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Abstract

Java, virtual machines (JVMs) have become increasingly popular for the execution
of a wide range of applications on mobile and embedded devices. Most JVMs for such
devices use interpretation for bytecode execution. However, JVMs that use dynamic
compilation have been shown to enable significant performance improvements. One
disadvantage of using a compile-only approach in a resource-constrained environment
is that it uses more memory than interpretation to store compiled code for reuse.

With this paper, we address this limitation with a novel framework for adaptive
compiled code unloading that can be integrated into any compilation-based JVM. In
our framework, a central unloader monitors system resources to adaptively determine
the aggressiveness with which to apply unloading. The unloader utilizes both offline
and online profile information using various strategies to unload dead or infrequently
used code. We evaluate our framework using a non-optimizing compiler JVM config-
uration as well as a state-of-the-art adaptive optimization configuration (in which hot
methods are identified and incrementally optimized). We find that by using adaptive
code unloading, we reduce heap residency to significantly improve garbage collection
performance. Our results indicate that, for the benchmarks studied, our system re-
duces program execution time by 22.32% for the dynamic compiler JVM and 11.66%
for the adaptively optimizing JVM, when memory is constrained.

1 Introduction

Java Virtual Machines (JVMs) [25] have become increasingly popular for the execution of a
wide range of applications on mobile and embedded devices. Researchers estimate that there
will be over 720 million Java-enabled mobile devices by the year 2005 [32]. This wide-spread

use of Java for embedded systems is the result of the increased capability of modern and



next-generation mobile devices, the ease of program development using the Java language [6],
and the security and portability enabled by JVM execution.

A Java virtual machine (JVM) translates mobile Java programs from an architecture-
independent format, bytecode, into native code for execution. Many JVMs [31, 12, 21]
perform translation using interpretation since interpreters are simple to implement and im-
pose no perceivable interruption during execution. However, interpreted program execution
time can be orders of magnitude slower than compiled code due to poor code quality, lack
of optimization, and re-interpretation of previously executed code. As such, interpretation
wastes significant resources of embedded devices, e.g., CPU, memory, battery, etc. [34, 14]

To overcome the limitations that JVM interpretation imposes, next-generation JVMs [1,
30, 2] employ just-in-time (JIT), i.e., dynamic, compilation. These JVMs dynamically com-
pile the bytecode stream of each method as it is invoked into machine code. The resulting
execution performance is higher than for interpreted bytecodes since native method code is
stored and reused each time a method is invoked repeatedly. In addition, compilation of
an entire method at once exposes opportunity for optimization and hence, code quality is
significantly improved. As such, dynamic compilation uses underlying resources significantly
more efficiently; such use is critical for resource-constrained devices.

Compile-only JVMs require that native code blocks be stored in memory so that they
can be reused during execution. In addition, native code is much larger than their bytecode
equivalents. This requires additional heap memory and hence, introduces memory man-
agement overhead, i.e., garbage collection (GC). Commonly in mobile devices, memory is
severely constrained and consumes significant battery power. Hence, techniques are needed
that enable compile-only JVMs to make more efficient use of memory.

To this end, we have developed a code unloading framework that attempts to adaptively
balance not caching any code (as is done in an interpreter-based JVM) and caching all gen-
erated code (as in a compiled-based JVM), according to dynamic memory availability. As
such, our system trades off the overhead of memory management for that of dynamic com-
pilation: unloading improves GC performance and unloaded methods that are later invoked
are automatically re-compiled prior to execution. Since compilation time is significantly less

than GC time when memory is limited, we are able to significantly improve program per-



formance for resource-constrained devices — by up to 22.32% on average for the programs

studied.

1.1 Code Unloading Opportunities

The size of compiled native code is much larger than that of its corresponding bytecode. The
table in Figure 1(a) shows the sizes of both bytecode and compiled native code (columns
2 and 3) for the SPECJVM98 benchmarks [27]. These values include only those methods
invoked by the program, including Java libraries (but not JVM methods). We collected the
data using the dynamic, non-optimizing (fast) compiler in the IBM Jikes Research Virtual
Machine (JikesRVM) [2]. On average, native code is 6-8 times larger than bytecode. Since
a dynamic (JIT) compiler only compiles methods that are used (lazy compilation [24]), it
avoids using memory for unexecuted code. However, the code size required for execution is
still significant.

Through other empirical experiments, we found that a large portion of executed code is
used only during program startup (the initial 10% of execution). After startup, this code is
dead, i.e., never invoked again, but remains in the system and is managed by the garbage
collector. As such, dead code will be repeatedly accessed during GC: marked as live if a
mark /sweep collector is used or possibly repeatedly moved around in memory if a copying or
compacting collector is used. As such, unused methods can consume considerable resources
unnecessarily. The final column of the table shown in Figure 1(a) shows the dead code size
(in KB) in the system after the first 10% of execution time. In parenthesis is the percentage
of the total executed code size that is dead. If we are able to remove this dead code from
the system, a large amount of memory can be made available to the system for the majority
of program execution.

