39|1.00(1.00|1.18|1.00({1.10|1.01|{1.00(1.98
22]/1.05(0.96(1.00|0.760.95[0.82(1.00|1.00|0.96|0.87|1.00|{1.00|1.05|1.00|1.00{0.92]|0.91(1.00|1.01(1.00]|1.10(0.97

W0 oA W -

Figure 3: Potential speedup from reducing accesses to the most-used disk. The entries
are ratios of the accesses from queries run sequentially to queries run simultaneously, for
queries instantiated from the given pair of query templates. The results shown are the
mean of results from five runs, each using a different set of parameter values drawn from
the specifications for runs 31-40. The best value (2.02) and worst value (.67) are both on
the diagonal. Our later experiments required teams to have pairwise values of at least 1.00
for all pairs in the team.

2.3 Heterogeneous Teams

From the experiments so far, it appears that queries instantiated from the same template
are capable of forming teams, but there may exist other possible groupings of queries that
can exhibit this behavior. To test this hypothesis, we tested all pairs of queries for team
formation; pairs of queries were run, first sequentially and then concurrently, and the run-
ning times were compared. The queries were instantiated by using parameters indicated for
streams 31 through 40 in the benchmark, in 5 pairs, each pair being run once on each of the
4 test systems. The concurrent runs were started together rather than with the 2-second
separation of the tests that generated Figure 1. Potential speedups can be derived from
the logs of these tests in several ways, by comparing elapsed time, disk accesses, and so
on. Because the critical resource for our setup appeared to be accesses to the SCSI disk
containing the LINEITEM table, we used a comparison of number of accesses to that disk,
as shown in Figure 3. An entry of 1.00 means there was no advantage or disadvantage,
i.e. the concurrent run made the same number of accesses as running one query after the
other. Entries under 1.00 indicate that the two queries actually interfere with each other.

Entries over 1.00 represent the team advantage: the concurrent run made fewer accesses

to the critical disk than the sequential run. Because the entries are focused on a single
resource, quite a few of them are 1.00, showing that this pair does not affect that resource;

nevertheless, we will show that these entries can be the basis of an effective optimization.

3 Teams and Team Formation

We found query behavior that suggested that careful scheduling could improve overall sys-
tem throughput where there were exploitable similarities among the queries. We call the
behavior team formation. This behavior depends on the details of access to secondary
storage, and particularly the disk cache, and of the queries involved.

Operating systems and database systems maintain caches of disk blocks from secondary
storage, so that requests for frequently-used or recently-used information can be satisfied
from the comparatively fast RAM rather than from the secondary storage device. As a
result, operations that request information already present in the disk cache will execute
much more quickly than ones that request information that must be retrieved from sec-
ondary storage. This is not strictly a property of the operations themselves, however, but
is a dynamic property of the system as a whole. The contents of the disk cache will evolve
over the course of time, in response to the activity experienced by the system, and this will

affect team formation.

3.1 Disk Cache Management

For concreteness, we now discuss cache management in the specific context of an Oracle
database. When a query is run and accesses tables stored on disk, it fills the disk cache
as much as possible with the blocks that it needs, but eventually must replace some of the
blocks it used early on in the process with blocks it needs later, because there is not enough
room for all of them. This can happen in two ways in Oracle, depending on whether a full
table scan is involved. The default for most operations is to keep blocks according to an
LRU (least recently used) algorithm, so that blocks are evicted from the disk cache when
they have been used less recently than any others. Full table scans are treated differently,

and by default place blocks at the “least recent” end of the LRU list after they are used,

since it is considered unlikely that they will be used again before they have to be evicted
from the cache anyway. It is possible, however, to set a per-table CACHE/NOCACHE
attribute so that full table scans are not treated specially, to let such blocks be placed at
the most-recent end of the LRU list. The Oracle documentation recommends doing this only
for small, frequently-used tables, presumably to avoid the phenomenon of “cache wiping”
which might cause a full table scan to fill the cache with blocks which will not be reused
before they are evicted. In contrast, in our tests, this CACHE attribute was set for the
largest table in the schema, the LINEITEM table, because we had determined that in the
worst case it imposed a minimal cost (under 1%) on throughput, but in most experiments
it yielded a major improvement to throughput. The Oracle documentation also states that
there is a per-query hint to the optimizer that can control this behavior, but we have been
unable to verify that it works in Oracle 8.1.7 on Linux, and it is not used in the experiments
reported here. No matter how the blocks are handled, at the end of execution of a query
unless the data accessed is small in relation to the size of the disk cache, it is unlikely that
the data used at the beginning of its execution is still in the disk cache; such data will have

been evicted in favor of the data needed later.

