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Abstract

Ranking-aware queries have been gaining much
attention recently in many applications such as
search engines and data streams. They are, how-
ever, not only restricted to such applications but
are also very useful in OLAP applications. In this
paper, we introduce aggregation ranking queries
in OLAP data cubes motivated by an online ad-
vertisement tracking data warehouse application.
These queries aggregate information over a spec-
ified range and then return the ranked order of
the aggregated values. For instance, an adver-
tiser might be interested in the top-k publishers
over the last three months in terms of sales ob-
tained through the online advertisements placed
on the publishers. They differ from range aggre-
gate queries in that range aggregate queries are
mainly concerned with an aggregate operator such
as #�$	% and %'&�(�)�%�*�+ over the selected ranges of
all dimensions in the data cubes. Existing tech-
niques for range aggregate queries are not able
to process aggregation ranking queries efficiently.
Hence, in this paper we propose new algorithms to
handle this problem. The essence of the proposed
algorithms is based on both ranking and cumula-
tive information to progressively rank aggregation
results. Furthermore we empirically evaluate our
techniques and the experimental results show that
the query cost is improved significantly.

1 Introduction

Traditionally, databases handle unordered sets of informa-
tion and queries return unordered sets of values or tuples.
However, recently, the ranking or ordering of members of
the answer sets has been gaining in importance. The most
prevalent applications include search engines where the
qualifying candidates to a given query are ordered based on
some priority criterion [3]; ranking-aware query process-
ing in relational databases [11, 2, 10, 4, 7]; and network
monitoring where top ranking sources of data packets need
to be identified to detect denial-of-service attacks [1, 9].

Ranking of query answers is not only relevant to such ap-
plications, but is also crucial for OnLine Analytical Pro-
cessing (OLAP) applications. More precisely the ranking
of aggregation results plays a critical role in decision mak-
ing. Thus, in this paper, we propose and solve aggregation
ranking over massive historical datasets.

As a motivating example, consider an online advertise-
ment tracking company 1, where each advertiser places its
advertisements on different publishers’ pages, e.g., CNN
and BBC. In general an advertiser is interested in identify-
ing the “top” publishers in terms of total sales or number
of clicks during a specific time period. For instance, dur-
ing the last 30 day period while a particular advertisement
campaign was conducted, or during the period of 15 days
preceding the new year. An alternative example is in the
context of historical stock market data analysis. Given the
trade volume of each stock, an analyst might be interested
in the top trades during a certain period of the year, while
studying stock market trends.

In general such applications would need to maintain a
data warehouse which stores data cube information. For the
advertising company, the data cube would store the sales
(or clicks) of the various publishers and advertisers. Con-
sider an advertiser who would like to ask queries of the
form: “find the top-10 publishers in terms of total sales
from December 15, 2003 to December 31, 2003”. Based
on existing techniques, first the total sales from December
15, 2003 to December 31, 2003 for each publisher needs
to be aggregated. Then the total sales for all publishers are
sorted to identify the top-10 publishers. We refer to such
queries as aggregation ranking, since they aggregate infor-
mation over a specified range and then return the ranked
order of the results.

The problem of aggregation ranking is similar and yet
differs from many related problems which have been ad-
dressed by the database and related research communities.
We concentrate on the online analysis of massive amounts
of data, which is similar to range aggregate queries preva-
lent in data warehouses. However, we are concerned with
ranking values of a certain dimension based on the aggre-

1The proposed research is motivated by a real need for such type of
algorithmic support in an application that arises in a large commercial
entity, an online advertisement tracking company.



gates over ranges in other dimensions while prior research
work on range aggregate queries concentrated on calcu-
lating a single aggregate over selected ranges of dimen-
sions [6, 13]. To the best of our knowledge, this paper is
the first attempt to address the ranking of aggregation in
the context of OLAP applications. Our approach differs
from the data stream research related to the ����� -k opera-
tions [1, 9, 5] since the data is not continuously evolving.
Moreover, queries in data streams are interested in more re-
cent data. In contrast, our aggregation ranking queries can
involve data in any arbitrary time range. In the context of
relational databases, Bruno et al. [2] proposed to evaluate a
top- � selection by exploiting statistics stored in a RDBMS.
Ilyas el al. [11, 10] proposed a new database operator, top- �
join, and efficiently implemented it using available sorting
information of joined relations. This work addresses the
optimization of top- � selection and join operations in the
context of relational databases. Our work, however, targets
aggregation ranking queries in OLAP applications. In mul-
timedia systems, Fagin [8] introduced ranking queries that
combine information from multiple subsystems. Fagin’s
algorithm can be directly applied if aggregates at multiple
granularities (e.g. day, month, year) are considered. In par-
ticular aggregates on any specified range can be obtained
by additions of multiple involved lists at different granu-
larities. When the number of involved lists grows large,
Fagin’s algorithm tends to have a linear cost while the pro-
posed algorithms in this paper always involve only two lists
with sublinear cost. However, the framework in [8] is in-
deed useful for reasoning the correctness of our algorithms
for aggregation ranking queries and therefore we adapt it to
our context.

The rest of the paper is organized as follows. Section 2
gives the model and a motivating example. In Section 3, we
present a new cube representation. Then we incrementally
develop three different techniques for answering aggrega-
tion ranking queries in the following three sections, each of
these improves a previous one. In Section 7 we empirically
evaluate our proposed techniques and present the experi-
mental results. Conclusions and future research work are
given in Section 8.

2 Model and Motivating Example

In this paper we adopt the data cube [12] as a data model
since it provides fast access to information in a data ware-
house. Data cubes are usually built by extracting “raw”
data from different tables in relational databases and pro-
vide ready information for aggregation and summariza-
tion. A data cube can be conceptually viewed as a hyper-
rectangle which contains � dimensions or functional at-
tributes and one or more measure attributes. Dimensions
describe the data space, and measure attributes are the met-
rics of interest (e.g., sales volume). In particular, each cell
in a data cube is described by a unique combination of di-
mension values and contains the corresponding value of the
measure attribute. Note that in this paper the data cube
model only represents an abstract way of viewing the data.

It does not imply or exclude a certain physical data organi-
zation.

To introduce aggregation ranking queries, we assume
that one of the functional attributes, �	� , of the data cube
corresponds to the time dimension on which query ranges
are specified. An aggregation ranking query specifies a
range over the time dimension and requests a ranking based
on the values of a particular functional attribute ��
 , or
based on the aggregated values of the measure attribute
after applying some type of aggregation over a subset of
the functional attributes. For instance, using the online ad-
vertisement tracking company example, we consider a data
cube #�*
����# which has * !��	�������������

, � ���
�	�"�������
, � �����

as
dimensions or functional attributes and # ���"���

as the mea-
sure attribute. � �����

is the time dimension. Each cell in this
data cube contains the daily sales of an advertiser a through
the advertisements placed on a publisher p’s website.

For simplicity we concentrate on a particular adver-
tiser, � , and hence project data cube #�*
���	# along the*�����������&�#���� dimension for a specific advertiser � . Fig-
ure 1 shows the slice of data cube #�*
���	# corresponding
to advertiser � . In the ��$����'&�#������ dimension, we have 10
publishers for advertiser a indexed by ����� �"!$#%!'&�( and
in the ��*���� dimension, we have historical data for 9 days
indexed by )*��� �+!,#-!/.�( . The measure attribute value in
each cell corresponds to the sales accrued by advertiser � ,
due to advertisements by publisher �0� on day )*� .
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Figure 1: Slice of data in the data cube for advertiser a

A particular type of aggregation ranking query of inter-
est to advertiser � in the #�*
����# data cube is “find the top-k
publishers in terms of total sales from )213� 45
6� to )+798�: ”,
and is specified as �	;*�<�>=�)?13� 45
6�@=6)+798�:A( . The shaded area
in Figure 1 shows an instance of such a query from day )2B
to )*C . Answering this kind of aggregation ranking queries
with #�$	% operator efficiently is the focus of this paper.

A basic way to answer such an aggregation ranking
query is to access each selected cell in the data cube and
compute the total sales for each publisher within the time
range from ) 13� 45
6� to ) 798�: . Then sort the aggregated val-
ues to obtain the top-k publishers. We refer to this method
as the naı̈ve algorithm. Since the number of involved cells
is usually large, and data cubes are generally stored on
disks, this will result in significant overhead. Also online
sorting entails significant time overhead if there is a large



number of publishers per advertiser. This in turn will im-
pact the response time of interactive queries negatively.

