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Abstract—Searching for objects is a fundamental problem for
popular peer-to-peer file-sharing networks that contribute to
much of the traffic on today’s Internet. While existing protocols
can effectively locate highly popular files, studies show that they
fail to locate a significant portion of existing files in the network.
High recall for these “rare” objects would drastically improve the
user experience, and make these networks the ideal distribution
infrastructure for user-generated content such as home videos
and photo albums. In this paper, we examine simple techniques
that can improve search recall for rare objects while minimizing
the overhead incurred by participating peers. We propose several
strategies for multi-hop index replication, and demonstrate their
effectiveness and efficiency through both analysis and simulation.
We further evaluate our simple techniques using detailed traces
from a real Gnutella network, and show that they improve the
performance of these overlays by orders of magnitude in both
lookup success and overhead.

|. INTRODUCTION

Searching for objects is a fundamental problem faced by
unstructured peer-to-peer file-sharing networks. Various algo-
rithms such as Flooding, Random Walks and their variants
have been proposed to address this problem. However, most of
these algorithms are only effective for locating popular objects,
including algorithms used by popular deployed networks such
as Gnutella and Kazaa. Studies have shown that in the widely-
used Gnutella network, as much as 18% of all queries return
no responses even when results are available [14]. Compared
to similar operations in their structured counterparts, finding
rare objects (those with few replicas) in unstructured networks
is generaly ineffective (in terms of search success) and
inefficient (in terms of overhead and response time) [23].

Existing work has explored several approaches to improve
search recall. One approach is to use higher Time To Live
(TTL) for search agorithms. However, higher TTL values sig-
nificantly increase overall bandwidth consumption and provide
diminishing returns, particularly for coarse-granular search
algorithms such as flooding [14]. An alternative is to utilize
object replication strategies to improve search success [7],
[16]. But these techniques require replicating entire objects,
incurring significant overheads in both storage and network
bandwidth, thereby limiting their applicability.

Because these unstructured file-sharing systems account for
a mgjor portion of traffic in today’s Internet [4], [24], any
technique to improve search recall for rare objects must be
light-weight, effective, and easily deployable. Our focus in
this paper is to answer the following question: Can we develop
simple techniques to improve the search effectiveness for rare
items, and also reduce the bandwidth overhead incurred?

We believeintelligent index replication can provide the solu-
tion to this question. Not only does proactive index replication
incur much lower overhead compared with data replication,
previous work has shown it to be effective at improving the
scalability of unstructured networks [6], [11], [22]. Our work
explores the use of multi-hop index replication, which can
significantly improvethe cover region or effective search space
of these overlays, while incurring low overhead compared to
aternatives such as data replication. We explore the effec-
tiveness of two-hop index replication, and propose different
variants that traverse the overhead-performance tradeoff. To
quantify the impact and feasibility of our proposed techniques,
we evaluate them in a full-system Gnutella smulation using
real measurement traces.

This paper makes four main contributions. First in Sec-
tion 111, we introduce Supernode-Constrained Random Walk
(SCRW) and severa two-hop index replication techniques that
work well together, improving search recall of unstructured
overlays by more than two orders of magnitude. Second, we
prove asymptotical bounds for their various performance and
overhead metrics in Section IV. Third, we experimentally
evaluate our proposals and show that they apply to both
large (100K) power-law networks as well as state-of-the-art
networks proposed in research. Findly, in Section V, we
implement these techniques in a large (72K) measurement-
driven simulation of a Gnutella network, and show that our
techniques can significantly improve the performance of de-
ployed networks. Our proposed techniques are simple, easy
to deploy, and incur low overheads in storage and updates of
data indices under network churn.

Il. BACKGROUND AND RELATED WORK
A. Searching in Unstructured Overlays

Search Algorithms Flooding, the earliest search algorithm
for unstructured networks, has limited control over the total
number of messages generated in the network, incursvery high
search overhead, and produces significant number of duplicate
messages. Recent studies [6], [11], [12] have shown random
walks to be significantly more efficient than Flooding.

Index Replication ~ One-hop index replication, where every
node stores just the metadata of its data on all of its one-
hop neighbors, is a valuable technique in scaling unstructured
networks [6]. Index replication enables a random walker to
cover a larger portion of the network in fewer hops, thus
improving the search success. In terms of bandwidth con-
sumed, index replication is not only much cheaper than full-



object replication [7], [16], but aso more practical. Object
replication strategies require additional state maintenance to
correctly implement in a decentralized environment.

Since existing index replication algorithms always replicate
anode’sindex to al one-hop neighbors, naively extending this
technique to multiple hops would incur heavy overheads. In
this paper, we seek a thorough analysis to fully understand the
various costs of two-hop replication.

Exploiting Heterogeneity It has been observed that nodes
in the Internet are heterogeneous in node capacity, defined
as the amount of resources at the node, e.g. bandwidth.
Recent protocols have exploited this to improve the scalability
of unstructured networks [5], [6], by biasing random walks
towards high-capacity nodes. As a result, searching for rare
items stored on low-capacity nodes suffer heavy overheads,
since they are less likely to be reached by random walks.
Even one-hop index replication does not help, since it does
not guarantee that the indices of low-capacity nodes reach the
high-capacity nodes.

Hybrid Networks  Hybrid networks [14] improve the search
for rare objects by using a combination of structured and
unstructured networks. The key idea is to identify rare objects
and insert them into a structured network to improve the
chances of lookup while use an unstructured network for
finding popular objects. While effective, this requires deploy-
ing and maintaining a new overlay network along with rare
objects, making this approach very expensive.

