UNIVERSITY OF CALIFORNIA
Santa Barbara

Exploiting Adaptation in a Java Virtual Machine
to Enable Both Programmer Productivity and
Performance for Heterogeneous Devices

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by
Lingli Zhang

Committee in Charge:
Professor Chandra Krintz, Chair
Professor John Gilbert

Professor Rich Wolski

March 2008

The Dissertation of
Lingli Zhang is approved:

Professor John Gilbert

Professor Rich Wolski

Professor Chandra Krintz, Committee Chairperson

December 2007

Exploiting Adaptation in a Java Virtual Machine to Enable B&rogrammer

Productivity and Performance for Heterogeneous Devices

Copyright © 2008

by

Lingli Zhang

To my parentsSuzhuangndJiging,
my husbandYe

and my sonyifan

Acknowledgements

| would like to thank all people who have contributed in sonaysito the devel-
opment of this dissertation.

First and foremost, | want to thank my advisor, Dr. Chandrantgrifor her guid-
ance, encouragement, and support. It has been an honor teel# ber first Ph.D.
students. Thank you for helping me develop independerkitigrand research skills,
and preparing me for the future challenges. Thank you fomigagonfidence in me
even when | was wondering in the Ph.D. pursuit and providiegwmerous research
opportunities to exploit. Thank you for being so supportiveing the difficult times.
For all of your help, Chandra, | thank you, sincerely.

| would also like to thank the rest of my thesis committee merab Dr. John
Gilbert, and especially, Dr. Rich Wolski for their time, vahle input and insightful
discussions.

My special thanks go to Vinod Grover, my mentor during my iinghips in Mi-
crosoft. He is the one who introduced me the “future” prograng construct, and
got me interested in the parallel programming area in généfighout his inspiration,
this thesis work would not be possible.

| would like to express my sincere gratitude for the friernids#f all of the mem-

bers in the RaceLab and MayhemLab, who have made my graduatenstife en-

joyable and full of fun. In particular, I would like to thanku8il and Priya, for their
fruitful discussions and collaborations.

| thank all the faculty members, staffs and students in the [@der Science de-
partment at UC Santa Barbara, whose presences and spiriesth@aklepartment a
warm, and fantastic place to learn, to think, and to have faam especially grateful
to Professor Tevfik Bultan, and the secretaries, MaryJaneania, Greta, Sandy,
and many more, for their continual support.

Finally, and most importantly, | would like to thank my familor all their love
and encouragement. My deepest thanks go to my beloved pafmthuang and
Jiging, who have always been there when | needed them mosizaedsupported me
through all these years. Most especially, | would like tanthany husband and best

friend, Ye, for his love and tremendous support.

Vi

Education

2007

2007

2000

1997

Experience

2006
2005
2004

2002 - 2007

Curriculum Vitee

Lingli Zhang

Doctor of Philosophy in Computer Science, University of California,

Santa Barbara.

Master of Science in Computer Science, University of California,

Santa Barbara.
Master of Science in Computer Science, Zhejiang University, China.

Bachelor of Science in Computer Science, Zhejiang UniversityaChin

Summer Internship, Microsoft Research.
Summer Internship, Microsoft Research.
Summer Session Lecturer, University of California, Santa Barbara

Research Assistant, University of California, Santa Barba

Vil

Publications

Lingli Zhang, Chandra Krintz and Priya Nagpurk&upporting Exception Handling
for Futures in Java In Proceedings of the ACM International Conference on the
Principles and Practice of Programming in Java (PPPJ) sphffe-184, September,
2007

Lingli Zzhang, Chandra Krintz and Priya Nagpurkdanguage and Virtual Machine
Support for Efficient Fine-Grained Futures in Jaua Proceedings of the ACM Con-
ference on Parallel Architecture and Compilation Techrsg(RACT), pages 130-
139, September, 2007

Lingli Zhang, Chandra Krintz, and Sunil Somakfficient Support of Fine-grained
Futures in Java International Conference on Parallel and Distributed Cdmgu
Systems (PDCS), November, 2006

Lingli Zhang and Chandra KrintzThe Design, Implementation, and Evaluation of
Adaptive Code Unloading for Resource-Constrained Devid€M Transactions on
Architecture and Code Optimization (TACO), Vol. 2, Number 2gps 131-164,
June, 2005

Lingli Zhang and Chandra KrintAdaptive Code Unloading for Resource-Constrained
JVMs ACM SIGPLAN Conference on Languages, Compilers, and ToolEfobed-
ded Systems (LCTES), pages 155-164, June, 2004

Lingli Zhang and Chandra Krintz.Profile-driven Code Unloading for Resource-
Constrained JVMs ACM International Conference on the Principles and Practice
of Programming in Java (PPPJ), pages 83-90, June, 2004

viii

Abstract

Exploiting Adaptation in a Java Virtual Machine to Enable
Both Programmer Productivity and Performance for
Heterogeneous Devices

Lingli Zhang

Computer systems with which we interact on a daily basis sbmdia vast di-
versity of devices. At the low end, battery-powered, hatdildevices with limited
resources, e.g., personal digital assistants (PDAS),tphmares, etc., are common
and extremely popular. At the high end, powerful, multi- andny-core processor
systems are increasingly ubiquitous in the laptops, ddskmputers, workstations,
and clusters that we use. The pervasiveness of heterogesgsiems requires that
there be programming languages for application developniigat are easy to learn
and use, portable across diverse systems, and that fiecétéraction of high perfor-
mance from the underlying, available device technology.

The Java programming language offers many of these chasdicte Its archi-
tecture-independent program transfer format and extantalimachine technology
for a wide variety of devices, provides programmers with @gensnce and run any-
where (WORA) model. Moreover, its object-orientation, rsilibrary support, and
high-level syntax, make Java easy to learn and developcaiplins with. Finally,

modern virtual machine (VM) technology offers powerful ptize services that com-

bine program profiling and optimization, to extract highfpenmance from appli-
cations with frequently executed code regions (hot spatiwever, the Java lan-
guage and its VM technology to date have not targeted despeetfic opportunities
that have the potential for enabling both programmer prodticand scalable high-
performance.

In this dissertation, we investigate potential opporiesifor devices at the two
ends of the performance spectrum: battery-powered, héohd2As and parallel
processing systems. Our thesis question asks whether wengaloy adaptive JVM
technologies to improve the performance of programs innessconstrained devices
and to facilitate efficient and scalable parallel programgmin multi-core systems.
We address each question with a specific and novel solutigradaptive compiled
code management for low end devices, and (2) adaptive caod#éghaation for high
end, multiprocessing systems. The goal of our work is toaextnigh performance
from the underlying device technology through novel JVMeasions while main-
taining the ease-of-use of the Java programming languagedaatribe each of our

foci in detail and present empirical evidence of its efficang potential.

Professor Chandra Krintz

Dissertation Committee Chair

Contents

Acknowledqemenﬂs v
Curriculum Vitee Vii
Abstract iX
List of Figures XV
List of Tables XVii
1 Introduction 1
1.1 The Java Programming Lanqu\age 3
1.2 Performance Adaptation in Java Virtual Machines. 4
1.3 TheThesisQuestion. 6

1.3.1 Adaptive Code Unloading for Resource Constrained Dgvice 9
1.3.2 Easy and Efficient Future for Multi-Processing Degice . 10

1.4 Outline. 15

2 Background on Adaptive Optimization in JVMs 17
2.1 ExecutionModels. 18
2.2 Profiling: Identify Hot Spots and Collect Application Beia . . . 20
2.3 Decision Models 23
2.4 Example System: JikesRVM. 24

| Automatic Code Management for Resource Constrained JVMs 27

3 Code management in Resource Constrained JVN/IS 28

Xi

3.1 Interpretation Versus Compilation. 29
3.2 Characteristics Study of Compiled Code inJVMs 31

4 Adaptive Code Unloading 35
4.1 Code Unloading Framework. 36
4.2 Unloading Strategibs 39
4.2.1 Triggering an Unloading Event 40

4.2.2 ldentifying Unloading Candidates. 44

4.2.3 Unloading OptimizedCode 46

4.2.4 Recording Profile Information. 48

4.3 Experimental Methodology. 49
4.4 Performance Evaluation 52
4.4.1 Memory Footprint Reduction 53

4.4.2 Impact on Execution Performance 58

4.4.3 Code Unloading for Selective Compilation Systems. . . 74

45 RelatedWork 83
4.6 SUMMANY . . . o oo oo e 87

Il Easy and Efficient Parallel Programming Using Futures in Java 90
5 Futures and its Support in Java 91
5.1 The Future Construct. 91
5.2 Supportfor FuturesindJdava 93

6 Adaptive and Lazy Scheduling for Fine-grained Futures in Jaa 97
6.1 Programming Model o 99
6.2 Implementation 102
6.2.1 Implementation OVervIew oo 104

6.2.2 Future Splitting Triggers. 106

6.2.3 Future SpItter. 107

6.2.4 Optimizing Synchronizatio\ns 109

6.3 Experimental Methodology. 109
6.4 Performance Evaluation 112
6.4.1 Comparison of Splitting Triggérs 112

6.4.2 JavaGrande Performance. 114

6.4.3 Divide and Conquer Performance. 116

6.5 Related WOrk 122
6.6 SUMMANY . . . o oo oo 126

Xii

7 Directive-based Lazy Futures in Java 127
7.1 Implementation. 128
7.2 Experimental Methodology. 135
7.3 Performance Evaluation 136

7.3.1 Directive-based versus Interface-bésed 138
7.3.2 Overall Performance of DBLFutures 141
7.4 RelatedWork 143
75 SUMMANY .« . o oot 144

8 As-if-serial Exception Handling Support 146
8.1 Exception Handling in Java 5.0 Futures. 148
8.2 As-if-serial Exception Handling Design 149
8.3 Implementation. 153

8.3.1 Total Ordering of Threads. 153
8.3.2 Choosing a Thread to Handle the Exception. 156
8.3.3 Enforcing Total Order on Thread Termination 157
8.4 Performance Evaluati\on 163
85 RelatedWork 167
8.6 SUMMANY . . . o o o oot 173

9 As-if-serial Side-effect Guarantee 175

9.1 Background: the Safe Future System. 176
9.1.1 Programming Model 177
9.1.2 ExecutionContexts. 177
9.1.3 Preserving As-if-serial Side-effect Semahtics 179
9.1.4 Committing and Revoking Execution Contexts. 181
9.1.5 Limitations of Safe Futures 182

9.2 Supporting Nested Futures Safely. 184
9.2.1 Layered ContextID. 185
9.2.2 Tree Structure of Execution Contéxts 188
9.2.3 Adaptive and Lazy Execution Context Creation 192
9.2.4 Simple Context Revocation 193
9.2.5 Local Commitand Global Commit 194
9.2.6 Hybrid Committing Strateb.y 197
9.2.7 History-based Learning 200
9.2.8 Integration with As-if-serial Exception Handling 204

9.3 Performance Evaluation 209
9.3.1 Performance of Benchmarks with No Dependency Viaiatid?10
9.3.2 Parallelism of Local Commit versus Global Commit. . . 213
9.3.3 The 007 Benchmark with Controlled Conflict Patterns. 216

Xiii

9.4 RelatedWork 231
9.5 SUMMANY . . . o o o oo e 234
10 Conclusion 235
10.1 Contribution. o 236
10.2 Future Work. 239
Bibliography 243

Xiv

List of Figures

3.1 CDF of effective method lifetime. 33
4.1 Overview of the adaptive code unloading framework 37
4.2 Temporal code size of Clean, OnX and OnS strategies 56
4.3 Performance comparison of the four “what” strategies. 60
4.4 Performance comparison of the four “when” stratégies 65
4.5 Performance comparison of four variants of the OnSegjyat . . . 68
4.6 Performance comparison of the two ways to record profile . . . 71
4.7 Summary of code side reduction and performance impreagsn . 73
4.8 Average execution time and code size estimation forBd88 . . 80
4.9 CDF of effective method lifetime for hot methods 82
5.1 Thej ava. util . concurrent Futures APls 94
5.2 The Fibonacci program using Java 5.0 Futures API. 94
6.1 Comparing programming models of Java 5.0 Futures andHudages 101
6.2 Overview of LazyFuture implementatidn 104
6.3 The future splitting process of LazyFutures. 108
6.4 Performance comparison of future splitting triggers.. 113
6.5 Average speedups of LazyFutures for JavaGrande benkchma. . 114

6.6 Individual JavaGrande benchmark speedups of Lazy&sitwith 8
PrOCESSOIS. e e e 115
6.7 Average speedups of LazyFutures for Divide and congerectimarks. 118
6.8 Individual divide and conquer benchmark speedups oyEaizires

with 4 processors.. 119
6.9 Average speedups of LazyFutures for Divide and congeach»
marks over non-OO serial version.. 120

XV

6.10 Individual divide and conquer benchmark speedups oyEatures
over non-OO0 serial version with 4 processars. 120

7.1 The Fibonacci program using DBLFutUres 129

8.1 The Fibonacci program using Java 5.0 Futures with ttgicalocks 149

8.2 Examples of two approaches to exception handling for DBlwfes 150
8.3 A simple DBLFuture program with exceptions 151
8.4 Example of establishing total ordering of threads. 155
8.5 Algorithm for the future value storing pdint 158
8.6 Algorithm for the future return value use point 159
8.7 Algorithm for the exception delivering point. 161
9.1 Example of execution context creation for Safe Futurekmva . . . 178
9.2 Layered execution context ID for supporting nestedregu 187
9.3 Tree structure of execution contexts. 190
9.4 Local committing and global committing of execution tods . . . 196
9.5 Asimple program that spawns 4 futures 201
9.6 Algorithm for the exception delivering point in the SDBlthre system 207

9.7 Performance evaluation of the SDBLFuture system for ln@acks
with no dependency violations.. 211
9.8 Performance impact of global committing threshold orajelism.. 214
9.9 Performance impact of committing and learning stra®gvith 1

PrOCESSOr. o i it 221
9.10 Performance impact of committing and learning stiategvith 4
ProCESSOIS. o o i e 222
9.11 Average performance of lock-based, SafeFuture, arBLSDture
implementations of the OO7 benchmark.. 227

XVi

List of Tables

3.1 Size and behavior of the compiled native code in JVMs. 32
4.1 Benchmark characteristics for Fast configuration 51
4.2 Benchmark characteristics for Adaptive configurétion 51
4.3 Average code size reduction of different “what” and “whstrategies 53
6.1 Evidence that threshold values vary widely across cordigons . . 100
6.2 Number of Java threads spawned. 122
7.1 SLOC comparison of DBLFutures over Java 5.0 Futures 137
7.2 Speedup of DBLFutures over LazyFutures. 138
7.3 Overhead and scalability of DBLFutures 140
8.1 Overhead and scalability of the as-if-serial exceptiandling for
DBLFutures 165
9.1 The number of created futures and revocations of 007. 223

Xvii

Chapter 1

Introduction

Modern computing devices are increasingly heterogeneoeiyasive, ubiqui-
tous, and important in our everyday lives. For example, i@62@vorld-wide, com-
bined smart-phone and personal digital assistant (PDAnséints have totalled over
90 million units. The authors in [54] predict that this numbel veach114.1 million
and that the number of cell phones will exceedillion, in 2007 [53]. The number
of desktop computers is similarly immense: T4#8.6 million systems in 2006 [55]
has grownl0.9% in the first quarter of 2007 [56].

These vast compute resources are very diverse in theitectirie and capabili-
ties and continue to grow in complexity. For example, mobdedheld devices have
limited compute and storage resources and the lifetime tbéies is very short, due
to their constrained form factor. A typical PDA device faaia low-power RISC
processor (like ARM) clocked a00-600MHz and 32-128MB memory. Reducing

the software resource footprint and power usage is a magigualehallenge for these

Chapter 1. Introduction

devices. On the other hand, laptops, desktops, workstatad high performance
servers are becoming increasingly computationally pawéxy adopting multi- and
many-core technology. Major processor manufacturers aadntel and AMD, have
released dual-core processors since 2005. Intel launthegdad-core processors in
December 2006. AMD will make its quad-core processors albglin 2007. In-
tel has even developed an 80-core research processor [@@&htonstrate the power
of future parallel processor technology. Exploiting pkeledm to achieve maximal
performance is a key challenge for high-end, multi-coreesys.

The pervasiveness of computing devices significantly esee the demand for
software for these devices. However, the diversity of dewarchitecture and capa-
bilities makes software development very challenging. Uibdbefficient software,
programmers must have expertise on wide variety of devatgsms. For example,
resource constrained handheld devices require that progeas carefully design,
implement, and tune their programs to meet the constramRU speed, memory
size, and battery life. For high-end multi-core systemggpmmers must effec-
tively parallelize their programs to take advantage of thatiple processors in the
underlying hardware (without introducing synchronizaterors).

The complexity and diversity of modern systems make it iasiegly difficult for
programmers to extract performance and capability from dewange of devices,

via the programs that they write. As a result, there is anemsing need for pro-

Chapter 1. Introduction

gramming languages that are easy to learn and use by mosapmogers (including
novices), portable across diverse platforms, and thalititei the extraction of both
performance and capability regardless of the underlyimrddechnology. One such
language with the potential for enabling programmer praditg and performance

for a wide range of devices is Java [17].

1.1 The Java Programming Language

Java is an object-oriented programming language. It featarany modern high
level language constructs, such as exception handlinglétes, annotations, among
others. The Java language support provides an extensnagifor automatic use
of most common data structures, algorithms, and systenitiei Java’s execu-
tion model is based on a virtual machine [102] (JVMs). Depels compile a Java
source program into an architecture-independent, staadime-based, intermediate
and object-oriented format (calldm/tecod@ At execution time, Java virtual ma-
chines consume bytecode programs incrementally, a modelelasy at a time and
dynamically translates the methods that the program irvakedemand to native
code. This system enables and ensures both type safety pfageam as well as

automatic memory management (garbage collection).

