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Abstract

We present a framework for analyzing interactions among web services that communicate with asynchronous
messages. We model the interactions among the peers participating to a composite web service as conversations,
the global sequences of messages exchanged among the peers. This naturally leads to the following model checking
problem: given an LTL property and a composite web service, do the conversations generated by the composite
web service satisfy the property? We show that asynchronous messaging leads to state space explosion for bounded
message queues and undecidability of the model checking problem for unbounded message queues. We propose a
technique called synchronizability analysis to tackle this problem. If a composite web service is synchronizable, its
conversation set remains the same when asynchronous communication is replaced with synchronous communication.
We give a set of sufficient conditions that guarantee synchronizability and that can be checked statically. Based on our
synchronizability results, we show that a large class of composite web services with unbounded message queues can
be verified completely using a finite state model checker such as Spin. We also show that synchronizability analysis
can be used to check realizability of top-down conversation specifications and we contrast the conversation model
with the message sequence charts. We integrated synchronizability analysis to a tool we developed for analyzing
composite web services.

Index Terms

web services, asynchronous communication, conversations, model checking, verification, synchronizability, re-
alizability

I. INTRODUCTION

Browser-based web accessible software systems have been extremely successful in electronic commerce, es-
pecially for business-to-consumer applications. However, the difficulty of integrating business processes across
heterogeneous platforms has been a major hurdle in extending this success to business-to-business applications.
Web services address this problem by providing a framework for integration and interoperability of web accessible
software applications regardless of implementation platforms and across boundaries of business entities [3], [13],
[27], [33].

Since communicating web services can be deployed on different locations using different implementation plat-
forms, agreeing on a set of standards for data transmission and service descriptions is clearly very important. Fig.
1 displays a collection of most frequently used standards for web services where Extensible Markup Language
(XML) [12] forms the foundation. Web services interact with each other by exchanging messages in the XML
format. XML Schema [44] provides the type system for XML messages and Simple Object Access Protocol (SOAP)
[38] is a standard communication protocol for transmitting XML messages. Each web service has to publish its
invocation interface, e.g., network address, ports, functions provided, and the expected XML message format to
invoke the service, using the Web Services Description Language (WSDL) [43]. Although a WSDL specification
defines the public interface of a web service, it does not provide any information about its behavior. Behavioral
descriptions of web services are defined using higher level standards such as Business Process Execution Language
for Web Services (BPEL) [7]. BPEL specifications can be used to define behavioral interfaces of web services.
The Web Service Choreography Description Language (WS-CDL) [42] is used to specify the interactions among
multiple web services. The specifications of web services are registered in a Universal Description, Discovery and
Integration (UDDI) [40] registry, which allows registered web services to be discovered by other services. Web
service development based on these standards is supported by different implementation platforms such as .Net [29]

This work is supported in part by NSF grants CCR-0341365, IIS-0101134, and IIS-9817432. X. Fu is with the Georgia Southwestern State
University. T. Bultan and J. Su are with the University of California, Santa Barbara. Email: xfu@canes.gsw.edu, {bultan,su}@cs.ucsb.edu
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Fig. 1. Web Service Standards

and J2EE [41]. The use of standardized protocols allows automatic discovery, invocation and composition of web
services regardless of the implementation platforms and programming languages used during their development.

Web services are essentially loosely coupled distributed systems. The loose coupling is partly achieved by the
use of standardized interfaces and data formats mentioned above. Another factor in achieving loose coupling is
asynchronous communication—during a message exchange, the sender and the receiver do not have to synchronize
the send and receive actions. In asynchronous communication a message is stored in the message buffer (usually
a FIFO queue) of its receiver until it is consumed and processed. Asynchronous communication is necessary for
building robust web services [6]. It prevents the sending service getting stuck during a send operation due to pauses
in availability of the receiving service or slow data transmission through the Internet. Asynchronous messaging is
supported by message delivery platforms such as Java Message Service (JMS) [25] and Microsoft Message Queuing
Service (MSMQ) [32].

The future success of web services framework will partly depend on the feasibility of constructing highly
dependable services. For critical business applications, any design error during web service development can cause
potentially great financial losses, and ad-hoc repairs after failures are not acceptable. It is desirable to statically ensure
the correctness of web services before they are deployed. In this paper we investigate modeling and verification of
interactions among web services. Our goal is to automatically verify properties of interactions among web services
based on their behavioral descriptions. There are several challenges that need to be addressed to achieve this goal.
First, we have to decide on how to characterize the interactions of web service compositions. For example, should
both send and receive events be modeled? We need to resolve such questions in order to construct a formal model
for interactions of web services. Another challenge is the handling of asynchronous messages. As we mentioned
above, asynchronous communication is one of the advantages of the web service technology over traditional tightly
coupled systems. However, asynchronous communication makes most verification and analysis problems about web
services undecidable.

In this paper we tackle these challenges as follows: (1) We model the interactions among web services as
conversations. A conversation is a sequence of send events recorded in the order they are sent. Linear Temporal
Logic (LTL) can be naturally extended to specify desired properties on conversations. (2) We present a set of
synchronizability conditions. When these conditions are satisfied by a set of web services, i.e., when a set of web
services are synchronizable, they generate the same set of conversations under both asynchronous and synchronous
communication semantics. Assuming that the behavioral descriptions of web services are specified as finite state
machines, we show that verification of LTL properties of conversations of synchronizable web services can be
performed using existing finite state model checkers.

We show that the synchronizability analysis is related to realizability analysis of conversation protocols [16].
A conversation protocol is a top-down specification which specifies the desired conversation set for a set of web
services without describing the behaviors of individual services. We show that the synchronizability conditions can
be used to show the realizability of conversation protocols when they are combined with one additional condition.

We built a tool called Web Service Analysis Tool (WSAT) which implements the analysis techniques presented
in this paper. WSAT supports both bottom-up and top-down specifications. The front-end of WSAT translates web
service specifications written in BPEL and WSDL to an internal state machine representation. The synchronizability
and realizability analyses are performed on this state machine representation. The back-end of WSAT translates its
internal state machine representation to Promela, the input language of the Spin model checker [22], [23]. We use
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Fig. 2. A Simple Example Demonstrating Our Model

Spin as a back-end model checker to verify LTL properties of conversations.
The rest of the paper is organized as follows. Section II introduces a model for web service compositions and their

interactions. Section III presents the synchronizability analysis for bottom-up specifications. Section IV presents
the realizability analysis for top-down specifications, and discusses the relationship between the synchronizability
and realizability analyses. Section V presents the WSAT tool and some experimental results. Section VI discusses
the related work, and presents the comparison with Message Sequence Charts. Section VII concludes the paper.

II. MODELING INTERACTIONS OF ASYNCHRONOUSLY COMMUNICATING WEB SERVICES

In this section we present a formal model for interacting web services [9], [15], [16]. A web service composition
is a closed system where a finite set of interacting (individual) web services, called peers, communicate with each
other via asynchronous messaging. We consider the problem of how to characterize the interactions among peers
participating in a web service composition, as well as how to reason about the correctness of these interactions.
We will first introduce the notion of a composition schema, which specifies the static interconnection pattern of
a web service composition. Then we discuss the specification of each peer, i.e., each participant of a web service
composition. Next we discuss how to characterize the interactions among the peers, and introduce the notion of a
conversation. We present some theoretical observations on conversation sets, which motivates the synchronizability
analysis presented in the next section.