B. Power-law networks

Faloutsos et al. [9] showed that the Internet follows power-
law both at the router level and inter-domain level. It is aso
argued that Gnutella-like networks follow power-law [1].

Random graphs with a given degree sequence are well
studied [15], [18], [19]. A Random graph on n vertices with
power-law degree distribution shows the following properties:
the fraction of vertices of degree 0,1,2... is asymptotically
A1, A2, ..., where the \'s sum to 1. It is shown in [18] that
if @ =>,i(i—2)\; > 0 (and the maximum degree is not
too large), then such random graphs have a giant component
with probability tending to 1 as n goes to infinity. While if
@ < 0 (and the maximum degree is not too large), then all
components are small with probability tendingto 1 asn — oc.

In these networks, for 2 < v < 3.475, where ~ is the
exponent of the power-law distribution, a Largest Connected
Component (LCC) is shown to exist [2], and LCC contains
the mgjority of the nodes of the original graph and most of
the links. In [10] the authors show that this giant component
of a power-law random graph matches several characteristics
of real complex networks, and hence is a good candidate for
generating synthetic Internet topologies.

I1l. SYSTEM DESIGN

Existing unstructured networks have one main problem:
they are highly limited in their ability to locate rare items.
The goa of our work is to develop techniques that improve
the chances of finding rare objects in unstructured networks.

To achieve our goal, we need to find rare objects with low
overhead, otherwise the total load on the network becomes
unbearable, potentially limiting the scalability of the network.
We begin the description of our contributions by providing the
reasons that carved our design.

A. Design Rationale

Two main techniques lie at the core of our design:
Supernode-Constrained Random Walk (SCRW) and two-hop
index replication. The main intuition behind them is to use the
high-capacity nodes to build concentrated clusters of indices,
then constraining the propagation of queries to these nodes.
To ensure that queries terminate with high success rate, we
need to efficiently place the indices on these clustered nodes.
Our topology construction and search algorithms address the
former while our two-hop replication achieves the latter.

1) Topology Construction and Search: Previous work
showed that node degree in Internet topologies and unstruc-
tured overlay network topologies follow power-Law distribu-
tions, and hence contain significant heterogeneity. Exploiting
this improves network scalability by orders of magnitude in
Gia [6]. The idea is to assign work (through in-degree) to
nodes proportional to their capacity and organize the net-
work so all low-capacity nodes are closeby to high-capacity
nodes. Because of their high in-degree, high-capacity nodes
have large amount of information, and hence provide better
responses to queries. In addition, these supernodes exhibit
much low churn rates compared to other nodes [13], naturally
forming a stable core of the network.

Our topology construction algorithm is motivated by these
two observations. A careful inspection reveals that these two
approaches are similar in that they use high capacity nodes as
main paths for search and try to propagate the index from low
capacity nodes to these main paths. Our agorithm uses Gia's
topology adaptation agorithm while building the network
topology and assigning in-degree to nodes based on their
capacity. Along with this, it tags the nodes with high capacity
as supernodes forming a stable path with large capacity.

2) Index Replication: One-hop replication has been shown
to significantly improve scalability for unstructured networks.
We extend this one-hop replication to two hops in this work.
Note that extending index replication to two hops might lead
to an explosion in the amount of index stored on high-capacity
nodes. Thus managing the index replication and storage
overheads becomes critical. We propose different replication
strategies and study their performance in detail.

B. Two-hop Index Replication Strategies
We explore three two-hop index replication strategies.

Full replication.  In this strategy, each node sends its index
to al of its one-hop neighbors in its routing table, just like
in one-hop replication. All of the one-hop neighbors, in turn,
forward this index to all of their one-hop neighbors except the
source node. This strategy effectively reduces to a two-hop
flooding of indices around the nodes. We use SCRW with this
replication strategy.



Square-root replication.  Inthisstrategy, each node performs
one-hop replication. Supernodes then replicate the indices of
their one hop neighbors to a random subset of their supernode
neighbors. Each supernode’s two-hop replica set size is equal
to the square-root of the number of its supernodes neighbors.
Thus, this is simple one-hop replication augmented with
square-root replication only at the supernodes. The intuition is
that by replicating on the supernodes, we are favoring SCRW
to find objects quickly. At the same time, we are reducing the
amount of replication and its cost.

Constant replication. Finaly, we use a strategy where
each supernodes does two-hop index replication to a constant
number of supernode neighbors. After each node does one-
hop index replication, supernodes propagate the index to only
a constant number of their supernodes. This reduces indexing
load on supernodes. We further reduce the load further by
using normal random walk instead of SCRW with this strategy.
Since each peer has the indices of its one-hop neighborhood,
it can forward the query to a different neighborhood without
having to go through a superpeer.

We analyze these strategies in the next section with a focus

on the following three properties:

« Cover Time. We define cover time as the number of hops
taken by a query to walk through all the supernodes in
the network.

o Supernode Load. The average amount of load (in terms
of the number of queries processed) on the supernodesis
called the supernode load.

o Storage Load. The average amount of index stored on
supernodes is the Storage Load. This also gives us
an estimate of the amount of index transfer overhead
incurred in the network.

C. Supernode-Constrained Random Walk

We use supernode-constrained random walk (SCRW) as our
search algorithm. The main difference between SCRW and a
normal random walk is that in SCRW nodes always forward
the query to one of its randomly selected supernode neighbors
— not just any random neighbor. If no supernodes are found
in its routing table, then the node forwards the query to one
of its neighbor selected at random.