Chapter 1. Introduction

The virtual machine execution model, the high-level alosivas available in the
Java language, and the type and memory safety the languatgmsguarantees,
makes Java very easy to learn and write programs in — for adwastsity of de-
vices and platforms. Moreover, this model enables poitglof programs (the Write
Once Run Anywhere (WORA) model). On any machine for which there Java
Virtual Machine (JVM), a Java program will run (with some miribrary-support
caveats). For these reasons, Java has emerged as one ofgsheidely-adopted
programming languages, for application and system dewstop on a broad range
of computing devices, from handheld devices to high peréooe servers. Based on
TIOBE Programming Community Index [145], in May 2007, Javass humber one
programming language in terms of popularity among programmsStatistics from
JavaOne 2007 show that there are tétaillion Java-enabled devices to date (May
2007) including desktops, mobile phones, Java cardsppdtdxes, toys, navigation

systems and robots, etc. Among theing3 billion are mobile devices [83].

1.2 Performance Adaptation in Java Virtual Machines

The JVM execution model enables many programmer prodtcbenefits. How-
ever, this benefit does not come for free. The extra layer strattion that a JVM

introduces can impose significant performance overheade slava programs must

Chapter 1. Introduction

be interpreted or compiled on-the-fly (consuming both mgnamd time)during ex-
ecution. Such translation however, enables portability amomates the burden of
developers porting to a vast diversity of devices and systdnterpretation or fast,
non-optimized compilation produces very poor code qualitg performance. Opti-
mized compilation can produce high-quality, specializedecand high performance
but is very expensive to apply, i.e., its runtime overheatiffgcult to amortize via the
improved execution time. To address this problem, modera Vigtual machines in-
tegrate adaptive compilation support in which the systemitars the application in
a very lightweight way (based on counters [75, 32] or analytodels [7, 8, 9]), and
then identifies the regions of programs that will benefit trestirom (and amortize
the cost of) optimized execution.

In particular, current adaptive optimization systems.(8g32, 75]) dynamically
identify code regions that consume significant portions afcetion time. These
code regions are referred to bBstspots Hotspots commonly consist of a series of
methods or basic blocks within methods. By optimizing hotspeirtual machines
attempt to balance compilation overhead and executionds@e®l as a result, have
been shown to enable significant performance gains [20,8,32 121]. Adaptive
JVMs are inherently dynamic, have extensive runtime inftton, and are able to
make decisionabout andadaptto, program and system behavior while the program

runs, to improve performance.

Chapter 1. Introduction

1.3 The Thesis Question

Despite its popularity and potential, extant Java tectmofails to address many
device-specific problems that challenge today’s prograrem#fe focus on two par-
ticular limitations as part of this dissertation: (i) dyn@aradaptation to improve per-
formance in resource-constrained mobile devices, anddsy yet efficient and scal-
able parallel programming. In the first case, programmaersldping code for mobile
devices must choose a slow but compact interpreter-baskl] dWuse a compiler-
based JVM and then manually identify opportunities for eete optimization since
native code is significantly larger than bytecode. The la@&tebles performance and
effective use of limited resources but imposes a significaatlenge on programmers
thus reducing productivity.

The second problem is an increasingly important one as +ooité systems be-
come ubiquitous. Concurrency in program design is an expadeapt and support for
concurrency in Java is non-intuitive to use, significantffedent from the sequential,
semantic equivalent, and challenging to debug. One primeagon that concurrent
program development is extremely difficult, especially man-experts, is that the
average programmers trained to use the “average” progrnagni@nguages typically
are most comfortable with serial approach to most programming problems. As a

result, novel and effective support for concurrent prograng in Java is needed that

Chapter 1. Introduction

enables the average programmer to easily transition froerial approach to the
concurrent one.

Both of these problems are challenging because their snkigepend on the
way the programs execute at runtime — and the dynamicallggihg conditions of
the underlying resources and the behavior of the prograngr&nmers write static
programs and have a difficult time understanding and acelyrastimating all of the
intricacies of the behavior of the executing program andaekeurces it will consume.
Extant JVMs provide little support to aid developers in thpsocesses.

An alternative way to solve these problems, that has yet exp#ored, is to pro-
vide the JVM with support that facilitates and automateset@ocesses for develop-
ers. To investigate solutions to these problems, we obskat¢he characteristics of
the problems are similar to those of the problem of tradirigompilation overhead
for performance, described above. In particular, we olestrat an adaptive system

within a JVM is able to

e Access dynamic runtime services, including dynamic logditynamic compi-

lation, garbage collection, thread scheduling, etc.;

e Obtain accurate information on the dynamic behavior of lagplication exe-

cution and underlying resource availability, at low cosigla

Chapter 1. Introduction

e Exploit and control low-level runtime constructs such as teap, internal

thread representation, thread execution stacks, etc.

As a result, we believe that we can apply similar adaptivarietogy to address the
problems of mobile program code management and easy-tangsefficient multi-
threading in high-end, multi-core systems.

Hence, with this dissertation, we investigate the follaywjuestion:

Can we exploit adaptation in the Java virtual machine in noveysvia
enable both high programmer productivity and high perfonoceof Java
applications for diverse computing systems?

In particular, we investigate

o Efficient memory management of executable code in resatonstrained
JVMs; and

e Easy parallel programming with efficient and scalable fisuwpport in Java

The goal of our work is to extract automatically high perfame from the un-
derlying device technology while maintaining and imprayihe ease-of-use of the
Java programming language. This dissertation, as a resui$jsts of two parts that
build on the same internal adaptive JVM technology: Adap@ode Unloading for
Resource Constrained Devices, and Easy and Efficient FutactiBoality for Multi-

Processing Devices. We overview each in the following sciiimes.

Chapter 1. Introduction

1.3.1 Adaptive Code Unloading for Resource Constrained Devices

Compilation-based JVMs typically significantly outperformterpretation-based
JVMs. This is because compilation-based JVMs are able tereary high-quality
code. The benefits from code quality and reuse easily ameotftiz cost of com-
pilation on high-end systems. However, for battery-powgresource-constrained
devices, interpretation is employed by most JVMs. This salbse interpretation im-
poses minimal memory overhead and no compilation cost. Témany overhead
of compilation in such systems can oftentimes even prechatiee programs from
executing (e.g. on small-memory systems). Unfortunately,quality of interpreted
code is very poor and code that is executed repeatedly isteeareted, which im-
poses pure overhead, however, without consuming memorgoikde storage. If we
are to employ compilation, we must either exert a significamtien on programmers
to shrink their code size or identify solutions that enabkeltest of both worlds: very
limited memory (as for interpretation) and efficient exémut(as for compilation),
without programmer intervention or participation.

To enable easy efficiency for resource-constrained deweepresent a dynamic
and adaptive code unloading framework. Our system dyndiyidantifies and un-
loads dead or infrequently used, compiled code to reducentétreory footprint of
the JVM. The system exploits the runtime services of JVMslf{sas dynamic load-

ing, adaptive compilation, garbage collection, etc.) ardrmation of both program

Chapter 1. Introduction

behavior and underlying resource availability collectedavlightweight online sam-
pling framework. We investigate a number of implementaadiernatives that em-
ploy dynamic feedback from the program and execution enwent to identify un-
loading candidates and to trigger unloading efficientgnaparently, and adaptively.
We implement and empirically evaluate our framework andading strategies
using a popular, open-source JVM and a set of community meadts. Our em-
pirical evaluation shows that our code unloading framevgigkificantly reduces the
memory requirements of a compiler-only JVM, while mainiagnthe performance
benefits enabled by compilation. In particular, for the fEsforming unloading con-
figuration and the community programs that we studied, ostesy reduces code size
by 36-62% and enables execution time benefits of 23% on azevagn memory is

highly constrained.

1.3.2 Easy and Efficient Future for Multi-Processing Devices

The second part of this dissertation investigates the usalaptation to enable
both programmer productivity (ease of use) and high perémee (efficiency as well
as scalability) for emerging multi-core systems. To enaasy efficiency in this
domain, we focus on th&uture parallel programming construct [70, 126], and its
implementation in the Java programming language [86], Gmpsrt of fine-grained

parallelism. The future is a simple and elegant constrattghogrammers can use to

10

Chapter 1. Introduction

identify potentially asynchronous computation. The cotidava implementation of
futures is a library level implementation with an interfde&sed programming model.
Users employ a set of APIs to encapsulate potentially asgncus computation and
to define their own future execution engines.

This model unfortunately is non-intuitive and producesrsethat is significantly
different from its sequential semantic equivalent (withiehhmost programmers are
most comfortable). Moreover, the library-based approaamable to exploit infor-
mation about the executing program and underlying ressucenake its schedul-
ing decisions. This approach also introduces significanharg overhead in JVM
systems due to the multiple levels of indirection and enai@pi®n that the interface-
based model can impose. Finally, Java futures require seasudentify the regions
of their program thashouldexecute concurrently to improve performance (not sim-
ply what parts of their programanbe executed concurrently). This imposition is sig-
nificant since it requires that programmers have expert keaye of not only their
program and its behavior for all possible inputs, but alsthef performance char-
acteristics of the machines on which their programs ultatyagéxecute. This latter
requirement conflicts with Java’s write-once-run-anyveherodel, since it requires
that programmers develop different schedulers for theicaarent tasks for different

systems and workloads to extract high-performance fronn ginegrams.

11

Chapter 1. Introduction

Thus, we employ extant JVM adaptation mechanisms to enailbleef support
for Java, that is easy to use, efficient, and scalable for@ns with fine-grained
parallelism. We presemirective-basedlazy, futures (DBLFutures) with support of
as-if-serialexception handling and side-effect semantics for JavandJi$iis model,
programmers use a future directive, denoted as a new Jawsasion, @ ut ur e, to
specify potentially asynchronous computations within @as@rogram. Moreover,
programmers are not responsible for deciding when or howeowge these compu-
tations at runtime. The DBLFuture-aware JVM recognizes theré directive and
makes effective scheduling decision automatically ancgtgely by exploiting its
runtime services (recompilation, scheduling, allocatjmerformance monitoring) as
well as detailed, low-level, knowledge of system and progkeehavior.

The as-if-serialexception handling mechanism that we present, deliverspexc
tions to the same point at which they are delivered when tbgram is executed se-
guentially. By simply removing our future annotations, tle@current version is the
same as the serial version. This model enables programmees/élop and reason
about serial programs first and then introduce parallelisadgglly and intuitively,
which significantly simplifies the process of parallel prmming so that more appli-
cations programmers, not just expert programmers, arertadite to take advantage

of the current and next generation of systems with multipte@ssing cores.

12

Chapter 1. Introduction

We enhance further the programmer productivity of futuregpamming in Java
by supportingas-if-serial semantics for the execution of side effects. That is, pro-
grammers are no longer required to reason about the shametbnpnaccesses of
future executions and to ensure correctness. Insteadgmogers can focus on iden-
tifying potential parallelism. The safe DBLFuture-awareMguarantees to deliver
the correctas-if-serialsemantics employing concurrent execution when possible.

The as-if-serial side-effect semantics for futures has leestigated in the Safe
Future project [153]. However, we find that it has similargmammer productivity
and performance disadvantages as the current librarydpbdaea Future implemen-
tation does. In addition, the system does not support nésteces, which makes it
impractical since such support is essential for a wide rarfiggplications, in partic-
ular, the divide-and-conquer style of applications (thgblement fine-grained paral-
lelism).

We extend our DBLFuture system with techniques of this saigéusystem. In
addition, we add efficient support for nested futures, amdstigate ways to improv-
ing its performance via exploiting the laziness of our DBLFes system, as well as
the adaptation mechanisms in the JVM.

We implement our system in a popular, open-source JVM anal ¢napirically
evaluate its efficacy using a number of Java programs thaemgnt fine-grained

parallelism. Our results show that the lazy future schedutlystem produces com-

13

Chapter 1. Introduction

parable performance to the hand-tuned schedulers. Ini@addur directive-based
model enables speedups of 2-11 times over the interfacsdmggproach implement
in modern Java systems. Therefore, DBLFutures are signilfycarore scalable,
and impose very low overhead. Our as-if-serial exceptiardhiag implementation
introduces negligible overhead for applications withoxteptions, and guarantees
serial semantics of exception handling and side effectapmlications that throw
exceptions. Finally, our as-if-serial side-effect implmtation imposes acceptable
overhead for tracking shared data accesses, and neglmiblead for managing
execution contexts.

In summary, in this thesis work, we investigate novel waysxploit the adapta-
tion of a Java virtual machine to enable both programmerymtdty and efficiency.
We do so for devices at both ends of the performance spectbattery-powered,
resource-constrained devices, and multiprocessingragst&/e propose techniques
that use feedback within the JVM about the program executeavior and the un-
derlying resource availability, to guide code unloadingaw end devices and to
enable easy and scalable future task execution in high eriddete We implement
our approaches in real JVMs and evaluate their efficacy foda vange of Java pro-
grams. We show that by employing adaptive JVM technologyowvehways, we are
able to facilitate programmer productivity and applicatefficiency concurrently to

a much larger degree than that is possible with extant téagpo

14

Chapter 1. Introduction

1.4 Outline

The outline of the remaining of this dissertation is as f@lo

In Chapter 2 we give an overview of state-of-the-art adagéebniques for JVM
code optimizations as the background of our work. Many otthecepts and method-
ologies used in these techniques are important buildingkislon our work.

The rest of the dissertation is organized into two parts. flisé part discusses
our work on automatic code management for resource consttalVMs to enable
compilation (and thus high-performance) for memory cansé&d devices without
programmer intervention. In Chapter 3, we describe the proldf compiled native
code management in resource constrained JVMs. We presalysesndata to show
the potentials of solving the problem. In Chapter 4, we distumsv we perform au-
tomatic unloading of compiled native code in a popular regedVM using adaptive
technique and framework. We compare different unloadingikgcs using empirical
performance data.

The second part of this dissertation discusses our work @daptive implemen-
tation of futures in JVMs to enable easy and efficient parptiegramming in Java. In
Chapter 5, we introduce the future construct. We overvievcthieent future support
in Java 5 and discuss the advantages and limitations ofpt®aph. In Chapter 6, we

focus on an adaptive and lazy scheduling technique for fiaggd futures, which

15

Chapter 1. Introduction

relieves programmers from managing future scheduling mianand explicitly, and
enables faster execution speed. In Chapter 7, we furtheoiraghe easiness of par-
allel programming using futures in Java by allowing direetbased futures. We also
show that directive-based futures have less overhead layimgdess future objects
than that of Java 5 futures. In Chapter 8, we discuss the supfas-if-serial excep-
tion handling for our directive-based lazy futures to eeavhooth migration of serial
programs to parallel versions. We show that our as-if-sexeeption handling sup-
port introduces negligible overhead. In Chapter 9, we cotaplar support of easy
and efficient futures in Java by enabling as-if-serial ®ifeet of futures. This allows
not only “safe” future execution, but also easy serial-togtlel program conversion
coupled with as-if-serial exception handling.

We conclude our work and discuss future work in Chapter 10.

16

Chapter 2

Background on Adaptive
Optimization in JVMs

In this chapter, we overview the current adaptive optinieatechniques. Adap-
tive optimization is the process of optimizing only a smaibset of program code
in attempt to trade off the overhead of optimization for ioy®@d code quality (and
thus performance). Adaptive optimization systems use mynanformation about
the execution of a program to decide (i) when to apply optatan, (i) which opti-
mizations to apply, and (iii) whether there are aggresgpeislizations of the code
that are possible and cost effective. The dynamic inforomatypically identifies fre-
guently executed code regions — adaptive JVMs predict tat segions are likely
to continue executing and thus warrant the overhead regjfirethe application of
optimization. We refer to frequently executed code regaméhotspots”.

The representative systems of adaptive optimization ia felude smart JIT [121],

Sun HotSpdtM [74, 117], Intel JUDO [32], IBM Product JIT [141, 142], and IBM

17

Chapter 2. Background on Adaptive Optimization in JVMs

JikesRVM [20, 8]. In the following sections, we will discussme common issues in

adaptive optimization systems and then detail IBM JikesR\$Miaexample.

2.1 Execution Models

A decision that an adaptive optimization system must makeoig to execute
the program before any hot spots are identified, i.e., whahasbaseline execu-
tion engine? One solution is to use an interpreter as thamartsJIT [121], Sun
HotSpot™ [74, 117], and IBM Product JIT [141, 142]. The other is to useast f
compiler which performs very few or even no optimization.eTatter is adopted in
Intel JUDO [32] and IBM JikesRVM [20, 8].

Both solutions have their own advantages and disadvantdgeesmixed model
(an interpreter and compiler) leads to good responsiveoiedse system at startup
time, which is very important for interactive applicationslso this model imposes
less memory burden on the system because only a small paftihre program is
compiled and stored in memory. However, the mixed execudfanterpreted code
and compiled code dramatically complicates the runtiméesygto facilitate control
transfer between interpreted and compiled code) as a @sthle very different ex-
ecution conventions. Moreover, interpretation is slow thupoor code quality and

re-interpretation of previously executed code.