In addition to dead code, many methods that are live following startup or are compiled
after startup are only active for a very short time. These results are presented in Figure 1(b).
The graph shows the cumulative distribution functions of compiled code’s effective lifetime
percentage, i.e., the percentage of the effective method lifetime (the time between its first and
last invocation) to the total method lifetime (the time from its first invocation to the end

of the program). A point, (z,y), on a curve indicates that y% of methods have an effective



<
S 100 - / ‘ [/
8 4 AN N I J
Byte | Native Dead after g s ,' : 1 =7
code code startup (KB) = o T T J|_| i
Benchmarks | (KB) | (KB) (Pct. Dead) B 60 Mo P T S jess
compress 124 98.4 | 70.8 (72%) 3 (A db
db 14.5 | 1053 | 89.2  (85%) Léé { I ——— javac
jack 42.4 | 2849 | 725  (26%) v —m e ' ——— mpegautio
javac 78.3 | 4685 | 75.9  (16%) S 1 S it
jess 32.9 | 223.1 | 167.9 (75%) g 0H4-------""""""---- T iak
mpegaudio | 56.6 | 455.4 | 357.4  (79%) 5 J
mtrt 211 | 1613 | 1176 (73%) B — s
0 20 40 60 80 100

Effective Lifetime Percentage (%)

(a) (b)

Figure 1: In Table (a), we show the code size (in KB) for bytecode and native code (columns 2 and 3).
Native code size is significantly larger. Column 4 shows the amount of code (in KB) in the system after
the first 10% of execution time that is never used again (the percentage of code that is dead is shown in
parenthesis). The graph in (b) is the CDF for method effective lifetime percentage: A point, (x,y), on a
curve indicates that y% of that benchmark’s executed methods have an effective lifetime (time between its
first and last invocation) of less than % of total method lifetime (time from its first invocation to the end
of the program).

lifetime of less than 2% of total method lifetime. For most of the benchmarks, over 60%
of methods are effectively live for less than 5% of the total time in which they are in the
system.

Finally, we also found that there are some methods with long effective lifetimes that are
rarely invoked or are invoked with long intervening time intervals. Such methods are also
candidates for a more aggressive form of code unloading. During the time that a method is
inactive, we can unload the code to ease the pressure on the GC system. When the method is
later invoked, it will be recompiled dynamically. When the cost of recompilation is less than
the improvement we gain in GC performance, unloading will improve performance. Overall,
there are many different opportunities that we can exploit using code unloading to improve

program execution time.



1.2 Contributions

This paper makes the following contributions.

e Opportunity Analysis: It provides an empirical analysis of the code unloading op-
portunities (Section 1.1).

e Analysis Framework: It presents a novel code unloading framework that automat-
ically unloads native code to reduce the overhead of performing garbage collection.
This framework facilitates the implementation and empirical evaluation of unloading
strategies.

e Adaptive Algorithms: Since heap memory use is dynamically changing, we must
account for such changes to improve performance. This paper describes a number of
techniques that use dynamically changing program and system memory behavior to
guide code unloading.

e Experimental Results: It presents an empirical evaluation of different variations
of our adaptive unloading techniques. The results indicate that our system enables
average performance improvements of 22.32% for a non-optimizing compiler system and
11.66% for a state-of-the-art adaptive optimization system for the programs studied.

2 The Code Unloading Framework

To empirically evaluate the benefit enabled by unloading compiled code, we designed the
unloading framework shown in Figure 2; this framework can be incorporated into the ar-
chitecture of any JVM (that implements dynamic compilation). The darkened components
in the figure identify our JVM extensions. The Code Unloader is the control center of our
system. It decides when methods should be unloaded as well as which methods to unload.
When a method is selected for unloading, the unloader replaces its address (stored in a table)
with that of a recompilation stub. Once the address is replaced, the native code block for the
method is no longer reachable by the program and the storage will be reclaimed during the
next garbage collection cycle. The recompilation stub is similar to the compilation stub used
for lazy, dynamic, compilation [24, 2] but contains additional information that guides recom-
pilation if reloading should occur. If the method is ever invoked again, the recompilation
stub causes it to be compiled again prior to execution.

The decisions of the code unloader are guided by information collected from a number
of different sources. First, we collect online profile information about the invocation activity

of each method. To enable this, we extended the dynamic compiler to instrument methods
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Figure 2: Overview of our code unloading framework

as they are translated with instructions that count method invocations. We consider both
exhaustive and sample-based invocation counts; in addition, we decay the counter values [4]
so that more recent activity is given higher priority. In addition, the unloader considers
profile statistics that are collected off-line. The framework is flexible and hence, can be
configured to disregard either type of profile information or to consider additional statistics.
Finally, the unloader considers dynamic resource characteristics collected by the Resource
Monitor component.

The resource monitor forwards information about resource behavior to the unloader.
This component can be easily extended to monitor various types of resources. Currently, we
use it for memory; the monitor collects heap residency data, garbage collection invocation
frequency, and native code size. Using this information, the unloader can decide adaptively
when unloading should commence. That is, if plenty of resources are available, e.g., no GCs
are occurring, residency is low, etc., the unloader suspends all unloading activity. When re-
sources become heavily loaded, the unloader will initiate unloading. In addition, it uses more
aggressive unloading strategies (described below) as resource availability becomes critical.

The unloading strategies are algorithms that use resource consumption, application be-
havior, and offline statistics to answer two questions: “When should unloading take place?”
and “What methods should be unloaded?”. To answer these questions, the unloader must

predict the cost of unloading as well as its benefit. Moreover, since the unloader (and other



framework components) operate while the program is executing, it must be very efficient so
as not to impose significant overhead, i.e., CPU time, memory use, battery consumption.

We describe the unloader decision strategies in the following subsections.

2.1 When to unload?

To trigger code unloading, the resource monitor measures memory usage periodically. One
way in which we can implement this is to use a timer. However, a regular time interval will
not necessarily reflect memory activity. We may miss important events if the period is too
long or introduce overhead if the period is too short. In addition, we only want to know when
the available memory is getting low. To catch such program behavior, we instead perform
measurement, during garbage collection since GC is only invoked when the available heap
memory becomes limited. At the end of each garbage collection cycle, the resource monitor
measures various GC statistics and forwards them to the unloader.