A. Composition Architecture

Fig. 2 shows a simple example demonstrating our model. The top part of Fig. 2 shows a composition schema. A
composition schema specifies the set of peers and the set of messages exchanged among the peers. The middle part
of Fig. 2 (labeled conversation protocol) shows a top-down specification for the interactions among the peers. We
will discuss the top-down specification approach later in section IV. In this section we will focus on the bottom-up
specification model shown at the bottom of Fig. 2. In the bottom-up model we are interested in analyzing the
interactions of a set of peer implementations. Each peer implementation describes the control flow of a peer. Since
peers communicate with asynchronous messages, each peer is equipped with a FIFO queue to store incoming
messages. A conversation is the sequence of messages exchanged among the peers during an execution, recorded
in the order they are sent. A conversation can be regarded as a linearization of the message events, similar to the
approach used in defining the semantics of Message Sequence Charts [31] in [5]. We now formalize the above
descriptions with the definitions below.
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Definition 2.1: A composition schema is a tuple (P,M) where P = {p1, . . . , pn} is the set of peer prototypes,
and M is the set of messages. Each peer prototype pi = (M in

i ,Mout
i ) is a pair of disjoint sets of messages

(M in
i ∩ Mout

i = ∅), where M in
i is the set of incoming messages (the input alphabet), M out

i is the set of outgoing
messages (the output alphabet), and Mi = M in

i ∪ Mout
i is the alphabet of pi. If i 6= j then M in

i ∩ M in
j =

Mout
i ∩ Mout

j = ∅. M satisfies the following:
⋃

i∈[1..n]

M in
i =

⋃

i∈[1..n]

Mout
i = M

The above definition implies that each message has a unique sender and a unique receiver, and a peer cannot send
a message back to itself. Now, using the composition schema, we can define web service compositions as follows.

Definition 2.2: A web service composition is a tuple W = 〈(P,M), A1, . . . ,An〉, where (P,M) is a composition
schema, n = |P |, and each Ai is the peer implementation (or simply peer) for the corresponding peer prototype
pi = (M in

i ,Mout
i ) ∈ P . The alphabet of Ai is Mi = M in

i ∪ Mout
i .

The above definition is general in the sense that it does not restrict the expressive power of peer implementations.
However, in this paper, we focus on the web service compositions whose peers are specified using Finite State
Automata (FSA).

B. Peers

The bottom part of Fig. 2 presents the peer implementations for the peer prototypes shown at the top. Note
that, in order to model asynchronous communication, each peer is equipped with a FIFO queue to store incoming
messages. Formally, a peer implementation is defined as follows.

Definition 2.3: Let S = (P,M) be a composition schema and pi = (M in
i ,Mout

i ) ∈ P be a peer prototype. A
peer Ai which implements pi is a nondeterministic FSA Ai = (Mi, Ti, si, Fi, δi) where Mi = M in

i ∪ Mout
i , Ti is

the finite set of states, si ∈ T is the initial state, Fi ⊆ T is the set of final states, and δi ⊆ Ti × (Mi ∪ {ε}) × Ti

is the transition relation. A transition τ ∈ δi can be one of the following three types: (1) a send-transition of the
form (t1, !m1, t2) which sends out a message m1 ∈ Mout

i , (2) a receive-transition of the form (t1, ?m2, t2) which
consumes a message m2 ∈ M in

i from its input queue, and (3) an ε-transition of the form (t1, ε, t2).

C. Conversations

Below we will formalize the notion of conversations to model the interactions among peers in a web service
composition [9], [16]. Let W = 〈(P,M),A1, . . . ,An〉 be a web service composition. A global configuration (or
simply configuration) is a (2n)-tuple of the form (Q1, t1, ..., Qn, tn) where for each j ∈ [1..n], Qj ∈ (M in

j )∗,
tj ∈ Tj . Here ti, Qi denote the local state and the queue contents of peer Ai respectively.

Let the set of states, transition relation, etc. of a peer Ai be all labeled with subscript i, e.g., δi is the transition
relation of peer Ai. For two configurations c = (Q1, t1, ..., Qn, tn) and c′ = (Q′

1, t
′
1, ..., Q

′
n, t′n), we say that c

derives c′, written as c → c′, if one of the following three conditions hold:

• One peer executes a send action (denoted as c
!m
→ c′), i.e., there exist 1 ≤ i, j ≤ n and m ∈ M out

i ∩M in
j such

that:
1) (ti, !m, t′i) ∈ δi,
2) Q′

j = Qjm,
3) Qk = Q′

k for each k 6= j, and
4) t′k = tk for each k 6= i.

• One peer executes a receive action (denoted as c
?m
→ c′), i.e., there exists 1 ≤ i ≤ n and m ∈ M in

i such that:
1) (ti, ?m, t′i) ∈ δi,
2) Qi = mQ′

i,
3) Qk = Q′

k for each k 6= i, and
4) t′k = tk for each k 6= i.

• One peer executes an ε-action (denoted as c
ε
→ c′), i.e., there exists 1 ≤ i ≤ n such that:

1) (ti, ε, t
′
i) ∈ δi,

2) Qk = Q′
k for each k ∈ [1..n], and
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3) t′k = tk for each k 6= i.

Consider the definition of the receive action. Intuitively, the above definition says that the peer Ai executes a
receive action if there is a message at the head of its queue and a corresponding receive transition in its transition
relation from its current state. After the receive is executed, the received message is removed from the queue of
Ai, the queues and local states of other peers remain the same, and the local state of Ai is updated accordingly.
The ε-action (where a peer takes an ε-transition) and the send action (where a peer takes a send transition) are
defined similarly. Now we can define the runs of a web service composition as follows:

Definition 2.4: Let W = 〈(P,M),A1, . . . ,An〉 be a web service composition, a sequence of configurations
γ = c0c1 . . . ck is a partial run of W if it satisfies the first two of the following three conditions, and γ is a
(complete) run if it satisfies all the three conditions:

1) The configuration c0 = (ε, s1, . . . , ε, sn) is the initial configuration where si is the initial state of Ai for each
i ∈ [1..n], and ε is the empty word.

2) For each j ∈ [0..k − 1], cj → cj+1.
3) The configuration ck = (ε, t1, . . . , ε, tn) is a final configuration where ti is a final state of Ai for each

i ∈ [1..n].
Now we define the send sequences and the conversations as follows:
Definition 2.5: Given a partial or complete run γ the send sequence generated by γ, denoted by ss(γ), is defined

recursively as follows:

• If |γ| ≤ 1, then ss(γ) is the empty sequence.
• If γ = γ′cc′, then

– ss(γ) = ss(γ ′c)m if c
!m
→ c′,

– ss(γ) = ss(γ ′c) otherwise.

A word w over M (w ∈ M ∗) is a conversation of web service composition W if there exists a complete run γ

such that w = ss(γ), i.e., a conversation is the send sequence generated by a complete run. The conversation set
of the web service composition W , written as C(W), is the set of all conversations for W .