18

Chapter 2. Background on Adaptive Optimization in JVMs

In contrast to the mixed model, tkempiler-onlymodel (a fast compiler and a full
compiler) enables seamless transition between unoptihard optimized compiled
code. All methods are compiled by the fast compiler and stéwelater reuse. This
enables fast execution, but at same time results in a mughrlanemory footprint
than that of interpretation. In addition, the compileryomodel suffers from slow
startup time (and thus user perception of program perfocejan

Moreover, two levels of translation may not be sufficient¢hiave the best trade-
off between compilation cost and performance. For exaniplee specify a lower
threshold for “hotness”, some optimization opportunitieay be identified earlier.
However, too many methods may be identified as “hot”, which imiroduce larger
compilation cost and longer startup time. On the other hiimgs set a higher thresh-
old for triggering optimization, we may miss some optimi@atopportunities. Also,
a long learning time is required to identify hot methods.

Multi-level compilers address this limitation [142, 20].hdse systems decom-
pose the compilation process into multiple levels, eackllesth its own threshold
and associated optimizations. The higher the level, theeroomplex optimizations
the system performs. Such systems also have several driesvbiaor example, the
“hottest” methods must be compiled several times beforg itba&ch the highest code
guality, which results in longer learning time and more cegpansion and compila-

tion overhead. In short, there is no perfect execution mamed must pick one based

19

Chapter 2. Background on Adaptive Optimization in JVMs

on the tradeoff of memory footprint, responsiveness, amfbpeance for a particular

application suite.

2.2 Profiling: Identify Hot Spots and Collect Applica-

tion Behavior

A precondition of any adaptive optimization is the availépiof information
about the runtime behavior of an application. Moreover rthgime must be able to
extract this information automatically and accuratelyhwiit programmer interven-
tion. Online profiling is the most commonly used method fantifying hot spots
and collecting application runtime information. Howewvenline profiling faces the
same challenge as that of dynamic compilation: the moreratethe profile is, the
more overhead the profiling introduces since the time foinenprofiling is also part
of total execution time. As such, a runtime system must céyefrade off profile
accuracy and profiling overhead.

There are primarily two types of online profilers: instrurtagion-based and sample-
based. Instrumentation-based profilers guide compil@riimm of extra instructions
into the original program to collect data. For example, titellJUDO system [32] in-
serts counters to the entry and loop back edges of a methbd first level compiled

code to catch its execution frequency. More complex andoagell instrumentation

20

Chapter 2. Background on Adaptive Optimization in JVMs

can be inserted by the runtime into the original program tbhganformation such as
branch taken frequency, invoked call sites, and runtimariants. Instrumentation-
based profiling provides accurate profile data, howeveagntalso introduce signifi-
cant overhead. In addition, such systems require recotiguiléo remove the instru-
mentation. To reduce instrumentation overhead, somergdige Intel JUDO do
not instrument the optimized code. But, this disables anytiadal or multi-level
optimization opportunities.

Sample-based profilers do not insert code into the originagiam. Instead, a
background thread periodically records snapshots ofasterg parts of the runtime
system. For example, the IBM JikesRVM system [8] records tpettvo frames
on the stack of each thread per 10 ms and uses this informitiapproximately
identify hot spots. Sample-based profiling has lower ruatommerhead and can be
disabled without any recompilation. Also, results in [184] show that sample-
based profiling is accurate enough in most cases to enalgicagt performance
improvements.

Simple sample-based profiling, however, cannot collecti@dired information.
For example, a coarse-grained sampler can not gather tipegeiney of basic blocks
and taken branches. Some researchers have proposed mnsethdhat combine
instrumentation-based and sample-based profiling teaksiq For example, [11,

10] present a low overhead instrumentation framework andpplication in online

21

Chapter 2. Background on Adaptive Optimization in JVMs

feedback-directed optimization for Java. The basic idéalmve duplicate copies of
interesting pieces of code: one that contains the origiodé@nd is used for normal
execution; the other that contains instrumented code amskid for gathering profile

data. The instrumented copy is only invoked periodicallgather sample data. The
sample frequency is configurable. This instrumentationpiaig framework gathers

necessary profile data with low overhead. However, thislt®gua larger memory

footprint due to code duplication.

[142] proposes another technique to combine instrumemtaind sampling. The
instrumenting profiler in this system dynamically insertstrumentation into the tar-
get method using an instrumentation planner. Later, ditedesired data is gathered,
the instrumented code is automatically extracted using @adching. This mecha-
nism does not cause the code space problem, but may intradctugecture-specific
complexities such as maintaining cache consistency.

Another way to reduce overhead of profiling is to gather peadita offline and
use the information online via annotation [95]. Annotatlmased approaches can sig-
nificantly reduce the online profiling overhead and the lggytime of optimization
opportunities. However, they suffer the well known craggtit problem: offline-
collected profiles may not reflect the runtime applicatiohawor. Although tech-
niques for coupling online and offline profile informatioreaproposed [94], the

cross-input problem still remains.

22

Chapter 2. Background on Adaptive Optimization in JVMs

2.3 Decision Models

Once application runtime behavior is collected, the nexq & to decide whether
a method is hot enough and which subset of optimizationslgimiperformed. A
simple and commonly used way is threshold-triggered: astiulkel is preset for each
level of optimization; once the frequency exceeds the pribseshold, correspond-
ing optimizations are performed. A threshold-triggeredisien model is easy to
implement, but is too coarse-grained: whether the benefiedaby the performed
optimization caractually outweigh the overhead is not evaluated.

Instead of using threshold-triggered decision model, Bl UikesRVM sys-
tem [8, 7] employs a cost/benefit analytic model to deternfinéhot method should

be optimized and at which level it should be optimized. Theadel is as following:

Loyt = {k|Tka > 0,Tpn = max(Tja),i < j < N},
T; = Tix5Si/S;
WhereL,, is the result optimization level for the methed i is the current compiled
level of m (might be unoptimized level)y is the highest compilation level; is the

compilation cost form at levelj. T; is the predicted future execution time wof if

m keeps running at level, 7} is the predicted future execution time of if it is

23

Chapter 2. Background on Adaptive Optimization in JVMs

optimized at levelj. T; can be estimated based @hand the difference between
speedups of level(S;) and level;j(S)).

This decision model is more accurate than threshold-tregyenes since it de-
cides whether there is any benefit to optimization of a metfiadmust be positive)
and tries to choose the most profitable optimization levellie method. In addi-
tion, it can promote a hot method directly to the most profgadptimization level
rather than slowly updating it by one level at a time. Howet@mplement this de-
cision model, some parameters must be provided: the costahailation level, the
speedup of the new optimization level over the previous and,the future execu-
tion time of the method. All of these parameters are highlgliaption and resource

dependent and the precise prediction of them is still an opsearch problem.

2.4 Example System: JikesRVM

The JikesRVM is a research virtual machine developed at IBMWatson Re-
search Center. This system is written almost entirely in dahis one of the most
advanced adaptive optimization systems currently. We da@issed its execution
model, profiling techniques, and decision model in the mnevisections. In this sec-

tion, we show how different components of JikesRVM work tibge to deliver high

24

Chapter 2. Background on Adaptive Optimization in JVMs

performance. We do so since, it is this system that we em@@uabase infrastruc-
ture and extend in this dissertation work.

The architecture of the adaptive optimization system iesiB/M consists three
subsystems: theuntime measurement subsystdghe controller and therecompi-
lation subsystemIn addition, theAOS databas@rovides a repository of previous
decisions for later query. The runtime measurement subisyst responsible for
gathering information about the application behavior @yplers), summarizing the
information (by organizers), and passing the summary tatmroller via an event
gueue. A decay organizer periodically refreshes the sadgikeso that more recent
behavior is emphasized.

Currently, two kinds of sample data are collected in JikesRyfMthod invoca-
tions and call edges. The former is used to identify hotnesisthe latter is used
to guide runtime inlining. The controller coordinates tlotiaties of the other two
subsystems based on the profile data. It takes informatoon the event queue and
uses the cost/benefit analytic model to determine whethigfheehlevel optimization
should be performed and which level yields the best perfanedradeoff. Then it
puts the recompilation requests in the compilation queloagawith instrumentation
plans that will provide desired profile data for further opitiation. The recompila-

tion subsystem takes compilation plans submitted by th&rclber and performs the

25

Chapter 2. Background on Adaptive Optimization in JVMs

requested compilation in the background. Finally, the joey code is replaced by
the newly optimized code and execution continues with theroped version.

All three subsystems are carefully engineered to imposglit#e overhead. For
example, the total overhead introduced by the controlldraganizers is only about
1%, which is negligible comparing to the significant perfame improvements de-
livered by the adaptive optimization system. Performangerovements of 11% on

average and up to 73% are reported for feedback directetiriglin [8].

26

Part |

Automatic Code Management for

Resource Constrained JVMs

27

Chapter 3

Code management in Resource
Constrained JVMs

Java virtual machines (JVMs) [102] have become increagipgpular for execu-
tion of mobile and embedded device applications. Stasistam JavaOne 2007 [83].
show that there are total83 billion Java-enabled mobile devices to date (May 2007).
This wide-spread use of Java for embedded systems haseefwoitn significant ad-
vances in device capability as well as from the ease of progievelopment, security,
and portability enabled by the Java programming languagedid its execution en-
vironment (JVMs).

To execute a Java program, the JVM translates the code froarciitecture-
independent format (bytecode) into the native format ofuthéerlying machine. In
this chapter, we overview two models of code translatioMN3, i.e., the interpre-
tation model and the compilation model. We compare theimathges and disad-

vantages in the scope of resource constrained environmargarticular, we discuss

28

Chapter 3. Code management in Resource Constrained JVMs

why the compilation model is desirable even for resourcetamed systems and the
existing challenges to use the compilation model (e.g.n@gory footprint, compi-
lation overhead, memory management overhead, etc.). Weptiogide an empirical
study of size and usage patterns of the compiled code in J\&ka &et of bench-
marks, which reveals many opportunities of efficient, awtbencode management

technigues, and motivates our adaptive code unloading indCkapter4.

3.1 Interpretation Versus Compilation

Most JVMs for embedded and mobile devices translate byteoaploy inter-
pretation, i.e., instruction-by-instruction conversirthe bytecode [99, 26, 89]. The
reason for this is that such translation is easy to impleragdtimposes no perceiv-
able interruption in program execution. In addition, théveacode that is executed
is not stored; if code is re-executed, it is re-interpret&tie primary disadvantage
of using interpretation is that an interpreted program carotders of magnitude
slower than compiled code due to poor code quality, lack dgingpation, and re-
interpretation of previously executed code. As a resulerpretation wastes signifi-
cant resources of embedded devices, e.g., CPU, memorypybatte

To overcome the disadvantages imposed by interpretatione VMs [32, 141,

5, 75] employ dynamic (Just-In-Time (JIT)) compilation. oBrams that are com-

29

Chapter 3. Code management in Resource Constrained JVMs

piled use device resources much more efficiently than ifrpneged due to signif-
icantly higher code quality. Compilers translate multipistructions concurrently
which exposes optimization opportunities that can be etquand enables more in-
telligent selection of efficient native code sequences. edeer, compilation-based
systems store code for future reuse obviating the redurtademnmputation required for
re-interpretation of the same code. According to studiemnefgy behavior of JVMs
and Java applications in [149, 48], JVMs in the interpretedenconsume signifi-
cantly more energy than in the JIT compiler mode. Thus, thegproach is a better
alternative for embedded JVMs from both performance andygreerspectives.

Despite the execution speedup of compiled code over irggrcode and its
power efficiency, dynamic compilation is still not widelyagsin JVMs for resource-
constrained environments due to the perceived memorynegents. Dynamic com-
pilation enlarges the JVM memory footprint in three primargys: The extra code
base introduced by the JIT engine, the intermediate daiatstes generated by the
compiler during compilation, and the compiled code stomedduse. Significant en-
gineering effort and research [1, 92, 18] have been perfoiimaddress the first two
problems by making the JIT compiler more lightweight whildl enabling genera-
tion of high quality code.

Compiled native code is significantly larger than its bytex@djuivalent. In

resource-constrained environments, since the totalabtailmemory is limited, the

30

Chapter 3. Code management in Resource Constrained JVMs

memory consumed by these code blocks reduces the amountnebmpavailable
to the executing application. This increase in memory pressan preclude some
programs from executing on the device. Moreover, for systémat use garbage
collection to manage compiled code, compiled code inceeasamory management
costs, which can be significant when memory is severely cansd. If applications’
code and data share the same heap and are managed by the Haege gallector,
the impact of compiled code on memory management costs cavelnamore severe.
As a result, dynamic compilation introduces memory ovedifeacompiled code not
imposed by interpreter-only systems which can in turn reegay benefit enabled by
code reuse and improved code quality. The goal of our wor& ireduce the mem-
ory requirements introduced by compiled code to make thepdation model more

feasible for the resource constrained JVMs.

3.2 Characteristics Study of Compiled Code in JVMs

To identify potential solutions for reducing the memoryuggments introduced
by compiled code for resource constrained JVMs, we haveuwaad an empirical
study of the size and usage patterns of the compiled codeNts Jor a wide range of
benchmarks. We have performed a series of experiments #agure various static

and dynamic characteristics of native code, e.g., sizgeustatistics, etc.

31

Chapter 3. Code management in Resource Constrained JVMs

Byte | ARM Native IA32 Native Dead after
Bench- | code Kaffe Kaffe Jikes startup
marks | (KB) KB (/BC) KB (/BC) | KB (/BC) KB (Pct.)
compres| 12.4| 210.8 (17.0x)| 96.7 (7.8x)| 98.0 (7.9x)| 70.8 (72%)
db 145| 242.2 (16.7x)| 114.6 (7.9x)| 105.9 (7.3x)| 89.2 (85%)
jack 42.4| 788.6 (18.6x)| 318.0 (7.5x)| 284.1 (6.7x)| 72.5 (26%)
javac 78.3| 1252.8 (16.0x)| 555.9 (7.1x)| 469.8 (6.0x)| 75.9 (16%)
jess 32.9| 559.3 (17.0x)| 250.0 (7.6x)| 223.7 (6.8x)| 167.9 (75%)
mpeg 56.6 | 1386.7 (24.5x)| 464.1 (8.2x)| 452.8 (8.0x)| 357.4 (79%)
mtrt 21.1 N/A 173.0 (8.2x)| 160.4 (7.6x)| 117.6 (73%)

Table 3.1: Size and behavior of the compiled native code in JVMs.

Table 3.1 shows the size in kilobytes (KB) of the bytecode aatie code for
the SpecJVM benchmark suite [135]. Column 2 is bytecode sizecalumns 3—
5 show the size of native code and the ratio (/BC) of native carete bytecode
size. We gathered this data using two platforms, ARM and |A8%] two JVMSs,
the JikesRVM [5], and the Kaffe embedded JVM [89] with jit3in& JikesRVM
does not have back-end for ARM, we show only data for IA32. Tata shows
that IA32 native code is 6-8 times of that of bytecode for htikesRVM and Kaffe
for these programs. ARM code is even larger (16-25 times thaytecode) since its
RISC-based instructions are simpler than the CISC 1A32 instnus (which do more
work per instruction). Even if the systems uses the compesttuction form, e.g.,
ARM/THUMB (potentially reducing native code size by halfyetsize of compiled

native code is likely to be much larger than that of the cqoesling bytecode.

32

Chapter 3. Code management in Resource Constrained JVMs

db

80 i erm o — = = Fcompress - =
——db

——compress

g
L
-
14
Ll
l‘\

60 JJi - - - jack

i javac
40 *:‘: _______________ JaCk e — - jess
javac mpeg

201 - - mtrt

Percentage of Executed Methods (%)

0 20 40 60 80 100
Effective Lifetime Percentage (%)

Figure 3.1: CDF of effective method lifetime as a percentage of totatihfie. The
effective lifetime of a method is the time between its firstl dast invocations; the
total lifetime of a method is the time from its first invocatito the end of the program.
A point, (X, y), on a curve indicates that y% of that benchrsaeikecuted methods
have an effective lifetime of less than or equal to x% of italtbfetime.

The final column shows the amount of code that goes unuseagadigram startup
(we define startup as the initial 10% of the execution timeijterestingly, a large
amount of executed code becomes dead after program stémsgortion of code
remains in the systems and consumes precious system megeuiessly.

In addition, we found that a majority of the code that remaafter startup in
many benchmarks has short life spans. Figure 3.1 graphsuthalative distribu-
tion functions ofeffective lifetime percentagd methods, i.e., the percentage of the
effective lifetime (time between the first and last invooas of a method) over the
total method lifetime (time from the method’s first invoaatito the end of the whole

program). This metric is similar to theace lifetimeused in[69]. This figure shows

33

Chapter 3. Code management in Resource Constrained JVMs

that for most of the benchmarks (all avacandjack), more thar60% of methods
are effectively live for less thabt of the total time they remain in the system.

We also found that methods with long effective lifetimes coomly are invoked
infrequently. For example, method spec.benchmazt8.javac.ClassPatkuinit>
has an effective lifetime of5%, but is only invoked 4 times and executed for only
0.1% of its total effective lifetime.

In summary, the native code size in JVMs is much larger thahdhbytecode.
Since native code is stored by compilation-based JVMs fosegit consumes pre-
cious memory space on resource constrained devices. Maeohig portion of the
compiled code blocks become dead after the startup phasallyi-ifor those code
blocks that are live after the startup phase, majority ofrtirave very short lifetime.
All of these invocation characteristics of the compiled e@iesents many opportu-

nities for removing code blocks from the system temporanlpermanently.

34

Chapter 4

Adaptive Code Unloading

To exploit the performance enabled by a compilation-baggdaach to bytecode
translation, and to reduce the memory requirements of suapproach, we propose
a novel technique, calleddaptive code unloadingAdaptive code unloading is an
alternative to either not compiling code (as in the intetggiten model) or keeping
all compiled code (as in the current compilation model). AMWith adaptive code
unloading compiles all methods initially, then discardsel¢adg the compiled code
if unused or infrequently used, or when the system is seyenelmory constrained.

