NWSLite: A Non-Parametric Prediction Utility for
Resource-Restricted Devices

Salim Gurun

ChandraKrintz

Rich Wol ski

Computer Science Department
University of California, Santa Barbara
{gurun,ckrintz,rich}@cs.ucsh.edu

Abstract

Computation off-loading, i.e., remote execution, has
been shown to be effective for extending the computa-
tional power and battery life of resource-restricted de-
vices, e.g., hand-held, wearable, and pervasive comput-
ers. Remote execution systems must predict the cost of
executing both locally and remotely to determine when
off-loading will be most beneficial. These costs however,
are dependent upon the execution behavior of the task be-
ing considered and the highly-variable performance of the
underlying resources, e.g., CPU (local and remote), band-
width, and network latency. As such, remote execution
systems must employ sophisticated, prediction techniques
that accurately guide computation off-loading. Moreover,
these techniques must be efficient, i.e., they cannot con-
sume significant resources, e.g., energy, execution time,
etc., since they are performed on the mobile device.

In this paper, we present NWSLite, a computationally
efficient, highly accurate prediction utility for mobile de-
vices. NWSLite is an extension to the Network Weather
Service (NWS), a dynamic forecasting toolkit for adap-
tive scheduling of high-performance Computational Grid
applications. We significantly scaled down the NWS to re-
duce its resource consumption yet still achieve accuracy
that exceeds that of extant remote execution prediction
methods. We empirically analyze and compare both the
prediction accuracy and the cost of NWSLite and a hum-
ber of different forecasting methods from existing remote
execution systems. We evaluate the efficacy of the differ-
ent methods using a wide range of mobile applications
and resources.

1 Introduction

Remote execution is emerging as a promising technique
to extend the computational power and battery life of
resource-restricted environments, e.g., hand-held, wear-
able, and pervasive computers. Using remote execu-

tion, parts of program execution are off-loaded from
battery-powered mobile devices to wall-powered, higher-
performance platforms. As such, remote execution can
significantly extend the usefulness of devices by enabling
execution of a wide-range of resource-intensive applica-
tions, e.g., augmented reality, natural language transla-
tion, feature recognition, collaborative computing, etc., in
a mobile environment.

Key to the successful implementation of remote execu-
tion, is prediction. That is, we must predict when the cost
of performing remote execution will not outweigh its ben-
efits. For example, if a task will consume significantly less
battery power if executed remotely, the system should off-
load the task. Alternately, if the cost of remote execution
(in terms of battery power, response time, or some other
metric) exceeds that of local execution, e.g., if significant
amounts of data must be transfered to perform the task or
if the remote host is busy, the system should perform the
operation locally.

The cost of a remotely executed operation consists of
the time to transfer data (and possibly code) from the de-
vice to the target, the time to transfer result information,
e.g., data, status, rendered graphics, etc., from the target
back to the device, and the time to execute the operation at
the target. The cost of a locally executed operation is the
local execution time. These values must reflect what the
costs will be when the operation is eventually performed.

To complicate matters, each of these costs is depen-
dent upon the highly variable performance available from
the underlying resources. Network bandwidth and latency
dictate the time required for communication and CPU
availability on both the device and the target impacts local
and remote execution time, respectively. In addition, ex-
ecution cost is dependent upon the length of time the op-
eration will execute, which is commonly dependent upon
program inputs.

To predict these costs, extant remote execution systems
employ statistical techniques that use past behavior to pre-
dict the future [22, 9, 11, 2]. The goal of these systems is
to enable high prediction accuracy. That is, they attempt

to reduce prediction error — the difference between pre-
dicted values and the measurement values that they pre-
dict. Techniques that result in large prediction errors can
cause incorrect decisions to be made about the best exe-
cution choice for the device. As such, prediction accuracy
plays an important role in the performance of a remote
execution system.

However, another characteristic of prediction tech-
niques that is often not considered, is computational cost
— performing the prediction itself consumes device re-
sources. This cost can be high (particularly in terms
of power consumption) since statistical techniques com-
monly use floating-point operations and most mobile de-
vices do not implement a floating-point co-processor. In-
stead, they rely on software emulation of floating-point
instructions making them highly resource-intensive oper-
ations.

In this paper, we consider both the accuracy and cost
of commonly used forecasting technologies in remote ex-
ecution settings. We evaluate techniques that are currently
used for remote execution and present a novel resource
performance prediction utility for resource-restricted de-
vices, called NWSLite. NWSL.ite is a low-cost, yet, highly
accurate prediction service that is an extension of the Net-
work Weather Service (NWS), a resource performance
measurement and prediction toolkit originally developed
for scheduling high-performance, scientific applications
in Computational Grid [12] environments [28, 31, 4, 27,
5, 26]. We modified the NWS forecasting model to re-
duce its resource consumption footprint to enable its use
in a mobile setting.

NWSL.ite can be incorporated into any mobile frame-
work that uses prediction. It makes non-parametric fore-
casts of any resource for which measurement values can
be supplied. As such, we can use it for prediction of CPU
load, memory availability, and network bandwidth and la-
tency, as well as file 1/0 and execution time of an applica-
tion’s operations (tasks).

In this study, we empirically compare both the accu-
racy and cost of NWSL.ite to the original NWS as well as
to two prediction algorithms (as described in [22] and
[19]) currently used for prediction in remote execution
frameworks. We analyze these performance characteris-
tics for a wide range of applications and resources: appli-
cation execution time, availability, wired-network band-
width and latency, and wireless bandwidth. Our results
show that NWSL.ite enables prediction accuracy that in
many cases significantly exceeds that of the predictors to
which we compare. In addition, it consumes significantly
less computational resources than its predecessor NWS.

In summary, the contributions we make with this paper
are:

¢ Alight-weight, highly-accurate, prediction utility for
resource-restricted environments,

e A predictive framework that uses algorithms that are
non-parametric, i.e., they do not require externally
determined, resource-specific parameters or manual
fine-tuning,

e A general utility for mobile devices that can be used
to forecast efficiently the performance of a wide
range of resources,

e A comparison of the prediction accuracy and execu-
tion cost of the NWSL.ite as well as popular predic-
tive techniques, and

e An empirical evaluation that shows that NWSL.ite
can significantly improve prediction accuracy for re-
mote execution.

In the next section, we provide background and related
work for the problem of predicting application and re-
source performance for use in remote execution. In ad-
dition, we motivate our work by discussing the key lim-
itations of existing techniques in terms of prediction in-
accuracy and resource consumption. We then detail the
design and implementation of NWSL.ite in Section 4. In
Section 5, we describe our empirical methodology and
present a comparison of NWSL.ite and competitive tech-
niques both in terms of prediction accuracy and resource
consumption. Finally, we conclude in Section 6.

2 Background

Remote execution is a popular technique that is used to
extend the computational capability of mobile, resource-
restricted, devices [9, 23, 22, 15, 33]. Figure 1 depicts
the general design of a remote execution system. Using
remote execution, application tasks are off-loaded from
battery-powered mobile devices to wall-powered, higher-
performance servers.

To decide whether a particular task should be off-
loaded, a remote execution system must first compute the
demand of the application task. In this work, we define
demand as task execution time but additional constraints
can be applied to this value, e.g., response time, computa-
tional fidelity, power consumption, etc., according to the
overall goals of the system.