3.2 Why Teams Form and Persist

To see how this operates in team formation, we will use Query 10 from the TPC benchmark
as an example. Judging from Figure 3, the overall run time improves (speedup of over 1.00)
when it runs concurrently with other instances of itself, or with instances of queries 1, 2,
4,5,9, 11, 13, 16, and 18. We conclude this query may beneficially form teams with those

other queries. The query itself has this form:

select <some attributes and aggregates>
from customer, orders, lineitem, nation
where

c_custkey = o_custkey

and 1l_orderkey = o_orderkey

and o_orderdate >= date ’&date’

and o_orderdate < date ’&date’ +

interval ’3’ month
and 1_returnflag = °R’
and c_nationkey = n nationkey
group by <some attributes>

order by revenue desc;

This query, like all the TPC queries, is actually a query template. In this case, the single
parameter &date is required to instantiate the query. In our schema there are indexes that
contain most of the data required from the tables, so that the ORDERS and LINEITEM
indexes are scanned rather than the full table. The query is evaluated by three hash joins,
involving a range scan on an index to ORDERS and full scans of index or table data for the
other three relations. The index on LINEITEM alone is over twice the size we set for the
Oracle buffer pool, so that we expect the first data accessed to be evicted from the buffer
pool before the query is finished.

Any two instances of this query will access many of the same disk blocks in the same
order, although the calculations on them may be different because different subsets of the
data will be selected for inclusion in the results. If they are executed sequentially, as
noted above, the second query to execute will encounter a disk cache that is empty of
the data required for its execution; this data has been previously used but later evicted.
Accordingly, the data will be read again. However, if the queries are started together and
run concurrently, they have an opportunity to use the disk cache as a kind of pipeline to
avoid the second reading of the secondary store.

To see how this works, let us suppose that two instances of the query are started a
few seconds apart, as in some of our experiments. The first query to begin will read disk
blocks into the disk cache and perform calculations, but let us further suppose that before
this can proceed to the point where its inputs are evicted from the disk cache, the second
instance of the query begins execution. At this point, the second instance encounters a
disk cache that already contains the information that it requires to begin its calculations.
Accordingly, the second instance of the query can execute more quickly because it does not
have to wait for the comparatively slow secondary storage operations. It will make progress

more quickly than the first instance did at the same point, until the second instance has

10

“caught up” in its progress to the same point, as concerns access to secondary storage, as
the first instance of the query. At this point, the two instances will be requesting the same
blocks from secondary storage. Because the database engine itself has safeguards to handle
such situations, only one copy of each requested block will be read, and it will be used by
both instances of the query.

To the extent that this general description applies to a particular case, one can expect
the teams to be stable, self-organizing and self-maintaining so long as the two instances
make the same requests of the secondary store. If one of the instances somehow makes
more progress, and is reading blocks that the other instance has not yet used, the same
team formation process as just described will cause the slower instance once again to catch
up- This is a very strong tendency due to the orders of magnitude difference in speed
between physical disc access and the other activities in the system. As shown in Figure 3
while this tendency is even present in some pairs of non-identical queries (e.g. 1.68 for
Query 18 paired with Query 13), it may be weak in some pairs of queries from the same
template (e.g. 0.67 for Query 13 teamed with itself). This presumably arises when the
access patterns for queries from a given template are sensitive to the parameters, and can

differ greatly between instances.

4 Middleware Design

We now describe an application server middleware that is specifically designed to take
advantage of affinities among queries being submitted to a database. Our application server
is shown in Figure 4. We assume the query sources act as streams; each source submits
one query at a time, and waits for the system’s response before submitting the next query.
We provision the database with a fixed number of server connections for the submission of
queries, each connection corresponding to a separate database server process. The number
of servers will in general be less than the number of query streams, and therefore the
middleware will queue incoming queries for submission to a server at an appropriate time,
depending on the queueing policy in force. Our goal is to schedule client queries to execute

simultaneously on different database server processes to take advantage of potential affinities

11

Queue
Teal
mate Scheduler—» EScLoder
Query
Streams DB Servers;m
Reply
Decoder

Application Server Middleware

Figure 4: Middleware structure

among them, and we will choose queueing policies accordingly. In this section we present

the scheduling algorithm and then prove some of its interesting properties.