Our study of size and usage patterns of compiled code in JViMgection| 3.2
reveals many opportunities for removing code blocks froesysstem temporarily or
permanently to reduce the memory requirements. For exampiie that is not used
after startup can be unloaded after the system passes thgsttage. In addition,
those code blocks that remains in the system after startupdsishort life spans

can also be considered candidates for unloading. Finalgnamemory is highly

35

Chapter 4. Adaptive Code Unloading

constrained, we can even consider to unload methods with liex spans but are
invoked infrequently to release memory pressure in theegysémporarily.

In this chapter, we describe an extensible framework foptadacode unloading
that we developed to relieve memory pressure imposed by itesiignde in resource-
constrained JVMs. We identify the various components ofrtdmmework and explain
how each component works and cooperates with the othersilibefee adaptive code
unloading. We then use the framework to investigate a widgeaof unloading
strategies that lead to different tradeoffs between the Jwé&fnory footprint and
execution performance. Finally, we empirically compare tarious strategies to
identify the best-performing combination of design demisi, and evaluate the overall

efficacy of the system.

4.1 Code Unloading Framework

Figure 4.1 depicts the extensible framework for adaptivéecanloading that
we developed to relieve memory pressure imposed by compbeeé in resource-
constrained JVMs. The outer box is the boundary of a JVM.dmghis box, the
left part is the control-flow of a JVM that employs dynamic adhptive compila-
tion, which we believe is crucial to achieve high performamdth small memory

footprint in resource-constrained environments. Adaptiompilation is the process

36

Chapter 4. Adaptive Code Unloading

Method Offline
Bytecode Profile

v r
lassload| I
Classloader 1 .
L_|Resource Monitor @ dalta tl;_at may trigger
I'| heap residenc unloading
@ Special cap %
Exe Execution I'| GC frequency, .)
Stubs I | total code size, ... code invocation
Stubs 1 activities
1
\ 2 A 4 . v 1 @ 0 @ hot methods, total #
Fast ptimizing 1 g . of invocations
[Interpreter} [Compiler } [Compiler J (4) 1 Code @ :
A r ™% Unloader { | replace native code
: @ 1 @ with new exe stub
- 1
Cog:)%fd : 1 @ method invoked after
1
v v v f Online | unloaded
| ;
[Adaptive Compilation Controller] P Profilers !
H 1
R

Figure 4.1: Overview of the adaptive code unloading framework

of selectively compiling or recompiling code (guided by iaoel performance mea-
surements) that has been interpreted or compiled preyiguah attempt to improve
performance [8, 32, 75]. The right part of the figure shows B¢ extensions
(darkened components) that enable adaptive code unlaading

While programs are executing, tiRResource Monitocollects information about
resource behavior, e.g. heap residency data, garbagetail¢ GC) invocation fre-
guency, and native code size, etc. The online and offinedlers collect informa-
tion about application behavior, such as hot methods ar@tation activity of each
method. The code unloading system can share the profilenghdtadaptive compi-

lation system if possible to reduce overhead. Tuwele Unloadettakes information

37

Chapter 4. Adaptive Code Unloading

from these components, analyzes the cost and benefit ofdinthand decides when
code unloading should commence and which methods to unksasiuch, the frame-
work dynamically and automaticallglentifies dead or infrequently used native code
bodies and unloads them from the system to relieve memopgprevhenever nec-
essary

Once the unloader selects a method, it replaces its codgiarttre dispatching
table with a special stub, which we refer to as éxecution stubThis stub is similar
to the mechanism used by the JVMs to enable lazy, Just-leTompilation [5,
96]. However, we add additional information to specify hanekecute the method,
e.g., interpreting, fast compiling without optimizatioor, compiling at a particular
optimization level, if it returns to the system after beingaaded.

The system reclaims the native code block of an unloadedadediuring the
next garbage collection cycle since it is no longer reaahallthe program. If the
executing program invokes a method that has been unlodukedxecution stub will
invoke the interpreter or an appropriate compiler to redtate the method. If the
method is compiled, its address (that of the stub) is replagé that of the newly
compiled method in the dispatching table. Future invocetiof the method by the
program execute the compiled method directly through thietantry.

Since the unloader and other framework components musatgvehile the pro-

gram is executing, we designed the system to be very ligigiwe Moreover, the

38

Chapter 4. Adaptive Code Unloading

framework implements a flexible and extensible foundatianawvell-defined inter-
face that we (and others) can use to investigate, impleraadtempirically evaluate
various code unloading strategies.

We implemented the framework as an extension to the opemtedikes Research
Virtual Machine (JikesRVM) [5]. JikesRVM is a compiler-gndVM, and thus, the
special execution stub either fast compiles the method pomizes the method at
certain level directly. No interpretation is performed. i implementation can be
easily extended to handle interpretation in the executtabssif an interpreter is
included in the JVM. We then used the resulting system tositigate four strategies
that identify unloading candidates and four strategiesttiggger unloading. We detail

each of these strategies in the following sections.

4.2 Unloading Strategies

There are four primary decisions that any dynamic code aingasystem must

make:
e When unloading should be triggered;
e How unloading candidates should be identified and selected,;

¢ Whether optimized code should be handled differently fromptimized code

or not;

39

Chapter 4. Adaptive Code Unloading

e How the system should record the profile information usetiéndecision pro-

Cess.

There are a number of possible answers to these questiamspeahich leads to
a different tradeoff between the JVM memory footprint andaxion performance.
We investigated a number of strategies that attempt to anh@se questions in an

effort to identify the best-performing combination of dgsidecisions.

4.2.1 Triggering an Unloading Event

We first investigated various ways in which we can triggeoading. That is,
we implemented strategies that decwdeento unload. We considered four different
triggers: Maximum invocation count, a timer, GC frequerayl code cache size.

The first strategy is calleMlaximum Call Times (MCTyiggered. We use offline
profiling to collect the total invocation times for each nemdh Then the code unloader
uses this information to trigger unloading of methods fellyg completion of the
last invocation of each. The system records the invocatinas upon each method
return. This strategy is not adaptive to execution behdwibiguarantees all methods
are unloaded when the program is finished with them. Theeglyahtroduces no
additional compilation overhead since unloaded methodisnet be reused again
and therefore reloaded. This strategy is not realistic engnse that it is unlikely

that we will be able to have such accurate information (laBttene) for all methods

40

Chapter 4. Adaptive Code Unloading

given non-deterministic execution and cross-input progkeehavior. This strategy
does however, capture the potential of unloading dead rdsthad we use it as a
limits study.

The second strategy BMer (TM) triggered. Our system unloads code at fixed,
periodic intervals. To be simple and efficient, we use a tiw®aitch count to ap-
proximate the timer since thread switching occurs at apprately every 10 ms in
our JVM. This JVM employs stop-the-world style of the garbamllection (GC)
which halts all thread switching during GC. To compensatetiese time periods,
we extended the GC system to update the thread-switch coth and of each GC
by the amount corresponding to the time spent performingsiGe

SinceTM is timer based, it is not adaptive, i.e., it does not explaibimation
about the execution characteristics of the VM, such as mgm@ailability. More-
over, the length of the period is a difficult parameter to $&& found that different
period lengths perform better for different programs anehefor the same program
across inputs. We detail the parameters we use in Section 4.3

To address the limitations of TM, we investigated an adegdarbage Collec-
tion (GC)triggered strategy. The intuition behind this strategyat tode unloading
frequency should adapt to the dynamically changing resoavailability. Unloading
frequency refers to how often unloading occurs, e.g., e68rgeconds, every 10 GC

cycles, etc. When memory is highly constrained, code untgpsihould be triggered

41

Chapter 4. Adaptive Code Unloading

more frequently to relieve memory pressure. When uncomgtdaihe system should
perform unloading less frequently to reduce the overheatietinloading process
itself and to reuse compiled code as much as possible. Tetliswe initially in-
vestigated the use dfeap residencgyi.e., the ratio between the amount of memory
occupied and the total heap size, to measure memory usabe.dystem is short of
memory, we will see high heap residency following garbadkction.

However, using heap residency alone to measure memory usageaise many
false alarms. For example, some programs may allocate mdstrmemory at the
beginning of execution. The heap residency will remain lagt cause repeated un-
loading even when no further allocations are made by therpnog To avoid false
alarms, we use heap residency indirectly by considering @Quency. When the
amount of available memory space is small and programs tegigaallocate mem-
ory, GC will occur frequently. To capture this behavior,a¢ £nd of each GC cycle,
the resource monitor forwards the percentage of executimgpent in garbage col-
lection so far to the unloader so that the unloader can atfjasinloading frequency.

We specify unloading frequency using a dynamic “unloadimgdaw”. Our sys-
tem initiates unloading once per window. The size of an utiltgawindow is defined
by a specific number of garbage collection cycles. Userssiegsyadministrator can
specify a minimal window size using command line optionse Thnloading system

divides this minimal window size by the percentage of timergpn GC to determine

42

Chapter 4. Adaptive Code Unloading

the dynamic window size adaptively. The value is decrenteap®n each GC. When
it reaches zero, the system performs unloading. Followagheainloading session,
the system resets the window size.

As we showed in Section 3.2, more theiVo of code is dead following the initial
10% of program execution time, i.e., the startup phase, for thesthmarks. To ex-
ploit this phasedbehavior, we investigated different unloading stratethes operate
at different stages of program lifetime. We define the first@ &cles (which we
empirically determined and which can be changed via a cordriaa parameter) to
be startup period. During the startup phase, the programs heap residency alone
to facilitate more aggressive unloading; following thigipd, the system uses the
percentage of time spent in GC to determine when to unload.

The last strategy that we investigated sogle Cache Size (C8igger. This strat-
egy is similar to “code pitching” in the Common Language Ruetif@LR) [16]. In
this strategy, we store the compiled native code in a fix-sae cache. When the
cache is exhausted, our system performs unloading. Thentdy@of this strategy is
that the size of compiled code body is guaranteed to be bekpeefied maximum.
However, we found that it is very difficult to find a generaliopim cache size for all
applications. An alternative is to use a small size caclimilyi and allow the cache
to grow as necessary. However, to determine how often andat iwcrements to

grow is equally difficult and application-specific. Regasdlef the limitations, we

43

Chapter 4. Adaptive Code Unloading

are interested in understanding how this strategy impastemnance. We therefore
parameterized this strategy for initial cache size, thavttoncrement, and the num-
ber of unloading sessions that triggers cache growth. Weigsshow we selected the

parameters for our empirical evaluation in Section 4.3.

4.2.2 Identifying Unloading Candidates

To identify which code should be unloaded, we developedegiias that identify
methods that arenlikelyto be invoked in the future. We hypothesize that the methods
that have not been invoked recently are not likely to be ieebk the near future and
can be unloaded. We present four techniques that use prquiting as well as
snapshots of the runtime stack to identify unloading caaeisl

The first strategy, calle@nline eXhaustive profiling (OnXuses exhaustive on-
line profiling information to identify unloading candidateTo obtain method invo-
cation counts, we modified the compiler to instrument meshothe instrumented
code marks a bit each time a method is invoked. When unloaditiggered, the
system unloads unmarked methods and resets the mark biisis hvay, both dead
methods and infrequently invoked methods can be unloadad strategy guarantees
that every method that has been invoked since the last unipadssion will have its

mark bit set. Therefore, only recently unused methods weillubloaded. However,

44

Chapter 4. Adaptive Code Unloading

since profiling is performed for every single method invamatthis strategy has the
potential for introducing significant execution time oveall.

To overcome this limitation, we also investigat®dline Sample-based profiling
(OnS) In this strategy, the JVM sets the mark bits of the tep methods on invo-
cation stacks of application threads for every threadegwiapproximately every 10
ms). We determined this value (two) empirically in an attetopgbalance the trade-
off between introducing significant overhead of complegelstscan and incorrectly
unloading used methods. Moreover, this sample-based agprcan be turned off
when sufficient memory is available to avat overhead. For exhaustive profiling
(OnX), we do not turn off profiling since doing so requiresoepilation and possibly
on-stack replacement [49].

We also investigated the efficacy of using perfect knowleafg@ethod lifetime
— to facilitate our MCT (maximum call times) trigger. For tlEgategy, we gather
the total invocation count for each methoftfline Then we annotate this value in
the class file as a method attribute for use by the JVM durirmgnam execution
using an annotation system that we developed in prior wdsk92]. At runtime, we
use online profiling to identify a method’s last invocatiat;which time, we mark
the method to be unloaded. Instead of the 1-bit counter us€nhk, this strategy
requires that we increment an integer counter for each atimt. We assume that

the same input is used for both offline profiling and onlinecei®n, that is, we use

45

Chapter 4. Adaptive Code Unloading

perfect information of method invocation counts. We reéettiis strategy a®ffline
exhaustive profiling (Off)

Our final strategy, calletllP for “No Profiling’, simply unloads all methods that
are not currently on the runtime stack when unloading igaigd. This strategy is
the most aggressive one. The advantages include simptititpplementation and
avoidance of all profiling overhead. However, this strateggot adaptive and may
unload methods that will be invoked in near future, intradgcsignificant recompi-

lation overhead.

4.2.3 Unloading Optimized Code

Heretofore, we have not considered whether the method werdoading is op-
timized or not. Unloading optimized code has the potenti&hcreasing the perfor-
mance penalty of unloading when a method is later reused.i§ hecause optimizing
code is much more expensive than compiling code without@pétion. We refer to
the latter agast compilation For JVM configurations in which only fast compilation
is used, there is no optimized code to unload.

However, in addition to a JVM configured with only a fast colapiwe consider
an adaptiveconfiguration. In an adaptive optimization, a method isiallit fast
compiled. The JVM samples methods to identify those whezertbst time is spent,

i.e., that are “hot”. The system then uses a counter-basettinas HotSpot [75]

46

Chapter 4. Adaptive Code Unloading

employs) or a cost/benefit analytic model (as JikesRVM [7plays) to decide when
and at which level to compile or recompile a method dependmits hotness. Higher
level of optimization enables larger performance improgetnbut also introduces
additional compilation overhead.

For an adaptively optimizing JVM configuration equippedhantbde unloading,
we must determine the level at which unloaded optimized cbaelld be compiled
if it is later reused. If we use fast compilation, the methadl thave to progress
through the optimization levels again if it remains hot afteloading. Alternately, if
we optimize the method at the level at which it was when ittledtsystem, it may no
longer be hot when it returns; this imposes unnecessary itatiop overhead on the
program.

We implemented three additional strategies to study theopeance impact of
unloading optimized code. First, we insert an optimizaterel hint to the recom-
pilation stub. If an unloaded hot method is later invoked, sxstem re-compiles it
at the optimization level that it was before unloaded. Wé ttas strategyRO: Re-
Optimize hot methods using an optimization level hint. $&;ave avoid unloading
all hot methods. We call this strate@O: ExcludeOptimized methods from unload-
ing. This strategy avoids the compilation overhead of op@tion. However, some
programs may have a significant percentage of hot methaaiss{tbuld be unloaded).

For example, inavacfrom the SpecJVM98 benchmark suite, there are 78 out of 876

47

Chapter 4. Adaptive Code Unloading

methods that are hot. In comparisain only has 3 out of 151 methods that are hot.
Our third strategy accounts for cases ljggac The optimized (thus hot) methods
will be unloaded. However, we delay unloading until the noetis unused for two
consecutive unloading sessions. If an optimized methodlmagled after giving sec-
ond chance, it is fast compiled at next time it is invoked. \&# this strategyDO:

Delay unloading oDptimized methods.

4.2.4 Recording Profile Information

Another implementation issue that we must address is hoveyetem should
record profile information. As we described above, for th@lamentation of the
“what” strategies, we use a bit array to record informatiathgred either by instru-
mented code or by sampling. Every time a method is invoked onithe top of stack
when thread switching occurs, the system sets a bit in tlagy @inat corresponds to
the method. When unloading occurs, the system unloads alhtkad methods and
resets the array.

The benefits of using a bit array to record profile informatiare that the imple-
mentation is simple and access to the array is very efficielowever, a bit array does
not capture the temporal relationship between method ati@ts. That is, as long as
two methods are invoked since last unloading session, tiieentreated equally by

the next unloading session no matter which one is the mosntidnvoked.

48

Chapter 4. Adaptive Code Unloading

To evaluate whether such temporal information is importantot, we imple-
mented an additional mechanism for recording profile ination in which all meth-
ods are linked via a doubly linked list. A method is inserteédh& end of the list
when it is compiled. Whenever the method is invoked againh@neixhaustive profil-
ing case) or sampled (in the sample-based case), the sysieesmto the end of the
list. As a result, all methods are always ordered by thetrifa®cation (or sample)
time. Such an implementation enables our use of the franietwoinvestigate the
efficacy of using the populdreast Recently Used (LRW@pache replacement policy

for code unloading.

4.3 Experimental Methodology

We implemented and empirically evaluated the efficacy of @ade unloading
framework and various unloading strategies in the Jikes &ekeVirtual Machine
(JikesRVM) [5] (x86 version 2.2.1) from IBM Research. AlthdudikesRVM was
not originally designed for embedded systems, it has twierdiht compilation con-
figurations that we believe are very likely to be implemeritethe next-generation
JVMs (embedded or not}ast non-optimizing compilation, anddaptiveoptimiza-

tion (in which only methods that have the most performangesich are optimized).

49

Chapter 4. Adaptive Code Unloading

We investigate both compiler configurations since it is aaclas to how much opti-
mization should be used by JVMs for embedded devices.