To determine how best to accommodate demand, a re-
mote execution system must evaluate how best to employ
its supply — the set of resources, local and remote, that it
has available to it for task execution. The system com-
putes whether computation off-loading will be beneficial,
according to its set of constraints, using a cost model.
When cost of local execution exceeds that of remote exe-
cution (including all necessary communication), the sys-
tem off-loads work to the server. The cost model must
consider both the task execution characteristics as well

WALL-POWERED
SERVER

MOBILE DEVICE
RESOURCE

RESOURCE
SUPPLY DEMAND
Memory Application SUPPLY
- Execution Memory
Time
- Fidelity cPU

Network Bandwidth / Latency

Figure 1: Components of a typical remote execution sys-
tem. The decision process includes forecasting the avail-
able resource supply both at the client and server and ap-
plication resource demand.

as the highly-variable performance of the underlying re-
sources that dictate computation and communication per-
formance. A general cost evaluation function can be spec-
ified as:

FL(TETM % CPUM) S

T,'n u Tou U
Fr(B;’V’f +(Tpr, *CPUs) + B;’/ ! + (HSxLAT))

where the local cost is F, and the remote cost is Fig. The
local cost is some function (computational fidelity, exe-
cution time, response time, battery power) of the time to
execute the task on the mobile device (T'gT,,) given the
available fraction of the CPU on the device (CPUxs). The
remote cost is some function of the sum of the time re-
quired for four constituent operations:

1. The time required for transfer of the input data,
and any needed program code (Tnpyt) Qiven the
available bandwidth (BW) between the device and
Server;

2. The execution time at the server given the fraction of
CPU available at the server (T'g1,, * CPUs);

3. The time for transfer of results, e.g., data, status, ren-
dered graphics, etc., back to the device given the
available bandwidth between the server and device
(—T‘g;’{,“); and;

4. The time for any handshake protocol (H S) to estab-
lish remote execution.

Since (4) commonly consists of very short packet commu-
nication between the device and the server, the handshake
operation is impacted by the latency in the network link
between the client and server (HS x LAT).

Remote execution systems must compute what the cost
of remote and local execution will be when the task is

eventually executed. That is, these systems must pre-
dict this cost on the device to determine when to off-load.
As such, remote execution systems must employ sophisti-
cated forecasting techniques to enable accurate prediction
of the cost of remote (and local) execution. We describe
extant prediction technologies used for remote execution
and other mobile device optimizations in the next section.

3 Prediction Algorithms
for Remote Execution

Two advanced, prediction-based, remote execution sys-
tems to which we compare our work, are Spectra [9] and
the remote processing framework (RPF) by Rudenko et
al [22]. We briefly describe these systems in this section
and discuss the predictors that each employs.

3.1 Spectra/Odyssey

Spectra[9, 10] is the remote execution component of Aura,
a pervasive computing environment. Spectra allows the
user to dictate goals, such as minimizing energy use, and
then tries to achieve this goal by means of local, remote
or hybrid, i.e., partially remote, execution decisions. To
estimate the behavior of an application, Spectra uses the
algorithms developed for Odyssey, another component of
Aura.

Odyssey uses multi-computational fidelity to dynam-
ically trade-off resource demand for application quality.
The fidelity adjustments are performed at the granularity
of an operation, which is the smallest unit of execution
that can be perceived by the user as a response to a re-
quest [18].

Since the performance of off-loading is dependent
upon the underlying resource availability, Odyssey cou-
ples task demand with resource supply. That is, Odyssey
makes forecasts of the underlying resource performance,
of CPU, memory, and network bandwidth and latency.
It uses these predictions with those from the fidelity re-
source functions to identify opportunities for dynamic off-
loading.

Odyssey estimates CPU availability, by first assum-
ing that CPU cycles are evenly distributed among all pro-
cesses. The CPU model is:

P

Sepu = Nt1l

where P is the processor clock speed, N is the number
of runnable processes and S, is the available CPU cy-
cles. It uses a smoothing filter to estimate the number of
processes in the next interval:

Nipr = aNg + (1 — a)n(p) ()

In this equation n is a function of observed number of
processes in the current interval and defined as:

n. —1

n(i) = { "

where n,. is the number of runnable processes at time t.

To predict network bandwidth and latency, Odyssey
uses a different prediction model based on exponential
smoothing:

If p is runnable
Otherwise

)

Odyssey uses v = 0.75 for round trip time and v = 0.875
for throughput.

An exponential smoothing predictor with a constant
gain factor does not adapt dynamically to the changes in
the system. To address this issue Kim et.al. [14] devel-
oped a flip-flop filter. The flip-flop filter employs two ex-
ponential smoothing predictors: one with v = 0.1 and the
other with v = 0.9. Using a small gain factor, the former
can respond to changes more quickly than the latter one.
However, a small gain is more susceptible to a transient
noise. As such, by using both gain factors, the filter is able
to achieve the benefits from both while avoiding the lim-
itations of each. Our prediction methodology, described
in the next section, takes a similar but more general ap-
proach.

Finally, to estimate the resource consumption of appli-
cations, Odyssey and Spectra use an online-learning pre-
dictor. The predictor maintains data-specific coefficients
that are used to model the cost behavior of the applica-
tion for a particular dataset. However, computing the ini-
tial values of coefficients requires off-line training. The
online-learning algorithm updates coefficients using re-
cursive least squares regression with exponential decay.
Due to exponential decay characteristics, more weight is
given to the recent observations.

This technique works well for applications that ren-
der pictures as the user or camera scans a scene, €.g., as
is done in augmented reality programs, due to the slow,
smooth transitions between scenes. That is, the resource
consumption behavior for the generation of a scene will
be similar to that of a neighboring scene. A limitation of
this type of statistical technique is that numerical compu-
tation errors can accumulate after each recursion causing
algorithm to become unstable and diverge [6].

The recursive least squares method is an efficient way
to predict the value y when it is dependent on a set of
parameters z such that y = Az + w, and w is the mea-
surement error or noise. The general formula is given by:

new = y(measured) + (1 — y)old

Ap = A1 — Po{zral Ay 1 — ziyn}

P, = {Pk—l — Pk_la:k[a + ZEZPk_lxk]_lﬂf{Pk_l}/a

where « is the decay factor and y;, is the measurement
at time k. In the equation above, yy,1 is predicted by
Agy1z. The P, matrix is commonly referred to as the
history or filtering factor [32].

The value of the exponential decay factor determines
the agility of the method. A smaller value increases the
responsiveness, but decreases the capability of filtering
out any noise. Odyssey uses a decay factor of 0.5, which
makes it very agile. Our observations show that, with such
a small value the method can become unstable and diverge
if the observed data is noisy or moderately variable. Based
on our experimentation using several different parameters
on a large dataset, we found that a decay factor of 0.8 is
more appropriate. We refer to this technique using this
decay factor as LSQ in our experimental results.

3.2 Remote Processing Framework (RPF)

The remote processing framework (RPF) uses a different
execution model than that of Spectra and other remote
execution systems [22]. RPF models a single metric —
power consumption — of the executing task. That is, it
collects history data on the power consumption of previ-
ous tasks and uses it to predict the consumption of future
tasks. The comparison between local and remote task exe-
cution is performed on the device itself. All code and data
are shared and kept synchronized between the device and
server. The server simply processes the tasks transmitted
by the device and returns the results.