One possible measurement that indicates memory usage is heap residency. If the system
is short of memory, the heap residency will be high following garbage collection. Currently,
users of our system can specify a threshold of heap residency as a command line parameter
and use it to trigger the unloading process. One disadvantage to using heap residency is
that doing so may raise a false alarm. Some programs may allocate only at the beginning of
their execution. In this case, the heap residency may remain high and exceed the threshold;
however, it is not necessary to perform unloading continuously because no additional allo-
cations will be performed. As such, heap residency alone is not accurate enough to enable
the unloader to make the correct unloading decision.

To avoid false alarms, we use heap residency information indirectly by considering GC
frequency. If memory availability becomes severely limited and heap residency remains high,
the garbage collector will run frequently. To capture this behavior, the resource monitor
forwards the percentage of execution time (so far) that is spent in garbage collection to the
unloader to adjust the frequency of the unloading sessions.

As we articulated in Section 1.1, for most benchmarks over 70% of code is dead by
completion of the first 10% of program execution time (startup period). To exploit this

behavior, the unloader applies unloading more aggressively during this time. That is, we use



different unloading strategies for different phases in program lifetime. Since we cannot know
the program lifetime (and hence, the number of seconds during the initial 10%), we estimate
it using GC cycles. We consider the first 4 GC cycles (empirically determined and can be
specified at the command line) as program startup time. During this period, we base the
unloading decision on the heap residency alone. This facilitates more aggressive unloading
by the unloader. Following this period, we use the percentage of time spent in GC to avoid
false alarms in the steady state of program execution.

To reduce the overhead of unloading, the unloader also considers the frequency with
which it triggers unloading. If the unloader has performed unloading within the past several
GCs, it foregoes unloading until a longer period of time has past. This “unloading window”
contains a fixed number of garbage collection cycles and unloading is performed by the
unloader only once for each window. The resource monitor adjusts the size of this window
dynamically according to the runtime memory status. A smaller window indicates that more
aggressive code unloading is needed. Currently, we use a simple algorithm to determine the
unloading window size which divides a minimal window size specified by a user (default is
10) by the percentage of time spent in GC; this value is decremented upon each GC and
when it reaches 0, unloading is performed.

At the end of each unloading session a new unloading window size will be determined
using this algorithm. In addition, at the end of each GC cycle, the unloader estimates
the window size for the next unloading session. If the unloader finds that the estimated
window size is smaller than the currently used window size (indicating that memory has
become highly constrained), the unloader adjusts the window size to current memory status

to trigger more aggressive (more frequent) unloading.

2.2 What to unload?

To determine which methods to unload, we use both online and offline profiling. The pro-
files we gather identify the effective lifetimes of methods (the time between first and last
invocation). To collect profiles online, we modified the compiler to instrument methods with
instructions that are executed upon method return. We keep a mark bit for each method

compiled; each time a method returns, it first sets its mark bit to 1. When the unloader



triggers unloading, it unloads all methods with unmarked bits and resets all marked bits.
This mechanism unifies unloading of dead and infrequently invoked methods.

This simple online profiling approach may be too aggressive if the unloading interval
is very short. When the unloader is overly aggressive, many methods that are unloaded
are later re-used requiring recompilation (which introduces overhead). However, the adap-
tive unloading window implemented by the resource monitor guarantees that the unloading
interval will be long enough to avoid such overhead.

In addition, this profiling approach is exhaustive (we refer to it as On-X in our results
— “On” for online, “X” for exhaustive). That is, it guarantees that every method that is
invoked since the last unloading session will have its mark bit set. As such, the unloader
will only unload methods that have not been used (since the last unloading session). Such
exhaustive profiles introduce overhead for instrumentation in every method invoked.

To reduce the overhead of instrumentation, we also considered a sample-based approach
to online profiling, called On-S. For this strategy, the compiler inserts no instrumentation.
Instead, the resource monitor periodically (default is 10ms) sets the mark bits of the two
top methods on the invocation stacks of application threads. We determined this value
empirically using the trade off between the significant overhead required for stack scans
and incorrectly unloading a used method. The latter causes used methods to be unloaded
and recompiled if reused, introducing overhead that may negate any benefit achieved from
unloading. By marking only the top two methods on the stack, we are attempting to balance
the two overheads.

This sample-based approach is also adaptive in that it can be turned off when there
is sufficient memory available. As such, we can turn off all overhead that our unloading
system may introduce when memory is not constrained (or possibly when the mobile device
is plugged in). Using exhaustive profiling, instrumented execution is always used (turning it
off would require recompilation). Both online approaches trigger code unloading only when
memory becomes constrained.

We also investigated the efficacy of using a combination of both offline and online pro-
filing information. Offline, we collected the total invocation count, which we refer to as

maxCallCount hereafter, for each method. We annotated this value in the bytecode of the



class file as a method attribute. We modified the JikesRVM to recognize the mazCallCount
attribute. To enable this, we extended an annotation system that we developed as part of
prior work [23]. We used the same input offline as we did online; that is, we had perfect
information about the maxCallCount.

We investigated variants that make use of mazCallCount. For the first, called OnStack,
we instrument each method prior to its return. The inserted instructions increment a counter
and check whether the counter equals mazCallCount. If the counter and mazCallCount are
equal, indicating that this is the last invocation of the method, the method is unloaded
immediately prior to the transfer of control back to the method caller. The second variant,
G CBased, triggers unloading during garbage collection when memory availability becomes
severely limited (as indicated by the resource monitor). We instrument methods with in-
structions that increment a counter for each invocation. During GC, the system checks the
the invocation counts of all methods and unloads any method with a count equal to the maz-
CallCount of each. OnStack performs incremental unloading (and requires an extra compare
instruction) but does not adapt to memory availability. GCBased unloads all methods at
once that have reached their maximum invocation count. Neither offline variant considers
infrequently invoked methods for unloading.

We also use offline profile information to indicate to the unloader which methods are
used most frequently. As described in Section 3.3, we use this information to treat such hot

methods separately.