One limitation of JikesRVM is that it does not implement atenpreter and thus,
we are unable to use it directly to evaluate the impact of esdeading on selective
compilation, i.e., a system that employs interpretatiarctdd methods and compila-
tion (and increasing levels of optimization) for hot methpel.g., as in HotSpot JVM
from Sun Microsystems [75]. To our knowledge, no open sodxd implements an
interpreter, a highly optimizing compiler, and adaptivéimization. As such, we use
simulation to evaluate the impact of code unloading forcele compilation JVMs
in Section 4.4.3. We describe our simulated setup and agsmapn that section.

We investigate maximum heap sizes of MIN and 32MB to repries@mory re-
source constraints. MIN has the minimum heap size that iesseey for each bench-
mark to run completion (identified empirically) without ant@f memory exception.
We use MIN as an example of a scenario in which memory is higbhstrained and
32MB as an example of unconstrained memory. Given this @xeetal methodol-
ogy, we believe that our results lend insight into the patébenefits of adaptive code
unloading on future, compilation-only and selective cdatpn JVMs for embedded
systems.

In our experiments, we repeatedly ran the SpecJVM benchsfamgut 100), on

a dedicated Toshiba Protege 2000 laptop (750 MHZ P11l Mohigh Debian Linux

50

Chapter 4. Adaptive Code Unloading
Code | MIN Memory | Exec Time (s) | GC Ratio(%) | CMP Ratio(%)
Benchs (KB) | (MB) | Used(MB) | min | 32MB | min | 32MB | min | 32MB
compress|| 98.4 20 122.2 66.8 61.2 9.99 3.10 | 0.04 0.04
db 105.3 | 22 83.7 78.8 50.6 | 38.96 | 7.41 | 0.03 0.05
jack 284.9 6 238.1 624.9 17.9 97.42 | 28.35 | 0.01 0.31
javac 468.5 24 232.3 128.9 46.8 77.61 | 41.89 | 0.10 0.26
jess 223.1 8 274.3 303.3 27.6 91.99 | 25.86 | 0.02 0.20
mpeg 455.4 9 14.3 56.1 54.4 1.69 0.00 0.11 0.11
mtrt 161.3 18 149.3 321.5 29.6 92.66 | 21.29 | 0.01 0.12

Table 4.1: Benchmark characteristics for Fast configuration

Code | MIN Memory | Exec Time (s)| GC Ratio(%) | CMP Ratio(%)
Benchs (KB) | (MB) | Used(MB) | min | 32MB | min | 32MB | min | 32MB
compress|| 143.8 | 22 130.3 26.3 21.5 | 23.59 | 8.07 | 0.80 1.04
db 157.8 | 23 95.3 115.6 | 45.1 | 64.78 | 12.42 | 0.21 0.51
jack 372.4 9 248.4 130.6 | 18.2 | 88.72 | 32.70 | 0.33 2.04
javac 582.8 | 26 247.2 152.3 | 55.5 | 80.94 | 49.42 | 0.44 1.08
jess 311.8 11 288.7 136.4 | 23.2 | 88.23 | 37.34 | 0.50 2.73
mpeg 541.4 12 45.9 29.7 20.3 30.27 3.27 2.56 4.45
mtrt 237.8 | 23 152.8 50.4 22.6 | 71.05 | 38.70 | 1.36 2.93

Table 4.2: Benchmark characteristics for Adaptive configuration

(kernel v2.4.20) using both the Fast and Adaptive JikesRWiilation configura-
tions. In both configurations, the commonly used VM code wgited into the boot
image. In addition, we employ the default JikesRVM garbageector, a semispace

copying collector. In all of our results, we refer to the refece (unmodified) system

asclean

The general benchmark statistics are shown in Table 4.1 @eadiguration)
and 4.2 (Adaptive configuration) for the clean system. Irhe@able, the first col-
umn is native code size (including all compiled methods liapfions and libraries)

in kilobytes (KB). The second column is the empirically idéat MIN value. The

51

Chapter 4. Adaptive Code Unloading

third column is the total size of memory allocated duringékecution. The last six
columns show the total execution time (in seconds), thegmage of time spent in
GC and the percentage of time spent in compilation. NotelikasRVM is equipped
with a facility to track the time spent by each thread. For2AR uses system call
"gettimeofday” to get the current time. CPU time accumulatal one thread is
stopped when the thread is switched out and resumed onceeitsitéon resumes.
Based on this timing facility, JikesRVM is able to measuregtspent in GC and time
spent in compilation accurately.

To compare the different strategies, a set of parameteexjisgred. We empiri-
cally evaluated a wide range of parameters for each stratedyonly report results
using best-performing values (on average) across all lmeadts. We set 10 GC cy-
cles as the unloading window size for GC (garbage colledtiggered), 10 seconds
as the interval for TM (timer triggered). For CS (code sizggeéred), initial cache
size is 64KB and grows by 32KB for every 10 unloading sessfoiggered by a full

cache).

4.4 Performance Evaluation

In the subsections that follow, we evaluate the efficacy of aade unloading

strategies for memory footprint reduction. We then preflemimpact of this reduc-

52

Chapter 4. Adaptive Code Unloading

What MIN 32MB
Strategies|| Fast | Adaptive | Fast | Adaptive
Off-TM 38.3 N/A 31.9 N/A
NP-TM 55.1 43.8 51.0 40.3
OnS-TM || 53.1 42.8 50.5 38.7
OnX-TM || 45.6 34.4 43.7 27.0

When MIN 32MB
Strategies|| Fast | Adaptive | Fast | Adaptive
Off-MCT || 42.7 N/A 50.9 N/A
OnS-CS || 52.0 40.3 56.7 41.6
OnS-GC || 61.8 46.9 46.3 36.0
OnS-T™M || 46.7 42.8 30.6 38.7

Table 4.3: Average code size reduction (%) of different “what” and “whstrategies

tion in memory pressure on performance. We evaluated afliplespermutations of
“what” and “when” strategies. However, we only present asstilof results in this
section for conciseness and clear illustration. Finallg, explore the potential im-
pact of coupling code unloading and selective compilati@n, a JVM configuration
that employs interpretation of cold methods and compiattb hot methods using

increasing levels of optimization.

4.4.1 Memory Footprint Reduction

We first compare the average code size reduction over a ckxaiom of the sys-
tem, in Table 4.3. The clean system is a compile-only JikédRYstem with no code
unloading extensions. The left half of the table is for MINmmay configuration and

the right half is for 32MB (again, MIN is the minimum heap simewhich the pro-

53

Chapter 4. Adaptive Code Unloading

gram will run and 32MB represents a system with less memaegqure). For each
heap size, we also present the results for different cotmil@onfigurations (Fast or
Adaptive). We show two sets of data in this table: one for “Wistrategies and the
other for “when” strategies.

The upper part of Table 4.3 shows the four “what” strateggedescribed in Sec-
tion[4.2.2: Off (Offline profiling), NP (No Profiling), OnS (Qine Sample-based
profiling), and OnX (Online eXhaustive profiling). We chod8mer-triggered (TM)
to be the common “when” strategy since its periodicity eaahls to focus only on
the impact of different “what” strategies. We omit the réswdf Off-TM strategy
for Adaptive configuration since the adaptive optimizatgystem in JikesRVM is
non-deterministic: It uses timing information to decideemhand how to optimize
and hence, we are unable to obtain deterministic offline lprofimethod invocation
counts for the fast compiled version and the optimized warseparately, which are
required by Off-TM strategy to trigger unloading correctly

For both memory configuration$yP-TM performs the best, followed b@nS-
TM, OnX-TMandOff-TM. StrategyOff-TM does not unload a method until it is dead.
Thus, it is the least aggressiveP-TM always discards all compiled methods except
those on the runtime stack during an unloading sessiontirggih the largest reduc-

tion in average code size. Online exhaustive profiling iseramcurate than sample-

54

Chapter 4. Adaptive Code Unloading

based profiling in capturing recently invoked methods. TsX-TMunloads fewer
methods tha®nS-TM

The code size reduction in 32MB setting is less than that iN gitting in most
cases. The reason for this is that programs execute and etaripbter when more
memory is available. Hence, fewer unloading sessions wigigetred. Similarly, the
reduction in Adaptive configuration is less than that in Eastfiguration.

The bottom part of Table 4.3 compares four “when” strategieslescribed in
Section 4.2.1: MCT (Maximum Call Time triggered), CS (Code Siiggered),
GC (Garbage Collection triggered), and TM (TiMer triggetetlye used the best-
performing “what” strategy — OnS (online, sample-basedilg)o- for these exper-
iments. The MCT “when” strategy requires an accurate, offirlbaustive profile
of methods’ maximum invocation numbers (thus, we prefix tama with “Off-").
Again, we omit Off-MCT for Adaptive configuration due to themdeterminism.

Similarly to the results of “what” strategies, all “when’rategies have a signifi-
cant code size reduction for all configuratio@®nS-GCadapts the best to the memory
availability: the more the memory is limited, the more natbode is unloaded®nS-
TM is also sensitive to memory pressure since our implementati this strategy
updates the timer period for the time spent in garbage dalec OnS-TM is less

adaptive than OnS-GC, however, since it does not accountiomges in phases of

55

Chapter 4. Adaptive Code Unloading

compress 80 - _l db

70
__60 o/
2 5o © 601
® 20 > 50
N N 40 4
N 30 n
[} g 30 -
g 20 S 201
10 A ST A ———
0 ‘ 0 ‘ ‘ ‘ :
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 90
execution time (s) execution time (s)
250 | jack 450 - javac
400
o 200 o 350
< ¥ 300
9 150 @ 250 4
(%) @ 200 -
100
S 8 150 |
o o
O 50 O 100 A
50
0 4 0 ‘ ‘
0 100 200 300 400 500 600 700 0 20 40 60 80 100 120 140
execution time (s) execution time (s)
200 - jess 160 mpeg
o] o
D\xn/ 150 g 120
(0] [0]
N N
& 100 4 o 80
3 3
§ 501) § 40
YTk
0 . . ‘ ‘ ‘ 0+ ‘ ‘
0 50 100 150 200 250 300 0 10 20 30 40 50 60 70
execution time (s) execution time (s)
140 - mtrt
120 (J
9 100 | —— Clean
8 897 ons-GC
ﬁ 60 -
° i
g ® rrrrmmrrnmmrrm'f OnX-GC
20
0

0 50 100 150 200 250 300 350
execution time (s)

Figure 4.2: Size of code residing in the system during program execwutidlean,
OnX (Online eXhaustive profiling) and OnS (Online Sampleduhprofiling) strate-
gies of Fast Configuration

56

Chapter 4. Adaptive Code Unloading

program execution. In contragdff-MCT andOnS-CSare not sensitive to memory
availability at all.

Next, we show how code size changes over time with and witholaading. We
only focus on the best-performing combinationsvdhatand Whenstrategies: on-
line, sample-based profiling triggered by GC invocationntd®nS-GC). Figure 4.2
shows code size over the lifetime of each benchmark using &ttlithe Fast com-
pilation configuration. The x-axis is the elapsed executiore in seconds and the
y-axis is the native code size in kilobytes. We record code &llowing each GC
and at the end of execution. If unloading occurs during a GCregerd the code
size both before and after unloading. We show the resulthéclean, OnS-GC, and
OnX-GC systems. By comparing OnS-GC with OnX-GC, we can betiderstand
the impact of the more aggressive unloading performed byQih® strategy. The
vertical line for each graph indicates the time at which tregpam ends.

The graphs in this figure illustrate the impact of code unilogdn heap residency.
Code size in the clean system becomes stable after a verysthdrip period and
remains at a high level until the application ends. In catfrAoth OnX-GC and
OnS-GC quickly reduce the code size significantly. OnS-G@age aggressive than
OnX-GC since it unloads any methods that it believes (inetely) are not used
recently. In addition, both strategies exploit phase bemdy unloading code more

aggressively in the early stages of execution, thus, thdiyoe code size significantly

57

Chapter 4. Adaptive Code Unloading

for many applications (such as compress, db, etc.) that daee amount of dead
code following program startup.

The above results show code size reduction enabled by cddadimg. Our
system requires very little memory for the implementatibrcade unloading in the
form of internal data structures and code. As we discusseSertion 4.2.4, we
use a bit array to record profiling information, one bit pempiled method. This
implementation requires less than 50 bytes of memory orageerin addition, we
add approximately 100 lines of Java code to the code basefwrmpeprofiling and

code unloading.

4.4.2 Impact on Execution Performance

Code size reduction is not our only concern. If it were, newahing any code
would be the best choice. Our ultimate goal is to achieve #s &xecution perfor-
mance while maintaining a reasonably small memory footprin

The performance of our JVM enhanced by adaptive code unigaslinfluenced
by the overhead of recompilation, profiling, and memory ngamaent. Memory
management overhead refers to the processing cost of statied code. No matter
how native code is stored in a JVM, when memory size is limited more of the
heap that is allocated for native code, the less that isabaifor the application, and

the more management overhead that is imposed by the stoded Tbus, unloading

58

Chapter 4. Adaptive Code Unloading

code when memory is highly constrained can reduce managewvernead. The sig-
nificance of such reduction, however, depends upon howenatide is managed in a
JVM.

In general, there are three ways to manage native code in a J)Mising a
dedicated memory area not managed by the garbage coll&®)r (2) using a GC-
managed heap area separated from application heap; angiig)a GC-managed
heap area shared by application. Storing native code in a di€ctible memory
area eases the memory management because garbage cobectoanage the code
memory and application memory uniformly. However, thisaduces the extra GC
overhead. Storing code in a dedicated memory area remay@sénference between
the native code and the applications. However, it also chtces extra overhead for
maintaining multiple heaps and preventing code memory foemg used by appli-
cations. It is an open question as to which of the three appesais the best.

In this work, we evaluated the third option, i.e., storinglean the same GC-
managed heap shared by the application. In subsectionfotloat, we compare the
performance impact of different “what” and “when” strategji We then evaluate the
different ways in which we can handle optimized code andeygphofiling informa-
tion. Finally, we summarize two best strategies and show tumstrategies adapt to

available heap size.

59

Chapter 4. Adaptive Code Unloading

’ == Off-TM === NP-TM —3 OnS-T™M =z OnX-TM ‘

Improvement of exe time (%)
5 8 8
Improvement of exe time (%)
© & A N O N
@@\p
8,
[
1 %
= |,

0 N~z I
-10 U
g & & & & &L & O
@Q& ¢ e Y & & @ -10
O
()
(a) MIN / Fast (b) 32MB / Fast
< 60 Q@f;’ s o
o = X 5
@ 501 S Sy & &S
£ o 2
S 40 IS
£ 30 =20
b (0]
o X
S 20 L 2
"" o
g 10 2 4
£)
g 07 £ -6
S 10 g
g o L S+ 9] o S & S 2 8
& & & & F e 8 N Q
= &Q@' ¢ & 9 & & 7 £ 10
QO
(c) MIN / Adaptive (d) 32MB / Adaptive

Figure 4.3: Comparison of performance impact of the four “what” code adlo
ing strategies. Each graph shows results for one of the famaony and com-
pilation combinations. MIN/32MB indicates the memory cguofiation used, and
Fast/Adaptive indicates the compilation configurationrategies investigated are
Off (Offline profiling), NP (No Profiling), OnS (Online Samphleased profiling), and
OnX (Online eXhaustive profiling), with same “when” stragege., TM (TiMer trig-
gered).

Comparison of What Strategies

Figure| 4.3 shows the performance impact of the variousegfies that decide
What methods to unload: offline profilingdff), no profiling (NP), online sample-
base profiling ©n9, and online exhaustive profilingdfnX). For each strategy, we

use the timer-triggered (TM)Vhenstrategy (with a 10 s period).

60

Chapter 4. Adaptive Code Unloading

The y-axis in all graphs shows the percent improvement (grattation) over the
clean system. Graphs (a),(b),(c), and (d) show four diffecembinations of mem-
ory and compilation configurations: (a) and (b) show perfamoe results when no
optimizations are performed (Fast); (c) and (d) are resutts adaptive compilation;
(a) and (c) show the results when memory highly constraivitll); and (b) and (d)
show the results when memory is unconstrained (32MB).

In general, when memory is critical, unloading some codedsodignificantly
relieves memory pressure. As stated above, compiled cadered in a heap that is
shared by the applications and is managed by the garbagetwof system, for these
results. The results indicate that, for such systems, redtice amount of native code
in the system significantly improves performance when mgnsdrighly constrained
since less time is spent in GC.

With the fast compiler (Figure 4.3(a)), Jack, jess, and siitoiv execution time re-
ductions of over 40%. This is due to the continuous memoncation requirements
(and hence, GC activity) for these applications. Under Inigimory pressure, major-
ity of the execution time is spent on thrashing between atioa and garbage col-
lection. Therefore, a small amount of memory freed up by agdeading results in
significant performance improvement. Compress and mpegahadw performance
degradation. This is because both benchmarks have réyegivaall memory require-

ments (18 and 3 GC cycles, respectively). As such, the bdnafitunloading turns

61

Chapter 4. Adaptive Code Unloading

out to be less than the overhead introduced by unloading.ifhpact of code un-
loading also depends on unloading opportunities providethb application, such
as the percent of short-lived methods. For example, apmately 80% of javac’s
methods have long lifetimes (see Figurel 3.1), which sulisignlimits the potential
of unloading.

Using a fast-compilation JVM configuration, the re-comiila caused by the
unloading imposes little overhead since compilation is/viast: the average total
compilation time (in seconds) when memory is constrainddig374 methods) for
clean and Off-TM, 0.5 (3822 methods) for NP-TM, 0.4 (3330moels) for OnS-TM,
and 0.2 (1062 methods) for OnX-TM. Thus, aggressive untgapolicies commonly
perform well. One example of this is NP, the second-bedbp@ing strategy overall.
It performs well on average since it imposes no overhead fofilimg and the re-
compilation cost is small.