The device and server interact via a simple handshake
protocol. During this protocol, the device verifies that the
server has enough resources and the appropriate software
packages. Following this, the device predicts whether off-
loading will reduce power consumption. The RPF system
uses a smoothing filter to make its forecasts given prior
history. In particular, the RPF cost model is the parame-
terized function:

Ein:n—k Ui
k

where f; is the forecasted value, v; is the measured value
and 7 is the measurement index. « and & determine how
conservative the forecaster is: A small k£ combined with
a large o will result in higher responsiveness to recent
changes.

RPF is parameterized with two parameters, k£ and «.
Unfortunately, the authors in [22] do not specify default
values for these parameters, nor do they discuss the values
that they used. To enable our evaluation and comparison
to this technique, we empirically evaluated several differ-
ent combinations of parameters for a large set of data. We
then selected best-performing set across all experiments.
For the data we detail in this study, the best overall pa-
rameterization is & = 20 and a« = 0.0. With this pa-

fnr1=(0—a)x +ax*fn ?3)

rameterization, RPF becomes a “sliding window average”
over a fixed window (size k) of previous data history. The
data for different parameterizations can be found in the
appendix of this paper.

Note that the RPF smoothing filter (Equation 3) is
the same as the equation for CPU prediction in Odyssey
(Equation 1) when k& = 1. In addition, the smoothing filter
is the same as the bandwidth and latency prediction func-
tion in Odyssey (Equation 2) whenk =landa =1 —~.

4 NWSLite

Odyssey and RPF employ parameterized prediction
methodologies to forecast the cost of remote execution.
The parameters are identified through empirical evalua-
tion and are specific not only to the executing application
but also to the individual tasks. In addition, different types
of resource data (task execution time and characteristics,
and network and CPU performance) require different pre-
dictors or different parameterization of the same predic-
tors to be effective. Moreover, prediction of task execu-
tion behavior in Odyssey requires extensive off-line train-
ing. Our approach to the problem of remote execution
cost forecasting takes a different approach. Specifically, it
is one that is non-parametric, automatic, and completely
general.

To enable this, we developed NWSLite, an accu-
rate and efficient prediction utility for mobile devices.
NWSLite is an extension of the Network Weather Ser-
vice [30], a freely available toolkit [20], originally de-
veloped for Computational Grid computing [12, 3]. The
Computational Grid is a computing paradigm for the de-
velopment of software systems that enables dynamic ac-
quisition of resources from a heterogeneous and non-
dedicated resource pool. To extract performance from
these systems, application schedulers must use predic-
tions of future resource behavior to determine how the
application can best use the available resources.

The NWS operates a distributed set of performance
sensors, from which it periodically, and unobtrusively,
collects performance measurements, applies a set of sta-
tistical forecasting techniques to individual performance
histories, and generates forecast reports for the resources
being monitored, which it disseminates via a number of
different APIs in near-real-time [31]. Currently, the NWS
provides sensors for end-to-end TCP/IP bandwidth and la-
tency, available CPU and memory, battery power, and disk
storage, and is used in a large number of different of Grid
technologies.

NWS prediction uses a mixture-of-experts approach to
prediction instead of relying on a single model. It imple-
ments a large set of models, each having its own parame-
terization. Given a performance history of observed mea-

Name Average Cost
1 Last Value 0
2 Running Mean 3
3 5% Exp Smooth 3
4 10% Exp Smooth 3
5 15% Exp Smooth 3
6 20% Exp Smooth 3
7 30% Exp Smooth 3
8 40% Exp Smooth 3
9 50% Exp Smooth 3
10 || 75% Exp Smooth 3
11 || 90% Exp Smooth 3
12 || 5% Exp Smooth, with 0.1% trend 10
13 || 10% Exp Smooth, with 0.1% trend 10
14 || 15% Exp Smooth, with 0.1% trend 10
15 || 20% Exp Smooth, with 0.1% trend 10
16 || 30% Exp Smooth, with 0.1% trend 10
17 || Median Window 31 88
18 || Median Window 5 16
19 || Sliding Median Window 31 124
20 || Sliding Median Window 5 26
21 || 30% Trimmed Median Window 31 106
22 || 30% Trimmed Median Window 51 169
23 || Adaptive Median Window 5-21 171
24 || Adaptive Median Window 21-51 455

Table 1: NWS Forecasters and the Approximate Costs of
Each. We show cost in column three as the number of
floating point operations performed.

surement values, it generates a forecast for each measure-
ment. NWS ranks each predictor by computing the pre-
diction errors (the difference between measured and fore-
casted values). Each time a forecast is requested, NWS re-
calculates the ranking across all predictors using the most
recent history and chooses the most-accurate model. The
implementation of NWS that we extended uses the 24 pre-
diction models shown in Table 1.

This mixture-of experts method achieves its accuracy
by employing wide range of statistical models, each of
which may be most appropriate at a given time, for a given
resource. This method also has other important advan-
tages. First, even though the individual NWS models may
be parametric, the overall system is not. The only input to
the system is the measurement history. Second, NWS can
easily adjust itself to changes in the characteristics of the
data series by switching to another model. Third, it can be
used on any type of data for which measurements can be
made. There is no distinction between CPU availability
and network bandwidth, for example.

Because the NWS was originally designed to support
performance applications in wired settings, its designers
put a premium on speed and extensibility. As such, it
consumes significant resources to perform a single pre-
diction since many models are evaluated at once. The Av-

erage Cost column shows the number of floating point in-
structions executed for each predictor (all are computed
for each forecast made) on average. To enable its use
in resource-restricted environments, we have significantly
reduced this consumption without sacrificing appreciable
accuracy. To this end, we first evaluate the cost of NWS
prediction in terms of dynamic floating point instructions.

Given a history of measurements and their predicted
values, prediction error can be defined using the square of
the errors:

n

E=) (fi—w)

i=1

(4)

where f; is the output of the predictor, v; is the measure-
ment and n is the length of history.

Since the NWS uses a mixture-of-experts approach, all
forecasters are invoked (logically in parallel) and a single
winner is selected and used for the next estimation. We
use zero-one integer variables s; ; to denote the winning
forecaster:

1 If model j is used to predict
measurement %
0 Otherwise

(5)

Sij =

Specifically, if s; ; is 1, the i*" forecast is made using pre-
dictor j. If s;; is 0, the predictor is not the winner for
the i** forecast. If we set k to be the number of models
in NWS, using (4), we can formulate prediction error of
NWS as:

n k

E= ZZ(fz - Uz’)zsi,j

i=1 j=1

(6)

Similarly, we can compute the cost of using the win-
ning forecasters (in terms of floating point instructions, c)
as:

n k

C = Z Z CjSi g

i=1 j=1

(")

Theoretically, it is possible to optimize NWS by run-
ning it with different combination of internal models on
a set of representative data and then removing the least
efficient ones. However, the search space is prohibitive:
There are a total of 224 combinations. To reduce the
search space, we used a heuristic that evaluates how
much the total computation cost and error would change
if a forecaster v is substituted with another forecaster v
throughout the series.

Formally, this process can be expressed as:

1 If model j is winner forecaster
for measurement i and j # u

s;-’j =< 1 if model j is not winner forecaster (8)
for measurement: and j = v
0 Otherwise

where E,, , and C,, ,, are defined same as (6) and (7) using
s; j instead of s ;

We computed E,, ,, and C,,,, for every pair of w and v
on a set of six representative traces and represented it as
matrix with « as rows and v as columns. This represen-
tation provides a very compact form with which we can
evaluate the efficiency of each model: Every column of
the matrix shows how much the error rate would change
if v had been used instead of u. For example, E, ; shows
the new error if last value is used instead of running mean.
Ifthe E 4 is smaller than original NWS’s error rate for all
the trace files, then we consider last value to be a better
predictor than running mean. Similarly, if in an extreme
case, all the values of column 2 are smaller than origi-
nal NWS’s error rate, then running mean outperforms the
original NWS. Even though, it is theoretically possible,
we did not come across an example of such a case.