Since random walks could lead to duplicate queries at a
node, avoiding revisiting nodes is important. To do this, we
embed a small history in each query to keep track of recently
visited nodes. This history is a moving window is updated
when a query reaches a new node. If the query reaches a node
that has a degree of just one, then the query jumps back to
the least recently visited node and continues the walk. Detailed
ananlysis of this new random walk technique is, however, not
the focus of this paper.

IV. THEORETICAL ANALYSIS

In this section, we seek to better understand the performance
characteristics of different index replication strategies. We
compare several index replication strategies in terms of search
performance, per-node query load, and index storage overhead.

Since prior work has shown that power-law properties hold
on both the Internet and peer-to-peer topologies [6], [9], we
will base our analysis on a power-law network context. In this
model, a node’s maximum connectivity is roughly proportional
to its “capacity,” which is modeled in practice using bandwidth
capacity. Given the heterogeneity across node capacities, we
divide al peers into those with a relatively low degree, called
“standard peers,” which are connected by a set of highly
connected nodes we call superpeers.

More specificaly, we will compare one-hop replication
against three variants of two-hop replication. In one-hop index
replication, each node maintains an index of objects stored
by its one-hop neighbors. This significantly improves the
average and maximum search size when the random walk is
forced to go through superpeers. The cost for this performance
improvement is that highly connected nodes incur overhead
that scales linearly with the number of queries. We compare
one-hop replication against our proposed two-hop replication
strategy, and show how we can navigate the overhead and
performance tradeoff using the three variants of two-hop
replication.

Formally, we can consider a network as a graph G =
{V,E}, where V isaset of N nodesand E is a set of edges
that connect two elements of V. Using the generating function
formalism introduced by [21] for graphs with arbitrary degree
distribution, we now analytically evaluate the performance of
our strategies on power-law networks.

Let Go(z) be a generating function for the distribution of
nodes degree k such that

k=00
Go(x) = Z przt
k=0

where pj, is the probability that a random chosen node has
degree k. In our model we use a power-law distribution with
exponent -, so that, the above generating function is given
by Go(z) = Zﬁj’"“"’ ck—7z*, where ¢ is a normaliza-
tion constant that satisfies the following equation: Go(1) =

ng’“*‘ ck™ = 1. Note that as argued above, we fix
Emaz = N'/7 and the exponent of our power-law distribution
on the nodes degree is: 2 < v < 3.475.

We characterize our network by a two-level hierarchical
structure, where we have “superpeers’ (i.e. nodes with high
connectivity and high computational capability) on the top
level, and al remaining “standard peers’ on the bottom level.
For generality, we cannot fix a single threshold value to define
the minimum degree of a superpeer. We solve this problem
with the following definition:

Definition 1. Superpeers have a degree & such that N'1/7=9 <
k < N'/7 with § €]0,1/~[* and let S be the set of superpeers
that we will call the network core.

Applying one- and two-hop index replication changes our
view of the network. Most nodes in a power-law network
will be clearly grouped into clusters, where nodes in each

INote that the notation 0, 1/~[ means that the extremes are not included.



cluster share knowledge of stored objectsin the cluster through
replicated indices. We define a cluster as follows.

Definition 2. Let C be a cluster of nodes such that: Vo | z € S
then C, ={v | v has an edge that connects v and x }. The
number of clusters in the network is proportional to number
of superpeers.

For each superpeer z € S we define the following sets:

Definition 3. Let Vi (x) be a set of all distinct superpeers in
one-hop distance from z, and let V5 (x) be a set of all distinct
superpeers in two-hop distance from z.

Definition 4. Let o = (1/y — d)(y — 2) and « €]0,0.425[2.
Note that « is used only as a way to simplify notation here.

As described earlier, we use the following three performance
metrics to compare different index replication strategies. cover
time on the network core, query load on superpeers and the
size of index caches at nodes.

A. One-hop Index Replication

Our theoretical analysis aims to bound the time to find
objects in the network. We will focus on the case of an un-
common object: an object with a constant number of replicas
independent of the network size. We will show that a query
will locate an object with high probability if it covers the
network core.

Theorem 1. Let §, v and « be three parameters that charac-
terize our system, and in particular § €]0,1/~[, v €]2, 3.475]
and « €]0, 0.425[, then the number of superpeers in our system
is QN ).

Proof: Let d be the degree of a generic node in the
system, then the probability that this node is a superpeer is
conditioned on the fact that d has to be more then N 1/7-9,
So, the probability that a node x with degree d is a superpeer
is P[d > NV/7=9]. Thus, Pld > NV = YN0 k=
For all decreasing function like £ ~7, it is possible to bound it
as following:

N/ N1/
Yook = / kd(k)
k=N1/v—5 Nt/a=e

—y+1

— 1/y=8)(—y+1 -
_ N - N( /7=0)(=v+1) _ N [—]_—’—N(_é)(_’y-"_l)]

—y+1 —y+1 v -1
N2 NOG-1)  NGe-DE-1/7)
- v—1 2 2(y—1)

so the probability that = is a superpeer is, Q(N ~(1/7=9(r=1)),
Let Xy, Xo,..., Xy be N random variables such that:
Y 1, if i isa superpeer;
*7 1 0, otherwise.
Let pz be the probablllty that X; =1 and let p = E[X] =
SN pio= 2N, N-(/7=9G-1) By the Chernoff bound

2Note that the « interval is derived from ~’s interval and definition 1.

[20] we have P (X < (1 —7)u) < e "5 . Substituting s
with the values of our system and let ~ be =, we obtain the
following:

N1=(v=D(A/v=8)

P[X < %Nl‘”‘l)“”—‘”] <e” s <1/N.