4.1 Scheduling Algorithm

The unit of scheduling is the team. All queries in a team start at the same time, and the
team is considered to be running until the last member finishes, at which point the scheduler
schedules new work for a new team. This is referred to as the team cycle. Database server
processes have no permanent connection to a team, but are assigned to the team for the
duration of a single query. A server process that finishes before other members of its team
is immediately available for joining any new team. However, each team always has at least
one server process, even if the team is idle, so that when there is work, the team can proceed
with at least that one server process, and perhaps more.

The scheduling algorithm is shown in Figure 5. It selects queries as team members at
the beginning of each team cycle. The query at the head of the queue is always chosen to be
one of the members, and is called the team leader, because of the way it affects the selection
of the other members. If it happens that there are additional database server processes
available, the team selection algorithm is invoked, to select another query to be started at

the same time. As many additional queries as there are available database server processes

12

procedure TeamScheduler
loop

team ={query at the head of the queue}

remove the query from the head of the queue

while (there are idle database server processes)

and (the queue contains a suitable
teammate):

reserve a database server process
team = teamU{teammate}
remove the teammate from the queue

end while

start all elements (members) of team

wait for a teammate to finish

while there is more than one teammate:
release the database server process of the

finished teammate

wait for a teammate to finish

end while

end loop
end procedure

Figure 5: Scheduling algorithm, executed for each team

may be started, up to the number of queries in the queue that qualify as teammates of the
team leader.

The additional queries added to the team are selected according to their affinity for
the leader, according to an affinity rule. This rule is a set of affinity sets, which are sets
of query numbers whose instances can be included in the same team. A team consists of
queries instantiated from templates whose numbers are members of the same affinity set,
or comprises a single query which is not in any affinity set.

Perhaps the simplest nontrivial rule is one that forms teams only from queries instanti-
ated from the same template. It can be written formally as a set of singletons comprising
the template numbers. For our template set, for instance it is written as {{1} {2} {3}
{4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} {21}
{22}}. When we initially tested this rule, it performed reasonably on a single-disk system,
performing about half as well as the best rule we developed. However, on the multiple-disk
systems we used for our main results, this rule gave no consistent advantage over non-team
performance, and we do not report the details here.

Affinity rules can also be developed from data on query behavior, such as that in Figure 3.

13

procedure Affinity(threshold, teamtable)
rule ={}
for each querynumber:
if a selfpair of querynumber meets threshold:
rule = ruleU{{querynumber}}
else:
set all teamtable entries for querynumber to
threshold
end for
while ((minimum value in teamtable) < threshold):
find the minimum value in teamtable between
members of different affinity sets, setl and set2
if these sets can be unified:
rule = rule — {setl} — {set2}
rule = rule U {{setl U set2}}
set teamtable entries connecting setl and set2
to threshold
end while
return rule
end procedure

Figure 6: Greedy algorithm to find an affinity rule for a given threshold, and a given
teamtable of pairwise team advantages

By requiring teams to be made up of templates with pairwise team advantages over some
given threshold, one can ensure that team members are paired with compatible queries, even
though they may not share a template. For example, we used a greedy algorithm of Figure 6
to generate rules from the data of Figure 3. The algorithm takes as input the table of team
advantages and the threshold value. For some threshold values, this algorithm would reject
some of the teams formed by the first rule. For example, for our data a threshold value of
1.00 rejects queries 13 and 18 from participating in any multi-query teams including pairing
instances from the same template, because they have (dis)advantage for pairs of their own
instances of 0.67 and 0.88, and even though their team advantages together are a very good
1.68. However, this same 1.00 threshold would allow a rule containing the affinity set {1 4
5 8 10 15} because all of the pairs, including self-pairs, that can be formed from this set
have team speedups better than 1.00 threshold.

The algorithm begins with singleton affinity sets, one for each query which met the
threshold, i.e. corresponding to qualifying values on the diagonal of the figure. All values

for non-qualifying queries (e.g. queries 13 or 18) were then set to the threshold value so

14

they would not be considered for team membership. Each subsequent step of the algorithm
considered the pair of affinity sets represented by the minimum value remaining in the table
corresponding to different sets. The sets are combined if the resulting set will contain no
pair of queries that violates the threshold requirement. If the sets cannot be combined, their
table entries are altered so that pair will not be the minimum again. The algorithm ends
when the minimum entry itself no longer meets the threshold requirement. With different
threshold values, different affinity sets are formed by this algorithm.