Our methodology is similar to off-line, profile-based
optimization research in which a set of representative pro-
gram inputs are used to collect profile information that is
used to guide optimization [17, 25, 16]. Empirical ex-
periments then use a different set of inputs to evaluate
the efficacy of the technique. Here, we used six traces
to identify NWS forecasters that enable high accuracy at
low cost. We then evaluated NWSL.ite using over 300 dif-
ferent traces. Given the evaluation matrix, we used a set
of empirical rules with which we eliminated forecasters.
We removed any model

o that had more than 1% error rate across all traces,

o for which there is another model with significantly
lower cost that can replace it, with a slight but ac-
ceptable (less than 5%) increase in error rate, and

e for which there is a combination of other models that
enable a similar error rate.

We ruled out many models directly using the first crite-
ria. For example, replacing 30% trimmed median window
31 with running mean generated an increase in error rate
of at most 0.2%. On the other hand, for median window
31 the running mean was only 0.2% higher in 5 of the 6
traces, except the last for which it had an error rate that
was 32% higher. In the remaining trace, median window
5 had almost the same error rate. As such, we included
median window 5 and omitted 30% trimmed median win-
dow 31. Eventually, we identified five predictors (shown

Bandwidth [20] | 750476 predictions

Name Trace Size Description

Application 20 traces Interactive, 3-D rendering application CPU demand. Measurements
17870 predictions are CPU time from user request to program response.

Network 132 traces Observations of 64Kb-1Mbyte TCP data transfers. 3 configurations:

UIUC LAN (inter-cluster), UIUC campus-wide network (intra-cluster),
and cross-country Internet (UIUC-UCSD)

Bandwidth [24] | 3028 predictions

CPU load [20] 59 traces Fraction of CPU occupancy time a standard user process can obtain
6000697 predictions | Observations are in 10 seconds intervals.

Network 134 traces Round trip time of TCP. Transferring 4 bytes and measuring

Latency [20] 750305 predictions acknowledge time. Granularity levels same as network bandwidth.

Wireless 1 trace 4 access points on same subnet. Traces include 195 users, 300000 flows

and 4.6 GB of network traffic. Bandwidth measured in 1 minute intervals

Table 2: Datasets Used for Evaluation

Applications

Input Scene GLVU | Radiosity
castle Yes

cessna Yes Yes
chevy Yes

cloister Yes

cup Yes
dragon Yes
ground-table-land Yes Yes
ground-riverain-valley Yes
shuttle Yes Yes
venus Yes

Table 3: Applications and Inputs Used for Evaluation. We
collected 10 trace files per application (3-D scene render-
ing programs). We used some programs multiple times
with different input sets, i.e., different navigation paths.
Empty entries mean that the application failed to process
the particular scene.

in bold in Table 1) that trade off cost and prediction error
most effectively.

5 Evaluation

To empirically evaluate the efficacy of NWSL.ite, we per-
formed experiments using a wide range of datasets, ap-
plications, and metrics. We compared the performance
of NWSL.ite against the NWS, LSQ, and RPF (the pre-
diction systems described in Section 3). We implemented
all of forecasters as efficiently as possible using the C lan-
guage; we compiled each using gcc and -O2 optimization.
Unlike NWSL.ite and the NWS, the LSQ and RPF meth-
ods are parametric models and hence, require parameter-
ization. For each model, we created a pool of parameter
settings, that included the published values [18, 10, 19] as
well as our own values, resulting in 18 different forecast-
ers. We selected the best performing parameterization for

each over all of the datasets we considered.

In the next section, we describe the experimental
methodology (datasets and applications). We then detail
the metrics we use in Section 5.2 results using these met-
rics in Section 5.3.

5.1 Experimental Methodology

We evaluated the efficacy of the prediction techniques
using traces from a number of different types of data.
In total, we performed experiments on 346 traces which
produced more than 7 million predictions. We consid-
ered prediction of the execution time of application tasks,
wired and wireless network bandwidth, wired network la-
tency, and CPU load availability. All of the data traces,
except for application execution times, were made freely
available to us via web-sites of research groups around
the country [20, 1, 13]. These groups collect, analyze,
and post resource performance measurements from a wide
range of resources for others to use. We provide the de-
tails on the different datasets in Table 2 and we refer to
each of the different types of data sets (CPU, bandwidth,
applications, etc.) as “groups”. In this section, we provide
an overview of these datasets.

We generated traces of task execution times from aug-
mented reality applications that are commonly used in
similar mobile studies and highly suitable for remote ex-
ecution: Independent tasks used in 3-D scene rendering
and image fidelity adjustment that are computationally-
intensive and easily divided into components for off-
loading. The applications and inputs that we considered
are shown in Table 3.

GLVU [21] allows navigating inside a 3-D scene by
rendering the scene from any viewpoint of user. From
an augmented reality view, Radiator [29] complements
GLVU by computing the lighting effects for a given
scene. Both applications can easily be divided into op-
erations [18], which are a suitable unit for remote execu-
tion and fidelity adjustment. An operation (which we also

refer to as a task) is the smallest user-visible execution
unit, such as viewpoint change in a rendering operation.
For each application we rendered a set of 10 scenes which
produced a total of 17870 operations. We consider the
prediction performance for applications to be the accu-
racy with which the prediction system forecasts the CPU
demand of each operation.

The bandwidth, CPU availability, and latency data
were collected as a part of the NWS project [20]. NWS
network sensors use active network probes to collect
TCP/IP latency and bandwidth data on a group of ge-
ographically distributed hosts connected via local, wide
area, and Internet networks. Each probe establishes a TCP
connection, transmits a fixed amount of data, and tears
down the connection. Network sensors measure network
bandwidth using a 64 KByte data transfer and network la-
tency using a 4 byte data transfer.

The NWS CPU sensors combine the information from
Unix system utilities vmstat and uptime with periodic ac-
tive CPU occupancy tests to provide measurements of
CPU availability. The uptime utility reports the average
number of processes in the run queue over the last one,
five and fifteen minutes. The sensor uses the average load
over the one minute period and computes the CPU avail-
ability by using the idle, user, and system time output
from vmstat utility. The CPU availability is measured as
the fraction of CPU occupancy time a standard user pro-
cess can obtain.

The wireless bandwidth traces we used were collected
during the SIGCOMM’01 conference [24]. The con-
ference building was covered with four 802.11b access
points. The traces span a 3 day period capturing 300000
flows generated by 195 users consuming a total of 4.6 GB
of bandwidth.

5.2 Evaluation Metrics

We present our empirical evaluation of the different pre-
diction systems in terms of both accuracy and computa-
tional cost. We use three metrics, described in this section,
to evaluate predictor accuracy. We use instruction count
(both total and floating point) as the metric for predictor
cost.