3 Sorted Partial Prefix Sum Cube

In order to process aggregation ranking queries efficiently,
we propose to use cumulative information maintained for
each value of the ranking attribute �%
 along the time di-
mension. This is based on the prefix sum approach [6]
which can answer any range aggregate query in constant
time. Furthermore we pre-sort the cumulative information
of values of � 
 for each time unit. Hence a new cube pre-
sentation, Sorted Partial Prefix Sum Cube (SPPS cube in
short), is developed.

SPPS cube has exactly the same size as the original data
cube. For simplicity of presentation, we will use the online
advertisement tracking company example to explain our
data structures and algorithms. Thus the ranking attribute is
��$
�
�'&�#������ and the time dimension is ��*���� . The proposed
algorithms can be generalized to additional dimensions in
a straightforward manner. An SPPS cube contains cumu-
lative information along the ��*���� dimension for each pub-
lisher and daily order information along the ��$
���'&�#������ di-
mension. Each cell in the SPPS cube, indexed by � � � =6) � ( ,
maintains the following three types of information:

� ���	#�$�% (Partial Prefix Sum): total sales for publisher
� � within the time range from )�� to ) � , i.e., cumula-
tive sum since the initial time of the #�*
���	# data cube.

� ��� � (Pointer to Previous Cell): a pointer to a cell in the
same row of the SPPS cube which contains the small-
est value no less than SPPS � �0��=6)*��� . ���	#�$�% ; if such a
pointer does not exist, ��� � is set to NULL.

� ��( � (Pointer to Next Cell): a pointer to a cell in the
same row of the SPPS cube which contains the largest
value no greater than SPPS � �0��=6)*��� . ���	# $	% ; if such a
pointer does not exist, �"( � is set to NULL.

��� � and ��( � for all cells in a given row or time unit, )+� ,
maintain a doubly linked list in decreasing order of ����#�$	% .
We refer to this list as ����#�$	% �<)*� ( . In addition we maintain
two pointers pointing to the header and the tail of each
doubly linked list for the SPPS cube. The header is the
top ranked cumulative publisher and the tail is the bottom
ranked cumulative publisher.

Figure 2 shows the SPPS cube constructed from the
original data cube shown in Figure 1. Each cell con-
tains the ����#�$	% , ��� � , ��( � information in the form of
���	# $	%��	��
�	��
 . Also for presentation simplicity, we use the
publisher index for pointers ��� � and ��( � . For example
SPPS � � B�=6)�
�� . ���	# $	% is the sum of sales for publisher �0B
since the starting day of the data cube to day )�
 , which
is &���������� .������������������ . � . As the total sales
for publisher � B so far is the largest among all the publish-
ers, there is no ��� � pointer and hence ��� � is set to NULL
and represented by ‘N’. The ��( � pointer points to the cell
� �"!�=6) 
 ( whose ���	# $	% is the largest value among all the
cells in the row corresponding to ) 
 which values less than
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Figure 2: SPPS cube for the data cube shown in Figure 1

SPPS � � B =6) 
 � . ���	# $	% . In the figure, the top ranked publish-
ers are indicated by ’H’, and the bottom ranked publishers
are indicated by ’T’.

4 Complete Scan Algorithm

We first present a simple algorithm, complete scan, to
process aggregation ranking queries by using the pre-
computed cumulative information in SPPS cubes. Given
a query �	; � �>=6)?13� 45
6��=�)+798�:A( , we need to obtain the to-
tal sales #�$	%>� � � = ) 13� 4 
 � =6) 798�: ( for each publisher � �
from ) 19� 45
 � to ) 798�: . This can be computed from the
���	# $	% � �$#�( information maintained for each publisher � �
in the SPPS cube, which is actually given by the following
simple subtraction:

#�$	% � � ��=6)+13� 45
6�@=6)+798�: (%�
SPPS � � � =�) 7 8�: � � ���	#�$	%'& SPPS � � � =6) 13� 4 
 � &(�)� � ���	#�$	% .

Collecting the total sales of all publishers between ) 13� 4 
 �
and )+798�: together, we get a list denoted by

#�$	% � )+13� 4 
 �5=�)*7 8�:A(*�� #�$�% � �,+ =�) 13� 45
6� =�) 798�: (5= ����� = #�$	% �<� 8 =�) 13� 45
6� =�) 798�: ( �

The top-k publishers during the period � )213� 45
6�5=6)+798�: ( are
in the list #�$�%>� )?13� 45
6��=�)+798�:A( and can be easily extracted
by sorting the list #�$	% ( )+13� 4 
 ��=6)+798�: ), and reporting the
top- � publishers from the sorted list. Thus the query cost
is -*�/.0�1.325476,. ( , where . is the total number of publish-
ers. The first term . in the query cost is due to the com-
putation of the #�$�% list, and the second term .8294�6,. is the
cost of sorting the #�$�% list. Instead of sorting the entire
. publishers, we could take the first � publishers from the#�$	% list, sort and store them into a list called list-k. For each
publisher in the sum list ranging from ����� to . , insert it
into list- � , then remove the smallest publisher from list- � .
Therefore the publishers in list- � are the top-k publishers.



The query cost is -*�/.0� .3294�6 ��( . If � is a constant or � is
much smaller than . ( � ��� . ), the query cost is linear.

Note that the cost of the query is independent of the
query range in the time dimension and is linearly depen-
dent on the total number of publishers, i.e., it needs to pro-
cess every publisher. Since the data cube is stored on disks,
the cost of retrieving every publisher’s information from
disk can be relatively high. Furthermore an online adver-
tisement tracking data warehouse serves a large number of
advertisers at the same time. Thus the delay may not be ac-
ceptable for analysts who prefer interactive response time.
In the next two sections, we extend the complete scan algo-
rithm to improve the query cost by exploiting the ranking
information maintained in the SPPS cube to minimize the
number of publishers scanned.

5 Bi-directional Traversal Algorithm

In the complete scan algorithm, the first step computes the
total sales for each publisher in a given time range, for
which the best time complexity is linear. In order to reduce
the total query cost, we need to avoid computing the entire#�$	% list. This is the premise of the bi-direction traversal
algorithm discussed in this section. Note that for clarity
of presentation, we discuss our algorithms using a multidi-
mensional database (MOLAP) model. Our algorithms are
also applicable for relational tables (ROLAP), which will
be discussed in Appendix A.

5.1 Query Processing Algorithm

The problem of evaluating aggregation ranking queries
now reduces to the problem of combining two lists
of ordered partial prefix sums corresponding to the
given time range �<)+19� 45
 �5=�)+798�:A( , i.e., ���	#�$	% � )?13� 45
6�*& �A(
and ���	#�$	% �<)+798�:A( respectively. Intuitively, for a given
query � ;*� �>= )+13� 4 
 �@=6)+798�: ( , the publishers which are
in the query result must have relatively larger values
in list ���	#�$	% �<) 798�: ( and relatively smaller values in list
���	# $	% � ) 13� 45
6� & � ( . Therefore, instead of computing the
entire list of #�$	% ( ) 13� 45
6� =�) 7 8�: ), we may only need to com-
pute the total sales of publishers which have higher ranking
in ���	#�$�% � ) 798�: ( , and lower ranking in ���	# $	% � ) 13� 45
6� &1�A(
as long as the number of these publishers is large enough
to answer the aggregation ranking query. Based on this
intuition, we design the bi-directional traversal algorithm
shown in Algorithm 1.

In the bi-directional traversal algorithm, we extract pub-
lishers concurrently from list ���	#�$	% �<)?798�:A( in decreas-
ing order (starting from the header of ���	#�$	% � )2798�:A( down
to the tail) into a list denoted by �-798�: , and from list
���	# $	% � )+13� 45
6� & �A( in increasing order (starting from the
tail of ����#�$	% �<) 13� 45
6� & �A( up to the header) into another
list denoted by � 13� 45
6� , until the number of publishers in the
intersection of their output sets � 13� 4 
 ��� � 7 8�: is no smaller
than � ( � is specified as an input parameter to the aggre-
gation ranking query). Hence scanning all the publishers
is avoided. Then calculate the total sales of all publishers

in � ��� 13� 45
6���	� 798�: . Finally, compute the top-k publish-
ers in � �
� 19� 45
 ����� 798�: based on their total sales during
� )+13� 4 
 �@=6)+798�: ( . These top-k publishers are actually the an-
swer to the given query.