The scheduler is concerned with starting the queries, but is not concerned with their
ongoing execution other than to detect completion. Once started, the teammates may or
may not cooperate, and may or may not remain synchronized according to the accuracy of
the criteria chosen for query affinity. The team is considered to be running until all of the
teammates have completed, at which point a new team is scheduled if there is work in the
queue.

If there are just as many database server processes as teams then each team necessarily
has exactly one database server process and the algorithm degenerates to normal round-
robin FIFO scheduling with the given number of servers. More generally, at any given time
a server can be a team leader, a teammate, or idle awaiting work. Servers can be idle
because they finished first among their team, because the queue did not contain queries
with suitable affinity for a team being started, or because the queue did not contain any

queries.

4.2 Notes on Correctness and Complexity
It is easily shown that the scheduling algorithm has the useful properties of liveness and
freedom from deadlock.

Theorem 1 (Liveness) FEvery query entered into the queue is eventually served.

Each team finishes because the number of queries in the team is fixed when the team
begins, and each query is finite. The finishing of each team causes a scheduling event (i.e.
a call to procedure schedule of Section 4.1). Each scheduling event either finds the queue

empty, in which case the theorem is trivially true, or else serves the query at the head of the

15

queue. Thus the stream of scheduling events does not stop, and any queries in the queue
advance toward the head or are served during that event. By induction on the size of the

queue, every query is eventually served, proving the theorem. O

The synchronization of teams is not enforced by any mechanism in our algorithm or else-
where. If the queries selected for a team fail to cooperate, they may become de-synchronized
and make progress more slowly, but they will continue to make such progress as the database
engine normally provides. This absence of locks or synchronization primitives for coordina-

tion leads trivially to Theorem 2.
Theorem 2 (Deadlock) The scheduling algorithm of Figure 5 is deadlock-free.

The complexity of most of the operations involved in this method is linear or constant,
with two exceptions. One is the development of the array of team advantages (such as
Figure 3), which is quadratic in the number of query templates, but is only calculated once
(under our assumption of a static set of templates). The other is the search for teammates
while serving the queue, which in the worst case is proportional to the product of the queue

length and the number of available servers for the teammates.

5 Performance Results

Of the query streams mentioned in Section 2, we used query streams 1 through 20 as the
workload for our tests, so that each test comprised the running of 440 queries, none of which
was used in deriving the affinity rules. Considering each such query stream as simulating
a client, there were 20 concurrent clients in each test. For database server processes, we
actually ran SQL*Plus processes, the interactive client for Oracle. Each SQL*Plus client
then made the connection to the database, which assigned the server process. The number
of these servers varied from run to run. The middleware communicates with the SQL*Plus
processes through I/0 redirection and Linux pipes.

The clients and the middleware are implemented as a combination of Expect [Lib95]

and SQL*Plus scripts, with the scheduler being a single function of about 100 lines of code

16

Condition Values

of Clients | 20

of Servers || 1-15

of Teams 1-8

Constraint # of Servers > # of Teams

Affinity Rule || Derived, threshold = 1.00

Figure 7: The setup conditions for testing. There was also a baseline of 20 teams and 20

servers, with an empty affinity rule.

Database || Number of Teams |
Servers || 2] 3] 4] 5 | 6 | 7] 8]

1 1 1 L 1 1 1 L

1.34 1 4 1 1 1 4

3 1.54 1.39 1 1 1 1 i

4 1.72 1.60 1.46 1 1 1 4

5 1.79 1.81 1.64 1.50 1 1 4

6 1.94 1.84 1.79 1.65 1.53 1 i

T 2.01 1.91 1.89 1.82 1.63 1.55 1

8 1.99 2.09 2.02 1.92 1.73 1.64 1.50

9 2.06 2.14 2.10 2.08 1.89 1.75 1.69

10 2.12 2.13 2.12 2.10 1.96 1.88 1.76

11 2.17 2.21 2.18 2.15 2.07 1.93 1.79

12 2.17 2.22 2.21 2.18 2.12 2.04 1.86

13 2.11 2.23 2.31 2.22 2.16 2.06 1.97

14 2.15 2.22 2.29 2.28 2.20 2.08 1.94

15 2.09 2.25 2.34 2.25 2.17 2.24 2.00

Figure 8: Speedups from teamwork, comparing running time to the baseline at 20 database
servers and 20 teams. Entries marked | are prohibited by the constraint of Figure 7.

in one of the Expect scripts. The scripts perform the timing functions, and ensure logging
of all results.