2.3 JVM Configuration: Baseline and Adaptive Compilation

In the evaluation of our unloading system, we consider two different types of JVM configura-
tion. The first is fast compilation, in which all methods invoked by an executing program are
compiled with a very efficient compiler that performs no optimization. This configuration is
similar to that of the Microsoft Common Language Runtime (CLR) [5] of .NET Compact
Framework [35] and other JVMs that use a simple JIT for bytecode method translation. A
JVM that uses fast compilation avoids the compilation overhead and reduces the complexity
of a JVM that implements a highly optimizing compiler.

The second configuration that we consider is adaptive compilation. The adaptive con-



figuration is a technique used in state-of-the-art JVMs [2, 9, 30, 15] that enables optimized
performance with very little compilation and optimization overhead. Two compilers are used
by such systems, one fast, non-optimizing, and one slow, highly- optimizing. ! All methods
are initially fast-compiled without optimization. In addition the fast-compiler instruments
each method so that online profiling can be performed by the system. As methods execute,
various statistics are gathered, e.g., method invocation counts, hot call paths, etc., to help
the system identify hot methods. Hot methods are recompiled using the optimizing com-
piler. Instrumentation is inserted for optimized methods also, so that additional levels of
optimization can be applied as needed. As such, methods that impact overall execution time
execute very efficiently without the overhead required to optimize all methods.

In our unloading system, using the adaptive configuration, methods may be compiled
at different optimization levels. As mentioned above, a method slowly progresses through
optimization levels according its hotness. All levels of optimization require significantly more
time than fast compilation. Therefore, it may be more efficient to recompile unloaded code
using fast compilation. However, an optimized method is hot; if it remains hot, it will again
have to progress through the optimization levels requiring a long period of unoptimized
execution and significant compilation overhead. Thus, the recompilation overhead due to
the unloading of methods that are later reused imposes a much larger cost.

We investigated three strategies to improve the efficiency of code unloading when using
an adaptive optimization configuration. For the first, we add an optimization level hint to
the recompilation stub. If the unloader unloads a hot method that is later invoked, the
system recompiles the method at the optimization level it was at when it was unloaded.
This strategy eliminates unoptimized execution of hot methods and is called RO (Reload
Optimized methods using the optimization hint) in our results. With the second strategy,
we avoid unloading hot methods altogether; the unloader checks whether a method has been
optimized and only unloads it if it was fast-compiled. We call this strategy FO (Exclude
unloading of Optimized methods). However, some programs have a relatively large percent-

age of hot methods. For example, javac has 78 out of 876 hot methods while db only has

'HotSpot [15] uses a fast interpreter and a slow, highly-optimizing compiler instead of two compilers, to
achieve the same effect.



3 out of 151 hot methods. Our third strategy accounts for such cases. Optimized methods
will be unloaded but we delay unloading of them until they are unused for two consecutive

unloading sessions. We call this strategy, DO(Delay unloading of Optimized methods).

3 Results

To evaluate the efficacy of code unloading we performed a series of experiments. In this

section, we describe our experimental methodology and then present our results.

3.1 Experimental Methodology

We implemented our code unloading framework in an open source dual-compiler JVM from
IBM T.J. Watson Research Center, called JikesRVM (v2.2.1) [2, 18]. JikesRVM is written in
Java but all VM code is built into the boot images; as such, we do not consider this code as
part of our code unloading evaluation. We evaluate code unloading using two configurations:
FastBaseSemispace and FastAdaptiveSemispace. “Fast” indicates that the VM code is built
into the boot image. “Semispace” indicates that the garbage collector used in the system
is a copying collector. “Base” indicates that it is the fast, non-optimizing configuration.
“Adaptive” indicates that adaptive optimization is used (methods are initially fast compiled
and instrumented; hot methods are optimized at increasingly higher levels).

To gather our results, we repeatedly executed a set of benchmarks on a dedicated Toshiba
Protege 2000 laptop (750Mhz PIIT Mobile) running Debian Linux v2.4.20. The benchmarks
include the SpecJvm98 suite [27] and Java Cup v2.0 [17] (jcup). We execute the benchmarks
using the large input size (100) for all SpecJvin benchmarks and “parser.cup” for jcup
(provided as part of the Java Cup distribution). For each benchmark, we identified the
minimal heap size that each application can run and used that size in each of our experiments.

We show the general statistics of the benchmarks in Table 1. We gathered this data using
the reference system that does not include any extensions for our code unloading framework.
We refer to this system as clean. This is the system to which we compare our unloading
strategies. The left half of the table is for the fast configuration and the right half is for the
adaptive configuration. For each half, the first column is the native code size in kilobytes

(KB). Only those methods that are invoked are compiled (application and library). The



Fast Configuration Adaptive Configuration
Code Size | Init Heap Exec Code Size | Init Heap Exec
Benchmarks (KB) Size (MB) | Time (s) (KB) Size (MB) | Time (s)
compress 98.4 20 89.2 143.8 22 38.6
db 105.3 22 109.4 157.8 24 107.4
jack 284.9 6 874.5 372.4 9 181.2
Jjavac 468.5 24 190.9 582.8 26 201.4
jeup 167.2 6 4.0 237.6 7 8.6
jess 223.1 8 467.8 311.8 11 206.1
mpegaudio 455.4 9 74.5 541.4 12 42.9
mtrt 161.3 18 502.2 237.8 22 93.8

Table 1: Benchmark Characteristics

second column shows minimum size of the heap that is required for each benchmark to run
to completion (identified empirically). The last column is the application execution time
using the minimal heap size. We must assign larger minimal heap sizes for execution using
the adaptive configuration since the execution environment includes the measurement and

optimization system that enables adaptive optimization.

3.2 Fast JVM Configuration

We first present results for the fast configuration. For this configuration, all methods are
fast compiled without optimization when initially invoked.