For example, the conversation set of the web service composition in Fig. 2 can be captured by the regular
expression: msg1 msg2 (msg3 msg4)∗ msg5 msg6

Given a web service composition, one interesting problem is to check if its conversations satisfy an LTL property.
The semantics of LTL formulas can be naturally adapted to conversations by defining the set of atomic propositions
as the power set of messages, i.e., 2M . Standard LTL semantics is defined on infinite sequences [11] whereas
we focus on finite conversations. We can adopt the standard LTL semantics to conversations by extending each
conversation to an infinite string by adding an infinite suffix which is the repetition of a special termination symbol.
For example, the composition in Fig. 2 satisfies the LTL property: G(msg1 ⇒ F(msg5)), where G and F are
temporal operators which mean “globally” and “eventually”, respectively.

Notice that, due to the queue effects, not all web service compositions produce regular conversation sets like
the example in Fig 2. In fact, conversations of a web service composition could be very difficult to analyze
as demonstrated by the following negative result about the LTL verification of conversations of web service
compositions [16]:

Theorem 2.1: Given a web service composition W and an LTL property φ, determining if all the conversations
of W satisfy the LTL property φ is undecidable.
The web service composition model we described above is essentially a system of Communicating Finite State
Machines (CFSM) and it is known that CFSMs can simulate Turing Machines [8]. Similarly, one can show that,
given a Turing Machine TM it is possible to construct a web service composition W that simulates TM and
exchanges a special message (say mt) once TM terminates. Thus TM terminates if and only if the conversations
of W satisfy the LTL formula F(mt), which means that “eventually message mt will be sent”. Hence, undecidability
of the halting problem implies that verification of LTL properties of conversations of a web service composition is
an undecidable problem.

III. BOTTOM-UP APPROACH AND SYNCHRONIZABILITY

The undecidability of LTL verification for web service compositions is caused by the asynchronous commu-
nication. Notice that if synchronous communication is used instead, the set of configurations of a web service
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composition would be a finite set, and it is well-known that LTL model checking is decidable for finite state systems.
In this section we present a technique called synchronizability analysis which identifies web service compositions
that generate the same conversation set with synchronous and asynchronous communication semantics. We call
such web service compositions synchronizable. We can verify synchronizable web service compositions using
the synchronous communication semantics, and the verification results we obtain will hold for the asynchronous
communication semantics. We start with three motivating examples, and then we introduce the technical results for
the synchronizability analysis.

A. Motivating Examples

Consider the three web service compositions shown in Fig. 3. Each composition consists of two peers: a requester
and a server. For each “request” message (ri) the server will respond with a corresponding “acknowledgment”
message (ai). However the consumption of the acknowledgments at the requester may not be immediate (e.g. in
Composition 1). Finally the “end” message (e) concludes the interaction between the requester and the server.

Assume that we want to use the finite state model checker Spin to verify the properties of the examples shown
in Fig. 3. In order to translate these examples to Promela (the input language of the Spin model checker) we need
to bound the sizes of the input queues (communication channels in Promela), since Spin is a finite state model
checker. In fact, based on the undecidability of LTL verification we discussed above, it is impossible to verify
the behaviors of web service compositions with unbounded queues automatically. In general, best we can do is
partial verification, i.e., to verify the behaviors of a web service composition using queues with a fixed length.
Note that the absence of errors using such an approach does not guarantee that the web service composition is
correct. Interestingly, in this section we will show that, Compositions 2 and 3 shown in Fig. 3 are different than
Composition 1, in that the properties of Compositions 2 and 3 can in fact be verified for unbounded message
queues, whereas for Composition 1 we can only achieve partial verification.

First, note that in Composition 1 the requester can send an arbitrary number of messages before the server starts
consuming them. Due to this queuing effect, the conversation set of Composition 1 is not a regular set [9]. Actually
it is a subset of (r1|r2|a1|a2)

∗e where the number of ri and ai messages are equal and in any prefix the number of
ri messages is greater than or equal to the number of ai messages. Hence, it is not surprising that we cannot map
the behavior of Composition 1 to a finite state process. Another problem with Composition 1 is the fact that its
state space (i.e., reachable configurations) increases exponentially with the sizes of the input queues. Hence, even
partial verification for large queue sizes becomes intractable.

In Composition 2 the requester and server processes move in a lock-step fashion, and it is easy to see that the
conversations generated by Composition 2 is (r1a1 | r2a2)

∗e, i.e., a regular set. In fact, the web service composition
described in Composition 2 has a finite set of reachable states. During any execution of Composition 2, at any
state, there is at most one message in each queue. Based on the results we will present in this section, we can



7

statically conclude that properties of Composition 2 can be verified using synchronous communication (in other
words, using input queues of size 0).

Unlike Composition 2, Composition 3 has an infinite state space as Composition 1. In other words, the number
of messages in the input queues for Composition 3 is not bounded. Similar to Composition 1, the state space
of Composition 3 also increases exponentially with the sizes of the queues. However, unlike Composition 1, the
conversation set of Composition 3 is regular. Although Composition 3 has an infinite state space, we will show
that the properties of Composition 3 can also be verified for arbitrary queue sizes using finite state verification
techniques.
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We can experimentally demonstrate how state spaces of the examples in Fig. 3 change with the increasing queue
sizes. In Fig. 4 we show the sizes of the reachable state spaces of the examples in Fig. 3 computed using the
Spin model checker for different input queue sizes. The x-axis of the figure shows the size of the input queues,
and y-axis shows the number of reachable states computed by Spin. As shown in the figure, the state space of
Composition 2 is fixed (always 43 states), however the state spaces of Compositions 1 and 3 increase exponentially
with the queue size. Below we will show that we can verify properties of Compositions 2 and 3 for arbitrary
queue sizes, although best we can do for Composition 1 is partial verification. In particular, we will show that the
communication among peers for Compositions 2 and 3 are “synchronizable” and we can verify their properties
using synchronous communication and guarantee that the verified properties hold for asynchronous communication
with unbounded queues.

B. Synchronous Communication

To further explore the differences of Compositions 2 and 3 from Composition 1, we define an alternative
“synchronous” semantics for web service compositions different than the one given in Section II. Intuitively, the
synchronous semantics dictates that the sending and receiving peers take the send and receive actions concurrently.
Therefore, there is no need to have the input message queues.

Recall that a web service composition W is a tuple W = 〈(P,M),A1, ...,An〉 where each automaton Ai

describes the behavior of a peer. The configuration of a web service composition with respect to the synchronous
semantics, called the syn-configuration, is a tuple (t1, ..., tn), where for each j ∈ [1..n], tj ∈ Tj is the local state
of peer Aj .

For two syn-configurations c = (t1, ..., tn) and c′ = (t′1, ..., t
′
n), we say that c derives c′, written as c →syn c′, if

one of the following two conditions hold:
• Two peers execute a send action (denoted as c

m
→syn c′), i.e., there exist 1 ≤ i, j ≤ n and m ∈ M out

i ∩ M in
j

such that:
1) (ti, !m, t′i) ∈ δi,
2) (tj, ?m, t′j) ∈ δj ,
3) t′k = tk for each k 6= i and k 6= j.