The various test runs differed as to the number of teams and the number of database
servers (SQL*PLus processes), as shown in Figure 7. The schema and queries of the TPC-R
benchmark [Tra] were used, scaled to about a gigabyte of raw data (i.e. SF=1), and about
two gigabytes of indexes were built, essentially those of [Gra99] but without the clustered

index reported there.

5.1 Affinity Rule Performance Analysis

We used the greedy algorithm of Figure 6 to develop candidate affinity rules for the data
in Figure 3, and found that 31 different affinity rules could be derived from that data. We

present results obtained using the affinity rule produced from the threhsold value of 1.00,

17

ensuring that all pairs of members in a team were scored as at least neutral in the pairwise
tests of Figure 3. This resulted in the affinity rule {{9 12 14} {1 4 5 8 10 15} {3 19} {7 20
21}}. The results for this rule are shown in Figure 8. The best result is 2.34 at 4 teams
and 15 servers; we did not test beyond 15 servers because with only 20 query streams the
queue was becoming drained, and the improvement at 15 servers compared to 14 was not
large. Some of the other thresholds produced slightly better results in preliminary tests,
but the threshold value of 1.00 has the virtue of having a simple rationale a priori: limiting
the presence of harmful pairs.

Besides a beneficial effect on throughput, queuing has an effect on the latency and
response times of individual queries. This is so because the various queries have very
different execution times, spanning two orders of magnitude, but queueing introduces a
delay which is constant across all queries, pushing the overall response times towards an
average. For very fast queries in the mix, this delay increased overall running time by a
factor of 66, and teamwork did not reduce this significantly because the actual running
time was so small compared to queueing delays. Overall the effect was positive, with 6 of
the queries benefittng from queueing, and 16 being slowed, 6 of them by a factor of 10 or
more. The latter 6 had such short running times that they did not contribute significantly
to the speedup results for teamwork, which suggests that to the extent such queries can be
identified in advance, they would be better served by another means and this would not

significantly dilute the advantages of teamwork for the rest of the queries.

5.2 Alternative Algorithms

It seemed possible that the results obtained in Section 5.1 were not due to the construction of
the affinity groups, but might be obtained by merely grouping queries randomly. We tested
this in several ways, by forming groups of queries according to some alternate protocols.
First, we attempted to promote team behavior by simple batching. Instead of forming
teams on the basis of the template from which the queries derive, we simply ran queries
in batches of a given size, formed according to the order of arrival of the queries. In
other respects, the experiments were the same as the results reported above, and were

accomplished by a minor modification to the queueing strategy of the driver program.

18

Team
Size

[Number of Teams |
[T[] 2 | 3 | 4] 5]

4 1.37 .36 1.40 1.30
5 1.38 38 1.32 L

Figure 9: Speedups from batching, comparing running time to the baseline at 20 database
servers and 20 teams. Entries marked | are prohibited by the number of query streams.

We performed the experiments with teams of varying sizes, either 4 or 5, and with
varying limits on the number of concurrent teams, from 1 team to the maximum allowed by
the availability of queries. The resulting speedups are shown in Figure 9, and are actually
slowdowns from pure queueing (1.55). Accordingly, it appears that some information about
the query is needed to effectively promote team formation.

Next, we attempted to randomize the affinity groups, which we call random groups. This
is not a well-defined notion, so we used three different protocols for forming these random
groups. For each protocol, five different random seeds were used to derive five different
experiments, and the corresponding test was run on the same four systems as were used in
our main results, for a total of twenty timing runs for each protocol. We report the mean
result of the twenty experiments for each protocol.