We investigate the four different variants described in Section 2.2: Off-OnStack, Off-
GCBased, On-X and On-S. The first two (with the “Off-” prefix) use a mazCallCount for
each method, which we collected using offline profiling. This value is the maximum number
of invocations for each method. We use this perfect information to guide both incremental
unloading (Off-OnStack) and adaptive unloading ( Off-GCBased). The other variants, On-X
and On-S, use online profiling information only. “X” indicates exhaustive profiling, and “S”
indicates sample-based profiling. All variants except for Off-OnStack trigger unloading only
when memory becomes constrained.

Figure 3 shows the impact that code unloading has on performance. The y-axis is the
percent reduction in execution time over the clean, reference system. We show data for each
variant and each benchmark. The last group of bars shows the average improvement across
all benchmarks.

By reducing the amount of live data in the system, code unloading, in general, signifi-

cantly improves performance since less time is spent in GC. Most benchmarks have positive
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Figure 3: Percent improvement in execution time due to code unloading for the fast configuration. These
results show improvements over the clean, reference system (no unloading). Bars with the “Off-” prefix use
an offline profile and those with an “On-” prefix use online profiling. For online measurements, “X” indicates
exhaustive profiling and “S” indicates sample-based profiling. For offline measurements, “OnStack” indicates
incremental unloading as soon as method returns from its last invocation and “GCBased” indicates that
unloading is performed only when resources become constrained.

performance improvement with our unloading mechanism. Improvements for jack, jess and
mirt are significant (over 40%). This is due to the continuous memory allocation require-
ments of these three applications. When memory is critical, continuous memory allocations
trigger frequent garbage collections, and thus frequent and effective unloading. Alternately,
compress and mpegaudio have no performance improvement. This is because both bench-
marks have relatively small memory requirements (18 and 3 GC cycles, respectively). In
this case, the unloading benefit is smaller than the overhead introduced by profiling and
unloading mechanisms. However, the overhead for these two benchmarks is less than 5% for
all strategies. For On-S, the overhead is less than 1%.

For the two methods that use annotation of offline profile information (mazCallCount),
Off-GCBased performs better than Off-OnStack for most benchmarks since Off-OnStack
must compare the invocation count against mazCallCount before every method return.
These results also indicate that releasing dead code as soon as possible, i.e., incrementally,
is not necessary.

For the two methods that use online profiling, On-S performs better than On-X due
to its minimal profiling overhead. For example, On-S reduces the overhead introduced
by exhaustive profiling for mpegaudio from —3.02% to —0.30%. On average, On-S is the
best among all four variants (up to 58.82% and with average of 22.32%). The average



improvements of Off-OnStack, Off-GCBased and On-X are 18.19%, 20.29% and 19.41%,
respectively. Online profiling does not require ahead-of-time efforts of offline profiling and
annotation, and yet enables similar performance improvements; in some cases even better
performance. Online techniques can enable improvements in performance to a larger degree
since they consider infrequently invoked methods (not just dead methods). As such, these

results indicate that both exhaustive online profiling and offline profiling is unnecessary.

Compilation Time (s) Garbage Collection Time (s)
Benchmarks || clean | OfGCBased | OffOnStack | OnX | OnS clean | OfGCBased | OffOnStack OnX OnS
compress 0.03 0.02 0.03 0.03 0.04 8.80 8.86 8.82 8.86 8.77
db 0.03 0.03 0.03 0.03 0.04 43.39 36.51 37.35 37.22 36.02
jack 0.07 0.10 0.08 0.71 1.44 857.47 483.19 518.18 | 442.78 | 342.62
javac 0.15 0.18 0.16 0.23 1.09 161.16 144.55 155.04 148.98 151.71
jcup 0.05 0.05 0.05 0.05 0.06 3.17 2.74 2.72 3.13 2.67
jess 0.13 0.16 0.10 0.15 0.39 438.15 238.77 253.72 | 240.54 | 234.36
mpegaudio 0.08 0.07 0.07 0.07 | 0.07 1.57 1.40 1.41 1.41 1.40
mtrt 0.04 0.04 0.03 0.05 0.12 473.28 191.92 198.09 | 212.77 | 210.98

Table 2: Comparison of compilation time and garbage collection time for the fast configuration using code
unloading.

To better understand the differences across variants, we show, in Table 2, the execution
time (in seconds) spent in dynamic compilation (left half) and in garbage collection (right
half). For most strategies and benchmarks, the compilation time of the unloading system is
longer than that of the clean system. This illustrates the recompilation overhead introduced
by our unloading mechanism. Variant On-S has the largest overhead in most cases because
it unloads code more aggressively than others and thus makes more incorrect unloading
decisions. Each wrong unloading will incur the overhead of recompilation. However, in many
cases, On-S also achieves the best garbage collection time savings. Thus, incorrect unloading
decisions made by On-S are sometimes “correct” from the perspective of memory. The
results indicate that though we introduce overhead for recompilation, the garbage collection
savings are much greater. As such, we are trading off GC time for less-expensive compilation

overhead to improve program performance.

3.3 Adaptive JVM Configuration

In this section, we present our experimental results for the adaptive configuration. We
collected data for the five different online unloading strategies described in Section 2.3.

For the three sample-based online variants, we handle hot methods specially. We annotate
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Figure 4: Percent improvement in execution time due to code unloading using the adaptive configuration
over the clean system. In each case, we use online profile information (“On-" prefix) to guide unloading
decisions. We present five unloading variants: X uses exhaustive profiling information (all others use sampled-
profiled information), SEO avoids unloading optimized (hot) methods, SDO delays unloading of hot methods
for a single unloading session, SRO recompiles the reloaded hot methods at the optimization level they were
previously optimized at (the default is to fast-compile such methods and to re-discover their “hotness”).

hot methods given the optimization decisions made by the adaptive system during offline
execution of each benchmark. We do not annotate the actual level, we only indicate that a
method is hot if it is selected for optimization at any level offline.