• One peer executes an ε-action (denoted as c
ε
→syn c′), i.e., there exists 1 ≤ i ≤ n such that:

1) (ti, ε, t
′
i) ∈ δi,
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2) t′k = tk for each k 6= i.
The definition of the derivation relation between two syn-configurations is different than the asynchronous case

so that a send action can only be executed concurrently with a matching receive action, i.e., sending and receiving
of a message occur synchronously. We call this semantics the synchronous semantics for a web service composition
and the semantics defined in Section II is called the asynchronous semantics.

The definitions of a run, a partial run, a send sequence and a conversation for synchronous semantics is similar
to those of the asynchronous semantics given in Section II (we will use “syn” as a prefix to distinguish between
the synchronous and asynchronous versions of these definitions when it is not clear from the context). Given
a web service composition W , let Csyn(W) denote the conversation set under the synchronous semantics. Then
synchronizability is defined as follows:

Definition 3.1: A web service composition W is synchronizable if its conversation set remains the same when
the synchronous semantics is used instead of the asynchronous semantics, i.e., C(W) = Csyn(W).

Clearly, if a web service composition is synchronizable, then we can verify its interaction behavior using
synchronous semantics (without any input queues) and the results of the verification will hold for the behaviors of
the web service composition in the presence of asynchronous communication with unbounded queues. Below we
will give sufficient conditions for synchronizability. Based on these conditions, we can show that Compositions 2
and 3 in Fig. 3 are indeed synchronizable. However, before giving the sufficient conditions for synchronizability,
we would like to show the following property:

Theorem 3.1: Given a web service composition W its conversation set with respect to synchronous semantics is
a subset of its conversation set with respect to asynchronous semantics, i.e., Csyn(W) ⊆ C(W).
Proof: We will show that for each syn-send-sequence generated by a web service composition with synchronous
semantics, there exists a run with asynchronous semantics which generates the same send-sequence. The idea is to
simulate the execution of a web service composition with synchronous semantics using asynchronous semantics.
Given a syn-send-sequence, consider a syn-run that generates that sequence. Now, we can construct a run for the
asynchronous semantics where each send action in the syn-run is replaced with the same send action immediately
followed by the corresponding receive action for that message and ε-actions are left as they are. It is easy to show
that such a run exists based on the derivation relations of the synchronous and asynchronous semantics. In this
constructed run each message is received immediately after it is sent, i.e., at any given time during the execution
there is at most one message queue that is not empty and there is at most one message in it. We call such a
run, a run with immediate receives. Note that, the send-sequence generated by the constructed run is same as the
syn-send-sequence. Hence, every conversation generated by the synchronous semantics is also generated by the
asynchronous semantics.

It is easy to show that the converse of the above property does not hold. For example, consider a web service
composition of two peers A and B, which can exchange two messages m1 (from A to B) and m2 (from B to
A). The implementation of A accepts one word !m1?m2 and the implementation of B accepts one word !m2?m1.
Obviously, if asynchronous semantics is used there exists a run which generates the conversation m1m2. However,
note that, when synchronous semantics is used there is no run which generates the same conversation. In fact, there
is no run with immediate receives for the asynchronous semantics which generates the conversation m1m2. Note
that in any run which generates the conversation m1m2, when B sends out m2, the message m1 is in B’s input
queue and is not received immediately. In the following we will give conditions which, when they hold, guarantee
that for any conversation generated with the asynchronous semantics there exists a run with immediate receives
which generates the same conversation.

C. Synchronizability Analysis

We propose two sufficient conditions for synchronizability which can be used in identifying synchronizable web
service compositions.
Synchronous compatible condition: This condition requires that in each syn-configuration of the web service
composition that is reachable from the initial state based on the synchronous semantics, if there is a peer which has
a send transition for a message m from its local state in that configuration, then the receiver for that message should
have a receive transition for that message either from its local state in that configuration or from a configuration
reachable from that configuration via ε-actions. Below we give an algorithm for checking the synchronous compatible
condition:



9

Procedure isSynchronousCompatible(W = 〈(P, M),A1, . . . ,An〉)
1. Let CS = {c} where c is the initial syn-configuration of W which is a tuple c = (t1, . . . , tn) where

for each i ∈ [1, n] ti is initial state of Ai.
2. Until there are no more configurations to add to CS, do the following:
3. If there are syn-configurations c, c′ s.t. c ∈ CS, c′ 6∈ CS and c →syn c′,
4. then add c′ to CS.
5. For every syn-configuration c ∈ CS where c = (t1, . . . , tn), do the following:
6. Let ε-closure(c) be the set of configurations that are reachable from c via ε-actions.
7. If there are two peers pi and pj and a message m ∈ Mout

i ∩ M in
j s.t.

there is a send transition of pi which originates from ti and sends m, however,
for each c′ in ε-closure(c) there is no c′′ in CS s.t. c′

m
→syn c′′.

8. c is illegal, return false.
9. Return true if no illegal state is found in CS.

The basic idea of the above algorithm is to construct the product (i.e., the synchronous composition) of all peers.
Each state (i.e., syn-configuration) of the product is a vector of local states of all peers. During the construction, if
we find a peer ready to send a message but the corresponding receiver is not ready to receive it (either immediately
or after executing several ε-actions), the composition is identified as not synchronous compatible. When all states
of the product have been examined, the algorithm returns true. The complexity of the algorithm is quadratic on the
size of the product and the size of the product is exponential in the number of peers.

Using the above algorithm we can show that Compositions 2 and 3 in Fig. 3 satisfy the synchronous compatible
condition, however, Composition 1 does not. Starting from the initial syn-configuration of Composition 1, we can
go to another syn-configuration after the requester sends and the server receives r1 (concurrently). Now in this new
configuration the requester has a transition to send out another r1, however, the server is in a local state where
it can send a1 but does not have a transition to receive r1. Hence Composition 1 in Fig. 3 does not satisfy the
synchronous compatible condition.
Autonomous condition: A web service composition is autonomous if each peer, at any moment, can do only one
of the following 1) terminate, 2) send a message, or 3) receive a message. Notice that the autonomous condition
allows a peer the choice of sending one of many messages. However, autonomous condition does not permit a
choice between send and receive actions. The following algorithm checks the autonomous condition:

Procedure isAutonomous(〈(P, M),A1, . . . ,An〉)
1. For each Ai do the following:
2. Determinize Ai and remove all the ε-transitions.
3. For each state t in Ai do the following:
4. Return false if there are both send and receive transitions originating from t.
5. Return false if there is a transition originating from t and t is a final state.
6. Return true if each state of each peer passes the above check.

To check the autonomous condition we determinize each peer implementation and check that out-going transitions
for each non-final state are either all send transitions or all receive transitions. We also check that final states have
no out-going transitions. The complexity of the algorithm can be exponential in the size of the peers due to the
determinization.

Using the above algorithm we can show that Composition 2 and 3 in Fig. 3 are autonomous. However, Compo-
sition 1 is not autonomous because in the initial state requester can either send r1 or r2 or receive a1 or a2.

We now present the key result concerning the synchronizability analysis. Note that the property and the discussion
below is with respect to asynchronous semantics.