Protocol A formed the same size affinity groups as in our experiments, but used a
random permutation of the query templates, producing an overall speedup of 2.02. The five

random seeds produced five different random groups as follows:
o {{71915} {492142120} {128} {5117}}
o {{2220 9} {1710 14 18 16 7} {15 12} {19 8 6}}
o {{14 53} { 222421118} {18 20} { 7 13 19}}
o {{20322} { 1141281511} {21 18} { 57 19}}
e {{22202} {171012 721 1} {13 3} {16 4 14}}

Protocol B formed four affinity groups, but their sizes were not constant. In each trial,
queries were assigned to each group with probability weighted by the size of the groups
in the experiments reported in Figure 8. This produced a speedup of 1.97. The five runs

produced the following groups:

19

o {{111216 17 18 22} {13 56 10 13} {15} {2}}
o {{32022} {18121415} {11 21} {5 18}}

o {{}{2611172022} {} {3589131516}}

o {{5 7121319} {6822} {11} {14 15 20}}

o {{12 21} {6} {7 8 20} {2 16}}

Protocol C formed four affinity groups, and each query was assigned each, or to be in
no affinity group, with equal probablility of 0.2 for each case, producing a speedup of 2.06.
The five runs produced the following groups:

e {{38911142021} {715} {510} {2 6 12 19}}

o {{12371622} {10 1213 18} {5 11 14 15 17 19} {3 6 9 20}}
e {{1520 21 22} {4813} {} {123 1011 16 19}}

o {{191112} {4781422} {61921} {2 51015 18 20}}

o {{711121517} {34820} {56918 22} {1 10 14}}

Protocols B and C could and did occasionally produce an empty set, effectively reducing
the number of affinity groups. This did not appear to affect the results. The mean speedups
for the three protocols were very similar, being A: 2.02, B: 1.97, and C: 2.06; these are
intermediate between the speedup for queueing alone (1.55) and the result for full teamwork

scheduling (2.34).

5.3 Analysis of Results

In order to obtain these results, we have done more than introduce an affinity rule; we have
altered the way that queries are scheduled. The question therefore arises of the degree to
which the other changes may have contributed to the success of our approach. In order to
explore this we ran another series of tests. In both series, we ran the scheduler with the

same number of processes as teams, effectively ensuring each team had a single member.

20

LINEITEM LINEITEM

Cache Cache

Processes [Off [On Processes [Off [On
1|1.24 1.22 11| 1.15 1.41
2(1.28 1.34 12 | 1.01 1.28
3]1.34 1.39 13]0.93 1.16
411.38 1.46 141 0.94 1.05
511.38 1.50 15| 0.98 1.09
6(1.36 1.53 16 | 1.02 1.12
711.36 1.55 17 [1.02 1.11
811.35 1.50 18 | 1.05 1.15
911.31 1.47 19| 1.03 1.16
10 | 1.29 1.44 20| 1.00 1.16

Figure 10: The effects of the queue and of the CACHE attribute. The entries are speedups
compared to the naive setup and scheduling (reported here for 20 processes and cache off).

Runs were made with the indicated number of processes to serve 20 query streams, both
with and without the CACHE attribute specified for the LINEITEM table.

In the first series, we did not make the changes to the CACHE attribute of the LINEITEM
table reported in Section 3.1. In the second series, these changes were made. The results are
shown in Figure 10, and show that in the absense of team selection, the CACHE attribute
provides a slight advantage on this query workload. Without the CACHE attribute, the
best speedup is 1.38 at 4 and at 5 processes, and with the CACHE attribute this increases
to 1.50 at 7 processes.

A speedup due to queueing is reasonable given that the hardware setup has 7 primary
resources that are used during the tests: 4 SCSI drives, and IDE drive (for the logs), and
2 CPUs. Scheduling more processes than 7 may introduce more contention for resources
than assistance with the computation. The speedup from the CACHE attribute on the
LINEITEM table may be due to the workload imposing its heaviest load on the drive
containing that table, and perhaps having more of the blocks of that table in the buffer
pool is more of an advantage than the cache-wiping phenomenon is a disadvantage, at least
for this schema and workload.

Based on these results, we conclude that the queueing contributes a speedup of up
to 1.38, that cacheing the LINEITEM table contributes perhaps an additional speedup of
1.09, and that for this workload, the teamwork contributes a speedup of at least 1.56, since
1.50 x 1.09 x 1.56 = 2.34. Presumably, the queueing speedup could also be obtained from
Oracle’s Multithreaded Server (MTS) option which does the same thing, but this would not
be compatible with middleware scheduling for team formation.

The failure of pure batching to provide any improvement, and the modest success of

random groups, suggest that some information about the queries’ query plans is needed in

21

order to effectively promote team formation. In our case, the query template number is a

proxy for this information, and is sufficient to produce the benefit seen on this workload.