Off-TM, the offline profile-base strategy, performs best medenchmark (mtrt)
since it is able to only unload dead methods with no recortipitsoverhead. How-
ever, it is unable to capture infrequently used methodschviturns out to be an
important opportunity for unloading when memory is hightnestrained. As such,
Off-TM does not do as well as the other strategies for mostlerarks. Similarly,
OnX-TM does not perform as well as OnS-TM since it is less aggjve than OnS-

TM. The average performance improvement, when memory [dhapnstrained and

62

Chapter 4. Adaptive Code Unloading

the fast compiler is used, for each of the strategies, is20d Off-TM, 21.8% for
NP-TM, 22.2% for OnS-TM, and 19.4% for OnX-TM.

With adaptive compilation, the performance improvemertsed by code un-
loading is not as significant as for the Fast configurationis Thbecause the mini-
mal heap sizes we used for the MIN configuration are the minPEsAK memory
requirements that programs need to run. Due to optimizstithe Adaptive config-
uration requires larger minimal heap sizes (see Table #Hpyvever, optimizations
do not happen all the time, and as such, a larger minimal hieap actually reduces
memory pressure, which reduces GC overheads and improtemesbled by code
unloading.

The tradeoff between overheads is slightly different witlagtive compilation
(Figure 4.3(c)). Now recompilation overheads are mucheia¢gince optimization is
used). Blindly discarding all compiled code, as is done inTWP-does not enable
the performance levels of the other strategies that usdemformation. However,
OnS-TM is still better than OnX-TM, which indicates that fhr@file overhead saved
by sampling and the GC overhead reduction enabled by moresgjge unloading of
OnS is still more important than the recompilation overheawduced by inaccurate
sampling information when memory is highly constrainede @lierage performance
improvement in this case is 2.2% for NP-TM, 6.9% for OnS-Thij &.2% for OnX-

TM.

63

Chapter 4. Adaptive Code Unloading

The overhead of unloading (for profiling and recompilati@m)nore apparent
when memory is unconstrained since unloading is unnegeasalrthus, pure over-
head. The average performance improvement (negative gpadation), when mem-
ory is unconstrained and the fast compiler is used (Figu8dh)), is -2.3% for Off-
TM, -0.9% for NP-TM, -0.2% for OnS-TM, and -1.9% for OnX-TM.fla'M and
OnX-TM both perform poorly when memory is unconstrainedcsimoth impose
overhead for exhaustive method profiling. For the adaptwdiguration (Figure 4.3
(d)), the average performance improvement is -3.7% for NR-L.5% for OnS-TM,
and -1.8% for OnX-TM. We can see that the negative impact okt&tegy is more
apparent in this configuration due to higher recompilatieerbead and less memory
pressure.

In summary, the results indicate that a less aggressiveraxdct unloading pol-
icy with low online measurement overhead (OnS) enablesfgignt performance
improvements when memory is critical. In addition, suchrategy imposes little
or no overhead when there is ample memory available. Th&n§ provides an

adequate estimate of infrequently used methods so that @@ead can be reduced.

Comparison of When Strategies

We next consider the impact of the various strategies thatuaknewhenunload-

ing should be performed. For all of these results, we useélseferforming “what”

64

Chapter 4. Adaptive Code Unloading

’ == Off-MCT == OnS-CS —3 OnS-GC =ZZ=a OnS-TM

15
5

-10
-15 I

Improvement of exe time (%)
&
Improvement of exe time (%)
o

g ¥ & & & L & O
& & N)
< e v & T 20 §-341
<
(a) MIN / Fast (b) 32MB / Fast
5
—~ 3
S = & o S
< S+ & ° & &
o 55 S e & ¢ &S
© 5
£] £
g g 0
e | B
S ® %5 -5
c
S 15 2
= @ -10
g M g
< > 15
5 .) .o o1
0
S E
<
(c) MIN / Adaptive (d) 32MB / Adaptive

Figure 4.4. Comparison of performance impact of the four “when” code un-
loading strategies. Each graph shows results for one of dbe fhemory and
compilation combinations. MIN/32MB indicates the memognfiguration used,
and Fast/Adaptive indicates the compilation configurati@trategies investigated
are MCT (Maximum Call Times triggered), CS (code Cache Size é¢rgd), GC
(Garbage Collection triggered), and TM (TiMer triggered)thmthe same “what”
strategy, i.e., OnS (Online Sample-based profiling), ext&PT, with requires of-
fline profiling (Off) to produce an exact count of maximum inations.

strategy, OnS (for all strategies except Off-MCT — which ieggioffline profiling to
produce an exact count of maximum invocations). The feienstrategies that we
investigated are MCT (trigger: max invocation count usingga-profile informa-
tion), CS (trigger: size of cached code), GC (trigger: GC ¢puand TM (trigger:

timer alarm).

65

Chapter 4. Adaptive Code Unloading

Figurel 4.4 shows the performance results due to the variwberi” unloading
strategies. The format of the figure is the same as thosernteespreviously. The
y-axis in both graphs is the percent improvement (or degi@waover the clean
system. With the fast compiler, the average performanceawgment achieved by
our “when” strategies is 17.2% for Off-MCT, 18.4% for OnS-CS,®% for OnS-
GC, and 22.2% for OnS-TM when memory is highly constrained. Mfhemory is
not critical (32MB), recompilation and profiling overheadroduced by code unload
outweighs the GC benefits gained. The average improvementi% for Off-MCT,
-5.8% for OnS-CS, 0.4% for OnS-GC, and -0.2% for OnS-TM.

In general, the best-performing strategy is GC which usef#guency of garbage
collections to trigger unloading. MCT imposes large profloverhead. It also re-
quires an accurate, input-specific, offline profile, whichymat be realistic for mo-
bile programs. CS works well when method working set sizenslar to the code
cache size. However, it is impossible to accurately prechbde cache size. An in-
correct prediction may cause significant performance digi@n since it results in
unnecessary unloading sessions, thus, introducing retadiop overhead. For ex-
ample, the code cache size of javac in Fast configurationgto\860 KB at the end
of execution; this is much larger than the initial code casilze (64KB).

The performance impact for the Adaptive configuration isilsimexcept that:

first, the GC benefits due to code unloading is smaller becaltiee larger MIN

66

Chapter 4. Adaptive Code Unloading

sizes as discussed previously; and second, the recoropilpéinalty of aggressive
unloading is larger because of expensive optimizationssuimmary, the average
performance improvement is 2.5% for OnS-CS, 7.9% for OnS-G@, 9% for
OnS-TM when memory is highly constrained. When memory is mibical, the

improvement (degradation if negative) is -10.2% , -0.4%qd, -dn5% respectively.

Handling Optimized Code

To improve the performance of code unloading for the adaimpiler configu-
ration, we investigated three additional variants of On@ifdoading optimized code.
They include delaying unloading of optimized code for ani@oldal unloading ses-
sion OnS-DQ, excluding optimized code when unloadif@nS-EQ and unloading
optimized code and re-optimizing it at the same level ifmasked OnS-RQ. The
default OnS uses fast compilation when the unloaded methadinvoked. All these
strategies use the best “when” strategy, GC (garbage toltetriggered). Figure 4.5
shows the results with both MIN (a) and 32MB (b) configurasion

The data in the figure shows that OnS-DO-GC (delay unloadimgks best for
most of benchmarks. The reason for this is that it gives theniped code an ex-
tra chance to stay in the system. It also exploits the oppii#s to unload outdated
optimized code, unlike OnS-EO-GC. OnS-RO-GC saves theilaatime to progres-

sively re-compile a hot method when it is re-invoked. Howetlee result shows that

67

Chapter 4. Adaptive Code Unloading

‘ = 0Ons-GC == OnS-DO-GC = OnS-EO-GC =z OnS-RO-GC

Improvement of exe time (%)
o (6]

0 %

Improvement of exe time (%)
b s

=] 0 N @] 9 &
Q@B(O R \’0(". \’5\&} . \Q/e% <\\QQ, {é\(\' /&‘Q Q@? S \,00 \@% . \e% @QQ' é\\\ ,DQQ
IS &
(9 Q
N (@) MIN N (b) 32MB

Figure 4.5: Comparison of four variants of online sample-based profiteAidap-
tive configuration. MIN/32MB indicates the memory configiwa used. The strate-
gies investigated are OnS-GC (Online Sample-based pgfiarbage Collection
triggered) with different ways to handle optimized code:S3&C treats optimized
methods as same as other methods and recompiles them wietstimempiler; OnS-
DO-GC gives the optimized methods a second chance to sténeisyistem, but re-
compiles them with the fast compiler if they do get unloadad eeinvoked later;
OnS-EO-GC excludes optimized methods from unloading at@hS-RO-GC un-
loads a optimized method normally, but recompiles it at thenaizing level that it
was compiled before unloaded.

in most cases, it does not work well because many of hot metameno longer hot
following unloading/reloading. For example, meth@®1 compress.InpuBuffer.
getbyte()is hot (invoked more than 1.5 million times) before it is wdied the first
time. Due to the phase shift of the program, it is less hotdusubsequent execution.
However, the method is still invoked periodically (apprositely 10 invocations be-
tween the two unloading sessions). Since its hotness isnuaigh to be recognized
by the sampling profiler, it is unloaded during every unlogdiession and optimized

upon returning. This introduces unnecessary yet significegrhead.

68

Chapter 4. Adaptive Code Unloading

In summary, the average performance improvement (or dageedif negative),
is 7.9% for OnS-GC, 9.8% for OnS-DO-GC, 8.0% for OnS-EO-GC, addorfor
OnS-RO-GC when memory is highly constrained (MIN). When veses are uncon-
strained (32MB)), it is -0.4% for OnS-GC, 0.8% for OnS-DO-GC8%.for OnS-

EO-GC, and -1.3% for OnS-RO-GC.

Comparison With LRU

As we mentioned in Section 4.2.4, we used a bit array to repootlle infor-
mation with low overhead. One limitation of this implemedrda is that it does not
capture temporal order of method invocations. One possilidgementation alter-
native that can record temporal information is a LRU listt rmethods are linked
together in the order of their last invocations; wheneverethwod is invoked or sam-
pled, it is moved to the end of the list. The overhead of maiirig this LRU list is
much higher than that of a bit array since it requires se\redd-list operations for
each update. Moreover, the LRU list requires memory spacevimreference fields
per method. In this section, we investigate whether morearate temporal order of
method invocations will enable more efficient code unlogdmspite of the memory
overhead introduced.

We selected our best “what” and “when” strategy combinatiso far (OnS-GC

for the Fast configuration and OnS-DO-GC for the Adaptivefigomation) and reim-

69

Chapter 4. Adaptive Code Unloading

plemented their mechanism of recording profile informatismg a LRU linked list.
Note that for the bit array, we unload all unmarked methods r@set all bit to O
when unloading is triggered. Thus, the aggressivenessloadimg is controlled by
the “when” strategy and no parameter is needed during codading. While with a
LRU list, the profile information is not discrete (0 or 1), ameince, we need an extra
parameter to decide how much we should unload from the LRWien unloading
is triggered. For now, we added a new command-line optidteccanloadFraction

to control the portion in terms of code size of the LRU listtthdl be unloaded dur-
ing each unloading session. We chose a fraction paramsteaith of a absolute code
size parameter to adapt to different workloads.

Similar to the scenarios of other parameterized strateghese is no generally
best value for thisinloadFractionparameter across programs. We empirically evalu-
ated a wide range of values for this parameter, and repaiitsassing best-performing
parameter values (on average) across the benchmarksdstiitiey are: 40% for the
MIN/Fast configuration, and 10% for the other configuratidfigure 4.6 shows our
performance results: OnS-GC (OnS-DO-GC) labels the biyamalementation and
SLRU-GC (SLRU-DO-GC) labels the LRU implementation. The noeyrand com-
pilation configurations are: (a) MIN/Fast; (b) 32MB/Fas); MIN/Adaptive; and (d)
32MB/Adaptive. This figure shows that with a fast compilerrenaccurate temporal

information provided by the LRU implementation does notl#aeanough benefits

70

Chapter 4. Adaptive Code Unloading

’ == OnS-GC mmm SLRU-GC —— OnS-DO-GC === SLR-DO-GC ‘

ﬁ!rréj*

L 3 O o S & S
& _\,ag, _\0@ .\Q;’o @Qe & &

[= T S O |
L

Improvement of exe time (%)
5 &
Improvement of exe time (%)

%,
).
)
R

)
0,
£

(a) MIN / Fast (b) 32MB / Fast

[R R |
N

Improvement of exe time (%)
: &
Improvement of exe time (%)

6{%‘
%
%

<]) N >
. & & N N
¢ & ¢ & ¢

000;
oA

(c) MIN / Adaptive (d) 32MB / Adaptive
Figure 4.6: Comparison of performance impact of the two ways to recordilpro
information: bit array (OnS-GC/OnS-DO-GC) and LRU list (SLIL/SLRU-DO-
GC). Each graph shows results for one of the four memory andgitation com-

binations. MIN/32MB indicates the memory configurationdisend Fast/Adaptive
indicates the compilation configuration.

to amortize the additional overhead introduced. With arpéda compilation con-
figuration, the bit array still performs better than the LR&t in most casesmtrt

is an exceptional case, in which accurate temporal orderetfiod invocations does
enable more efficient code unloading. One possible reasthaisntrt is the only
multi-threaded application in the benchmark suite. Theranttion between threads
makes its performance more sensitive to temporal order ¢fiodeinvocations. In

such cases, maintaining a LRU list can improve performaimaest enables more

71

Chapter 4. Adaptive Code Unloading

accurate code unloading. The average performance impeausracross benchmarks
are: 23.6% for OnS-GC and 21.6% for SLRU-GC in the MIN/Fa#irsg 0.6% for
OnS-GC and -0.3% for SLRU-GC in the 32MB/Fast setting; 9.8%nS-DO-GC
and 8.0% for SLRU-DO-GC in the MIN/Adaptive setting; 0.8% @nS-DO-GC and
-0.7% for SLRU-DO-GC in the 32MB/Adaptive setting.

In summary, we conclude that for the cases we studied, niimgaa LRU list
does not enable significantly more efficient code unloadimg;bit array implemen-
tation is a better choice since it imposes lower overheaceffedtively trades off the

costs and the benefits of unloading.

Adaptation to heap sizes

Next, we summarize the improvements on code size and oypadbrmance for
a range of heap sizes. These results indicate the adafytalfibbur strategies. We
present results of the best-performing combinatiolbiatandWhenstrategies: on-
line, sample-based profiling using GC invocation countgeigd unloading (OnS-
GC) for the Fast configuration, and OnS-DO-GC for the adaatiiid configuration
(Figures 4.7).

In all of the graphs in Figure 4.7, the x-axis is heap size. JHais in the left
graphs is the average code size normalized to the clearomeasid the y-axis in

right graphs is the execution time normalized to the cleasion. Graph (a) displays

72

Chapter 4. Adaptive Code Unloading

Normalized Average Code Size

Normalized Average Code Size

=
)

=
o

o
®

o
o

o
»

o
IN)

o
o

1.2

1.0

0.8

0.6

0.4

0.2 1

0.0

—e—compress ~ —=—db jack

javac

—— mtrt

—¥— jess —e- mpeg

o

5 10 15 20 25 30
(a) OnS-GC: code size (Fast)

35

5 10 15 20 25 30
(c) OnS-DO-GC: code size (Adaptive)

35

Normalized Execution Time

Normalized Execution Time

I
)

g
o

o
®

o
o

o
S

o
N}

o
o

1.2

1.0

0.8

0.6

0.4

0.2 9

0.0

5 10 15 20 25 30
(b) OnS-GC: execution time (Fast)

35

W

£

5 10 15 20 25 30
(d) OnS-DO-GC: execution time (Adaptive)

35

Figure 4.7: Summary of code side reduction and performance improveswesratbled
by our best strategies (OnS-GC for fast compilation and OB C for adaptive
compilation) across different heap sizes.

the impact of OnS-GC on code size when the heap size growstfremminimum to

32MB. We can see that when memory is limited, OnS-GC unloads aggressively,

resulting in 61% code size reduction on average. When menvaiiahility grows,

the aggressiveness decreases quickly since fewer garbléggetions are invoked. On

the other hand, the startup strategy guarantees that evammemory is not critical,

e.g., 32MB, the dead code in the startup phase will be unloadde code size

reduction with a 32MB heap is 43% on average.

73

Chapter 4. Adaptive Code Unloading

The reduction in code size enables execution time benefile whposing very
little overhead. Graph (b) shows the normalized execuiime bf OnS-GC for dif-
ferent heap sizes. We can see that with constrained memapgespnloading can
not only reduce the size of cached code, but also improveutiracspeed by trading
off GC time for compilation overhead. When memory size grais,improvement
decreases quickly since there is not much GC overhead togediese results show
that our framework and the OnS-GC strategy are able to adaptrtamic memory
availability using the Fast compiler configuration.

Similarly, Graph (c) summarizes the effect of OnS-DO-GC odecsize and (d)
shows its impact on execution time, with the Adaptive configjon. Since the adap-
tive configuration requires a larger minimal heap size tihan of Fast configuration,
the curves in (c) and (d) start from a larger initial heap .s2e average, the code size
reduction for OnS-DO-GC is 43% with minimal heap size and 3&®% 32MB. The

performance improvement is 10.3% and 0.1%, for MIN and 32MBpectively.