The first of the three metrics we use to evaluate predic-
tor accuracy is error deviation. We define error deviation
as:

MSE = Z?:1 (z; — Z/z’)2
n

Error deviation = VM SE

©)

where z is the set of n predictions and y is the set of n cor-
responding observations. The mean square error (MSE) is
the average square prediction error over the n pairs, (x,y).
The error deviation is the square root of the mean square

error. Error deviation describes the error in absolute terms
and represents (in analogy) the standard deviation of the
errors with respect to the expectation constituted by the
forecast. Error deviation accounts for outliers and is more
sensitive to incorrect predictions than is absolute error in
which the absolute value of the error is used.

However, the error deviation is most meaningful when
comparing the performance of predictors on the same time
series. To provide a comparison across different series, we
use a second metric that is the ratio of error deviation over
the average observed value, i.e., the relativeerror rate:

MSE

Relative errorrate = ——————
observed_mean

(10)
This metric provides insight into how severe the error is
in terms of the magnitude of the average measured value.
For example, an error of 2Mb/s is large in a 10Mb/s link,
but may not be significant in a 100Mb/s link.

The third metric we use for reporting prediction error
is similar to relative error rate, however, instead of using
the mean as the expected value, we use the absolute value
of the forecast. This metric, called predictability, indi-
cates how predictable the series relative to the forecasts it
generates. It differs from the relative error in that it treats
each forecast as a conditional expectation that it uses to
normalize the error, instead of using the overall measure-
ment mean. We compute predictability as:

Zn |z —yi]
i=1 :

|2i]

(11)
n

5.3 Results

We next present the results from our empirical compari-
son between NWSL.ite and competing prediction systems:
The Network Weather Service (NWS), Odyssey (LSQ),
and the Remote Processing Framework (RPF). We first
present results for prediction accuracy and then evaluate
the computational cost of each system.

5.3.1 Predictor Accuracy

Table 4 compares the error deviation (Equation 9) of the
predictors using three representative traces, for brevity.
In the application (APP) and CPU availability (CPU)
datasets, we sorted the traces with respect to the error de-
viation/ average of NWSL.ite and selected the best, worst,
and median, which we report in the table. For the wired
network data (bandwidth (BW) and latency (LAT)), we
instead report data for three different types of links: intra-
cluster, inter-cluster, and inter-campus (across country).
For wireless (WBW), we only have a single trace and thus
show data only for it.

| Description | Units | Avg [NWwsSLite | NWS | LSQ | RPF |
APP1 - best 148845.000 5287.856 5358.179 8180.561 22013.694
APP2 - median msecs 169753.000 135125.056 | 138064.335 | 145384.166 | 186430.176
APP3 - worst 9179.390 1322.139 1329.372 2385.072 5702.085
BW1 - within cluster 65.801 17.161 16.958 52.112 17.191
BW?2 - cross-cluster Mbits/sec 76.522 13.308 13.329 59.279 13.507
BWS3 - cross-country 4.536 0.878 0.859 78.063 1.164
CPUL - best 1.992 0.016 0.016 13.905 0.029
CPU2 - median CPU 0.543 0.017 0.017 14.451 0.049
CPU3 - worst fraction 1.391 2.672 2.684 3.113 2.661
LAT1 - within cluster 13.936 16.873 16.890 41.121 17.048
LAT2 - cross-cluster msecs 2.345 8.309 8.319 46.829 8.337
LAT3 - cross-country 77.217 14.295 12.753 81.820 13.149
WBW Kbytes/sec 206.674 193.782 194.498 255.254 261.744

Table 4: Error Deviation for a Set of Representative Traces. The third column is the average of the measured values,
the next four columns show the error deviation for each of the prediction systems. The APP and CPU datasets are
sorted with respect to error deviation / average and best, median and worst cases are shown. For the BW and LAT
datasets, the average error deviation within cluster, across cluster and across country are reported.

The first three columns of the table shows the descrip-
tion, trace name, and value units for each trace. The third
column, Avg, shows the average observed value. The fi-
nal four columns show the error deviation for each of the
four predictors: NWSLite, NWS, LSQ, and RPF. LSQ
and RPF are parameterized as described in Section 5,
and identify the best-performing, converging parameter-
izations of each technique.

The NWS and NWSL.ite have almost identical error de-
viations in every case. LSQ performs well for applications
(as was shown in prior work [18]), but it is the worst-
performing predictor for all other types of data. NWSL.ite
performs better than the NWS for lat3, however, the dif-
ference is less than 2%. NWSLite performs better than
LSQ and RPF in almost every case, and is significantly
better than both LSQ and RPF in most cases. For exam-
ple, in the application group, for both shuttle and cloister
NWSL.ite performs 3 times better than RPF. The wireless
dataset is especially challenging. All the forecasters show
a high error rate.

Figure 2 shows the relativeerror rateof the predictors
across all of the traces in each group. The information
in the graph confirms the results of Table 4. NWSLite
performance is very similar to that of the NWS; in all
groups it enables the best prediction error. LSQ is inef-
fective for the bandwidth, CPU, and latency groups. RPF
performs quite well for the CPU and bandwidth groups;
and exceeds NWSL.ite performance for network latency
by 1.5%. RPF is the worst predictor however, for the ap-
plication and wireless groups. For the application group,
the average error rate of RPF is 86% higher than that of
NWSL.ite. As a special case, we also compared the perfor-
mance of predictors with Odyssey’s specialized smooth-

4_
3_
= NWSLite
2 = NWS
m LSQ
O RPF
il ﬂ
o_

APPL BW CPU LAT WBW

Figure 2: Relative Error Rate (Equation 10). This metric
shows how severe the error is with respect to the average
measured value. The LAT has the highest relative error
rate among all forecasters, however, as most latency ob-
servations are very small (around 1 msecs), the absolute
error is small.

ing filters for bandwidth and latency, which we refer to as
ODY-BW and ODY-LAT (not shown in figure). ODY-BW
performed as good as the rest of the group in bandwidth
prediction, however, ODY-LAT is the second worse per-
former in latency dataset. The appendix section of this
paper contains more detail on the results.

Figure 3 shows the predictability (Equation 11) of the
series given each predictor. This metric assumes that pre-
dictor is a valid conditional expectation that can be used
to normalize the error at each point of the trace. The lower
the value the more accurate the forecaster. Since the vari-
ance of the results is high, we normalized the results to
NWSL.ite for each group.

The predictability results support our findings in Fig-
ure 2. NWSLite is as accurate as NWS in all cases,
and it performed significantly better than the parameter-
ized forecasters in most cases. The single exception is the
latency dataset, in which RPF is the winner. However,
the difference between RPF and NWSL.ite is very small.
In contrast, the accuracy of RPF is significantly worse
in all other cases, emphasizing the difficulty of finding
a good parameterization for the general case. These re-
sults also show that, except the application dataset, LSQ
is always worse than smoothing-filter-based predictors. In
application dataset, LSQ is approximately 40% more ac-
curate than RPF, however, it is still significantly worse
than NWSLite. The predictability of NWSL.ite is consid-
erably higher even than the highly tuned predictors ODY-
LAT and ODY-BW (not shown in figure). For the latency
dataset, ODY-LAT is 13% less predictable than NWSL.ite;
whereas in bandwidth dataset, NWSL.ite does 21% better
than ODY-BW.

An interesting case is the behavior of RPF in Figures 2
and 3; even though the relative error rate of RPF is small,
its predictability is not. This is due to the characteristics
of CPU dataset - the CPU availability values are in the
range (0,1), or (0,n) if there are n processors. As such,
most of the time the values are a fraction of 1. This results
in a small value for the sum of square errors even though
the errors are high relative to the expected value.