6 Discussion

Tradtitionally, multi-query optimization is achieved at the level of the database engine. In
general, this approach to multi-query optimization requires modifications to the underlying
database management system. In this paper, we propose an alternative approach to multi-
query optimization that obviates the need for such modification. However, if it should be
convenient to make such changes, we expect that the benefits would be at least as great
as when implemented as middleware. We discovered that significant speedups were avail-
able from middleware by substituting cooperation for contention by scheduling compatible
queries together. Such improvement is important in itself inasmuch as some of the TPC-R
queries can run for tens of minutes each on our setup. We have described the query behav-
ior that leads to cooperating query teams and measured this behavior under a benchmark
workload that represents a variety of business queries. We designed an incremental schedul-
ing algorithm to promote team formation, with little ad-hoc information about the query
workload. Our examples show improvements with an affinity rule that generates hetero-
geneous teams. We demonstrate that substantial throughput improvements are achievable
with a lightweight scheduler operating as a middleware between the clients and an unmodi-
fied commercial database. Our experiments with alternate algorithms in Section 5.2 suggest
that team formation can be promoted in a variety of ways, and expect that this will be
possible in many if not most workloads which are amenable to the other techniques of Mul-
tiple Query Optimization. However, this will require at least some information to support
the selection of candidate teams. Our future work will explore methods for dynamically

determining team formation.

References

[CD98] Fa-Chung Fred Chen and Margaret H. Dunham. Common subexpression pro-

cessing in multiple-query processing. IEEE Transactions on Knowledge and Data

22

[CLS93]

[DSRS01]

[Gra99]

[Jar85]

[Lib95]

[OAA00]

[PS88]

[RSSB00]

Engineering, 10(3), May June 1998.

Ahmet Cosar, Ee-Peng Lim, and Jaideep Srivastava. Multiple query optimization
with depth-first branch-and-bound and dynamic query ordering. In Bharat K.
Bhargava, Timothy W. Finin, and Yelena Yesha, editors, CIKM 93, Proceedings
of the Second International Conference on Information and Knowledge Manage-

ment, Washington, DC, USA, November 1-5, 1993, pages 433-438. ACM, 1993.

Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining
in multi-query optimization. In Principles of the Twentieth SIGMOD-SIGACT-
SIGART Symposium of Principles of Database Systems (PODS), Santa Barbara,
CA, May 2001.

Goetz Graefe. The value of merge-join and hash-join in SQL Server. In Proceed-
ings of the 25th International Conference Very Large Databases, pages 250-253,
Edinburgh, Scotland, 1999.

Matthias Jarke. Common subexpression isolation in multiple query optimization.
In W. Kim, D. S. Reiner, and D. S. Batory, editors, Query Processing in Database
Systems, pages 191-205. Springer, Berlin, Heidelberg, 1985.

Don Libes. Ezxploring Expect. O’Reilly & Associates, Inc., 1995.

Kevin O’Gorman, Amr El Abbadi, and Divyakant Agrawal. On the impor-
tance of tuning in incremental view maintenance: An experience case study. In
Data Warehousing and Knowledge Discovery Second International Conference,

DaWaK 2000, London, UK, September 2000.

Jooseok Park and Arie Segev. Using common subexpressions to optimize multiple
queries. In Proceedings of the 4th International Conference on Data Enginering,

pages 311-319, Los Angeles, CA, February 1988.

Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and ex-
tensible algorithms for multi query optimization. In Proceedings of the SIGMOD

International Conference on Management of Data, Dallas, Texas, May 2000.

23

[Sel88]

[TL95)

[TL96]

[Tral

[ZDNS98]

Timos K. Sellis. Multiple query optimization. ACM Transactions on Database
Systems, 13(1):23-52, March 1988.

Kian-Lee Tan and Hongjun Lu. Workload scheduling for multiple query process-

ing. Information Processing Letters, 55(5):251-257, September 1995.

Kian-Lee Tan and Hongjun Lu. Scheduling multiple queries in symmetric mul-
tiprocessors. Information Sciences, 95(1&2):125-153, 1996. Elsevier Science
Publishing Inc, North-Holland.

Transaction Processing Performance Council. TPC-R Benchmark Specification.

URL http://www.tpc.org/rspec.html.

Y. Zhao, Prasad Deshpande, Jeffrey F. Naughton, and Amit Shukla. Simultane-
ous optimization and evaluation of multiple dimensional queries. Proceedings of
the 1998 ACM SIGMOD International Conference on Management of Data, in
SIGMOD Record, 27(2):271-282, June 1998.

24