Algorithm 1 Bi-directional Traversal Algorithm
1: Input:
2: 
�������������������� �!��"!#%$'& ;
3: Procedure
4: ( �!�������*),+ , ( "!#%$-).+ ;
5: /�0-13254768���!������� = Tail of �	� 9�:<; �=���!���<���?> + &
6: /�0-13254768��"!#%$ = Header of ��� 9�:<; �=�@"�#A$3& ;
7: while B3( ���������DC ( "�#A$ B EF� do
8: (*�!���<��� = (?���������DGH/�08132H4?6-�����������<I J�K�L'M #�N!O'P�Q ;
9: /�08132H4768� �!���<���7) /�0-1'2H4768� �!���<��� I �	� 
10: (*"!#%$ = (*"!#%$RGH/�0-13254768��"!#%$%I J<K�L'M #�N�O'P�Q ;

11: /�08132H4?6-��"!#%$ ) /�08132H4768��"!#%$%I �	��
12: end while
13: for each publisher / in ( ) (?�!���<���SGH(*"!#%$ do
14: Compute the total sales in T � �!���<��� �!��"!#%$ U by SPPS T /?����"!#%$ U�I �	�'9�:<; >

SPPS T /?�����!���<���*> + U�I �	�'9�:<; ;
15: Insert / into set � ;
16: if B'�	B VF� then
17: Remove /XW from � if its 9�:<; �=/XWY�!���!���<�����!��"!#%$3& is smaller than all

other publishers in � ;
18: end if
19: end for
20: End Procedure
21: Output: � ;

5.2 Analysis

The correctness of the bi-directional traversal algorithm
can be argued by extending Fagin’s framework for com-
bining fuzzy information from multiple multimedia subsys-
tems [8]. Essentially, Fagin proposed an algorithm to find
the top-k matching objects by combining decreasing sorted
lists of objects from multiple subsystems using the min con-
junction rule in fuzzy logic. However, in our bi-directional
traversal algorithm, the query result is based on subtract-
ing values of list ���	#�$�% � ) 13� 45
6� & � ( from ���	#�$	% � ) 798�: (
instead of based on their boolean combination. Hence we
extend Fagin’s framework [8] to establish the correctness
of our aggregation ranking query processing.

For any aggregation ranking query Z , if the query re-
sults are based on the combined information of multiple
sorted lists of all objects, each of which is the output of a
subquery of Z , these lists can be classified into two types:
positive and negative lists.

Definition 1 Assume a query Z can be answered by a set
of sub-queries Z � ���+! #	!\[ ( , and each subquery Z � re-
turns a sorted list of objects referred to as � � . A list � � is
positive if an object with a larger value under sub-query
Z � contributes a larger value of this object under Z . Like-
wise a list �^] is negative if an object with a larger value
under sub-query Z_] contributes a smaller value of this ob-
ject under Z .

The combination rule which is used to combine the lists
of objects from [ subqueries to answer an aggregation
ranking query is referred to as an [ -ary scoring function.
Monotonicity and strictness are two important properties
associated with an [ -ary scoring function, which are de-
fined as follows.



Definition 2 Monotonic: An [ -ary scoring func-
tion � is monotonic if � ��� + ��� ( = � ��� =���� ��� (6( !
� ��� + ����� (5= � ��� =	��� �
��� ( ( when � �6���>( ! � � ����� ( in every
positive list � � , and �R]���� (
���7]���� � ( in every negative list
� ] .

Definition 3 Strict: An [ -ary scoring function � is strict if
� ��� + ���>(5= � ��� =���� ���>( ( has the maximum value iff � ����� (3�
[ ��� � in every positive list # , and �R]��
� ( � [ # .7] in every
negative list ��] , where [ ��� � is the maximum value of all
objects over the positive list � � , and [ # .7] is the minimum
value of all objects over the negative list � ] .

An [ -ary scoring function is strict if and only if
there is an object which has the maximum values in all
positive lists, and the minimum values over all negative
lists. In our aggregation ranking queries, we combine lists
���	# $	% � ) 13� 45
6� &(� ( (negative) and ����#�$	% �<) 7 8�: ( (positive)
by subtracting ���	#�$	% � ) 13� 45
6� & � ( from ���	#�$	% � ) 7 8�: ( . We
refer to this as the binary subtraction rule which is defined
as follows.

Definition 4 Given two lists � =�� of objects and an object
� in both � and � . Let � 
 �
� ( and ��� �
� ( be object � ’s
values in lists � and � respectively. � is the combined
list, and the combining rule is the binary subtraction rule:
��� �
� (%��� 
 ��� (,&�� � ��� ( .

The binary subtraction rule is an [ -ary scoring function,
and it is monotonic and strict, which is established in the
following proposition.

Proposition 1 The binary subtraction rule is monotonic
and strict according to Definitions 2 and 3.

Proof Assume � 
 ���>( !�� 
 ����� ( and ���	��� (������	����� ( .
Thus &����	���>( ! &����	����� ( and hence ��� 
�> �	��� ( �
� 
 ���>( &�� � �
� ( (/! ��� 
�> � ����� ( ��� 
 �
��� (3&�� � �
��� ( ( .
Thereby monotonicity is proved. Strictness can be easily
established. If � 
 �
� ( is the maximum value in the positive
subsystem and � � ���>( is the minimum value in the negative
subsystem, it is obvious � 
�> � ���>( has the maximum value
of all objects. �

More importantly the binary subtraction rule has a prop-
erty which guarantees the correctness of the bi-directional
traversal algorithm. This property is given in the following
proposition.

Proposition 2 Let � 19� 45
 � be a sublist of ���	#�$	% � )?13� 45
6�%&
� ( starting from the tail of ����#�$	% �<)?13� 45
6�%& � ( , and � 798�:
be a sublist of ���	#�$	% � )?798�:A( starting from the header of
���	# $	% � )+798�:A( . If the number of publishers in �-13� 45
6� � � 798�:
is no smaller than � , then the top-k publishers must be in
� 19� 45
 � � � 798�: .

Proof Assume there exists a publisher � which is not in
� 7 8�: �^� 19� 45
 � but is one of the top-k publishers. Since at
least � publishers are in � 7 8�:H� � 13� 45
6� , there must exist at
least one publisher � � in � 798�:7� � 19� 45
 � which is not a top-k
publisher.

Since � 13� 4 
 � is a sublist of ���	#�$�% � ) 13� 45
6� & � ( which
starts from the tail. � is not in � 19� 45
 � and �!�#"�� 13� 45
6� .
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Figure 3: The relationships among �-7 8�: ='� 13� 4 
 �@=6� , and � �
Their relative positions in ����#�$	% �<) 13� 45
6� & �A( are shown in
Figure 3. Thus, we have

���	# $	% � ) 13� 45
6� & � ( � �8�%$ ���	# $	% � ) 13� 45
6� & � ( � �!� �
Similarly, � 798�: is a sublist of ���	#�$	% � )?798�:A( which starts
from the header, and � is not in �-798�: and � � " � 798�: . Then
� and � � have the following relation in ���	#�$	% �<)?798�:A( :

���	#�$�% � ) 798�: ( � �!� �%$ ���	# $	% � ) 798�: ( � �8�
Therefore, the total sales of � in the time range from )213� 4 
 �
to )+798�: is smaller than that of � � ,

���	# $	% � ) 798�: ()� �8� & ���	# $	% �<) 13� 45
6� & � ( � �8�� ���	# $	% � )+798�: ( � � � � &"���	#�$�% � )+13� 45
6� & � ( � � � �
However, based on our assumption, the total sales of � in
the time range is larger than that of � � , since � is in the top-
k publishers, and �!� is not. This leads to a contradiction.
Therefore, the assumption is incorrect, i.e., publisher � can
not be a top-k publisher. �

The bi-directional traversal algorithm is mainly de-
signed to meet the needs of aggregation ranking queries.
In particular, it only takes two lists into account. One is a
positive list and the other is a negative list. In fact, it can be
generalized to handle any number of ordered lists to meet
the requirements of various applications which also address
ranking-aware queries.

The query processing cost of the bi-directional traversal
algorithm is given by the following proposition:
Proposition 3 Given . publishers, if ���	#�$�% � )?19� 45
 � &
� ) and ���	#�$�% � )+798�: ) are independent, the bi-directional
traversal algorithm can achieve query cost of

� � &('*)+� � � ��� - ��( !-, �/. ��(�./ � !-,10
for every ,2� � , where � stands for the probability.

Proposition 3 shows that the processing cost of an ag-
gregation ranking query � ;*�<� =6)?13� 4 
 �@=6)+798�: ( is improved
to -*�43 . ( with arbitrarily high probability if the two lists
���	# $	% � )+13� 45
6� &(� ( and ���	#�$	% � )+7 8�: &(� ( are independent
and � is much smaller than . . The monotonicity and strict-
ness properties of the binary subtraction rule guarantee the
correctness of Proposition 3, which can be shown by using
a proof similar to that given in [8]. Note that the com-
bination rules of multiple lists for different applications
could be different. However, as long as the combination
rules have the monotonicity and strictness properties, the
query processing cost can also be shown to be improved
to -*�/.6587 .5 ( , where [ is the total number of positive and
negative lists.