5.3.2 Computational Cost of Prediction

In addition to studying prediction error, we also con-
sidered the cost of performing prediction on a resource-
restricted device. To our knowledge, no prior studies that
use prediction on mobile devices consider the resource
consumption of the predictors themselves.

We first compare the predictors in terms of instructions
required for one prediction. We extracted this informa-
tion by using the SimpleScalar [7] simulator. Figure 4
shows the average cost of each predictor. NWSL.ite uses
55 floating point instructions per forecast. Even though
this is more than the cost of RPF and LSQ, which use 8

4_

3 = NWSLite
m NWS
m LSQ

2+ O RPF

1

0-

APPL BW CPU LAT WBW

Figure 3: Predictor Predictability (Equation 11). Due to
high variation among forecasters, the values are normal-
ized to NWSL.ite for each group. The lower the value, the
more accurate the forecaster.

and 42, respectively, the accuracy of NWSL.ite exceeds
both of these predictors significantly.

As most resource-restricted devices lack a floating
point co-processor, floating point instructions are very
expensive. We break down the instruction counts into
floating-point and non-floating-point instructions in the
first two columns of Table 5.

We also executed the predictors on a real resource-
restricted device: An iPAQ H3800 hand-held computer
from Compag [8]. The iPAQ has a 206 MHz Intel Stron-
gArm CPU and runs Familiar Linux version 0.5.3. The
execution times (in microseconds) are shown in the final
column of the table. These times include the cost of 10
to read the trace file from flash memory and to print the
results.

The execution time of NWSL.ite is approximately 4%
that of NWS but enables prediction accuracy that is nearly
equivalent. Given that it requires only 381 microseconds
to execute a prediction, including the 10, NWSLite is

2000
1750
1500
1250
1000

750

500
250
0

NWSLite

== FPOINT
mmm TOTAL

Number of instructions

P
LSQ RPF

NWS

Figure 4: Forecaster Cost as Number of Instructions Exe-
cuted (floating-point (FPOINT) and TOTAL) per Predic-
tion

Prediction | Floating Total Execution time
System Point Instructions (microsecs)
NWSL.ite 55 592 381.34
NWS 2626 9388 10231.31
LSQ 42 138 295.27
RPF 8 50 154.9

Table 5: Execution Cost Comparison per Prediction

a more attractive solution for on-line forecasting using
resource-restricted devices, than the parametric and less
accurate models of Odyssey and the RPF.

54 Summary of the Results

We summarize the result of our findings in Table 6. To
make our results comparable to previous studies [18], we
report summary performance in terms of percentile error.
We define the X percentile error, Ex, as the maximum
absolute error for X% of the experiments. For example,
for the bandwidth dataset, Ey5 of NWSL.ite is 25.6 mean-
ing that 95% of the time the prediction error of NWSL.ite
is within 25.6 kilobits/second. The reason we use abso-
lute rather than relative error is to avoid skewed data in
CPU and latency datasets. We report the results for NWS,
NWSLite, LSQ, RPF as well as for the two other smooth-
ing filters that we studied, ODY-LAT (the Odyssey net-
work latency predictor) and ODY-BW (the Odyssey net-
work bandwidth predictor).

The results show that NWS and NWSLite are gen-
eral enough that they perform well in all datasets. Even
though parameterized forecasters can match NWSL.ite in
some datasets, they fail in others. As an example, the
performance of ODY-BW is close to NWSL.ite in APP
dataset, but it is significantly higher in BW, CPU and LAT
datasets. The same pattern also exists for ODY-LAT and
RPF. RPF matches NWSLite in BW and LAT, but it is
significantly worse in APP and CPU datasets.

Another pattern in the results is that both NWS and
NWSL.ite perform better than all others when a higher
percentage of predictions considered. This suggests that,
NWS and NWSL.ite can better adjust themselves to sud-
den changes in performance patterns by switching to an-
other model; the other models must simply rely on their
static parameters.

The wireless bandwidth dataset is significantly differ-
ent than other datasets. The error rates are very high,
i.e., Ego is around 200Kbits/sec on a 11Mbits/sec link,
hence none of the forecasters performed at a satisfac-
tory level. This emphasizes the need for additional study
of and novel forecasters for wireless network bandwidth
data.

The success of NWSLite results from its capability

to dynamically switch between a carefully chosen set of
competing models based on previously observed accu-
racy. If the dynamics of the observed dataset changes
over time, NWSL.ite can adapt to the new conditions; the
prediction systems of Odyssey and RPF cannot and as
such are data (input) dependent. For example, exponen-
tial smoothing with a gain of 0.05 can be the most accurate
predictor at some point, however, a transient or permanent
change can occur so that the running mean can become
the most accurate. In this case, NWSLite will respond
by switching to running mean if the change is persistent
enough to cause the aggregate error ranking to change.
Odyssey and RPF are statically configured by a set of pre-
determined parameters. Thus, even though there are indi-
vidual cases that other predictors can match the accuracy
of NWSL.ite, they are unable to do well across dynami-
cally changing series and to different types resource per-
formance data.

The flip-flop filter extension to Odyssey [14], described
in Section 2, incorporates some adaptivity by using two
different parameter settings in its exponential smoothing
predictor. However, exponential smoothing cannot always
produce the best prediction accuracy (given any gain pa-
rameters). NWSLite incorporates exponential smoothing
using two different gain factors but is more general and
adaptive than this filter since it considers a wide range of
other prediction techniques that can enable significant im-
provements in accuracy at low computational cost.

6 Conclusions

By off-loading tasks from the resource-restricted de-
vices to wall-powered, high-performance servers, remote-
execution can significantly extend the capability and bat-
tery life of mobile and pervasive devices. To determine
when to offload, these devices must make forecasts about
the efficacy of doing so. A device must estimate the
cost of both remote and local execution given the highly-
variable underlying resource performance as well as the
characteristics of the task to be executed. As such, it must
employ sophisticated prediction techniques that are both
accurate and light-weight, i.e., they do not consume sig-
nificant device resources.

We present a light-weight, computationally efficient,
prediction utility for mobile devices called NWSL.ite. The
system is an extension of the Network Weather Service
(NWS), a dynamic measurement and forecasting toolkit
designed and developed for adaptive application schedul-
ing in Computational Grid environments (performance-
oriented distributed systems). We identify 5 of the
24 NWS forecasters for NWSLite implementation, that
trade-off computational cost for predictor accuracy most
effectively.

APP BW CPU LAT WBW
E90 E95 E90 E95 E90 E95 E90 E95 E90 E95
NWSLite | 3319.000 7336.000 10.271 | 25.699 | 0.019 | 0.043 | 15.772 | 24.566 | 198.130 | 351.090
NWS 3343.000 7459.000 9.601 25580 | 0.018 | 0.038 | 15.801 | 24.502 | 202.771 | 358.798
LSQ 5866.552 13305.338 | 14.105 | 28.459 | 0.058 | 0.115 | 16.415 | 26.867 | 230.591 | 422.977
RPF 17147.400 | 38696.700 | 10.596 | 25.561 | 0.080 | 0.209 | 16.187 | 24.915 | 326.340 | 533.047
ODY-LAT | 3759.839 8806.945 9.923 39.717 | 0.025 | 0.094 | 16.318 | 29.848 | 197.429 | 335.172
ODY-BW | 3458.320 7894.141 7.384 | 42541 | 0.021 | 0.079 | 16.883 | 31.494 | 192.992 | 354.560

Table 6: Results in Summary: Percentile Error. We define the X percentile error, Ex, as the maximum absolute error
for X% of the experiments. The table compares the Fyy and Egs of all forecasters for all 5 datasets and prediction

systems studied.