Theorem 3.2: Let W = 〈(P,M),A1, . . . ,An〉 be a web service composition. If W is synchronous compatible
and autonomous, then for any conversation generated by W there exists a run with immediate receives which
generates the same conversation.
Proof: We will prove this property by induction on the number of sends in a conversation. We will actually prove
the following property which implies the property above: Let w = m0m1 . . . m|w|−1 be a conversation generated
by a synchronous compatible and autonomous web service composition, then, for all n such that 0 ≤ n ≤ |w|,
there exists a run which generates the same conversation in which the first n sends are immediately received (i.e.,
between the send and receive actions of the first n messages there are no other actions).

Base Case: For n = 0 the property holds vacuously.
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Inductive Step: Now we will assume that for n, 0 ≤ n < |w| there exists a run γ which generates the conversation
w in which the first n sends are immediately received. Assume that the n + 1st message in the send sequence is
mn+1 ∈ Mout

i ∩ M in
j . Let c be the configuration in γ right before mn+1 is sent, we now prove that during γ, the

first non-ε action that pj takes after c is to receive mn+1.
Since, according to the inductive assumption, the first n messages in γ are immediately received, we can generate

a partial syn-run from γ which reaches the configuration c by collapsing the consecutive send and receive actions
for the first n messages. Let tj be the state of pj in configuration c. Since pi is ready to send mn+1 at c, according
to the synchronous compatible condition, peer pj can execute a receive transition for the message mn+1 from tj , or
from a state reachable from tj via ε-transitions. Since W is autonomous, from the above statement, we also know
that the first non-ε action that pj can perform after configuration c has to be a receive action. Combined with the
fact that each queue is FIFO, we can infer that the first action that pj can execute after configuration c in γ is to
receive mn+1.

Based on the facts established above, we can alter γ by 1) shifting the ε-actions by peer pj that are between
the send action for message mn+1 and the receive action for message mn+1 right before the send action for mn+1

and, 2) moving the receive action for message mn+1 right after the send action for mn+1, ahead of all the actions
by peers other than pj that are between the send action for mn+1 and the receive action for mn+1. This altered run
is a run of W which generates the same send sequence and the first n+1 sends in the altered run are immediately
received.

Note that, for each send sequence generated with a run with immediate receives based on asynchronous semantics,
there exists a syn-run which generates the same send-sequence with synchronous semantics. Such a syn-run can be
obtained from the run with immediate receives by merging the consecutive send and receive actions. Then based
on Theorem 3.2 we get the following result:

Theorem 3.3: Let W = 〈(P,M),A1, . . . ,An〉 be a web service composition. If W is synchronous compatible
and autonomous, then W is synchronizable.

Note that if synchronous semantics is used the set of configurations generated by a collection of finite state peers
is finite. Hence, LTL verification with respect to synchronous semantics is a finite state model checking problem and
therefore it is decidable. For example, both Compositions 2 and 3 in Fig. 3 are synchronizable whereas Composition
1 is not (it violates the autonomous condition). Hence, we can verify the properties of Compositions 2 and 3 using
synchronous communication semantics (which can be achieved in Spin by restricting the communication channel
lengths to 0) and the results we obtain will hold for behaviors generated using asynchronous communication with
unbounded queues.

Notice that, synchronizability does not imply deadlock freedom. Think about the following composition of two
peers A and B, which exchange messages m1 (from A to B) and m2 (from B to A). If A accepts one word ?m2,
and B accepts one word ?m1, it is not hard to verify that the composition of A and B is synchronizable, however,
they are involved in a deadlock right at the initial state since both peers are waiting for each other. Hence, before
the LTL verification of a web service composition, designers may have to check the composition for deadlocks.
However, for synchronizable web service compositions the deadlock check can be done using the synchronous
semantics (instead of the asynchronous semantics), since it is possible to show that [20] a synchronizable web
service composition has a run (with asynchronous semantics) that leads to a deadlock if an only if it has a syn-run
(with synchronous semantics) that leads to a deadlock.

IV. TOP-DOWN APPROACH AND REALIZABILITY

In this section we discuss the relationship between the top-down and bottom-up specification approaches of
web service compositions. In our earlier work [9], we investigated using a top-down approach in which the desired
interaction patterns among the peers are specified directly as finite state conversation protocols and the specification
of the local behaviors of the individual peers are left blank. The middle part of Fig. 2 shows the conversation protocol
for the simple web service composition we discussed in Section II. This approach enables the verification of the
interaction properties on finite state conversation protocols using standard model checking techniques. However this
top-down approach introduces a realizability problem since a conversation protocol may not be realizable by a set
of asynchronously communicating finite state peers [16]. Below we will formalize these concepts.

Definition 4.1: Let S = (P,M) be a composition schema. A conversation protocol over S is a tuple R =
〈(P,M),A〉 where A is a finite state automaton on alphabet M . We let L(R) = L(A), i.e., the language recognized
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Conversation Protocol Projection to Peers
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Fig. 5. Ambiguous Execution of a Conversation Protocol which Generates an Unspecified Conversation

by A.
The top-down specification approach based on conversation protocols causes the realizability problem which is

defined as follows.
Definition 4.2: Let S = (P,M) be a composition schema, and let the conversation protocol R and the web

service composition W both share the same schema S. We say that W realizes R if C(W) = L(R). A conversation
protocol R is realizable if there exists a web service composition that realizes R.

First we look into the following question: given a conversation protocol R, is it always possible to construct a
web service composition that realizes R, i.e., are all conversation protocols realizable? In the following we show
that the answer is negative.

Example 4.1: Let (P,M) be a composition schema which consists of four peers p1, p2, p3 and p4. Its alphabet
M consists of two messages a, which is from p1 to p2, and b, which is from p3 to p4. Suppose R is a conversation
protocol over (P,M) where L(R) = {ab}. It is clear that any peer implementation which generates conversation
ab can also generate ba as well, because there is no way to let p3 and p1 synchronize their send operations. Hence
the conversation protocol R is not realizable.

A more involved example (adapted from the Büchi protocol example in [16]) is shown in Fig. 5. On the left side
of the figure is the conversation protocol, and on the right side we show its projection to each peer. Think about
one possible execution of the web service composition shown on the right side of Fig. 5 with dashed arrows. At
the beginning, peer B sends a message b to peer A, and b is stored in the input queue of peer A. Then peer A

sends message a to peer B, and ba is the current partial conversation. Now peer B continues to execute the left
path of the protocol, consumes the a in the queue; and peer A executes the right path of the protocol, consumes
the b, and sends out c. Eventually, a non-specified conversation bac is generated, without any of the peers noticing
it. This abnormal conversation is the result of “ambiguous” understanding of the protocol by peers, and the racing
between A and B at the initial state is the main cause.

Below we will show that realizability of conversation protocols can be shown using the synchronizability analysis
and an extra condition. First we need to introduce notions of projections and join which relate conversations with
local views of the peers. For a composition schema (P,M) the projection of a word w to the alphabet Mi of
the peer prototype pi, denoted by πi(w), is a subsequence of w obtained by removing all the messages which are
not in Mi. When the projection operation is applied to a set of words the result is the set of words generated by
application of the projection operator to each word in the set.

For composition schema (P,M) let n = |P | and let L1 ⊆ M∗
1 , . . . , Ln ⊆ M∗

n , the join operator is defined as
follows:

JOIN(L1, . . . , Ln) = {w | w ∈ M ∗,∀i ∈ [1..n] : πi(w) ∈ Li}.