6 Dominant-Set Oriented Algorithm
In this section we develop a practical aggregation ranking
algorithm, the dominant-set oriented algorithm. This al-
gorithm extends the bi-directional traversal algorithm by
pruning the to-be-scanned publishers in practical settings
where lists for different dates are not independent. The
dominant-set oriented algorithm is much more efficient for
real world applications.

6.1 Motivation

The bi-directional traversal algorithm can answer an aggre-
gation ranking query �	;*�<�>=�) 13� 45
6� =�) 798�: ( in -*� 3 . ( with
arbitrarily high probability for . publishers if the two lists
���	# $	% � )+13� 45
6��&��A( and ���	#�$�% � )+798�: ( are independent. Un-
fortunately in most real applications, this is not the case.
For example, considering the online advertisement track-
ing data warehouse application, the two lists are indepen-
dent if the probability of daily sales is not dependent on
a specific publisher, i.e., if all publishers have similar and
independent degrees of popularity. However, in the real
world, some publishers are usually more popular than oth-
ers. Thus the daily sales obtained through the advertise-
ments placed on those publishers are much more than that
of other publishers. Under such circumstances, the cumu-
lative sales in lists ���	#�$	% � ) 13� 45
6� &�� ) and ���	#�$	% � ) 798�: (
for a publisher may not be completely independent. There-
fore the probability that the query cost is -*� 3 . ( becomes
low. In particular, the worst case could happen when the
two lists have almost the same set of publishers that al-
ways have the most daily sales. Figure 4 shows such an
example, where publishers � � , � + , and � 0 always have
more daily sales than the rest of the publishers. Given any
query � ;*�<� =6)+13� 4 
 �@=6)+798�: ( over the data cube shown in
Figure 4, by using the bi-directional traversal algorithm, in
order to get � 13� 45
6� � � 798�: � � , the number of publish-
ers in � 19� 45
 �@� � 798�: can be up to . . For each publisher� " � 19� 45
 � � � 798�: , we need to compute the total sales
during the given date range. As a result, the query cost
is linear. This is mainly because the bi-directional traver-
sal algorithm is unable to minimize the size of a superset
of the top-k publishers efficiently in the presence of corre-
lation among publishers and skewed distributions. Hence,
our goal now is to optimize the bi-directional traversal algo-
rithm by pruning the search space in list ���	#�$�% � )213� 45
6� &��A(
and by avoiding the need to always start from its tail.

In order to prune the search space of list ���	#�$	% � )213� 45
6��&
� ( , we need to identify the candidates for an aggregation
ranking query. Without any doubt, dominant publishers
usually dominate the top-k slots and need to be considered
in the candidate set. However some variations may occur,
i.e., some non-dominant publishers may be top- � publish-
ers for some time ranges. Hence we need to identify such
a set of candidates that may include the answer to an ag-
gregation ranking query. In order to identify such a set of
candidate publishers, we assume that an aggregation rank-
ing query �	; � �>=6) 13� 45
6� =6) 798�: ( requests a value of � no
larger than � �-4 � which is the maximum value of � speci-

fied in any aggregation ranking query. This is a realistic as-
sumption, since advertisers are usually interested in a small
number of publishers, especially those with relatively high
performance. We, therefore, assume that � �-4 � ��� . and
� �-4 � is an application-dependent and user-defined param-
eter.
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Figure 4: An example of dominant set (shaded area)

6.2 Determining the Candidate Set

We now introduce the notation of the candidate set for a
day )*� , denoted as ���9458 �<) �3( . The candidate set ���9458>� ) � (
is initialized to contain the top- ���-4 � publishers on the first
day of the #�*����	# data cube. The candidate set for day
)*� , ���9458 �<)*� ( contains all publishers in ���9458 � )*� > + ( and
all publishers which are ranked on day )+� above any pub-
lisher in � �9458 �<) � ( as well. We observe that � �9458 �<) � > + (��
� �9458 �<) � ( .
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Figure 5: Identifying candidate sets

Consider the following example: assume there are 5
publishers � � , � + , � 0 , � B and ��	 as shown in Figure 5. We
have the sales tracking information for three days ) � , ) +
and ) 0 . Let � � 4 � be 2. � � and � B ranked top-2 on day )�� .
Hence � �94 8 � ) � (�� � � ��=�� B �

. On day ) + , �,+ is ranked
above � B and � B "
� �9458 �<)��A( , therefore � �9458 �<)�+ ( �� � ��=�� B =6�,+ �

. Similarly � �9458 � ) 0 (3�
� � ��=6� B =6�,+A=6� 0

�
. It

is possible that a publisher which is ranked above any pub-
lisher in � �9458 �<)��A( on day ) � could have a large total sales



within some time range � )?13� 4 
 �@=6)*�3( . For example, � 0
ranked top-2 in terms of total sales within � ) � =�) 0 ( . More-
over, since � 	 does not have a higher rank than the publish-
ers in ���9458 �<) � ( for any day, it is impossible to be a top-2
publisher for any aggregation ranking query. � �94 8 �<) � ( is
a superset of the top-k publishers for a given aggregation
ranking query �	;*�<�>=�) 13� 4 
 � =6) � ( , and the correctness is
given in the following assertion.

Assertion 1 For a given aggregation ranking query � ;*� �>=
) 13� 45
6� =�) 7 8�: ( , all the qualifying publishers must be con-
tained in the candidate set for day ) 798�: , � �9458 � ) 798�: ( .

Proof This assertion is equivalent to the following
statement: any publisher � � which is not contained
in � �9458�:@� :54@� 7 �<) 7 8�: ( is not a qualifying publisher for
� ;*� �>=6) 13� 45
6� =6) 798�: ( , where ) 13� 45
6� ! ) 7 8�: . Since
�!� is not in � �9458�:@� :54@� 7 �<) 7 8�: ( , the sales of �!� on any
day ) � between ) 19� 45
 � and ) 798�: must be no larger
than that of any publisher which is in the initial can-
didate set ���9458�:@� :54@� 7A� ) � ( . For any publisher � � "
���9458�:@� :54@� 7A�<) � ( , #�*
����# � � � =�) �3( ! #�*
���	#��<� � =�)*�<( for all
) � ! )*� ! )+798�: . Hence the total sales for � � be-
tween )+13� 45
6� and )+798�: are no greater than the total sales
for � � . As ���9458�:@� :54@� 7A� )+798�: ( contains all the publishers
in ���9458�:@� :54@� 7A� ) � ( and the total number of publishers in
���9458�:@� :54@� 7?� ) � ( is ���-4 � , publisher � � cannot be ranked
top-k for the given query �	;*�<�>=�)?13� 45
6��=�)+798�:A( . �
Algorithm 2 Compute � �9458�:@� :54@� 7 � ) � ( and

� )�� � 4 � �<) � (
1: Input:
2: �^W ;
3: � 5 ��� ;
4: �	�!� #A$ W $ �<� " �=��
 & ;
5: � �!� #A$ W $ �<� " �=�^W 7 . & ;6: /^����W!& ; // sorted publishers based on their sales of day ��W (in decreasing

order);
7: �	�'9�:<; �=�^W & ;
8: Procedure
9: � �!� #A$ W $ �<� " �=�^W & ),+

10: if �^W )�) � 
 then
11: for every publisher / in /^��� W & whose index � � 5 �
� do
12: � ��� #A$ W $ ��� "3�=�^W�& ) � �!� #A$ W $ �<� " �=�^W�& G�� /�� ;
13: end for
14: else
15: � : � ) > +��
16: for every publisher / in � ��� #%$ W $ ��� "3����
'& do
17: � : ��� = the index of / in /^���^W & ;
18: if � : ��� V � : � then
19: � : � ) � : � � ;
20: end if
21: end for
22: � ��� #%$ W $ ��� "3����W!& ) � ��� #%$ W $ ��� "3�=�^W 7 . & ;23: for every publisher / in /^���^W�& whose index � � : � do
24: � ��� #A$ W $ ��� "3�=� W & ) � �!� #A$ W $ �<� " �=� W & G�� /�� ;
25: end for
26: end if
27: 13��� 5 ��� �=� W & ) > +
28: for every publisher /���� ��� #%$ W $ ��� "3����W!& do
29: � : � � = the index of / in list �	� 9�:<; �=� W & ;
30: if � : ��� V 13��� 5 ��� ����W�& then
31: 13��� 5 ��� ����W�& ) � : ���
32: end if
33: end for
34: Output: � ��� #%$ W $ ��� "3��� W & and 1'��� 5 �
� ��� W & ;
35: End Procedure

From Assertion 1, we know that in order to answer
a given aggregation ranking query �	;*�<�>=�) 13� 4 
 � =6) 798�: ( ,
we need to consider all the publishers in � �9458 � ) 798�: ( .