We evaluate NWSL.ite using over 300 different traces
of application execution times, CPU availability, wired
network bandwidth and latency, and wireless bandwidth.
In addition, we compare NWSL.ite to the NWS and to
two other extant remote execution prediction systems. We
find that NWSL.ite consistently outperforms the latter and
achieves prediction accuracy similar to that of the NWS.
However, NWSL.ite achieves this accuracy level with a
significantly lower cost (floating-point and non-floating-
point instructions executed, execution time, battery con-
sumption, etc.) than the NWS.

References

[1] A.Balachandran, G. Voelker, P. Bahl, and P. Rangan. Char-
acterizing user behavior and network performance in a
public wireless lan. In ACM SGEMTRICS 02., 2002.

[2] R. Balan, M. Satyanarayanan, S. Park, and T. Okoshi.
Tactics-based remote execution for mobile computing. In
First International conference on mobile systems, applica-
tions, and services, 2003.

[3] F. Berman, G. Fox, and T. Hey. Grid Computing: Making
the Global Infrastructure a Reality. Wiley and Sons, 2003.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G Shao.
Application level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing 1996, 1996.

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G Shao.
Application level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing 1996, 1996.

[6] "G.E. Bottomley and S.T. Alexander”. A novel approach
for stabilizing recursive least squares filters. |EEE Trans-
actions on Sgnal Processing, 39, 1991.

[7] Douglas C. Burger and Todd M. Austin. The simplescalar
tool set, version 2.0. Technical Report 1342, UW Madison
Computer Sciences, june 1997.

[8] Compag Computer Corporation. iPAQ Pocket PC.
http://www.compag.com/products/handhelds/pocketpc/.

[9] J.Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned
remote execution for pervasive computing. In Hot Top-
ics in Operating Systems(HotOS-VI11), pages 61-66, Ger-
many, 2001.

[10] J. Flinn, S. Park, and M. Satyanarayanan. Balancing per-
formance, energy, and quality in pervasive computing. In
In Proc. 22nd International Conference on Distributed
Computing Systems (ICDCS’ 02), pages 217-226, 2002.

J. Flinn and M. Satyanarayanan. Energy-aware adaptation
for mobile applications. In Symposium on Operating Sys-
tems Principles, pages 48-63, 1999.

[11]

[12] 1. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,

Inc., 1998.

The grid application development software project
(GrADS). http://hipersoft.cs.rice.edu/
grads/.

[13]

[14] Minkyong Kim and Brian Noble. Mobile network estima-
tion. In Mobile Computing and Networking, pages 298-

309, 2001.

U. Kremer, J.Hicks, and J.M.Rehg. A compilation frame-
work for power and energy management on mobile com-
puters. In 14** International Workshop on Parallel Com-
puting (LCPC’01), August 2001.

C. Krintz. Coupling On-Line and Off-Line Profile Infor-
mation to Improve Program Performance. In International
Symposium on Code Generation and Optimization (CGO),
March 2003.

C. Krintz and B. Calder. Using Annotation to Reduce Dy-
namic Optimization Time. In Proceedings of ACM S G-
PLAN Conference on Programming Language Design and
Implementation, pages 156-167, June 2001.

[15]

[16]

[17]

[18] Dushyanth Narayanan and M. Satyanarayanan. Predictive
resource management for wearable computing. In First
International conference on mobile systems, applications,

and services, 2003.

[19] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. Agile application-aware adapta-
tion for mobility. In sixteenth ACM symposium on Operat-

ing systems principles, pages 276-287. ACM Press, 1997.

The network weather service page -
http://nws. cs. ucsb. edu.

[20] home

[21] T.W.Project. Glvu source code and online documentation,

Feb 2002. http://www.cs.unc.edu/ walk/software/glvu/.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

A. Rudenko, P. Reiher, G.Popek, and G.Kuenning. The re-
mote processing framework for portable computer power
saving. In ACM Symp. Appl. Comp., San Antonio, TX,
February 1999.

A. Rudenko, P. Reiher, G. Popek, and G. Kuenning. Sav-
ing portable computer battery power through remote pro-
cess execution. Mobile Computing and Communications
Review, 2(1):19-26, january 1998.

Wireless lan traces from acm sigcomm’01l. http://
ranp. ucsd. edu/ pawn/ si gconm trace/ .

M. Smith. Overcoming the challenges to feedback-
directed optimization. In ACM S GPLAN Workshop on Dy-
namic and Adaptive Compilation and Optimization (Dy-
namo00), January 2000.

N. Spring and R. Wolski. Application level scheduling:
Gene sequence library comparison. July 1998.

S. Sucu and C. Krintz. ACE: A Resource-Aware Adap-
tive Compression Environment. In International Confer-
ence on Information Technology: Coding and Computing
(ITCC), April 2003.

Martin Swany and Rich Wolski. Representing dynamic
performance information in grid environments with the
network weather service. In 2nd |IEEE International Sym-
posium on Cluster Computing and the Grid, May 2002.

A. J. Willmott. Radiator source code and online documen-
tation, Oct 1999. http://www.cs.cmu.edu/ ajw/software/.

R. Wolski. Dynamically Forecasting Network Perfor-
mance Using the Network Weather Service. Journal of
Cluster Computing, 1:119-132, January 1998.

R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting
service for metacomputing. Future Generation Computer
Systems, 1999.

P. Young. Recursive Estimation and Time-Series Analysis.
Springer-Verlag, 1984.

Z.Li, C.Wang, and R.Xu. Computation offloading to save
energy on handheld devices:a partition scheme. In Proc. of
International Conference on Compilers,Architectures and
Synthesis for Embedded Systems (CASES), pages 238-246,
2001.

Appendix

In this section, we provide more detail on the performance of forecasters. First, we evaluate the effectiveness of all
forecasters using relative error rate and predictability. These metrics are described in section 5.2. Then we discuss
the effect of parameterization on the linear regression and smoothing filter based forecasters.

First we compare six forecasters - NWS, NWSL.ite, LSQ, RPF, ODY-LAT and ODY-BW- on network bandwidth,
application CPU demand and wireless network bandwidth datasets. We further divide the network bandwidth traces
into three groups: In-cluster, across-cluster and cross-country.

A typical computation cluster is a few high performance UNIX and Linux workstations connected through a high
speed local area network. The local area network is a 100Mb/s or 1000Mb/s (Gigabit) Ethernet. The clusters are
connected through other LAN’s or university backbone networks.

In-cluster and across-cluster datasets consist of measurements inside a cluster and across clusters. Cross-country
dataset includes probes among clusters that are scattered throughout the country, including UCSB, UCSD, UTK and
University of Illinois at Urbana-Champaign.

We show the results in Figures 5 and 6. NWS and NWSL.ite are invariably among the best forecasters. The LSQ
is most appropriate for application dataset, but it is almost always the worst forecaster in other cases. On the other
hand, the exponential smoothing based filters do better than LSQ, however, they still can not match the performance of
NWSL.ite. All smoothing filters, in particular ODY-LAT and ODY-BW, fail when predictability metric is considered.
As a side note here, the relative error rate considers the outliers, as it adds the square of prediction error. On the other
hand, the predictability metric considers the absolute error. Thus, our conclusion is that smoothing filters leave less
outliers but they are still worse than NWS and NWSL.ite in terms of precision.