For each choice of ~ in its definition interval there is
a set of 0 values that satisfy the ineguality. The proof
shows that the number of superpeers in the network is
QINI=O-D/=0)y — (N5 oDy, -

To cover the core of the network we first have to reach one
superpeer and then go through each node in the core. Indeed,
we want to reach a superpeer using a minimal number of
routing hops. We use a random walk to perform routing so
the problem is: starting from a randomly chosen node, how
many random walk steps must we take to reach a superpeer?

Theorem 2. The number of routing steps to reach a superpeer
using random walk is O(N ).

Proof: The probability to reach a superpeer is propor-
tional to the superpeer’s degree, so as shown in [26] it is:

N/~
SN s bk

N1/~
oy Kk

Therefore, we bound the above summations such that:

P =

N/~ N1/ N/
> kT > / kk=Vd(k) = / k=7 (k)
k=N1/v—5 N1/v=9 N1/v=$
1 = 1 1/7=8)(—
= N~ — 7]\[( /v=8)(—=v+2)
-y +2 -y +2
N 1 :
oy =2 (N5(*v+2) -1
and
N/ N/~
> kkTT < / kk=d(E)
k=2 1
N1 N
= - = —1).
__7/+’2 __7_+>2 7 _»2 (]V, y+2 )
Therefore, the probability P becomes:
—y+2
. N (i — 1) N8 (+2)
4 2
%(N—; wr — 1)

that is Q(N~(1/1=9)(-2)),
Now we evaluate the number of steps the random walk
needs to reach a superpeer, with high probability. Let ¢ =
N1/7=0)(v=2) pe the number of steps that the random walk
takes, then the probability to reach a superpeer in ¢ steps with
high (constant) probability, is: 1 — (1 — P)? > 1 — ¢!, that
isequa to: (1 — P)? <e ! Thus,
NA/y=86)(v=2) _ 1 1

q _
N ey ) <

(1— N—(l/v—é)(v—2))q -



Substituting the value of ¢, we obtain:

NA/7=0)(v=2) log vi/v—s)(v—2)_, €
NA/v=8)(v=2)

The evaluation of the previousinequality, varying v and ¢ into

their intervals of definition , always produces a value of truth.

[ |

We need to estimate the number of superpeersin V7, that

will tells us the number of superpeers who are one hop away

from each other. Once we reach a superpeer, then by going

through each superpeers in the core we will be able to scan

a large fraction of peers. This gives us a high probability of
finding the desired object.

Theorem 3. Let x be a superpeer, then |V7 (z)| is O(N**O‘)
with probability Q(N =) and |Vi(z)| is QN5 ~2%), with
high probability.

Proof: The probability that a superpeer is connected to

“s’ different other superpeers, is strongly bound to the number
of links that end in superpeers. That is:

s N“’TA—OH—(SNI/'Y*S —iNY~
2 N ”
=1
(N5 O N U5 g1y
~ =
sN—0 = 2N~5 > N2 g N0 2N >
y=1_,
S0 “s’ hasto be s < ¥ 21— Let X;,X,,...,X, be s
random variables such that :
1, if theith x's edge has a
X, = superpeer as other endpoint ;
0, otherwise.
Let p; be the probability that X, = 1 as proved above,
and let = E[X] = Y0 pi = Nf be the average

number of nodes that are superpeers. By the 2Chernoff bound
[20] we have that: P[X < (1 —7)u] < e 5. To satisfy the
condition 0 < 7 < 1, we set 7 = 2/3. Therefore, we have to
verify that:

—pu(r)? N Y

PX<(l-7ul<e 2 =e E

<1/N

For each choice of v in its definition interval thereis a set of §
values that satisfy the inequality. The proof ends by showing
that the lower bound on the number of different superpeers
connected to another superpeer is Q (N _*2“), with high
probability. [ |
Theorem 3 shows the degree of connectivity of nodesin the
network’s core. We use this to prove the next result.

Theoremj. The time to cover the superpeers in the network
is O(N5 ~*Hog N).

Proof: We consider the core nodes (i.e. the superpeers
in the network) as a subgraph. On this subgraph we have to
bound the number of steps to cover al nodes. We use the
degree of connection between nodes from theorem 3 to define

the network’s core as a d-random regular graph. Indeed, by
construction each superpeer chooses only d neighbor super-
peers that considers as real superpeer (i.e. SCRW is routed
using one random choice among th&ee d neighbor superpeer).
In our case, the value of1 dis N5 2 andjpe number of
nodes to cover are N7 °*9. Let n be N5 ~°*9. Using
the argument in [8] we find that the cover time in our system
|s as/mptotlc to 4 4=Inlogn, with high probability. Therefore,

— nlogn < ﬁnlogn = 2nlogn. Substituting n with our
vaI ue we have:”

N5 ot log N5 ot o N5 et log N

where c is a constant. We have to add the time to reach a
superpeer and so the total time is ¢eN 57 ~*T0log N + N@
that is still O(NWT_l““‘S log N), which is sub-linear. [ |

It is easy to show that covering the core superpeers is
enough to find an uncommon item, because indices at super-
peers cover the large mgjority of the network via one-hop
index replication. The main problem is that in the worst case,
a query for an uncommon item must cross all superpeers in
the network and lead to high query load on superpeers.

Fact 1. The load is proportional to the number of queries for
uncommon item, because for each of these queries the query
must traverse through superpeers until the item is found.

Fact 2. The cache size of a superpeer is proportional to the
superpeer’s degree, which is O(N1/7).

B. Two-hop Index Replication

We analyze three variants of two-hop index replication: Full
two-hop, Constant two-hop and Square root two-hop. We com-
pare these index replication strategies on search performance,
per-node query load, and index storage overhead.