A straightforward solution is to obtain for each pub-
lisher � " ���9458 � )+798�:A( its prefix sum of sales from list
���	# $	% � )+13� 45
6� & �A( and list ���	#�$	% � )?798�:A( . However this
requires random accesses to both lists which results in a lot
of random I/Os. In order to reduce the random accesses as
well as consider all publishers in � �9458 �<) 7 8�: ( during query
processing, we need to track the maximum index of all pub-
lishers in � �9458 � ) 798�: ( in list ����#�$	% �<) 13� 45
6� &�� ( . We refer
to this maximum index as the pruning marker. Note that
the indices of cells in a list are in increasing order from the
header to the tail. The header has an index of 0 and the
tail has an index of . & � . All publishers after the pruning
marker in list ���	#�$�% � )?13� 45
6� & �A( will be pruned as they do
not qualify to be top-k publisher candidates, and hence the
search space is reduced.

However it is not efficient to compute the pruning
marker online since finding the index of each publisher
� " � �9458 �<) 7 8�: ( in list ����#�$	% �<) 13� 45
6� & � ( requires ac-
cess to its corresponding cell in the SPPS cube. This
can again degrade performance, especially when the size
of � �9458 � ) 798�: ( is large. Since � �9458 �<) 13� 45
6� & � ( is a
subset of ���94 8 � )+798�:A( , we can pre-process the publishers
in ���9458 � )*�8& �A( for each date )+� and store the index
corresponding to the smallest ranked publishers in � �9458
� )*� &��A( , and then process the remaining publishers for
a given query. Hence for each day )?� , in addition to ���9458
� )*�3( , we maintain the maximum index in list ���	#�$	% � )?�3(
of all publishers in ���94 8 �<)*� ( . We refer to this index as� )��2�-4 � � )*� ( .

Note that a data cube such as #�*����	# is updated in
an append-only fashion. When the new sales data of
date ) � are appended to the data cube, we simply com-
pute � �9458 � ) � ( and &A��+ ��!#" � ) � ( based on � �9458 � ) � > + ( and
� �9458 �<) � ( . The algorithm is illustrated in Algorithm 2.

6.3 Dominant-set Oriented Query Processing

For an aggregation ranking query �	;*�<�>=�)?13� 4 
 �@=6)+798�: ( ,
we use ���9458 �<)*� ( and

� )$�2�-4 � � )*�3( to reduce the list
traversals of the bi-directional traversal algorithm, result-
ing in the dominant-set oriented algorithm given in Algo-
rithm 3.

In the dominant-set oriented algorithm, we first cal-
culate a set of candidate publishers � 
�7 �-4 � 8 that are in
� �9458 �<) 798�: ( but not in � �9458 � ) 13� 4 
 � & � ( , i.e., � � 
�7 � 45� 8 �
���9458 �<)+798�:A( & ���94 8 �<)*19� 45
 � & �A( ( . The publishers
in � 
@7 � 45� 8 may or may not be ranked higher than� )��2�-4 � � )+13� 4 
 � & � ( which is pre-computed. Let
#9�1� 
�7 �-4 � 8 be the maximum index of the publishers in
� 
@7 � 45� 8 . Hence we need to identify the pruning marker
�&% which is ')(	*>� � )$�2� 4 � �<)*19� 45
 �"& � (5=6#9�1� 
�7 � 45� 8 ( .

Consider the example shown in Figure 5. Given an
aggregation ranking query �	;*� �
=�) + =�) 0 ( , � 
@7 � 45� 8 �
� �9458 �<) 0 ( & � �9458 �<) � ( � � � + =6� 0

�
. The pruning

marker �&% for list ���	#�$	% �<) � ( is the maximum value of
#9�1� 
�7 �-4 � 8 and

� )�� � 4 � � ) � ( . #9�1� 
�7 �-4 � 8 in this case is 3
while

� )�� � 4 � � ) � ( is 1. Hence �&% �,+ . Thus publisher
� 	 can be pruned from the search space of list ���	#�$�% � ) � ( .



Algorithm 3 Dominant-set Oriented Algorithm
1: Input:
2: 
���������� ��������� �!��"!#%$'& ;
3: �	�!� # ���^"!#%$'& ;
4: �	�!� # ���^�!��������> + & ;
5: 13��� 5 ��� �=� �!���<��� > + & ;
6: Procedure
7: /�� ) 13��� 5 ��� �=� �!���<��� > + & ; // /�� is the pruning marker;
8: � � " 5 ��W # ) �	��� # �=��"!#%$'&D> � ��� # �=�����������?> + & ;
9: for each publisher / in � � " 5 ��W # do

10: 1'��� � ) / ’s index in list �	�'9�:<; �=� �!������� > + &
11: if 1'��� � V /�� then
12: /�� ) 13��� � ;
13: end if
14: end for
15: ( �!�������*),+ , (*"!#%$ ).+ ;
16: /�0-1'2H4768���!������� = The cell in ��� 9�:<; �=���!�������?> + & with index /��
17: /�0-1'2H4768��"!#%$ = Header of ��� 9�:<; �=�@"�#A$3& ;
18: while B3( ���������DC ( "�#A$ B EF� do
19: (*�!���<��� = (?���������DGH/�08132H4?6-�����������<I J�K�L'M #�N!O'P�Q ;
20: /�08132H4?6-���!���<��� ) /�0-1'2H4768���!���<����I �	� 
21: ( "!#%$ = ( "!#%$ GH/�0-13254768� "!#%$ I J<K�L'M #�N�O'P�Q ;
22: /�08132H4?6-��"!#%$ ) /�08132H4768���!���<���<I �	��
23: end while
24: for each publisher / in ( ) (?�!���<���SGH(*"!#%$ do
25: Compute the total sales in T ���!���<�����!��"!#%$ U by SPPS T /?����"!#%$ U�I �	�'9�:<; >

SPPS T /?��� �!���<��� > + U�I �	�'9�:<; ;
26: Insert / into set � ;
27: if B'�	B VF� then
28: Remove / W from � if its 9�:<; �=/ W �!� �!���<��� �!� "!#%$ & is smaller than all

other publishers in � ;
29: end if
30: end for
31: End Procedure
32: Output: �

The rest of the dominant-set oriented algorithm is the
same as the bi-directional traversal algorithm except that
the starting point of traversing ���	#�$�%*� )213� 45
6� & � ( is from
the pruning marker �&% . Since the dominant-set oriented
algorithm prunes the search space in ���	#�$	% �<)?13� 4 
 � & � ( by
applying a pruning marker, it will always outperform the
bi-directional traversal algorithm, especially when there is
a dominant publisher set.

We observe that for the dominant-set oriented algo-
rithm, if #3��� 
�7 �-4 � 8 is far greater than

� )�� �-4 � �>)*19� 45
 �"&
� ( , we may consider too many non-qualifying publish-
ers in list ���	#�$	% � ) 19� 45
 � & � ( within the range from� )�� �-4 � � ) 13� 4 
 � & �A( to #9�1� 
�7 � 45� 8 . Since these publish-
ers are never top- � � 4 � publishers, they can be pruned if
we alternatively randomly access the publishers in � 
@7 � 45� 8
one by one to reduce the query cost, and then only sequen-
tially access ���	#�$	% � ) 13� 45
6� &�� ( from the cell indexed by� )��2�-4 � � )+13� 4 
 �"&1�A( .

In calculating ���9458>� )*� ( , we use the top-
���-4 � publishers on day ) � as the initial candidate
set. Since the initial ranking may not be representative
of the system behavior, some non-dominant publisher
that happens to rank in the top- ��� 4 � on day ) � will be
contained in ���9458 �<) � ( . This may result in large-sized
candidate sets and hence longer query processing time.
In order to avoid this, we propose an alternative practical
approach for initializing the candidate set. Given � � 4 � ,
we take the top- � �-4 � publishers in list ���	#�$	% �<) ��( as
the initial candidate set, where )2� is a date which is
advanced enough to approximately determine the initial
candidate set. In our experiments, we estimate the initial
candidate set using the total sales of all publishers after

a month. After deciding on the initial candidate set, we
compute the candidate set for each day using the same
procedure as illustrated in Section 6.2. The correctness
of the dominant-set oriented algorithm still holds. In
particular assume that the #�*
���	# data cube starts from
an initial day ) � 8 � � � 4�� instead of ) � , all publishers on
) � 8�� � � 4�� have zero sales, and the candidate set for ) � 8 � � � 4��
contains the top- � � 4 � publishers from list ���	#�$	% � )2��( .
Assertion 1 holds for range � ) � 8 � � � 4�� =6) � 4 � � since every
publisher on day )*� 8 � � � 4�� has zero sales, their values do
not have any impact on the ranking of publishers for any
day. Also Assertion 1 is correct for range � ) � =�) �-4 � � . In
our experiments over the real datasets, we implement the
dominant-set oriented algorithm using this method. The
experimental results show its effectiveness.