Since the fast configuration indicates that online profiling achieves better performance
than offline, we report results for our online profiling strategies only, for the adaptive con-
figuration. The five unloading strategies that we evaluate in this section are On-X, On-S,
On-SEQ, On-SDO, and On-SRO. Each has a prefix of “On-" to indicate the use of online
profile information. On-X uses the exhaustive profile strategy and all others use the sample-
based (indicated by the use of S) approach. On-X and On-S use the default unloading
strategy: if a method is unmarked when an unloading session begins, then it is unloaded.
All other strategies (On-SEO, On-SDO, and On-SRO) are variants on the sample-based
profile strategy. On-SEQO regards optimized methods as hot and excludes them from the
unloading candidates list. On-SDO delays unloading of optimized (hot) methods for two
unloading sessions (the default is that they are considered for unloading during the next
unloading session).On-SRO attempts to avoid the overhead of adaptive learning (the time
for the adaptive system to discover that the method is hot for a second time when it is
reloaded) by optimizing the method at the level it was at when it was unloaded (if any).

Figure 4 shows the percent improvement enabled by our code unloading framework over



the clean, reference, system using the adaptive optimization configuration. Similar to the
results using the fast configuration, the results for the adaptive configuration indicate that
sample-based profiling (On-S) is able to reduce execution time to a greater degree than the
exhaustive profiling strategy (On-X). On average, On-X and On-S have 8.57% and 9.09%
performance improvements, respectively, over the clean system for the programs studied.
javac and mpegaudio are two cases in which On-X performs better than On-S. This is
because the On-S strategy is too aggressive and unloads optimized code that is later used
again. Upon reloading, these methods are fast-compiled and instrumented. The adaptive
system later finds that the methods are (still) hot, and optimizes them. These two sources of
overhead (extra compilation and unoptimized execution during learning period) significantly
degrade the performance of the On-S strategy.

The sample-based variants improve the situation, however. On-SEO (exclude hot meth-
ods from unloading candidate list) enables the largest improvement in most cases (11.66% on
average). This indicates that when we mistakenly unload optimized methods, the penalty
is high. In addition, it means that hot methods remain hot throughout the execution of
the program. On-SDO (delay unloading of hot methods until the next unloading session)
does not perform as well as On-SEO because the overhead of inaccurate unloading is still
too high. On-SRO (re-optimized hot methods at their previous level upon reload) performs
worse than On-SDO in most cases and can significantly degrade performance (see javac and
compress). The degradation is due to the re-optimization overhead incurred: Either opti-
mization is unnecessary since the method is no longer hot, or the cost of optimization is
not amortized by the method’s remaining execution time. On average, On-SDO has 9.85%
improvements and On-SRO has 6.50% improvements over the clean system.

Tables 3 and 4 the breakdown of compilation and garbage collection time, respectively,
with and without unloading. clean is the reference system; the other columns show the effect
of each of the adaptive unloading varients. The data indicates that compilation time is more
expensive than fast compilation. However, GC time still outweighs this overhead since only
hot methods are optimized. As such, each variant significantly reduces GC overhead which
enables the overall performance improvements shown in Figure 4. On-SEQO introduces the

least amount of compilation overhead for reloading, in most cases.



Benchmark Compilation time (s)

clean | On-X | On-S | On-SEO | On-SDO | On-SRO
compress 0.37 0.34 0.46 0.39 0.42 0.57
db 0.34 0.38 0.43 0.42 0.52 0.38
jack 0.34 0.91 1.60 1.31 1.61 1.63
javac 0.58 0.80 2.32 1.90 1.97 2.74
jeup 0.07 0.08 0.10 0.10 0.09 0.09
jess 1.09 1.37 1.36 1.09 0.97 1.60
mpegaudio 0.86 0.92 0.98 1.09 1.11 1.16
mtrt 1.26 1.27 1.24 1.00 1.34 1.31

Table 3: Comparison of compilation time for the adaptive configuration using code unloading.

Benchmark Garbage collection time (s)

clean On-X On-S | On-SEO | On-SDO | On-SRO
compress 10.72 10.60 11.07 10.62 11.04 11.81
db 52.02 45.96 45.78 45.61 47.76 46.14
jack 166.24 | 154.18 | 149.03 140.71 153.41 149.85
javac 168.49 | 154.38 | 161.70 148.39 154.56 193.35
jeup 7.66 6.09 5.73 5.78 5.82 6.32
jess 190.24 | 136.19 | 132.36 126.44 127.28 131.53
mpegaudio 12.39 12.28 12.17 14.61 14.33 14.53
mtrt 74.19 63.75 63.33 66.03 64.94 66.53

Table 4: Comparison of garbage collection time for the adaptive configuration using code unloading.
3.4 Energy Savings Due To Code Unloading

Memory access is one of the largest consumers of battery power. In addition, execution of
Java programs consumes significant amounts of memory [34, 14]. Since the performance
improvements due to code unloading result from reductions in garbage collection overhead,
and since the GC accesses significant amounts of memory, code unloading should also reduced
power consumption. To evaluate this hypothesis, we performed a series experiments that
measure the impact of code unloading on battery life.

Using the same infrastructure (a Toshiba Protege 2000 laptop with a 750Mhz PIIT Mobile
processor running Debian Linux v2.4.20), we collected Advanced Power Management(APM)
data [3] exported via the /proc operating system interface. We charged the laptop battery
completely then executed a script that measured APM data periodically. When the battery
level reached 90%, the script invoked a JikesRVM configuration using a benchmark as input.
The script then waited for the program to terminate then measured the APM data again.
We repeatedly performed the experiment for each benchmark and JikesRVM configuration.
We measured the percent of the battery consumed by both the clean JikesRVM system and
the sample-based online strategy using the fast configuration.