Note that, L = JOIN(L1, . . . , Ln) ⇒ ∀i ∈ [1..n] : πi(L) ⊆ Li.

Now we can define the lossless join condition for conversation protocols as follows:
Lossless join condition: A conversation protocol R is lossless join if

L(R) = JOIN(π1(L(R)), . . . , πn(L(R))),

where n is the number of peers involved in the protocol. The lossless join condition requires that a conversation
protocol should include all words in the join of its projections to all peers. The lossless join property can be checked
as follows:
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Procedure isLosslessJoin(R = 〈(P, M),A〉)
1. For each peer pi:
2. Let Ai be the projection of A to peer pi constructed by replacing each transition

that is labeled with a message that is not in Mi with an ε-transition.
3. Let A′ be the product automaton constructed by taking the product of the projections A1, . . . ,An.
4. If the product automaton A′ is equivalent to A then return true otherwise return false.

Intuitively, the lossless join property requires that the protocol should be realizable under synchronous communi-
cation semantics. The above algorithm simply projects the conversation protocol to each peer, and then constructs
the product of all projections. If the resulting product is equivalent to the protocol, then the algorithm reports that
the lossless join property is satisfied. The algorithm can be exponential in the size of the conversation protocol due
to the equivalence check on two nondeterministic finite state machines.

Now we have the following result which connects the synchronizability analysis and the realizability analysis:
Theorem 4.1: Given a conversation protocol R = 〈(P,M),A〉 where n = |P |, let web service composition

W = 〈(P,M),A1, . . . ,An〉 include the determinized projections of A to each peer, s.t. for each i ∈ [1..n],
L(Ai) = πi(L(R)), and Ai is a determinized FSA. If W is synchronizable, and R is lossless join, then R is
realized by W .

The proof of this property follows directly from Theorem 3.3 and the fact that the synchronous composition
of a set of peers accepts the join of their languages. Theorem 4.1 shows the interesting relationship between the
synchronizability analysis discussed in this paper and the realizability analysis introduced in [16]. In [16] three
realizability conditions were given to guarantee the realizability of a conversation protocol. Here Theorem 4.1 shows
that the realizability of a conversation protocol comes from the synchronizability of its projections to each peer.
Therefore Theorem 4.1 is a stronger result than the realizability results in [16].

In the last three sections, we presented two formal models which characterize the top-down and bottom-up
specification approaches for web service compositions. These two specification approaches reflect the characteristics
of different web service languages and standards. For example, WSDL and BPEL essentially take the bottom-up
approach. These two standards are used to describe the invocation signatures and control flows of individual web
services where each individual web service can be composed of a set of atomic web services. On the other hand,
WS-CDL is based on a top-down specification approach and is used to specify the public interaction contracts that
should be followed by all participants involved in a web service composition. Our research presents a formalization
of these two different approaches and reveal several semantics and analysis issues that should be known by the
web service designers. In the bottom-up approach the use of asynchronous communication can cause unexpected
behaviors and leads to undecidability of verification. In the top-down approach some global behavior specifications
may not be realizable by a set of distributed peers. Our results on synchronizability and realizability can be used
to address these problems. For bottom-up specifications, if the peers satisfy the two synchronizability conditions,
the composition is guaranteed to be a finite state system and hence can be analyzed automatically. For a top-down
specification, if the three realizability conditions are satisfied, the specification is guaranteed to be realized by its
projections to each peer.

V. WEB SERVICE ANALYSIS TOOL

In this section we briefly discuss the Web Service Analysis Tool (WSAT) [19] which implements the synchroniz-
ability and realizability analyses discussed above. We also present experimental results about the synchronizability
and realizability analyses of 12 web service composition examples.

Fig. 6 shows the architecture of WSAT. WSAT uses an intermediate representation called Guarded Automata
(GA) for web services. A GA is a finite state machine which sends and receives XML messages and has a finite
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number of XML variables. The types of XML messages and variables are defined using XML Schema. In the GA
representation used by WSAT all the variable and message types are bounded. Each send transition can have a
guard, which is essentially an assignment that determines the contents of the message being sent. Each receive
transition can also have a guard—if the message being received does not satisfy the guard, the receive action is
blocked. The GA representation is capable of capturing both the control flow and data manipulation semantics of
web services. WSAT includes a translator from BPEL to GA that supports bottom-up specification of web service
compositions. It also includes a translator from top-down conversation protocol specifications to GA. Support for
other languages can be added to WSAT by integrating new translators to its front end without changing the analysis
and the verification modules.

We implemented the synchronizability and realizability analyses in WSAT. When the analysis succeeds, LTL
verification can be performed using the synchronous communication semantics instead of asynchronous communi-
cation semantics. WSAT also implements extensions to the synchronizability and realizability analyses to handle
the guards of the transitions in the GA model [18]. We developed and implemented algorithms for translating XPath
expressions to Promela code [17], and we use the model checker Spin [22], [23] at the back-end of WSAT to check
LTL properties.

A. Experimental Results

We applied WSAT to a range of examples, including six conversation protocols converted from the IBM
Conversation Support Project [24], five BPEL services from BPEL standard and Collaxa.com, and the SAS
example from [17]. We applied either the synchronizability analysis or the realizability analysis to each example,
depending on whether the specification is bottom-up or top-down. Our intent was to examine the applicability of
the sufficient conditions for synchronizability and realizability analyses to realistic examples. We believe that the
set of web service specifications we collected represent a diverse set of realistic applications. The information and
the synchronizability/realizability analyses results for these examples are shown in Fig. 7. Other issues relating
to LTL verification of web service compositions (e.g., translation of input specifications to intermediate guarded
automata representations, handling of XML data and XPath semantics, using SPIN as a back-end model checker)
are out of the scope of this article and are discussed in [15], [17], [19].

Syes675Auction
Syes776StarLoanCollaxa.

com

Syes1099Auction
Syes666Loan

BPEL
spec

IBM 
Conv.

Support
Project

ISSTA’04
Source

Problem Set

shipping

AMAB

Haggle

Buy

Chat

MetaConv
CvSetup

SAS
Name

2

8

8

5

2

4
4
9

#msg

Size

3

10

5

5

4

4
4
12

#states

3

15

8

6

5

6
4
15

#trans

yes

yes

no

yes

yes

no
yes
yes

Pass

S

R

R

R

R

R
R
R

S-Analysis/
R-Analysis

Fig. 7. WSAT experimental results

The size columns in Fig. 7 indicate the sizes of the examples. The #states is either the size of the product automata
(i.e., synchronous composition) of all peers, or the size of the conversation protocol. The last column indicates
which analysis is applied, e.g., ”R” and ”S” denote the realizability and synchronizability analysis, respectively.

We did not list the analysis cost in Fig. 7 because the cost is trivial for these examples. Generally, we believe that
the synchronizability analyses will be scalable as long as all peers are deterministic, and the cost of determinization
can be avoided. As reported in the table, only 2 of the 12 examples violate the conditions for realizability (both
violate the autonomous condition). For example, the “Meta Conversation” example in [24] allows two peers to race
at the beginning and decide the initiator of the conversation. Unfortunately, our autonomous condition forbids such
racing. However, the fact that 10 out of 12 examples satisfy the presented sufficient conditions implies that they
are not restrictive and they are able to capture a significant portion of practical web service applications.
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VI. RELATED WORK

In this section we compare the framework presented in this paper with other modeling approaches used for
web services. We particularly focus on comparison between the state machine based specification approaches and
Message Sequence Charts (MSC). First, we briefly discuss other state-based models related to our approach, then
we concentrate on the comparison of our model with the MSC Graph model and discuss both the expressiveness
and the synchronizability and realizability analyses for both models.