7 Experiments
We conducted extensive experiments to evaluate the pro-
posed techniques and to validate our assumptions regarding
the characteristics of datasets. In this section, we first de-
scribe the datasets used. Then we analyze our experimental
results.

7.1 Dataset Descriptions

In the experiments, we use both synthetic and real datasets
to evaluate the performance of the three techniques pro-
posed. We generate two different kinds of synthetic
datasets: near-random dataset and dominant-set dataset.
The real datasets are from anonymous.com 2, an online ad-
vertisement tracking company. The descriptions of datasets
are as follows.

Near-random Datasets

Near-random datasets are generated to show how well
the bi-directional traversal algorithm preforms on datasets
without any correlation, i.e., any two rows in the SPPS cube
are not correlated to each other. Since an SPPS cube con-
tains the cumulative information of its original data cube,
if we randomly (uniformly) generate the original #�*
����#
data cube, the cumulative sales of all publishers will be al-
most identical as the time range becomes large. In order to
avoid this problem, we generate the data in reverse order:
the cumulative information is generated first. In fact, as
each publisher expects its daily sales to increase, the daily
sales would vary in a larger range as time passes. Based
on this observation, when we generate the cumulative data,
the value on day ) � is generated randomly in a larger range
than that on day ) � > + but should not be smaller than the
value on day ) � > + . We refer to the datasets generated in
this way as near-random datasets.

Dominant-set Datasets

As mentioned earlier, in the real world, some publish-
ers often have more sales than others. Under this con-
dition, we optimized the bi-directional traversal algorithm
and proposed the dominant-set oriented algorithm. Hence

2Identity hidden to maintain anonymity.



we generate dominant-set datasets to test the dominant-set
oriented algorithm. We use random walks to generate the
data for each publisher, which is given as follows:

) � � � � )�� 4 1 7 and ) � # � �/) � # &1� � � ) � �
) � 4 1 7 is the initial value and )A� is a random number in the
range �5&�� = ����� . � is set to &���) � 4 1 7 where & is a constant
which is less than or equal to

�	�
. We divide the publish-

ers into three groups: (1) Dominant publishers (2) Non-
dominant publishers (3) In-between publishers. Dominant
publishers have a relatively large value of )
� 4 1 7 while non-
dominant publishers have a relatively small value of )
� 4 1 7 .
In order to model real world datasets with dominant pub-
lisher sets, we add some in-between publishers with a value
of ) � 4 1 7 between the values of ) � 4 1 7 for the dominant and
non-dominant publishers. Using the random walk method,
we can guarantee that the generated datasets have dom-
inant publisher sets and some variations, i.e., some non-
dominant and in-between publishers can become dominant
ones.

Real Clicks Datasets

The real clicks datasets are for a large number of adver-
tisers where the number of publishers for each advertiser
varies between 4,000 and 5,000. The maximum number
of publishers is up to � � 
 for some advertisers, however
for confidentiality, the datasets are restricted to about 4,000
to 5,000 publishers. Each clicks dataset contains the daily
clicks of all publishers for about 180 days.

7.2 Experimental Results

The experiments were conducted on a Pentium IV 1.6GHz
PC with 256MB of main memory and 30GB hard disk.
Since data is stored on disk, in our experiments, we take
the sequential access property of disks into account. Cur-
rent disk technology favors sequential accesses instead of
random accesses, because random accesses result in longer
seek times. Therefore, in our experiments, we divide lists
into chunks [14] each containing a large number of cells.
The data is loaded into main memory by units of chunks
instead of cells.

We generated the synthetic datasets by varying the
��$
�
�'&�#������ dimension size from 10,000 to 90,000 and the
��*���� dimension size is one year (365 days). We then pre-
computed the SPPS cubes and candidate set � �94 8 � ) � ( for
each day ) � together with

� )�� � 4 � � ) � ( . We compared
our proposed techniques together with the naı̈ve algorithm
as discussed in Section 2 in two settings: one examines the
effect of the ��$
���'& #������ dimension size on the query cost
and the other examines the effect of the value of � (used as
the top-k publishers of interest in the aggregation ranking
query) on the query cost. We executed two sets of aggre-
gation ranking queries, each of them with 1,000 queries.
The comparison of the different techniques is based on the
average query time in milliseconds over 1,000 queries in a
uniform query set and a biased query set.

The first set of aggregation ranking queries are uni-
formly generated along the ��*���� dimension, referred to

as the uniform query set. The second one is generated to
model real user query patterns, which is described as fol-
lows: Let )?����
 � � 8 be the initial date of the #�*
���	# data
cube, )?����
6� 4 � be the most recent date, and )2����
 �
and )?����
 � be randomly determined dates. The ranges
over the ��*���� dimension were selected as follows:

1. � )?����
 �-� 8>=�)?����
 � � with � � � probability, i.e.,
queries starting from the initial date;

2. � )?����
 ��=�)?����
 � � with � � � probability, i.e.,
queries with randomly generated starting date and
ending date;

3. � )?����
 � =�)?����
 � � with � � � probability, i.e.,
queries for a single date;

4. � )?����
 � =�)?����
 �-4 � � with ��� � probability, i.e.,
queries ending at the most recent date;

The rationale for using such a query set is because queries
for the immediate past are much more likely than other time
ranges. We refer to this set of aggregation ranking queries
as the biased query set.

7.2.1 Near-random Datasets
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Figure 6: Effect of the ��$
���'&�#������ dimension size over
near-random datasets using uniform query set
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Figure 7: Average number of publishers scanned using uni-
form query set

The first setting examines how the ��$����'&�#������ dimen-
sion size affects the performance of the proposed algo-
rithms. The value of � is set to 10, i.e., obtaining the top-
10 publishers and the value of � � 4 � is set to 15. Figure 6



shows the experimental results for the aggregation ranking
queries from the uniform query set over the near-random
datasets. In order to show the effectiveness of our proposed
algorithms, we compare them with the naı̈ve solution where
every cell involved in a query is accessed. As shown in Fig-
ure 6, our proposed methods result in significant improve-
ments over the naı̈ve algorithm. In our later experiments,
we will focus on comparing our proposed algorithms with-
out showing the results for the naı̈ve algorithm. In Fig-
ure 6, as the number of publishers increases, the response
time of the complete scan algorithm increases dramatically
while that of the bi-directional traversal algorithm and the
dominant-set oriented algorithm only increases marginally.
The performance of the bi-directional traversal algorithm
and the dominant-set oriented algorithm is much better than
that of the complete scan algorithm. We can observe that
for the near-random datasets, the dominant-set oriented al-
gorithm always outperforms the bi-directional traversal al-
gorithm since it improves the bi-directional traversal al-
gorithm by pruning the search space. The results shown
in Figure 6 coincide with our theoretical analysis in Sec-
tion 5.2. Since the dataset is generated in a near random
manner, the number of publishers in � 13� 45
6� � � 798�: is much
smaller than the total number of publishers and the bi-
directional traversal algorithm performs very well. Further-
more the improvement of the dominant-set oriented algo-
rithm is only marginal. Their relative performance can be
explained by the number of publishers scanned. Figure 7
shows the average number of publishers scanned in these
three algorithms. The bi-directional traversal algorithm and
the dominant-set oriented algorithm scanned much fewer
publishers than the complete scan algorithm. Since there
is no clear dominant-set in the near-random datasets, the
number of publishers scanned in the dominant-set oriented
algorithm is comparable to that in the bi-directional traver-
sal algorithm.
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Figure 8: Effect of the ��$
���'&�#������ dimension size over
near-random datasets using biased query set

The experimental results obtained by using the biased
query set are shown in Figure 8. The relative behavior of
the three algorithms is very similar to the ones presented in
Figure 6 except that their absolute values are smaller. This
is mainly because some aggregation ranking queries, such
as those of the form � )?����
 �-� 8 =6)?����
6��� in the biased

query set, can be answered in constant time since only a
small number of publishers from list ���	#�$	% �<)?����
 � ( is
retrieved from disk. Similar behavior was observed for the
different datasets, therefore we will not show the results
using the biased query set.
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Figure 9: Effect of � over near-random datasets using uni-
form query set