Full Two-hop Index Replication

The first approach is the full two-hop index replication. In
this strategy each node maintains an index of objects stored by
al neighbors within two hop. We use Theorem 5 to support
our result on the cover time for this strategy.

Theorgrln 5. Let x be a superpeer, then |Va(x)| is
O(N™5 ~2%) with probability Q(N—2*) and |Vy(z)| is
Q(N7 %), with high probability.

Proof: The probability that a superpeer can reach “Q”
different other superpeers in two hops is strongly bound to
the number of links that end in superpeers and start from
its neighbors in |V;(x)|. So, the probability that ¢ different
superpeers are in |V ()] is:

NWT?I_(H—&NU’Y_‘S

zq: _ N7 T2apnNL/y
‘ N
=1

iNYY
>

gINTO—NT2—gN ") = gN "N -1 - *N T >



N2
2

y—1

So, “q" hasto be: ¢ < N+m Let = be a superpeer in our
system. We know that z has at most O(N 5 ~2%) neighbor

gN 2 — qQvaT_l > iff: QN%% — qQvaT_l >0

superpeers with neighbors into |Vi(z)|. Let X;, Xo, ..., X,
be ¢ random variables such that:
1, if theith neighbor of neighbor is
X; = a superpeer;
0, otherwise.
Let p; be the probability that X; = 1, as proved in the
=14
previous part, and let 1 = E[X] = Y} p; = &2 — be

the average number of nodes that are superpeers in |Va(z)|.
By the Chernoff bound [20] we havethat: P[X < (1—7)u| <

— ()2

z . 0<7<1,andweset 7 =2/3. We have to satisfy
the following:

=1 4
_N 7
e 18

<1/N

For each choice of ~ in its definition interval there is a set of
0 values that satisfy the inequality. The proof ends by showing
that the lower boupd on the number of different superpeersin
[Va(x)] is Q(N 5 ~**), with high probability. |

Full two-hop index replication guarantees that each super-
peer does not need to visit its neighbor superpeers because
it already knows all their neighbors. We are interested to
prove how many hops are needed to cover the network’s core
leveraging the assumption that each superpeer know objects
stored by its two-hop neighbors.

Theorem 6. The cover time on the network’s core, by full
index replication, is O(N°+1log N), with high probability.

Proof: Aswe argued in theorem 3, in each cluster C',. the
number of superpeersis d = Q(N 5 ~2%). Each superpeer
selects, by construction, exactly d superpeers in order to
build the network core as a d-random regular graph and
keep the random walks, of the routing agorithm, inside the
network core. Moreover, each superpeer = receives indices
from all clusters rooted in each of the superpeer in C,.. Since,

Q(NWTA‘Q(’) superpeers are into each cluster then with :
<NWTI_O{+6> _ N5+a
N'YT_l72a

superpeers we could know all superpeersin the network. Using
theorem 5, we can consider the networkl’s core as a set of
different N9t sets with degree Q(N = ~**) among them.
If ﬂff;a C; = ¢ then the cover time is O(N°+*log N),
using the assumption in [8]. The point is that we cannot
guarantee that the previous intersection is empty. So we must
prove that going into O(N°+®log N) clusters, we will check
al superpeers at least once with high probability. We can
formulate our problem as a random selection with replacement
problem: let N5~ be the number of balls, for each
draw we select N5 ~2¢ balls. We need to prove that after

Notelog N draws each ball has been selected at least one
time. For each draw the probability that one ball is not chosen

is (1 — ﬁ)NT*za. After Nt log N draws the

probabilit])\; that comes out is:

1 )N-“’;—lffwélogN_ 1 1 1

< — =
eloge N N

11— —F =
( N’yT—liaJr(; elog N

Therefore the tota time is gives from N9t log N steps to
cover the network’s core plus N< steps to reach the first
superpeer that is O(N°+ log N). [

We now analyze the query load on the superpeers. In our
system we know that for an uncommon item, the way to find
it is to visit all superpeers in the network.

Theorem 7. The average load on the superpeers is propor-
tional to #-querylos N

3;—1—20
Proof: As shown in theorem 6, each query crosses
Nt log N superpeersin the network such that the overhead
in the system is proportional to the crossed nodes. Therefore,
the load on each superpeer is sub-linear on the number of
query for uncommon items, and is #-2ucryloe N [ ]

EELRPYN
The size of indices cached at each sfjvpérpea is proportional
to the number of superpeers in each cluster.

Theorem 8. The cache size of superpeers is O(N!1~).

Proof: Let x be a superpeer, the maximum number of the
peersin C, is N*/7, and at most N5 e superpeers as
showed in theorem 3, hence the superpeer x has to store:

« for each of its neighbor superpeersall their neighborsthat
are at most N/ N5~ = N1-e;

« for all standard peers in its cluster C,. a constant num-
ber of their neighbors. Its neighbor standard peers are
less then N'/7 and so the amount of information is
< k' N7,

Adding this together, the amount of information that a super-
peer = has to store is: k' N'/7 4 N1—@ = O(N'1—@) |
Constant Two-hop Index Replication

The main problem of full two-hop index replication is that
caches at superpeers could become too big. Here, the idea
is to reduce the index replication at superpeer. While we
guarantee the cover time is similar to one-hop replication, we
reduce cache size compared to two-hop strategy and query
load on superpeers compared to both one and two-hop index
replication. Theideais to implement the routing going through
each cluster using standard peers.

Lemma 1. Each normal peer that lives in a cluster can
reach another cluster in constant hops, with high (constant)
probability.