A. State-Based Models

State based models such as CSP [21], I/O automata [28] and interface automata [2], have been extensively used
for modeling concurrent and distributed systems. However, in most traditional specification approaches synchronous
communication semantics is used, i.e., the communicating processes execute a send and a corresponding receive
action synchronously. In the communication model used in this paper, messages are stored in a FIFO buffer before
they are consumed by the receiver. This is essentially the approach taken by the Communicating Finite State
Machines (CFSM) model presented in [8]. However, in [8] each pair of communicating machines use isolated
communication channels and each channel has its own queue. The communication model we are using is similar
to a variation of CFSM called Single-Link Communicating Finite State Machines (SLCFSM) [34]. Notice that, the
simplification from one queue per channel to one queue per peer does not weaken the expressive power of the
CFSM model. Also, the synchronizability (and realizability) analysis presented in this paper can be extended to
the model with one queue per channel. Other related models include Codesign Finite State Machine [10], Kahn
Process Networks [26], π-Calculus [30], and Microsoft Behave! Project [37]. Recently, Foster et al. uses LTSA
(Labeled Transition System Analyzer) to verify BPEL web services [14], and their assumption about communication
is synchronous. The most significant difference between our work and the earlier work on CFSM and other related
models is our focus on conversations as a model of interactions among multiple peers.

B. Comparison with Message Sequence Charts

We now discuss the expressive power of three specification approaches for web services: the top-down con-
versation protocol, the bottom-up web service composition, and the MSC graph model. The motivation for this
comparison is that MSC [31] is a widely used scenario specification approach for concurrent and distributed systems.
MSC model has also been used in modeling and verification of web services [14]. Comparison with the MSC model
leads to several interesting observations which provide insight for web service designers in practice. Notice that
comparison with basic MSC will not be fair, because basic MSC can only specify a fixed number of message traces.
Instead we compare our model with MSC graph [5], which is a finite state automaton that allows composing basic
MSCs. There are similar MSC extensions, e.g., the high level MSC (hMSC) [39], which follows the same weak
sequential composition semantics as MSC Graph. However, hMSC in [39] is mainly used for studying infinite traces
and the composition model used in [39] is synchronous. Therefore the MSC Graph is a more suitable comparison
object here.

MSC Graphs:
An MSC consists of a finite set of peers, where each peer has a single sequence of send/receive events (e.g. the

sequence for peer B in Fig. 8(a) is ?a !b). We call that sequence the event order of that peer. There is a bijective
mapping (represented using arrows in Fig. 8) that matches each pair of send and receive events. Given an MSC
M , its language L(M) is the set of linearizations of all events that follow the event order of each peer. Essentially
L(M) captures the “join” of local views from each peer. A formal definition of MSC can be found in [5].
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Fig. 8. MSC Examples
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Example 6.1: Fig. 8 (a) and (b) are two MSCs, and let them be Ma and Mb respectively. Obviously L(Ma) =
{!a ?a !b ?b}, and L(Mb) = { !a ?a !b ?b, !a !b ?a ?b, !a !b ?b ?a, !b ?b !a ?a, !b !a ?b ?a, !b !a ?a ?b }.

An MSC Graph [5] is a finite state automaton where each node of the graph (i.e., each state of the automaton)
is associated with an MSC. Given an MSC graph G, a word w is accepted by G, if and only if there exists an
accepting path in G where w is a linearization of the MSC that is the result of concatenating the MSCs along that
path.

Example 6.2: Fig. 8(c) presents an MSC graph G which consists of a single state. A linearization !a !a ?a ?a !a ?a
belongs to L(G) because if we run G by traversing the transition twice, we shall connect the MSC associated with
the state three times, and the resulting MSC is Fig. 8(d). Obviously !a !a ?a ?a !a ?a is one of the linearizations
of Fig. 8(d). Actually the language L(G) can be described using the following [5]:

L(G) = {(!a | ?a)∗ | |!a| = |?a| ∧ for any prefix |!a| ≥ |?a|}.

Note that the semantics of MSC graphs do not correspond to concatenations of the languages of the MSCs from
each state along a path.

At the first glance, the difference between the MSC graph framework and the conversation oriented framework
is trivial—the MSC model specifies the ordering of the receive events while the conversation model does not. In
the conversation model the timing of the receive event is considered a local decision of the receiving peer and is
not taken in to account during the analysis of interactions among multiple peers. This seemingly trivial difference,
however, leads to interesting and significant differences in the technical results for realizability analysis. But first
let us investigate the relative expressive power of the two models.

MSC Graphs vs. Conversation Protocols:
Example 6.3: Let Ma and Mb be the two MSCs in Fig. 9 (a) and (b), respectively, and let operator πsend

denote the “projection to send events” which removes all receive events from the linearizations of MSCs. Obviously
πsend(L(Ma)) = πsend(L(Mb)) = {ab, ba}. But L(Ma) 6= L(Mb) because in Ma ?a precedes ?b, while in Mb ?b
is before ?a.

a b

A B C

a b

A B C

(a) (b)

Fig. 9. Two MSC examples

Example 6.3 can be summarized as follows.
Proposition 6.1: There exist two MSCs M1 and M2, and one conversation protocol R where L(M1) 6= L(M2)

however πsend(L(M1)) = πsend(L(M2)) = L(R).
Consider a conversation protocol for three peers A, B, and C which specifies a single conversation mA→B m′

C→A

where message mA→B is sent by A received by B and message m′
C→A is sent by C received by A. No MSC

graph can capture the executions described by this conversation protocol, because there is no way to enforce the
send of m to precede m′. Hence we have the following proposition.

Proposition 6.2: There exists a conversation protocol R where for any MSC graph G, the following is true:
πsend(L(G)) 6= L(R).

The above two Propositions imply that conversation protocols and MSC graphs are incomparable with regard
to their expressive power: there are two different MSC graphs where conversation protocols cannot distinguish the
difference; whereas there are conversation protocols which have no equivalent MSC graphs.

MSC Graphs vs. Bottom-up Web Service Compositions:
Now we show that the MSC Graph model and the bottom-up web service composition model are incomparable

in terms of their expressive power.
Proposition 6.3: There exists an MSC graph G, such that, for any web service composition W , C(W) 6=

πsend(G).
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Fig. 10. The MSC Graph for Proposition 6.3

Proof: Let G be the MSC graph presented in Fig. 10(a). Obviously, πsend(L(G)) = {ba, abc}. Recall that {ba, abc}
is essentially the language discussed in Fig. 5, any web service composition that generates ba and abc will generate
bac as well. Hence, there does not exist a web service composition W such that C(W) = πsend(L(G)).

A converse question is: given a bottom-up web service composition W , can its conversation set always be
captured by an MSC graph? The following proposition gives a negative answer.