The percent battery consumption due to program execution with and without code un-



N
o
|

= without unloading (clean)
m unloading: On-S

=
(&)]
A

Percent of battery life used(%)
H
a1 o
A IR

o
| -

¢S FFSE LS

Figure 5: Percent of battery life used for a single run of each benchmark program using the fast configu-
ration. Data for the clean system as well as the sample-based, online, unloading system is shown.

loading is shown in Figure 5. The improvement in performance does translate to a reduction
in battery consumption. As we saw in the prior figures, improvements for jack, jess, and
mtrt are significant. These benchmarks reduce consumption of battery life by more than
half. All other benchmarks have the same consumption behavior with and without unload-
ing. We believe that there are minor savings for these benchmarks. However we are unable

to measure the difference since APM data reports measurements at a very coarse grain.

4 Related Work

There are many research efforts that have focused on code size reduction for restricted
resource environments. The technique that is most related to our work is code pitching used
in Microsoft .NET Compact Framework [29]. The virtual machine for this framework uses
a JIT compiler to translate intermediate code (CIL) into native code without optimization.
When the total size of the code heap exceeds a maximum, the entire contents of the buffer
are “pitched” (discarded) [28, 29]. This form of unloading does not consider any dynamic
information (except total code size) to determine what and when to unload. As such, it will
perform unloading unnecessarily when resources are not constrained. In addition, it discards
all code (even hot methods) requiring recompilation of all methods that are invoked in the
future.

The HotSpot technology of Sun’s Java virtual machine [15, 11] limits the size of compiled

code by only compiling the hottest methods and interpreting all other methods. In contrast to



their “never cache cold methods” strategy (which imposes large re-interpretation overheads),
our framework enables a more flexible code caching strategy which can adapt to system
resource status: whether and how long a method’s code is cached is dynamically decided by
the code unloader according to the runtime information and system memory status.

Other mechanisms for code size reduction that have been pursued by other researchers
include compression. Compression is a compact encoding of data to reduce storage and
transfer requirements. There are a number of general compression techniques for Java byte-
code [26, 7, 10]. Some of which consider program behavior to guide compression. In [13], the
authors apply data compression techniques to compress infrequently native code to reduce
the code size. They use offline profiling information to select the methods to be compressed.
Another type of code compression technique is code abstraction. In [22], the authors use pro-
cedural abstraction to save code size. This technique identifies repeated sets of instructions
and replaces them with a procedural call. The authors of [10], implement a similar technique
in which they factorize the common bytecode instruction sequence into macros. All such com-
pression techniques require some form of online decompression or decoding and must be very
efficient since they consumes valuable resources. Java bytecode optimization [33, 16, 19, 20]
can be also thought of as a form of compression since it reduces redundancy in the pro-
gram data and instructions. All these techniques for code size reduction can be considered
bytecode preprocessors; while our work tries to remove dead or infrequently used code at
runtime. All such bytecode compression techniques are complementary to our unloading
system since we only consider native code as unloading candidates.

The energy behavior of JVMs and Java applications is characterized in [34, 14]. Both
works confirm that an interpreter consumes significantly more energy than in the JIT com-
piler mode and verified that the JIT approach is a better alternative for embedded JVMs
from both performance and energy perspectives. In [8], G. Chen et al. focused on the energy
impact of various parameters of a mark/sweep garbage collector in a multi-bank memory ar-
chitecture and proposed a GC-controlled leakage energy optimization technique which shuts
off memory banks that do not hold live data. Our work is complementary to each of this

and similar power-optimizing techniques.



5 Conclusions

In this paper, we first investigate the opportunity of unloading compiled code in JIT-based
JVMs for mobile and embedded devices . We find that, for most benchmarks, over 70% (in
size) of code is dead after the initial 10% of execution time, and over 60% of methods are
active for less than 5% of their own lifetime. These results indicate that there are many
opportunities that we can exploit using code unloading to improve overall performance. We
next propose a code unloading framework (that can be integrated into any JVM that imple-
ments dynamic compilation) that exploits this performance potential. In our framework, a
code unloader uses information about the system memory status to determine when to initi-
ate an unloading and utilizes both online and offline profile to select methods for unloading.

We implement our code unloading framework in IBM JikesRVM and investigate a num-
ber of different unloading strategies. Through experimentation using both unoptimized JIT
configuration and an adaptive optimization configuration, we find that by adaptively unload-
ing the dead and infrequently used code, we can not only reduce the memory requirements
of the JVM runtime but also achieve significant performance improvements. Overall, our
best strategies enable an average performance improvement by 22.32% for the unoptimized

configuration and 11.66% for the adaptive configuration.
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A Other experimental results

This appendix shows some results collected under the same experimental environment that have
not been put into the paper, including the impact of code unloading on memory footprint and the
adaptation of the code unloading framework, etc.

A.1 Memory footprint reduction of Code Unloading

The most direct impacts of code unloading should be the reduction of the memory footprint of the
Java virtual machine. Table 5 gives the average live heap size (number of bytes (in KB) contained
in the heap following each garbage collection) for each variants of the fast configuration. The four
variants have very similar results: for most benchmarks, the average live heap size has a reduction
of over 100KB. Note that this reduction is not the size of the code that is unloaded. It only
indicates how the memory usage reacts to the unloading mechanism. Our further analysis into
these benchmarks revealed that the reduction of average heap residency is highly correlated with
the program’s memory usage pattern.