We now examine how the value of � affects the per-
formance of the proposed algorithms. We conducted this
experiment on the near-random dataset with ��$
���'& #������
dimension size 10,000 and ��� 4 � � � � . We varied the
value of � from 5 to 50. We also executed aggregation
ranking queries from both the uniform query set and the
biased query set. Figure 9 shows the results for the uni-
form query set. The bi-directional traversal algorithm and
the dominant-set oriented algorithm always outperform the
complete scan algorithm. The value of � does not affect
the complete scan approach, since the value of � does not
have any impact on this algorithm assuming that the out-
put time can be ignored. The average query cost of the two
other techniques increased slightly when the value of � in-
creases, since the number of publishers in � 13� 45
6� � � 798�:
becomes larger and therefore results in a larger number of
publishers in � 13� 45
6��� � 798�: . In Figure 9, the cost differ-
ence between the bi-directional traversal algorithm and the
dominant-set oriented algorithm with 10,000 publishers is
smaller than that shown in Figure 6. This is because � �-4 �
is
� � for the second experimental setting.
Based on the experimental results over the near-random

datasets, it is not surprising that the dominant-set oriented
algorithm always outperforms the bi-directional traversal
algorithm as the dominant-set oriented algorithm is an op-
timization of the bi-directional traversal algorithm.

7.2.2 Dominant-set Datasets

On dominant-set datasets, we performed similar experi-
ments. We first show the behavior of the three proposed
algorithms when varying the number of publishers from
10,000 to 90,000, and � � 4 � � � � . The value of � is set
to � � for both aggregation ranking queries from the uni-
form query set and the biased query set. Figure 10 shows
the experimental results using the uniform query set. The
dominant-set oriented algorithm outperforms both the com-
plete scan algorithm and the bi-directional traversal algo-
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Figure 10: Effect of the ��$
���
&�#������ dimension size over
dominant-set datasets using uniform query set

rithm by about two orders of magnitude. As the num-
ber of publishers increases, the average query cost of the
dominant-set oriented algorithm slightly increases while
the cost of the other two algorithms increases linearly. We
also notice that the bi-directional traversal algorithm per-
forms worse than the complete scan algorithm over the
dominant datasets. However this does not contradict the
theoretical analysis given in Section 5.2, which states that
the bi-directional traversal algorithm at most needs to pro-
cess all publishers and has linear performance in the worst
case. Due to the dominant publishers, when using the bi-
directional traversal algorithm, the number of publishers in
� 19� 45
 ���	� 7 8�: reaches . ( . is the total number of publish-
ers). Based on Algorithm 1, in order to compute the total
sales for each publisher in � 13� 4 
 � ��� 798�: , we need to ran-
domly access the prefix sums of the sales for publishers
that are in � 13� 45
6� but not in � 798�: or vice versa. Since the
number of publishers in � 13� 45
6� �_� 798�: is almost . , we need
nearly . random accesses, which results in expensive disk
I/O cost. However, in the complete scan algorithm, lists
���	# $	% � )+13� 45
6� & � ( and ���	#�$	% �<)+798�:A( are always loaded
into main memory sequentially thus taking advantage of
the fast sequential access property of disks. As a result, the
bi-directional traversal algorithm has worse performance
than the complete scan algorithm even though both algo-
rithms process almost the same number of publishers.
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Figure 11: Effect of � over dominant-set datasets using uni-
form query set

In order to examine the effect of � ’s values on the aver-

age query cost, we generated a dominant-set dataset with
10,000 publishers and ��� 4 � � � � . Figure 11 presents the
results using the uniform query set for different values of � .
The query cost of the dominant-set oriented algorithm and
the complete scan algorithm does not change for different
values of � . The experimental results for the biased query
set are similar and we do not include them in the paper.

7.2.3 Clicks Datasets

We conducted experiments over a large number of real
clicks datasets of different advertisers to examine how the
value of � affects query cost. The experiments exhibited
similar results. Thus, here we only present the experi-
mental results for an advertiser with 4,000 publishers and
���-4 � � � � .

Figure 12 shows the experimental results for a uni-
form query set. The behaviors of the three proposed al-
gorithms are similar to those over the synthetic dominant-
set datasets. The dominant-set oriented algorithm performs
much better than the other two algorithms. Again the
bi-directional traversal algorithm performs worse than the
complete scan algorithm due to the large number of expen-
sive random accesses to disks.
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Figure 12: Effect of � over the real dataset using uniform
query set
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Figure 13: Effect of � over the real dataset using uniform
query set and ��� 4 � � .

We observe that the improvement of the dominant-set
oriented algorithm over the other two algorithms for the



real clicks datasets is not as significant as that over the syn-
thetic dominant-set datasets. This can be explained by the
relation between the value of ��� 4 � and the number of the
dominant publishers. In the experiments conducted over
the real clicks dataset, � � 4 � is set to

� � which is larger
than the actual number of dominant publishers. In another
words, some non-dominant publishers are considered in the
initial candidate set, which will result in a larger size of
the candidate sets and hence more expensive query cost.
This analysis can be supported by the results shown in Fig-
ure 13. We set ��� 4 � equal to the number of dominant
publishers, . . The dominant-set oriented algorithm signif-
icantly outperforms the other two algorithms by a much
larger margin. Overall the real dataset experiments validate
both our theoretical analysis and the results of our experi-
ments conducted on synthetically generated datasets. Fur-
thermore they validate our hypothesis that the dominant-
set oriented algorithm will give excellent performance with
real datasets.

8 Conclusion
In this paper, we formalized the notion of aggregation rank-
ing for data warehouse applications. Aggregation ranking
queries are critical in OLAP applications for decision mak-
ers in the sense that they provide ordered aggregation infor-
mation. We have proposed a progression of three different
algorithms to handle aggregation ranking queries. Our final
algorithm, the dominant-set oriented algorithm, is efficient
and realistic, since it exploits the pre-computed cumulative
information and the bi-directional traversal of lists while re-
stricting the traversal to a small superset of the actual dom-
inant set which is exhibited in real datasets. We empirically
evaluated our proposed algorithms using both synthetic and
real datasets from an online advertisement tracking com-
pany. The experimental results confirm our theoretical de-
velopment that the dominant-set oriented algorithm evalu-
ates aggregation ranking queries efficiently in practical real
data settings. In general, with increasing reliance on online
support for interactive analysis, there is a need to provide
query processing support for complex aggregation queries
in large data warehouses where sub-query results are corre-
lated on a variety of metrics. Our future work will involve
identifying such types of queries and developing database
technologies for efficiently processing such queries. Fur-
thermore, our proposed techniques can be generalized to
handle aggregation ranking queries over high dimensional
data cubes.
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Appendix A Relational Framework
Our algorithms are presented in the MOLAP context. How-
ever, they can be easily adapted to the relational frame-
work (ROLAP). In particular, they can be implemented by
using procedure language in any RDBMS such as Oracle
PL/SQL.

Assume the sales information of an advertiser is stored
in a relation table #�*����	#���� �"�
���"���	��� = !����	� = ��������� ( .
Given an aggregation ranking query �	; � �>=6) 13� 4 
 � =6) 798�: ( ,
it can be executed by using a Top-N query which is sup-
ported in some commercial databases such as Oracle or
DB2. The following SQL statement shows such an exam-
ple using Oracle9i SQL dialect.

SELECT � FROM (
SELECT p u b l i s h e r , SUM( s a l e s ) t o t a l s a l e s
FROM SALES
WHERE d a t e V = s t a r t d a t e AND d a t e E = e n d d a t e
GROUP BY p u b l i s h e r
ORDER BY t o t a l s a l e s

) WHERE ROWNUM E k ;

The above SQL query scans all the tuples between time
)+13� 45
6� and )+798�: . Then it groups the publishers by aggre-
gating total sales. In the end, the total sales of all publish-
ers need to be sorted in order to report the top-k publishers.
Note that the most recent versions of Oracle such as Ora-
cle9i and Oracle10g do support RANK analytical functions
such as �"*�(�� and ����(	#�� ��*"(�� . However no information is
available as to how these ranking features are implemented.
As future work, we plan to compare our techniques with
Oracle RANK functions implementation.