Proposition 6.4: There exists a web service composition W , such that, for each MSC Graph G: C(W) 6=
πsend(L(G)).
Proof: Recall that the web service composition in Fig. 3(a) produces a conversation set L ⊆ (a1|r1|a2|r2)

∗e where
for each word in L, |a1| = |r1|, and |a2| = |r2|, and for any prefix |a1| ≤ |r1|, and |a2| ≤ |r2|. Now assume that
there is an MSC graph G such that πsend(L(G)) = L. Given an MSC graph G, we can show that there exists
an FSA A such that the join of the projections of L(A) to all peers (called join closure) is πsend(L(G)) [20].
The generation of such an FSA from an MSC graph G is straightforward. We simply convert each MSC M in G

into an FSA that accepts πsend(L(M)), and then connect all neighboring FSAs using ε transitions. Now, since the
join of all projections (called “join closure”) of L(A) is L, L(A) must be a subset of L. However, it is not hard
to see that for any subset of L, its join closure produces itself. Hence, L(A) must be L, which is not a regular
language. This contradicts with the fact that A is an FSA. Therefore the web service composition in Fig. 3(a) has
no corresponding MSC Graph G.

Combining Proposition 6.3 and 6.4, we have the conclusion that the expressive power of MSC graphs and the
bottom-up web service compositions are not comparable.

From the above comparison, we see that the difference in expressiveness between two models results from the
decision on whether to record the receive events in the behavior modeling of web services. In our approach the
ordering of the receive events is considered a local decision and is not taken into account while analyzing the
global interactions. Hence, in our approach the ordering of receive events is like a “don’t care” condition which
can simplify the specification of interactions. For instance, a single word protocol ab is more concise than the two
MSCs needed in Fig. 9. On the other hand realizability problem in our approach can be more severe since we focus
on global ordering of send events. For example, the non-realizable conversation protocol {mA→B m′

C→A} cannot
be specified using MSC at all.

C. Related Work on Realizability and Synchronizability

The realizability problem with the top-down specification approach discussed in this paper is not an isolated
problem. It exists for many prevalent global behavior specification paradigms, e.g., Message Sequence Charts (MSC)
[31] and its extensions such as high-level MSC (hMSC) [39] and MSC Graphs [5]. The unspecified conversations
generated in Example 4.1 and Fig. 5 are similar to the “implied scenarios” in [39] and the “implied MSC” in [5].
Notice that the use of input queues is not the sole reason which introduces unspecified behaviors. For example,
the hMSC model in [39] has the realizability problem when synchronous communication semantics is used. The
asynchronous communication semantics can lead to more complex unspecified behaviors like the ones in Fig. 5.

As we have shown in Theorem 4.1, synchronizability and realizability are closely related. While to the best
of our knowledge, synchronizability was not discussed by any previous work, the notion of realizability has been
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an interesting topic in concurrent and distributed system research since 1980’s (see [1], [35], [36]). However, the
term “realizability” may have different semantics under different contexts. In [1], [35], [36], realizability problem
is defined as whether a peer has a strategy to cope with the environment no matter how the environment decides
to move. The concept of realizability studied in this paper is rather different. In our model, the environment of
an individual peer consists of other peers whose behaviors are also governed by portions of the protocol relevant
to them. In addition, our definition of realizability requires that implementation should generate all (instead of a
subset of) behaviors as specified by the protocol. A closer notion to the realizability definition used in this paper
is the “weak realizability” of Message Sequence Chart (MSC) Graphs studied in [5]. However, as discussed above,
the MSC Graph model captures both send and receive events, while in our web service composition model we
are interested in the ordering of send events only. We have shown above that the two models are not comparable
in terms of their expressive power. Now we will show that the realizability analysis for the two models are also
different.

In [4], [5], weak and safe realizability problems were raised on MSCs (a finite set of MSCs) and MSC graphs
respectively. Alur et al. showed that the decision of realizability for MSCs is decidable, however it is not decidable
for MSC graphs. They gave the following sufficient and necessary conditions for realizability.

1) An MSC (MSC graph) M is weakly realizable if and only if L(M) is the complete and well-formed join
closure of itself. (Here complete means each send event has a matching receive event, and well-formed means
each receive event has a matching send event.)

2) An MSC (MSC graph) M is safely realizable if and only if condition 1 is satisfied and prefix(L(M)) is the
well-formed join closure of itself. Safe realizability is the weak realizability plus deadlock freedom during
composition of peers.

These two conditions look very similar to our lossless join property. However there are key differences here:
1) In the MSC model, the conditions are sufficient and necessary conditions, while in conversation based model,
lossless join is a sufficient condition only, and, 2) it is undecidable to check the above two conditions for MSC
graphs, because of the requirement of well-formedness and completeness. Alur et al. introduces a third condition
called boundedness condition, which ensures that during the composition of peers the queue length will not exceed
a certain preset bound (on the size of the MSC graph). This condition can be restrictive, for example, Fig. 8(c) does
not satisfy the boundedness condition because its queue length is not bounded. Note that the realizability conditions
in our conversation model do not require queue length to be bounded. In addition each of the realizability conditions
in our conversation model can be checked independently, and the decision procedure is decidable.

In the following, we present another example to illustrate the difference between the realizability conditions for
the two models. Fig. 10(a) is an equivalent MSC graph of the conversation protocol in Fig. 5, and Fig. 10(b) is an
MSC implied by the MSC graph (this implied MSC is generated by taking the event sequence for A and C from
the right branch of Fig. 10(a), and taking the event sequence for B from the left branch). Consider how Fig. 10(a)
and Fig. 5 violate the realizability conditions in the two models. Fig. 10(a) violates the condition (1) for weak
realizability, because the implied MSC (i.e., Fig. 10(b)) is included in its join closure. However, the conversation
protocol at Fig. 5 does not violate the lossless join condition, rather it violates the autonomy condition. Hence the
lossless join conditions for the two models are essentially different.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a state machine based specification approach for asynchronously communicating web services.
The notion of conversation is used to model the interactions among the peers participating to a web service
composition, where the ordering of the send (but not receive) events are recorded. To avoid the undecidability of
the verification, a technique called synchronizability analysis is developed. If a web service composition is identified
to be synchronizable, it produces the same set of conversations under both asynchronous and synchronous commu-
nication semantics. Hence the LTL verification for synchronizable web service compositions can be conducted using
the synchronous communication semantics and is guaranteed to be decidable (when each peer in the composition
is specified using a finite state machine). In our earlier work, a realizability analysis was developed for top-
down specification of composite web services. Our results in this paper reveal a close relationship between the
synchronizability and realizability analyses. Synchronizability and realizability analyses are implemented as part of
the Web Service Analysis Tool (WSAT) and play a crucial role in the automated verification framework for web
services.
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While the formal models presented in this paper nicely capture the control flows of static web services, they do
not represent dynamic behaviors, e.g., dynamic instantiation of business processes and dynamic establishment of
communication channels. We plan to extend our formal models to capture these dynamic behaviors in the future.
This will lead to new research problems. For example, how do we specify a top-down conversation protocol for
a web service composition where new peers can dynamically join? How will the dynamic behaviors effect the
realizability and synchronizability analyses? How do we verify systems with dynamic process instantiations? We
believe that symbolic model checking and automated abstraction can be useful for tackling these problems.
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