Proof: The probability that a standard peer, in a cluster,
is connected to another superpeer in one or two hops is:
([Ntl"”z\/l/v‘5 NV (k=) (NCT Ny

= +

N N
or each of its outgoing edge, and note that k is a constant
that means the total number of outgoing edges for a standard
peer. Each standard peer has k edges and for each of these
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the above probability is valid. Therefore, the probability that
a standard peer does not reach another superpeer in at most
two step that is:

k(NWTfl—(x-HSNl/'yfd _Nl/v) b1

=1 k+1
(1= (RN = Nt < (1= )
Indeed,
o el e NN N
N N "7 =N"“4 5 5 N > 5
because, X — N™'5 > 0. (1— 72 )1 isless than 1/e,

i . loge
which means k — 1 > Tog TN —Tog GNT—F) In order to make

the denominator consistent, « hasto be > log ,y (k 4+ 1)/2 and
0, k > %ggz is dways true. n

This lemma proves that each standard peer that lives in a
cluster has the possibility to reach another. This is done to
show the capability that queries can go through clusters using
standard peer, and yet cover the same amount of information
as that of walking through superpeers with one hop replica-
tion. Therefore, constant replication obtains an optimal load
balancing. It is possible because the standard peers that live
in a cluster have complete knowledge of all other peers’ index
in their cluster.

Theorem 9. The cover time, in constant two-hop replication,
is O(N"5 ~**1og N).

Proof: Each standard peer in a cluster is connected,
in constant hops, to another cluster as shown in lemma
1. Considering al standard peers in a cluster (i.e. at least
N1/7=9) it is trivial to show that with high probability each
cluster is connected to at least 3 other clusters by normal peers.
Therefore, we can use the assumptions and the algorithm in
[8] to proof the cover time. In our case, we need to cover
clusters insteald of a single peer and the number of clusters to
cover is N 5~ We can conclude that the cover time is
O(N™5 %) log N. n

In the constant two-hop strategy, the routing hops required
is greater than full two-hop. Compared to one-hop replication,
it significantly reduces query load at the superpeers, and cache
size at superpeers is asymptotically the same.

Theorem 10. The average load on each superpeer x is less
than #-duery,

Proof: The intuition is that this strategy does not use
biased random walks through superpeers but a random walks
that go through standard peers in order to cover at least one
peer for each cluster. Each query only need to go through
one node in each cluster to obtain the full knowledge of all
stored items in those clusters. Each query has to crosses each
cluster and V peer v € C, the query goes through v with
probability 1/|C,| Y € S. Each node in the cluster C, can
decide by itself (without consulting directly the superpeer x)
if the looked up item is in the cluster or not. Since the routing
is not biased to go through superpeers, the load is uniformly
distributed among all peers, and so it is equal to W. [ ]

The cache size of superpeersis drastically reduced because
only a constant number of neighbor superpeers are considered
during the index storage phase, and al others are treated as
standard peers.

Theorem 11. The cache size of superpeers, for the constant
two-hop strategy, is O(N /7).

Proof: Let = be the superpeer, the maximum number of
the nodesin C,, is N/, and at most N5 ge superpeers.
In the constant two-hops replication strategy the superpeer x
has to store:

. for a constant number, k" of its N T g ghboring
superpeers, al their neighbor peers and so the amount of
information to replicate is k' N1/7;

« for the remaining nodes, the amount of information that =
replicates is equal to the degree of a standard peer which
is a constant. z’s neighbors remaining are less then N 1/7
and so the amount of information is < k" N1/7.

Adding al together, the amount of information that x has to
storage is.
k' NYY 4k NYY = O(NY)

Square Root Index Replication

Our analysis shows that compared to one-hop index repli-
cation, full two-hop index replication improves both cover
time on the network core and query load on each superpeer.
But the cache size for each superpeer is significantly larger.
Constant two-hop index replication shows a smaller cache size
per superpeer than full two-hop, but similar cover time as one
hop replication. Now we prove the properties of Square root
two-hop index replication.



Theorem 12. Trlq cover time using Square root index repli-
cation, is O(N = *°log V'), with high probability.

Proof: Each superpeer = has at least Q(N 5 ~2%) neigh-
boring superpeers in Vi (z), as proved in theorem 3, but we
are interested in considering no more than vV N 20 of
2's neighboring superpeers. Infact, each superpeer receives
indices only from the clusters rooted in these V N -2
selected neighbor superpeers. Since, VN =20 superpeers
are in each cluster, C; with i € S, with:

ke
<N7> _ e
/ —1
N’YT?QO{
superpeers we could know al superpeers in the net-

y—1

work. If N7 ¢ = ¢ then the cover time is
O(N%+5 log ), using the assumption in [8]. As we cannot
guarantee that the previous intersection is empty, we must
prove that going through O(N T log N) clusters, we will
check all superpeers at least once with high probability. Using
the same formalism of the theorem 6, we can show that
the probability to not knpw a superpeer in each routing step

is (1 - ———)V7 ", dter N7 *log N hops this
N5l
probability is:
(1 N 1 )NJ;_I_{H—{S log N _ 1 < 1 _ i
N’YT—l_OH_(; elog N elog. N N
that concludes the proof. [ ]

With the same argument as in theorem 7, we can assert
that the average load on the superpeers, in Square root index
replication, is proportional to #-2uericsloa NV,

N2y ~¢
Theorem 13. The cache size for each superpeers is

2y —

O(N 5 ).