Average Live Heap Size (KB)
Benchmarks || clean | Off-GCBased | Off-OnStack | On-X | On-S
compress 12475 12367 12363 | 12408 | 12399
db 11648 11506 11489 | 11521 | 11522
jack 3646 3494 3512 | 3455 | 3375
javac 12744 12625 12678 | 12635 | 12538
jeup 3040 2897 2860 | 2990 | 2901
jess 4330 3990 4001 | 3991 | 3971
mpegaudio 5433 5357 5337 | 5411 | 5439
mtrt 10162 9844 9848 | 9873 | 9864

Table 5: Average live heap size for the fast configuration. Clean is the default, reference system. The other
columns show the impact of using code unloading using online and offline profile information.

To better understand how the memory usages of programs react to the unloading mechanism,
Figure 6 shows the heap residency curves for four typical benchmarks. The x-axis is the execution
time of each benchmark in seconds. The y-axis shows is heap residency in kilobytes. A point on a
curve indicates the amount of live data in the heap at the end of a garbage collection cycle. The
vertical dashed lines show the program termination time. Since the curves of all four unloading
variants are similar, we show only the curves of the clean version and the On-S variant. jess and
mirt (Figure 6(a) and (b)) are representatives of the benchmarks with a significant reduction of
memory footprint. Totally, there are 690 and 656 garbage collection cycles during the execution of
the clean version for jess and mirt respectively, which indicates very frequent memory allocation
requirements of these two benchmarks. At all points, On-S is lower than the clean version with
an apparent gap. The dashed lines of these two figures show that the programs terminate much
earlier when code unloading is used.

Figures 6(c) and (d) show the curves of two benchmarks for which unloading has little benefit.
For compress, the On-S curve is only slightly below the clean version. This is due to its small code
size and large total heap size. Furthermore, only 18 garbage collection cycles are triggered during
the execution of compress, which means compress requires much less frequent memory allocations
than that of jess and mirt. mpegaudio is a more extreme example: it uses very little heap data and
there are only 4 garbage collection cycles that all occur at program startup time. A small number
of cycles provides our system with little opportunity for unloading. However, it also indicates
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Figure 6: Examples of live heap size patterns for the fast configuration

looser memory constraints and smaller necessity of code unloading. Our unloading system is able
to identify such situation and as such adapt the amount of overhead it introduces. The dashed lines
in these two figures show that the On-S version terminates at almost same time as clean version
does for both benchmarks.

The code unloading techniques have similar impacts on the memory footprints in the adaptive
configuration. In Table 6, we list the average live heap size data of all benchmarks using different
variants for the adaptive configuration. It is in the same format as Table 5. For almost all
benchmarks, the reduction of average live heap size is more than 100K B. Again, the best case is
jess, which has more than 400K B reduction for all our unloading variants. Note that, compress and
mpegaudio also have big reduction of average live heap size this time because the adaptive system
aggravates the memory constraints of these two applications, which triggers more aggressive code
unloading. The live heap size curves of benchmarks are not shown here because they are similar
to those in the fast configuration except that the gaps between clean version and On-S version are
larger due to larger code size produced by the adaptive system.

A.2 Adaptation to the Memory Status

As we describe in Section 2.1, our code unloading framework attempts to find the best balance
between “always caching all compiled code” and “never caching any code” according to the run-



Average Live Heap Size (KB)
Benchmarks | clean | On-X | On-S | On-SEO | On-SDO | On-SRO
compress 14376 | 14065 | 14310 14135 14196 14492
db 13316 | 13273 | 13280 13269 13261 13146
jack 5334 | 5239 | 5120 5118 5127 5116
javac 14521 | 14368 | 14274 14254 14262 14435
jeup 4726 | 4609 | 4526 4527 4528 4584
jess 6179 | 5771 | 5749 5702 5702 5709
mpegaudio 8262 | 8156 | 8134 8147 8115 8112
mtrt 11610 | 11320 | 11332 11548 11321 11367

Table 6: Average live heap size for the adaptive configuration. Clean is the default, reference system.
The other columns show the impact of using code unloading using exhaustive and different sample profiling
strategies.
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Figure 7: Adaptation of code unloading to memory criticalness

time memory status. When memory constraints are loose, caching more compiled code improves
performance by avoiding the recompilation overhead. However, when memory constraints become
critical, caching less compiled code will gain better performance by reusing the memory occupied
by the compiled code to reduce the garbage collection time. Figure 7 shows how aggressive the
code unloader of the On-S version unloads compiled code at different initial heap sizes. The x-
axis is the initial heap size we give in the command-line to run the application (normalized to the
minimal heap size used in Table 1 column 3). The y-axis shows the total code size unloaded by
the code unloader during the execution time. To be clearer, we split all benchmarks to two figures
with different y-axis scales. Figure 7(a) contains curves for compress, db, jcup and mpegaudio and
Figure 7(b) is for jack, javac, jess and mtrt. For all benchmarks, the unloaded code size decreases
when the initial heap size increases, which indicates that the code unloader does less aggressive
unloading when the memory becomes less critical. Most of curves drop to zero before the initial
heap size grows to 3 times of the minimal heap size, where the code unloader decides to cache all
compiled code due to the loose memory constraints. Benchmarks in Figure 7(a) represent those
applications with few garbage collocation cycles during executions even at the minimal heap sizes,
in which case the code unloader only tries to unload dead code at program startup time if the heap
residency is higher than a certain threshold. Since these benchmarks do not have critical memory



constraints, increasing heap size does not affect the unloading decision dramatically. By contrary,
the benchmarks in Figure 7(b) have very severe memory constraints under the minimal heap size.
However, such memory constraints become looser quickly when the initial heap size increases. As
such, the code unloader performs very aggressive unloading strategies at the most critical memory
level and decreases the aggressiveness of unloading dramatically with larger initial heap size. In
short, Figure 7 indicates that our code unloading framework is able to adapt the aggressiveness of
unloading to the real memory status.