Now we discuss how to use our techniques to avoid the
overhead of scanning all the involved tuples. In order to
achieve this, we need to maintain a materialized view from
the original #�*
���	# table, which stores the cumulative in-
formation. The materialized view can be created by the
following SQL statement:

CREATE MATERIALIZED VIEW LOG ON s a l e s
WITH PRIMARY KEY, ROWID( s a l e s )
INCLUDING NEW VALUES ;

CREATE MATERIALIZED VIEW m v p r e f i x s u m s a l e s
REFRESH FAST ON COMMIT
AS
SELECT s1 . p u b l i s h e r , s1 . da t e ,

SUM( s2 . s a l e s ) p r e f i x s u m s a l e s
FROM SALES s1 , SALES s2
WHERE s1 . p u b l i s h e r = s2 . p u b l i s h e r

AND s1 . d a t e V = s2 . d a t e
GROUP BY s1 . p u b l i s h e r
ORDER BY s1 . da t e , p r e f i x s u m s a l e s ;

Then Oracle9i PL/SQL is used to implement our
proposed techniques over the created materialized view
which incorporates the cumulative and ranking informa-
tion as well. More specifically, for the given query
� ;*� �>=6) 13� 45
6� =6) 798�: ( , two cursors � 19� 45
 � and � 7 8�: are
declared to simulate the traversing, which corresponds
to pointers ��- ��� ��
 ; 13� 45
6� and ��- ��� ��
 ; 7 8�: as dis-
cussed in the MOLAP context. For example, the Ora-
cle9i PL/SQL procedure for the bi-directional traversal al-
gorithm is listed as follows.
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CREATE OR REPLACE PROCEDURE b i d i r e c t i o n a l t r a v e r s a l
( s t a r t d a t e IN NUMBER,

e n d d a t e IN NUMBER,
p u b l i s h e r s i z e IN NUMBER,
k IN NUMBER )

IS

/ � d e f i n e v t number o f numbers � /
TYPE v t number IS VARRAY ( 1 0 0 0 0 ) OF NUMBER;
TYPE v t b o o l IS VARRAY ( 1 0 0 0 0 ) OF BOOLEAN ;

/ � d e f i n e c u r s o r t o scan l i s t PPSUM( s t a r t d a t e > 1) � /
CURSOR s t a r t c u r IS

SELECT p u b l i s h e r , p r e f i x s u m s a l e s
FROM m v p r e f i x s u m s a l e s
WHERE d a t e = s t a r t d a t e > 1
ORDER BY p r e f i x s u m s a l e s ASC ;

/ � d e f i n e c u r s o r t o scan l i s t PPSUM( e n d d a t e ) � /
CURSOR e n d c u r IS

SELECT p u b l i s h e r , p r e f i x s u m s a l e s
FROM m v p r e f i x s u m s a l e s
WHERE d a t e = e n d d a t e
ORDER BY p r e f i x s u m s a l e s DESC ;

/ � v a r i a b l e s t o s t o r e scanned p u b l i s h e r s c u r r e n t l y � /
l p u b l i s h e r s t a r t NUMBER;
l p r e f i x s u m s a l e s s t a r t NUMBER;
l p u b l i s h e r e n d NUMBER;
l p r e f i x s u m s a l e s e n d NUMBER;

/ � v t n u m b e r s t o s t o r e scanned p u b l i s h e r s � /
v p u b l i s h e r s t a r t v t b o o l := v t b o o l ( ) ;
v p r e f i x s u m s a l e s s t a r t v t number := v t number ( ) ;
v p u b l i s h e r e n d v t b o o l := v t b o o l ( ) ;
v p r e f i x s u m s a l e s e n d v t number := v t number ( ) ;

/ � i n t e r s e c t e d p u b l i s h e r s scanned from bo th l i s t s � /
l i n t e r s e c t i o n NUMBER;

/ � r e s u l t s e t s � /
v p u b l i s h e r r e s u l t v t number := v t number ( ) ;
v p r e f i x s u m s a l e s r e s u l t v t number := v t number ( ) ;
l r e s u l t s i z e NUMBER;

l p r e f i x s u m s a l e s t e m p NUMBER;

BEGIN

/ � s o r t a c c e s s � /
OPEN s t a r t c u r ;
OPEN e n d c u r ;

l i n t e r s e c t i o n := 0 ;

/ � e x t e n d v t n u m b e r s used � /
v p u b l i s h e r s t a r t .EXTEND( p u b l i s h e r s i z e ) ;
v p r e f i x s u m s a l e s s t a r t .EXTEND( p u b l i s h e r s i z e ) ;
v p u b l i s h e r e n d .EXTEND( p u b l i s h e r s i z e ) ;
v p r e f i x s u m s a l e s e n d .EXTEND( p u b l i s h e r s i z e ) ;

FETCH s t a r t c u r INTO l p u b l i s h e r s t a r t , l p r e f i x s u m s a l e s s t a r t ;
FETCH e n d c u r INTO l p u b l i s h e r e n d , l p r e f i x s u m s a l e s e n d ;

LOOP
/ � s t o r e t h e scanned p u b l i s h e r s i n c l u d i n g p r e f i x sum s a l e s � /
v p u b l i s h e r s t a r t ( l p u b l i s h e r s t a r t ) := TRUE;
v p r e f i x s u m s a l e s s t a r t ( l p u b l i s h e r s t a r t ) :=

l p r e f i x s u m s a l e s s t a r t ;



v p u b l i s h e r e n d ( l p u b l i s h e r e n d ) := TRUE;
v p r e f i x s u m s a l e s e n d ( l p u b l i s h e r e n d ) :=

l p r e f i x s u m s a l e s e n d ;

/ �
� check t h e i n t e r s e c t i o n o f t h e
� scanned p u b l i s h e r s from bo th l i s t s
� /

IF l p u b l i s h e r s t a r t = l p u b l i s h e r e n d THEN
l i n t e r s e c t i o n := l i n t e r s e c t i o n + 1 ;

ELSIF v p u b l i s h e r s t a r t ( l p u b l i s h e r e n d ) THEN
l i n t e r s e c t i o n := l i n t e r s e c t i o n + 1 ;

ELSIF v p u b l i s h e r e n d ( l p u b l i s h e r s t a r t ) THEN
l i n t e r s e c t i o n := l i n t e r s e c t i o n + 1 ;

END IF ;

IF l i n t e r s e c t i o n V = k THEN
EXIT ;

END IF ;

EXIT WHEN s t a r t c u r%NOTFOUND ;

FETCH s t a r t c u r INTO l p u b l i s h e r s t a r t , l p r e f i x s u m s a l e s s t a r t ;
FETCH e n d c u r INTO l p u b l i s h e r e n d , l p r e f i x s u m s a l e s e n d ;

END LOOP;

v p u b l i s h e r r e s u l t .EXTEND( k ) ;
v p r e f i x s u m s a l e s r e s u l t .EXTEND( k ) ;
l r e s u l t s i z e := 0 ;

FOR i IN 1 . . p u b l i s h e r s i z e
LOOP

l r e s u l t s i z e := l r e s u l t s i z e + 1 ;

IF v p u b l i s h e r s t a r t ( i ) AND v p u b l i s h e r e n d ( i ) THEN

l p r e f i x s u m s a l e s r e s u l t :=
v p r e f i x s u m s a l e s e n d ( i ) > v p r e f i x s u m s a l e s s t a r t ( i ) ;

ELSIF v p u b l i s h e r s t a r t ( i ) THEN

SELECT p r e f i x s u m s a l e s INTO l p r e f i x s u m s a l e s t e m p
FROM p r e f i x s u m s a l e s
WHERE d a t e = e n d d a t e AND p u b l i s h e r = i ;

l p r e f i x s u m s a l e s r e s u l t :=
l p r e f i x s u m s a l e s t e m p > v p r e f i x s u m s a l e s s t a r t ( i ) ;

ELSIF v p u b l i s h e r e n d ( i ) THEN

SELECT p r e f i x s u m s a l e s INTO l p r e f i x s u m s a l e s t e m p
FROM p r e f i x s u m s a l e s 5
WHERE d a t e = s t a r t d a t e AND p u b l i s h e r = i ;

l p r e f i x s u m s a l e s r e s u l t :=
v p r e f i x s u m s a l e s e n d ( i ) > l p r e f i x s u m s a l e s t e m p ;

END IF ;
v p u b l i s h e r r e s u l t ( l r e s u l t s i z e ) := i ;
v p r e f i x s u m s a l e s r e s u l t ( l r e s u l t s i z e ) :=

l p r e f i x s u m s a l e s r e s u l t ;
END LOOP;

DELETE FROM t e m p r e s u l t ;

CLOSE s t a r t c u r ;
CLOSE e n d c u r ;

END b i d i r e c t i o n a l t r a v e r s a l ;