Proof: Let x be a superpeer, the maximum number of the
nodes in C, is N'/7, and as mentioned ?bove the number of
2's neighbor superpeers is at most N v ~“/2. In the square
root two-hop replication strategy, the superpeer « has to store:

~

« for each of its neighboring superpeer (i.e. N7 /2 )
al their neighbor peers. So the amount of information to
sore is at most N/7 N5 —@/2 = N /2,

o for al other remaining nodes (i.e standard peers) in C,
the amount of information that = replicates is a constant.
Its neighboring standard peers are less then N'/7 and so
the amount of information is < k' N'/7.

Adding all together, the amount of information that = receives
from its neighbors is:

NE /2 L Ny

that is O(N 27 ~/2). m

Finaly, we summarize al of our anaytica results in
Table 1. We want to emphasize the substantial difference
between our three two-hop replication strategies and one-
hop replication. Two-hop constant strategy maintains the same

cover time compared to one-hop replication, since only the
non-superpeers nodes do two-hop replication. While two-hop
constant reduces load for superpeers, it does not improve the
cover time. We prove that the best cover time can be reached
using two-hop full replication. Since al nodes do two-hop
flooding, the concentration of indices at superpeers makes
the SCRW very efficient, despite the larger cache loads for
superpeers. Finally, square-root two-hop replication obtains the
best tradeoff between cover time and cache size.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We present our experimental results on OverSim [3], an
event-based overlay network simulator. For our simulations,
we modified an implementation of Gia [6] included with
OverSim to use the same parameters as the Gia paper. In
addition to Gia, we implemented a simple unstructured overlay
protocol to experiment with different search and replication
algorithms. We aso added support in OverSim to import
different network topologies to build overlay networks.

We used the bandwidth measurement traces from the
Gnutella study [25] to derive the node capacities for Gia,
alowed the network to stabilized, and generate a 100K node
network topology. We used this Gia topology for al our
experiments, and refer to it as Giain our graphs. In addition to
this topology, we also evaluated our agorithms using power-
law network topologies generated by BRITE [17].

We simulated our 100K large overlay network on a quad-
core Dell server with 16GB memory and four 2.3GHz CPUs.
The large simulation size was necessary to provide realistic
and representative results. In our Gia tests, we initialize the
overlay on the pre-built topology, store a constant number
of randomly selected objects on each node, and then issue
queries from each node for random aobjects in the network.
Our object assignment algorithm ensures that each object in
the network has 3 copies distributed among random nodes in
the network. In addition, we fix the number of supernodes
in the network at approximately around 3%, following the
measurement results from [25]. We use just one copy of the
random walk for all search experiments (i.e. 1-SCRW) and
terminate the walk when a copy is found or when the TTL
expires. Each experiment submitted 100K queries into the
network and eval uates different aspects of search performance.

B. Performance Metrics

We use the following metrics to study the performance of
our proposed algorithms.

o Lookup Success. This metric describes the effectiveness
of a search strategy in locating objects. This is expressed
as a percentage of total search queries that return suc-
cessfully.

o Lookup Overhead. The number of hops taken by a
search query before it terminates is defined as the lookup
overhead of that query. The overhead is always less than
or equal to the maximum random walk depth. We use
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network. replication strategies.

the average of all lookup query overheads in a test to
quantify the search cost.

o Query Load. We measure the number of queries pro-
cessed by each node in the network during a test run to
understand query load per node. In addition to the load
on al nodes, while using SCRW, we aso quantify the
load on each supernodes.

o Index Storage Cost. We use this to measure the per-
node storage overhead from two-hop replication. This
aso quantifies the amount of index data transferred in
the network during network churn.

C. Simulation Results

We present the simulation results in three parts. We start
with an evaluation of search effectiveness and efficiency, then
evaluate our system under a full-system simulation of the
Gnutella network, and finally present the index replication
overhead incurred because of churn. We ran al tests on both
Gia and Brite overlays, and present only the Gia results when
results from both topologies are similar.

1) Search Effectiveness and Efficiency: Figures 1 and 2
compare the lookup success and lookup overhead of two-
hop replication strategies using SCRW with that of one-hop
replication using standard random walk. We see that full
two-hop replication with SCRW provides the highest lookup
and the lowest overhead, while one-hop replication with RW
provides the lowest lookup with highest overhead. Sgrt index
replication’s performance is very close to that of full two-hop,
while the constant replication is better than one-hop replication
but much worse than sgrt and full two-hop replication. Recall
that these results are for al objects with only 3 replicas. We
can expect higher search success in practice by increasing the
replication factor. While full two-hop replication is the clear
winner thus far, we need to fully understand its other effects
before choosing a variant for practical deployment.

Figures 3 and 4 show the query load experienced by
nodes in the network. Figure 3 shows the load distribution on
al nodes for different combination of search and replication
algorithms. We see that with their use of SCRW, Sgrt and
Full have uneven load distribution, with most search queries
processed by the supernodes. Both the normal RW one-hop
(inherently biased towards high-degree nodes) and two-hop
constant strategies spread the load more evenly in the network.

100K Gia network. Plots ordered as legend.

Explicitly biasing the RW towards high degree nodes, like in
Gia, takes the distribution away from the normal RW, towards
SCRW. Figure 4 shows the average query load just on the
supernodes. Sqrt experiences dlightly higher load than Full
strategy. Two-hop constant replication, however, incurs load
comparable to that of just one-hop replication. Studying just
the query load indicates that two-hop constant replication is
desirable for distributing load evenly in the network, while full
and sgrt replication strategies are good for two-tier architec-
tures where supernodes have significant resources.