4.4.3 Code Unloading for Selective Compilation Systems

The results in the previous section show that adaptive cotding is able to
monitor the system with low overhead, to make intelligerisiens about what meth-
ods to unload and when to trigger unloading, and to reduce sa dramatically

without sacrificing performance. Moreover, if system meyristhighly constrained,

74

Chapter 4. Adaptive Code Unloading

unloading code can enable significant performance imprenemhen code is stored
with application on the garbage-collected heap since messhtime is spent perform-
ing memory management.

The experimental methodology that we consider is a conguilg-Java Virtual
Machine, JikesRVM. An alternative to a compile-only systemembedded devices
is one that employselective compilatianmethods are initially interpreted then com-
piled using increasingly higher levels of optimization heyt become “hot”. Even
though interpretation of methods that are invoked multipiees has been shown
to waste significant resources on embedded devices [149sdI@Ltive compilation
JVMs produce less compiled code since they interpret marlgads. In addition, for
methods that are executed for a very small portion of totajyam execution time,
the overhead required to compile them may not be amortizddctve compilation
systems can interpret these methods.

In this section, we consider the impact of code unloading elacsive compi-
lation JVMs for resource-constrained systems. Code umggldas the potential to
impact the performance of these systems in two ways. Finsbading will reduce
the amount of native code stored in the system and possitlyceememory man-
agement overhead by evicting a subset of compiled methodsond, using code
unloading, selective compilation systems can be more agyeeabout compilation

and optimization decisions. That is, since code unloadidgces the effective mem-

75

Chapter 4. Adaptive Code Unloading

ory requirements for stored native code, more interpretethads can be compiled
— which has the potential for improving performance for noehthat are invoked
repeatedly.

Since our research platform, JikesRVM, is a compile-on§tay and there are no
open-source, selective compilation, systems availab& {inplement an interpreter,
a highly optimizing compiler, and an adaptive optimizatgystem), we investigated
the impact of code unloading for selective compilation JMMgg simulation. As we
did previously, we consider the CISC, IA-32 architecture. Qanleading for a RISC
system, e.g., one that uses the StrongARM processor, wdlyz®even better results
in terms of the amount of code unloaded since, as we artenlidrlier, RISC native
code is 16-25 times larger than x86 equivalent. As such, Imgidering x86, our
results indicate a lower bound on the potential of code whigafor RISC systems.

Selective compilation systems decide which methods to dengmd when to
compile them using a number of system metrics in much the sayas the compile-
only system. Such systems must consider the cost of apptgngpilation and op-
timization and the performance that will result if compibatt is applied (or not ap-
plied). The latter metric requires an estimate of how long itiethod under con-
sideration will execute in the future. If a method is hot awdnpiled too late, the
compilation overhead may not be amortized and the resuybmfprmance improve-

ment may not impact overall program performance. A hot netthos, should be

76

Chapter 4. Adaptive Code Unloading

compiled (i.e., the selective compilation system musttifiethe method) as early as
possible.

A selective compilation system can use a performance maddetide when
to compile a method. For this discussion and our evaluatienassume that the
model estimates total application execution time as the stigxecution times of
every method invocation. We also assume that the speedupngfiled code over
interpretation is a constant factor for all methods gives$hme compilation level.

Given these assumptions, we can model the execution time &pjalication as:

n T‘]ztl + T‘intr‘pi * [z + Tm”pi (Nz — [z) |f Iz < Nz

Tore =Y e (4.1)
Tintrp: * N otherwise

where: = 1,...,n denotes an invoked method, assuming thereramethods in-
voked.T,. denotes the estimated overall execution tiffig, denotes the time spent
compiling theith method,T;,,;,,, denotes the execution time of one invocation of a
method if it is interpretedspeedup is the performance improvement achieved by ex-
ecuting stored compiled codé&, denotes the invocation count of a method before it
is compiled, andV; denotes the total invocation count of a method. If methaxl
compiled at some point, the first case of the formula is usterwise, the second
case is used.

Ideally, if the performance gain that results from comglaamethod exceeds the

compilation cost, the system should compile the method upitial invocation of

77

Chapter 4. Adaptive Code Unloading

the method to enable optimal improvement, ileshould be zero for such a method.
However, it takes time for a real system to identify (iearn abouj profitable meth-
ods, and thus/; will be greater than zero and is equivalent¥pfor those methods
for which compilation overhead cannot be amortized.

The actual value of; depends on the mechanism that a JVM uses to define a
“hot” method. One way a JVM can identify hot methods is by gssounters. When
the invocation count of a method exceeds a pre-defined thickshe method is com-
piled. With this technique/; is same for all methods and can be replaced by the
threshold in the model. Note that most systems also coutkt édges to catch meth-
ods with long loops; we ignore backedges in this portion efdtudy to simplify our
analysis. In summary, model (4.1) indicates that the ei@ctime of an application
varies given different levels of JIT efficiency, the qualifythe compiled code, and
the mechanism the JVM uses to identify hot methods.

To understand the dynamics of selective compilation ané cotbading, we con-
ducted several experiments. First, we employed the prgfftucilities of the Kaffe
virtual machine [89] to gather execution time and complatiime for each method
of the SpecJVM98 benchmark suite. Although Kaffe is not thiy VM with such
profiling ability, we chose Kaffe since it is an open sourcejgct and we can easily

extend the profiler to gather more information, e.g. bytecoide, compiled code size,

78

Chapter 4. Adaptive Code Unloading

etc. Moreover, Kaffe implements an interpreter and a JI'T dmes not implement
selective compilation, i.e., mixed-mode execution).

The average speedup that results from using JIT compilatien interpretation
in Kaffe is over 20 times. This is because the interpreteroiswell-tuned in any
way (and not because the JIT applies aggressive optimizatanly very simple op-
timizations are implemented in Kaffe). In a product JVM wsilective compilation
and a highly tuned interpreter, e.g., HotSpot, the diffeecbetween interpreted and
JIT execution is much smaller, e.g+35 times. Since HotSpot is not an open source
system, we estimate the speedup enabled by selective atimpibver interpretation
using the speedups and compilation rates (bytecode in pgtasillisecond) that the
JikesRVM compilers enable.

We obtain the compilation rates and speedups enabled bykgsRYM compil-
ers (and used by JikesRVM to make adaptive optimizationsetats) by computing
the geometric mean of each across a large set of applicatdasassume that com-
pilation with the minimal amount of optimization enablespgadup of 2 times over
interpretation of a method; this value has been shown to Basonable and con-
servative estimate in other studies [1, 92, 141, 159]. We tee the JikesRVM
compilation rates and speedups for higher levels of opation (used when methods

remain hot for a long period).

79

Chapter 4. Adaptive Code Unloading

500

- quick(2.00 X, 423.67 bc/ms) ~
opt0(7.17 X, 14.74 bc/ms)
- opt1(10.08 X, 6.62 bc/ms) .-
0pt2(11.20 X, 2.20 bc/ms) - -

50
400

40
T
300
average estimated code size (KB)

average estimated execution time (s)
20
|

T T T T T T
1 10 100 1000 10000 100000

compilation threshold

Figure 4.8: Average execution time and code size estimation for Spe@B/Ménch-
marks using three parameters: compilation threshold, yéfhead, and speedup of
compiled code over interpreted code. The x-axis is the clatign threshold in log
scale. The left y-axis denotes the estimated executionifirseconds, and the right
y-axis is the estimated code size in kilobytes. The four dddimes denote the esti-
mated execution time at the four compilation levels, andstil& line represents the
changes in code size for different thresholds.

We simulate the execution time and the size of compiled caiegudifferent
“hot” thresholds (method invocation counts). In Figure w&show the average im-
pact of this compilation threshold (x-axis using a log sgalgross all of our bench-
marks. The left y-axis denotes the estimated executionitirseconds, and the right
y-axis is the estimated code size in kilobytes. The four ddsipward lines denote
the estimated execution time at the four compilation leveke solid downward line
represents the changes in code size for different thresh@ld provide the estimated
speedup and compilation rate (byte code in bytes per nathise (bcb/ms)) of each
compilation level in the legend. Since Kaffe does not havéipia compilation lev-

els, we cannot accurately estimate the change in code sizad¢b compilation level.

80

Chapter 4. Adaptive Code Unloading

We measured the average size of native code produced byrVikkasing different
compilation levels. The size ratios optQ, optl, andopt2 comparing to the quick
compiler are around 0.64, 1.00, 1.11. Lewpltl andopt2 produce larger code than
level optOdue to more aggressive inlining. We used these ratios tmasiroughly
code size changes for different thresholds. Since all ottt size estimation lines
are parallel, we only show the line for the quick compiler ¢tarity.

The figure indicates that a threshold of 10 achieves the lad¢shbe between code
size and performance across all compilation overheaddsypesonfigurations. Code
size drops dramatically when threshold moves from 0 to 10chvindicates that
many methods are invoked fewer than 10 times. In additiom,pérformance im-
provements gains that result from compilation are negkgds negative if we com-
pile these methods since the compilation overhead is nottez@d. Once the thresh-
old exceeds 10, the rate of decrease in code size slows \hkilparformance gain
becomes more apparent.

A smaller threshold results in more compiled code beingestbwy the system. At
threshold 10, the size of generated code is about half obfreatompiler-only JVM
and yet is still substantial (250KB) for embedded devices@@rdresult in signifi-
cant memory management overhead. If the memory is highlgtcained, the JVM
may not be able to store these code blocks to achieve the aigtenformance. Our

adaptive code unloading system can help in this situationmByitoring the exe-

81

Chapter 4. Adaptive Code Unloading

100

g : _
0 M javac
: ack

8 H ! H mpeg ——compress
£ % mtit P
Q 1 HIS o
p= ; legs) db
8 601 ! H db | |---jack
3 H [S RS B DR
§ ;—_ T T *: _____ = javac
Wogo i oo ; { compress ||| _ oo
© o H
% '.5 mpeg
2 204
@ 4 - - - mtrt
S
[
& 0 ‘ ‘ ‘ ‘

0 20 40 60 80 100

Effective Lifetime Percentage (%)

Figure 4.9: CDF of effective method lifetime as a percentage of totakilfie as

shown in Figure 3.1. However, we only consider hot methods.l@n average, 30%
of these methods have effective lifetime percentage oftlems 5%. The effective
lifetime percentage for most of the other 70% of the “hot” huets is less than 60%.

cution behavior of the applications and resource avaitghilith low overhead, the
adaptive code unloading system enables the JVM to make liseeof the precious
memory by evicting less useful code blocks so that more agge compilation can
be performed to carry out performance that is closer to agtim

Another interesting question that we investigated is: Hamymethods continue
to be hot after they are compiled and how long is their hotquitiTo investigate this
guestion, we considered the effective lifetimes of meth@dswe did previously in
Section 3.2 in Figure 3.1). In Figure 4.9, we again plot dffeclifetimes but omit
those methods identified as cold (invoked fewer than 10 {inmethe previous data
set. The data shows that for hot methods, on average 30% of llage effective
lifetime percentage of less than 5%. That is, the time betviiee first and last invo-

cations of a method is less than 5% of the total time theseagudstare in the system.

82

Chapter 4. Adaptive Code Unloading

Moreover, the effective lifetime percentage of most of tkieeo 70% of all methods
executed is less than 60%.

This data indicates that most methods compiled in a sekectwpilation system
become useless very soon after they are compiled. Our adapide unloading
system can remove these methods to avoid this memory wastegdtice memory
management overhead, and to enable aggressive compitl@sions in selective

compilation JVMs as well as compile-only JVMs.

4.5 Related Work

This body of research is related to two primary areas of pxiork: code man-
agement systems and code size reduction techniques.

Several code cache management techniques have been grapgser work.
One such technique isode pitchingwhich is used in Microsoft .NET Compact
Framework [140]. The virtual machine for this framework siseJIT compiler to
translate intermediate code (CIL) into native code withqutirization. When the
total size of the code area exceeds a specified maximum, stensypitches” (dis-
cards) the entire contents of the buffer [136, 140]. The VMasds the code cache
when a newly compiled method cannot be accommodated evencaitie pitching

or if the overhead of pitching is greater than 5% of the toxalcaition time. Users

83

Chapter 4. Adaptive Code Unloading

can specify the initial code cache size and the upper boudosiing. The default

value is 64MB for the initial size and the maximum integeiueaior the upper bound.
The minimum initial size allowed specified is 64KB. Code pitahis easy to imple-

ment and imposes no profiling overhead. However, it neeglestsoads code when
resources are not constrained. In addition, it discardsalke (even hot methods)
requiring recompilation of all methods that are invokedha tuture.

Code cache management has also been used in binary tramsigstems. The
Dynamo project [13] and its successor DELI [40] from HP, egtrand optimize hot
instruction traces from an executing program being traedlaThese systems store
hot traces, called “fragments”, in a fragment cache to begduWhen the cache fills,
the systems “flush” the cache, discarding all fragments.dbymalso performs a flush
when it detects a dramatic increase in fragments over a §hwet These systems
employ this simple flushing strategy since many fragmerddiaked together in the
fragment cache and selective unloading can introducefgignt unlinking overhead.
Our target is the Java virtual machine for which cached ceadmmmonly method-
based and unlinked. As such, selectively unloading codegugihtweight profiling
techniques like sample-based profiling are able to achiewd gerformance without
unlinking overhead.

DynamoRIO [19] is another Dynamo extension that performsadyin binary op-

timization. DynamoRIO uses an unbounded code cache by defdoMvever, users

84

Chapter 4. Adaptive Code Unloading

can specify a size limit for the code cache. To manage a bauoode cache, Dy-
namoRIO employs a circular buffer similar to that describefbB]. The granularity
of such a circular buffer mechanism (FIFO) is investigatefi]. Their results show
that a medium-grained eviction policy results in bettef@®nance than both coarse
and fine granularities.

The DAISY software emulation system from IBM [44] also em@ampde cache
management. DAISY uses “tree-groups” to represent treeslastructions, where
control flow joins are disallowed. This causes a code spguareson problem due to
tail duplication. The authors overview a simple, low-oweat, generational garbage
collection technique to manage a large translation cacé@MB or more). How-
ever, we did not find any implementation details on this apphoand thus were not
able to compare it to our framework. [69] investigates a iminechanism using
DynamoRIO [19] and a generational cache simulator. Ouregjie$ described in
Section 4.2.3 handle the optimized code separately andeaoisidered as a sim-
plified form of generational cache management.

The purpose of our work is to provide an flexible framework mapgically in-
vestigate the efficacy of different unloading strategied mmplementation designs,
and to help the JVM designers choose the best strategies.sBathgies used in the
.NET compact framework and in Dynamo can be configuredRRsCSin our frame-

work. NP-CS uses code cache size as the unloading triggeheovdstaway anything

85

Chapter 4. Adaptive Code Unloading

without any profile information when unloading is performedur results indicate
however, that doing so does not work as well as using a sabgded, GC-triggered
configuration.

Code size reduction for restricted resource environmerasasher research area
that is related to our work. Sun’s HotSpot technology [73,I85its the size of com-
piled code by only compiling the hottest methods and intdipg all other meth-
ods. Other work usegrofile-driven deferreccompilation or optimization [18, 155]
to avoid generating code for cold spots in the programs. hirast to their “never
cache cold methods” strategy, which may impose large e¥pn¢tation overheads,
our framework enables a more flexible code caching stratdgghwcan adapt to sys-
tem resource status: whether and how long a method’s co@delied is dynamically
determined by the code unloader according to runtime inftion and system mem-
ory status. Moreover, our code unloading techniques camlassused to manage
“hot” methods in these “never cache cold methods” systems,

Another mechanism for code size reduction that have beesupdrby other re-
searchers is compression. Compression is a compact enafdiata to reduce stor-
age and transfer requirements. A number of different tepres for compressing
compiled code are described in [47, 107, 39, 42]. These iquhs, like those for

deferred compilation, are complementary to our approadcan be used in combi-

86

Chapter 4. Adaptive Code Unloading

nation with our code unloading framework to further redueermemory overhead of

compiled code.

4.6 Summary

In this chapter, we propose a framework for dynamic and agapnloading of
compiled code so that more aggressive dynamic compilaaorbe performed. Our
goal with this system is not only to reduce the size of condpdede. If it were,
interpretation would be the better choice. Instead, out igda enable performance
improvement via dynamic compilatiomhile reducing the dynamic memory require-
ments of the JVM. That is, we seek to adaptively balance mwingt any code (as
in an interpreter-based JVM) and caching all generated ¢aslen a compile-only
JVM), according tadynamic memory availability.e., the amount of memory avail-
able to the executing application for allocation of datagf@asosed to code) over time.

Our code unloading system decidebat code to unload anevhenunloading
should commence. Each of these decisions can be made usiitg aamge of un-
loading strategies, each resulting in different tradeb#sveen several sources of
overhead and benefit. To study these tradeoffs, we usedaimeWwork to investigate
a number of unloading strategies which employ dynamic faekiffrom the program
and execution environment to identify unloading candislaied to trigger unloading

efficiently and transparently.

87

Chapter 4. Adaptive Code Unloading

We implemented and empirically evaluated our code unl@aftiamework and
unloading strategies using a high-performance, open saiaega Virtual Machine
from IBM T. J. Watson Research Center, the Jikes Research Vikaahine [5]
(JikesRVM). Our results indicate that by adaptively uniogccompiled code, we are
able to reduce code size by 36%-62% on average over theridedf the programs.
Since the system is able to adapt to memory availabilityjtibiduces no overhead
when resources are unconstrained. When memory is highlytraomed, reductions
in code size translate into execution time improvements38b »n average for the
programs and JVM configurations that we studied.