When individual datasets considered, the network bandwidth data presents interesting results. The predictability
evaluation shows that cross-country network bandwidth is more predictable than high-speed local area networks. That
could be due to the characteristics of the applications that dominate the clusters.

As the Figures 5 and 6 show, the parametric models sometimes do as well as non-parametric models for a particular
subset of data. However, if they are poorly configured, the results could be disastrous. To prove this point, in table 7,
we compare the relative error rate of two different LSQ forecasters: one with a decay factor 0.5 and the other with 0.8.
The former one is the original parameter Narayanan used to estimate application resource consumption. A factor as
low as 0.5 provides a very agile forecaster that adapts quickly to any change in the system. However, noise can easily
degrade its performance to unacceptable levels. As the table shows, the agile predictor has a very high error rate in
noisy environments such as network bandwidth and latency. Furthermore, it diverges (error rate goes to infinity) on a
subset of CPU availability traces.

We explain the divergence this way: Some of the workstations that we observed had long idle periods with sporadic
high activity periods. As the CPU availability is a fraction of 1, in data traces this corresponds to a long sequence of
values that are very close to 0, and then sudden jumps. This, when combined with a long observation period, causes
the numerical errors to aggregate. Eventually, due to the recursive nature of the algorithm, it becomes unstable and
diverges. More information about divergence in least squares linear regression is given in [6].

On the other hand, a higher exponential decay parameter creates a predictor that gives more weight to past. Such a
model is less agile but more immune to any transient noise. After our empirical evaluations with many parameters, we
found that « = 0.8 provides a good trade-off between agility and precision. We found that this predictor has an error
rate two or three order of magnitude better than the agile one.

Table 8 shows the parameterizations we evaluated for RPF forecaster. The forecasters to the left of the table use a
smaller history window than the ones to the right, making them more agile. We found that the forecasters with a larger
history window are slightly better. Figure 7 compares relative error rate of all RPF parameterizations on the overall
dataset. On the other hand, the more agile predictors do better in application dataset but do worse as figure 8 shows.
Overall, R10 provides the best parameterization for RPF.

2.0 2.0+

154 1.5
S S
o o}
.g 1.0 _02) 1.0 1
® s
° T
0.5+ 0.5+
0.0- 0.0
o @ <N o @ <R
S & &P S & E
S ® & S S &
(@ (b)
2.0+ 2.0+
154 1.5
S S
o} o}
.g 1.0 _02) 1.0
® ®
° T
0.5+ 0.54
. I mmmE e
o @ <N o @ <R
s @ & & N8 S & & O o
S ® & S S &
(©) (d)
2.0+
1.5 | I
S
o}
.GZ) 1.0
®
°
054
0.0-
@ <@
$$ $®’{\ \/é) Qé(~\,\/\?~ ,\'Q’$
(e)

Figure 5: Comparison of forecasters: The figures (a) through (e) compare the performance of forecasters on in-
dividual datasets. The evaluation metrics is relative error. NWS and NWSL.ite are winners in all cases. ODY-LAT
and ODY-BW forecasters are just behind them. LSQ is the worst performer in almost all cases except the application
dataset. The figures at the left side (a,c,e) belong to fixed network bandwidth dataset divided into smaller groups. (a)
describes relative error rate in a computation cluster, which is generally connected via a high speed local area network.
(c) and (e) are similar to (a) except that (c) is across computation clusters (such as a university campus network) and
(e) is cross country. (such as a wide area network). (b) and (d) belong to wireless network bandwidth and application
datasets.

2.0+ 2.0
1.5 1.5
2 2
g 1.0 g 1.0
g g
0.5 0.5
0.0- 0.0
&) <@ &) <@ A
(@ (b)
2.0+
1.5
2
§ 1.0
:
o —_
05- 4.0
0.0- 357
O @ A Q
& $9’\ \'OP Qé(Mo® 3.0
S &
(© 25
=
2.0+ g 2.0
g
- 1.5 1.5
§ 1.0 1.0
:
o
0.5 0.5
0.0- 0.0
&) <@ A &) <@ A
S $®5\ & & > .\9’$ S \@'\\ & & ™ 497&
(e) (d)

Figure 6: Comparison of forecasters. The figures (a) through (e) compare the performance of forecasters on indi-
vidual datasets. The evaluation metrics is predictability. NWSand NWSL.ite are winners in all cases. Surprisingly, the
ODY-BW, which is specially developed to estimate network bandwidth is the worst performer in predicting in-cluster
and across-cluster network bandwidth. The descriptions of datasets for figures (a to e) is given in figure 5 caption.

[Dataset | APPL | WBW | LAT-1 | LAT-2 | LAT3 [CPU | RIT-L | RIT-2 | RT3 |
a=05 | 020 | 4021.30 | 485043 | 5005.36 | 15167.1 | Div | 84292.88 | 98750.82 | 6968.61
a=08 | 023 | 123 | 078 | 078 | 2319 | 1412 | 1277 | 1412 | 255

Table 7: Effect of exponential decay on LSQ: The exponential decay factor determines the weight of history on
predicting the future values. A value as low as @ = 0.5 makes the predictor very agile. That is it can respond to
the changes quickly. However, any transient change or noise can adversely effect the outcome. This table compares
the relative error rate of least squares method with two different decay factors « = 0.5 and @ = 0.8. Except the
application dataset, which is virtually noise free, a low agility factor always results in a much higher error rate. The
datasets used in the evaluation are: Application, wireless bandwidth, network bandwidth in 3 different resolutions (in
cluster, across cluster, cross-country), CPU availability, network latency in 3 different resolutions (in cluster, across
cluster, cross-country). Div stands for divergence for at least some traces

[Name: [RORL [R2 [R3 [R4 [R5 [R6 | R7 | R8 | R9 [R10 | RIl | R12 | R13 | Ri4 |
a 0.0][01]02]05]09]00[01]02][05]09]0.0]0.I]02]05]09
k 5 10 15

Table 8: Different parameterizationsof RPF: To find the best parameterization, we tried 15 different combinations of
k and « (see formula 3). The effect of history on new forecast decreases with a higher .. The parameter k& determines
how large the history window is; the higher it is, the larger the window.

2.0+

154

1.0

mean square error/average

0.5

0.0 -
S @ & @ E & & &P PSS P

Figure 7: Overall comparison of RPF forecasters: This figure compares the effectiveness of RPF forecasters with
different parameters in terms of relative error rate (see formula 10). As the figure shows, the difference between
forecasters is very small suggesting the formula 10 is not sensitive to parameters. However, this is not true. In some
datasets the difference is very visible. (see figure 8). Overall, the best parameterization is R10.

1.0+

Q

&

T

8

<

& 05+

8

=

2}

§

£

& @ @ P Y & &
(a)

1.0+

3]

e

T

8

6

T 054

[}

g

=

iz}

;
0.0-

Figure 8: Parameterizations of RPF: The effectiveness of RPF forecasters depends on the selected parameters. The
figures above compare the effect of parameters in terms of relative error rate. The application dataset is highly sensitive
to the chosen parameter (shown in Figure (a)), but the CPU dataset (Figure (b)) is not. In application dataset, the RO
parameterization is slightly better than the rest. This suggests that for our applications (GLVU and Radiosity), the
resource demand is dependent on most recent history. On the other hand, in the CPU dataset, the parameterizations
with a shorter history are slightly wor se than the rest.