Figure 5 presents the total index storage (one-hop + two-
hop) overhead on al the nodes in the network for different
replication strategies. We see that the storage overhead (and
hence the index transfer overhead) in Full and Constant
replication is nearly ten times more than that of one-hop
replication. Sgrt replication incurs the same overhead as that
of one-hop on al nodes except supernodes which incur almost
the same load as that of Constant replication (this explains the
spike in the Sgrt overhead). Figure 6 presents the same results
for a BRITE topology and we see that Sgrt overhead is the
lowest. The main reason for the variations in these graphs
is that in the Gia topology, superpeer degrees deviate from
the power-law distribution, and is less connected than their
counterparts in BRITE.

We see from these graphs that Full replication provides high
lookup success, but aso incurs high query load and index
overhead. Constant replication is desirable for spreading the
index transfer cost across the network or for even balancing
of query load, but has poor lookup success and high lookup
overhead. Sqrt replication provides a mix of the good prop-
erties of Full and Constant strategies. Its high lookup success
with low lookup overhead while the total index overhead
is only dlightly higher than that of one-hop replication. We
argue that Sgrt is the best variant for practical deployment
because the supernodes chosen in deployed networks have
high bandwidth and processing capacity, and index transfers
can be amortized across time. Additionally, the significant
savings in the bandwidth spent on processing queries should
more than offset the cost of index replication. Also note that,
as shown in Table |, Sgrt replication’s cover time is sub-linear
on the network size, indicating as network size grows, the
lookup overhead continues to improve relative to Constant and
One-hop replication strategies. From here on, we will use Sqrt
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two-hop as our chosen index replication technique.

D. Gnutella Full-System Simulation

To understand the performance of various search and repli-
cation algorithmsin areal unstructured network, we simulated
a complete Gnutella-like network. To make our simulation
realistic, we obtained the network topology, the files stored
in the nodes, the number of files stored, and the file dis-
tribution from Gnutella measurement study traces [27]. We
extracted a Gnutella network topology with approximately
72K superpeers and 760K |eafpeers from one of these topol-
ogy traces. Since the leafpeers do not participate in query
forwarding in Gnutella, we considered only the superpeers
in our network topology. Then we extracted the list of files
stored on 72K random nodes in the Gnutella trace and as-
signed them to the nodes in our topology. Researchers have
empirically shown that this randomized placement of files
on nodes approximately represents the real network, since
there is very little correlation between file locations and the
network topology [27]. There were approximately 27 million
files, in total, with 7 million unique files assigned to nodes in
our network. Since we are using the real traces to build our
network, the object popularity in the network follows the same
popularity we see in a real network.

To evauate the search recall for rare objects, we pre-
processed the files on the nodes in our network and queried for
only the files with exactly 3 replicas in the network (approx.
300K of them). Furthermore, to make a fair comparison
across the different search techniques and to understand the
overall performance of the network, we explicitly limited the
bandwidth that can be consumed by our tests. We limited the
number of messages that can be forwarded in the entire net-
work. Once this overhead cap is reached, all search messages
are dropped wherever they are, and no additional messages or
search queries are processed.

We examine the performance of three different search
algorithms in this setup, SCRW with Sgrt two-hop index
replication, Gia's biased randomwalk, and a simple flooding
algorithm. Unlike early versions of Gnutella, our flooding
only occurs between superpeer nodes. We experimented with
different flooding depths and found that a flooding depth of
3 provides the best performance in our experiment setup. We
compare this against a random walk depth of 500 for the Gia

40000

Fig. 5. Comparison of index storage overhead
(sorted values) incurred by nodes, in a 100K
Gia network, for different replication strate-
gies. Plots ordered in the order of legends.
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Fig. 6. Comparison of index storage overhead
(sorted values) incurred by nodes for different
replication strategies in a 100K BRITE net-
work. Plots ordered in the order of legends.

and SCRW. Note that random walk with depth of 500 incurs
significantly less overhead than flooding with TTL of 3, which
on average reaches 42K nodes.

Figures 7 and 8 show the performance of the three al-
gorithms for same overhead. Figure 7 shows the absolute
lookup success rates while the Figure 8 shows the relative
improvement in search success. We see clearly that SCRW
with Sqrt replication is more than 600 times better than simple
flooding, and nearly 200 times better than norma RW with
just one-hop replication. The improvement decreases at higher
TTL vaues mainly because of the diminishing returns in
lookup success experienced by SCRW.

E. Churn Measurements

Finally, we want to quantify the bandwidth costs of pushing
index updates across the network following changes in net-
work membership. Using our full-system Gnutella simulation,
we evaluated the effect of churn on Sgrt replication index
transfer overhead. Since Sqrt index replication mainly involves
supernodes, we study only the effect of supernode churn. In
order to do that in a practical manner, we use the measurement
results from a recent Skype study which measured the churn
characteristics of Skype supernodes. We assign lifetime to
supernodes from this measurement data [13], stabilize the
network, then perform two-hop Sqrt replication to reach a
stable state. We then run the Skype trace, and measure the
bandwidth required by nodes in index replication follow each
supernode join or leave event. We assume that each data object
entry including all metadata fields is 100 bytes.

Figure 9 presents the CDF of the index replication overhead
incurred by the supernodes in the Gnutella topology. In our
72K topology we had approximately 2700 highly-connected
supernodes. In a5 day run of our churn experiments, nearly
26% of the nodes died. The overhead CDF shows that the Sqrt
two-hop replication overhead is very low, only a few nodes
have overhead above 500 Bytes/sec and the average overhead
is approximately 10 Bytes/sec per supernode. This shows that
deploying Sqrt index replication will not incur a significant
bandwidth cost for index replication updates.

V1. CONCLUSIONS

While unstructured file-sharing networks have been success-
ful at delivering popular content to its users, they are limited

80000 100000
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