Note that our code unloading system achieves the above aalessluction and
performance improvement completely automatically, with@quiring programmer
intervention or participation. Our adaptive code unlogdsystem allows program-
mers to develop applications without the concern for cozle, iet facilitates efficient
execution that results from doing so. Without such suppodgrammers must care-
fully reduce the code size by hand while developing appbecat so that they can
fit into the constrained resources, which requires expertkedge and significantly
more programmer effort. Therefore, our system improvegammmer productivity
by providing automatic support of code unloading.

In summary, this work wakes the following contributions:

88

Chapter 4. Adaptive Code Unloading

Opportunity Analysis. It provides an empirical analysis of code unloading opport
nities.

Analysis Framework. It presents a novel code unloading framework that automat-
ically unloads native code to reduce the overhead of perfayrgarbage collection.
This framework facilitates the implementation and empirgvaluation of unloading
strategies.

Adaptive Algorithms. It describes a number of techniques that use dynamically
changing program and system memory behavior to desttk code to unload and
whento unload it.

Experimental Results It presents an empirical comparison of our adaptive unload
ing techniques. We identify a set of strategies that, wheoures are unconstrained,
reduces code size by 47% while introducing zero overheadyerage. When mem-
ory is highly constrained, our system reduces code size By &2d execution time

by 23% on average for the programs and JVM configurationsesiud

The text of chapter 3 and Chapter 4 is in part a reprint of thenaas it appears
ACM Transactions on Architecture and Code Optimization (TAQ®@). 2, Number
2. The dissertation author was the primary researcher afmaand the co-author
listed on this publication ([160]) directed and supervisieel research which forms

the basis for these two chapters.

89

Part |l

Easy and Efficient Parallel

Programming Using Futures in Java

90

Chapter 5

Futures and its Support in Java

The second part of this dissertation, focuses on how to usedme adaptive
framework as we did for code unloading for resource constchdevices, for high-
end systems. In particular, we investigate doing so toifatsl easy efficiency of the
future parallel programming construct in Java. In this chapterdescribe the future
construct, its design rationale, its programming moded, e history of its use. We
then overview the existing support of futures in Java. Waititte library support for
this approach with simple examples, and then discuss thengatyes and limitations

of this approach.

5.1 The Future Construct

A future is a simple parallel programming language constttat lets program-

mers to specify computations that can be potentially exeetirt parallel. This con-

91

Chapter 5. Futures and its Support in Java

struct was first proposed by Baker and Hewitt in the 70s [70],raade well-known
by Halstead in MultiLisp [126]. Several years later, the sadea was reinvented
as another parallel language construct, called Promisg] [d Liskov and Shrira.
From then on, futures have appeared in many languages, siéhldl [93], Concur-
rent ML [125], C++ [28, 151], and more recently, Java 5.0 corent package [86],
X10 [27], and Fortress [4].

By definition, a future is a value available in future. It is ag#holder of the
value evaluated by an asynchronous computation. The figimenediately returned
to the calling site as if the computation had finished and #ieeshad been returned.
The calling function continues execution until it accesbesfuture value, at which
point, it is implicitly blocked until the value is made reaby the asynchronous com-
putation.

The future construct is a simple and elegant way to introdwa®currency to
serial program since it enables the decoupling of the mratheduling from the
application logic. In addition, in this model, the syncheation is implicit and is
delayed to the latest possible point (the future value upag#).

The original rationale behind futures is that “the prograeniakes on the bur-
den of identifyingwhat can be computed safely in parallel, leaving the decision of
exactly how the division will take place to the run-time system” [113].hél em-

phasis on “minimal programmer effort” of futures frees paygmers from worrying

92

Chapter 5. Futures and its Support in Java

about whether the overhead of spawning a computation inlgkacan be paid off

by its benefits, which usually is not an easy decision for mogners to make stat-
ically. As a result, programmers might specify a large nunddesmall granularity

computation as futures. It is, therefore, vital for perfame that the runtime imple-
mentation of futures be efficient, and effectively make vaskeduling decisions, to
avoid overhead, and to exploit concurrency. One of our gmalthe second part of
this dissertation is to investigate ways to enable such fiesft future scheduling

system for Java by exploiting the adaptability of the Javaugal machine.

5.2 Support for Futures in Java

Version 5.0 of the Java programming language introducesupport of futures
via a set of APIs in thg ava. uti | . concurrent package. The primary APIs
includeCal | abl e, Fut ur e, andExecut or. Figure 5.1 shows code snippets of
these interfaces.

Using the Java 5.0 Future APIs, programmers encapsulatéeat@ly parallel
computation in &al | abl e object and submit it to aixecut or for execution.
The Executor returns But ur e object that the current thread can use to query the
computed result later via itget () method. The current thread immediately ex-
ecutes the code right after the submitted computation ¢he. continuation) until

it invokes theget () method of theFut ur e object, at which point it blocks un-

93

Chapter 5. Futures and its Support in Java

public interface Call abl e<T>{
T call () throws Exception;
}

public interface Future<T>{
T get() throws InterruptedException,
Execut i onExcepti on;
}
public interface ExecutorService extends Executor{
<T> Fut ure<T> subm t (Cal | abl e<T> t ask)

throws RejectedExecuti onExcepti on,
Nul | Poi nt er Excepti on;

}
Figure 5.1: Thej ava. uti | . concurrent Futures APIs

public class Fib inplenments Callabl e<l nteger>

{

Execut or Servi ce executor = ...;
private int n;

public Integer call() {
if (n <3) return n;
Future<integer> f = executor.submt(new Fib(n-1));
int x = (new Fib(n-2)).call();
return x + f.get();

}

Figure 5.2: The Fibonacci program using Java 5.0 Futures API

til the submitted computation finishes and the result is yedte Java 5.0 library
provides several implementations®tecut or with various scheduling strategies.
Programmers can also implement their own customized Eaestitat meet their spe-
cial scheduling requirements. Figure 5.2 shows a simpli@gram for computing
the Fibonacci number (Fib) using the Java 5.0 Future inteda

The Java 5.0 Future programming model is simpler than a dHbaaed model

since it decouples thread scheduling from applicationclobliowever, there are sev-

94

Chapter 5. Futures and its Support in Java

eral drawbacks of the current Java 5.0 Future model. Firgtnghat the model is
based on interfaces, it is non-trivial to convert serialsi@ns of programs to paral-
lel versions since programmers must reorganize the pragtammatch the provided
interfaces, e.g., wrapping potentially asynchronous adatns into objects.

Secondly, the multiple levels of encapsulation of this medsults in significant,
but unnecessary, memory consumption which can degraderpemce significantly
due to the extra memory management overhead.

Finally, to achieve high-performance and scalabilitysivital for a future imple-
mentation to make effective scheduling decisions, e.gspewn futures only when
the overhead of parallel execution can be amortized by dmn&uch decisions must
consider both the granularity of computation and the udeglresource availability.
However, in the Java 5.0 Future model, the scheduling coemsnExecutors) are
implemented at the library level, i.e., outside and indeleen of the runtime. As a
result, these components are unable to acquire accuratenation about either com-
putation granularity or underlying resource availabilfigt is necessary to make good
scheduling decisions. Poor scheduling decisions can elgvéegrade performance
and scalability, especially for applications with fineiged parallelism.

Users can create their own Executors and/or hard-codehthicssthat attempt to
identify when to spawn (and amortize the cost of spawninghlore futures. How-

ever, this is against the originadinimal programmer effontationale of futures. Also,

95

Chapter 5. Futures and its Support in Java

this requires expert knowledge about the dynamic behavitieoprogram and the
characteristics (the spawn cost of futures, and the cotigmlaystems, processor
count and availability, etc.) of the platform on which thebgation ultimately exe-
cutes. Moreover, regardless of the expertise with whichstteduling decisions are
made, this model, since it is implemented outside and inadg@ of the runtime,
is unable to exploit the services (recompilation, schedylallocation, performance
monitoring) and detailed knowledge of the system and progi#at the execution
environment has access to.

All of these limitations motivate our work of the directivased lazy futures with
as-if-serial exception handling support, and as-if-$esi@de-effect guarantee, which
we will discuss in details in the following chapters.

The text of this chapter is in part a reprint of the materiaitesppears in the
proceedings of the Sixteenth International Conference @allBbArchitecture and
Compilation Techniques (PACT'07) and the proceedings of tfilke finternational
symposium on Principles and practice of programming in JBRPJ'07). The dis-
sertation author was the primary researcher and authorhrenda-author listed on
this publication ([161, 162]) directed and supervised #&earch which forms the

basis for Chapter|5.

96

Chapter 6

Adaptive and Lazy Scheduling for
Fine-grained Futures in Java

Given theminimum programmer effodesign goal of futures, it is possible for
a programmer to specify a large number of futures for progrémt contain fine-
grained, independent computations. For example, a simp@n&cci program writ-
ten using the Java Future APIs can easily produces more thigmshof futures and
most of them contained tiny-grained computations. It isrelfore, vital for perfor-
mance that the runtime implementation of futures be efftciand effectively amor-
tize the cost of spawning a future in parallel, or executdih&e sequentially (inline
it into the current context). Nae future implementations (e.g. one thread per future
or with thread pool support) can result in significant ovexheand inefficient, even
degraded, execution. Such future implementations in Javayaickly bring the sys-

tem to a halt due to the multiple layers of abstraction anthialization in the Java

97

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

Virtual Machine (JVM) for the support of system serviceglsas, threads, memory
management, and compilation.

To limit the number of independent contexts that are spavimeithe-grained fu-
tures, programmers commonly specify thresholds to idghitlures that will perform
enough computation to warrant parallelization. This applois time-consuming,
and error prone. The thresholds are specific to, and differenoss applications, in-
puts for the same application, available underlying hardwasources, and execution
environment, thereby, requiring significant effort andextise by the programmer to
identify optimal, or even efficient settings. Moreover, tegquirement that users par-
ticipate in deciding which futures to spawn or inline, isansistent with the original
design goal of futures of placing a minimal burden on the paogner.

In this chapter, we investigate a runtime implementatiat #fficiently supports
fine-grained futures without requiring programmer inteti@n with parallelization
decisions. Prior work proposes several solutions for sugpart within functional
languages or C++ [93, 113, 151]. Our focus is on supportingiefft fine-grained
futures in Java. In contrast to the Java 5.0 library-levgdlementation of futures,
we follow an runtime-based approach and extend the JVM mentio effectively
support futures. We do so since the JVM has access to lowildeemation about

the executing program, and underlying resource avaitgbili

98

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

Our approach, which we cdllazyFuture builds from, combines, and extends (i)
lazy task creation [113] and (ii) a JVM program sampling asfructure (common
to many state-of-the-art JVM implementations) previousdgd solely for dynamic
and adaptive compiler optimization. We couple these teghes with dynamic state
information from the underlying, shared-memory, multiggssor resources, to adap-
tively identify when to spawn or inline futures.

In the following sections, we first describe the design anglé@mentation details
of our LazyFuture system. We then empirically compare thi@®ua implementation
alternatives and evaluate the overall efficacy of our systEmally, we discuss the

related work and then conclude.

6.1 Programming Model

LazyFuture is a futures implementation for Java that we @sepo support ef-
ficient execution of fine-grained futures. Our goal is to @hiate the need for pro-
grammers to decide when, and how to spawn futures in pafati@epplications with
fine-grained futures. For such applications, programmensnconly specify a com-
putational granularity that amortizes the cost of spawmrfgture in parallel. Fig-
ure/6.1 (a) is the Fibonacci program using the Java 5.0 F#tBis. This program

uses a threshold to avoid spawning overhead for small caatipos.

99

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

Bench- Inputs Total# of | CPU 1.60GHz| CPU 1.60GHz| CPU 2.40GHz| CPU 2.40GHz
marks size futures proc#=2(base)| proc#=4(base)| proc#=2(base)| proc#=2(opt)
Adapint 0-250000 5782389 7000000 8000000 17000000 19000000
FFT 218 262143 4096 32768 16384 65536
Fib 38 39088168 30 32 36 33
Knapsack 24 8466646 5 7 6 4
Quicksort 224 8384315 131072 131072 131072 524288
Raytracer | pics/balls.nff | 265409 32 16 32 64

Table 6.1: Evidence that threshold values vary widely across conftgums for the
same program and input. We identified these thresholds @albrfrom a wide
range of threshold values.

In practice, this threshold is difficult and tedious to idBn&nd can have a large
impact on performance since the optimal values vary sigmifly across applica-
tions, inputs, available underlying hardware resourced,execution environments.
To validate this claim, we empirically identified the threkls for optimal perfor-
mance for six benchmarks. We present these thresholds Ie ah We gathered
results on two machines: one with four 1.60GHZ processdes,other with two
2.40GHZ processors. On the 4-processor machine, we cadlelztta with 2 as well
as 4 processors. On the 2-processor machine, we used tweedifconfigurations of
the same JVM. We provide specific details of our methodolog$ection 6.3. This
data confirms that the best thresholds vary across diffe@mnfigurations. LazyFu-
ture frees the programmers from the task of threshold spetish, and enable the
system to decide when and how to spawn futures in parallqitaedy.

We define a new abstraction, calledzyFut ur eTask, which implemented the

Fut ur e interface in Java 5.0 Future APIs. Users creat@ayFut ur eTask ob-

100

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

public class Fib public class Fib

i npl enent Cal | abl e<I nt eger > i npl enents Cal | abl e<I nt eger >
{ {

private int n; private int n;

public Fib(int n){this.n = n};
public Integer call() {

Execut or Servi ce executor = ...; if (n <3) return n;
LazyFut ureTask<I nteger> f =
public Integer call(){ new LazyFutureTask(new Fib(n-1));
if(n <3) return 1; f.run();
int x = (new Fib(n-2)).call();
if(n < THRESHOLD) { return x + f.get();
return (new Fib(n-1)).call() }
+ (new Fib(n-2)).call();
}el sef }

Future<integer> f =
executor.subnmit(new Fib(n-1));
int x = (new Fib(n-2)).call();
return x + f.get();
}
}
}

(a) Fib using Java 5.0 Futures (b) Fib using LazyFutures

Figure 6.1: Comparing programming models of Java 5.0 Futures and Laayéat

ject for each potentially asynchronous computation andkewvtsr un() method
directly (in a way similar the traditional Java thread modd¥igurel 6.1 (b) shows
the LazyFuture implementation &fb. The LazyFuture-aware JVM recognizes this
run() method (in eactlhazyFut ur eTask), and makes scheduling decisions au-
tomatically and adaptively based on the computation geaityland the underlying

resource availability to achieve the best performance.

101

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

6.2 Implementation

Our implementation of LazyFutures is inspired by the tegbaiproposed by
Mohr et al. [113], calledazy task creatiofLTC). LTC initially implements all futures
as function calls. The system then maintains special daiatstes for the compu-
tation of future’s parent, the caller (called a continuafjoto be spawned. When
there is an idle processor available, the idle processaftsst®ntinuations from the
first processor and executes code in parallel with the fut8milar techniques are
employed in many systems to support fine-grained paratidli0, 51, 57, 144].

Our system, although similar, is different from these papproaches in several
ways. First, we combine information about computation glarity with resource
availability. Prior work commonly considers only the lajtgince estimating the com-
putation granularity at runtime is complex, and can inticsignificant overhead.
Our implementation is, however, targeted at state-ofathe€®VMs, which implement
a low-overhead runtime profiling system that the runtimestseyuide adaptive com-
pilation and optimization [8, 117, 141, 85]. We leverages timechanism to extract
accurate and low-level program (e.g. long running methadsd)system information
(e.g. number of available processors) with low overhead.

The second unique aspect of our implementation is that weademploy a

worker-based, specialized runtime system for futures.te®ys like LTC typically

102

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

associate a worker with each physical processor, and thikewgs responsible for
executing the current task, stealing tasks from other wesrlend managing the task
gueues. Such systems assume that futures (or special kiagks that the system
supports) are the only kind of parallel activities in theteys. In addition, these sys-
tems map runtime threads directly to operating system (Bx@atls. Such a setup is
not appropriate for a JVM since this would equate to mappiagker threads to Java
threads (which are themselves mapped to OS threads), thading an additional
level of indirection, and overhead to scheduling. MorepeedVM would need to
accommodate varied types of parallel constructs specifiddva, other than futures.

In our system, we integrate future management with theiegisiread schedul-
ing mechanism in the JVM. When the system identifies a futuspé&wn on the run-
time call stack of a thread, the system splits the threadtimto— one that executes
the future,and the other that performs the continuationhButeads are considered
Java threads by the thread scheduler. With this implementatve take advantage of
the highly-tuned JVM thread scheduler, synchronizatiow l@ad-balancing mech-
anisms, which significantly simplifies the implementatidriudures, and makes our
implementation compatible with Java threads and othedlpacanstructs.

Finally, as opposed to the commonly used work-stealing g [113, 51], a
thread in our LazyFuture system voluntarily splits its ktaod spawns its continu-

ation using a new thread. The system performs such splitsr@ad-switch points

103

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

BMethOg Future
ytecode Splitter
. future
new split "
threads split
events
JIT Compilers Threads
(base, opt, ...) Scheduler
Suspend, active
'f)flsggg:jeme‘j g/ Tesume thread # | Future
native code ie idle proc # Controller
Executing Profilers future
(future, ...)

Code execution
Figure 6.2: Overview of LazyFuture implementation.

sample counts

(method entries and loop back-edges), when the monitoyisigs identifies an un-
spawned future call as long-running (“hot” in adaptivetopzation terms). With the
volunteer stack splitting mechanism, we avoid the syndetion overhead incurred

by work-stealing, which can be significant in a Java syste8h [3

6.2.1 Implementation Overview

Figure 6.2 overviews our system. All shaded componentdifgesur extensions
to the JVM. After a class is loaded by the class loader, thenatkbytecodes are
translated to native code by the Just-in-time (JIT) comgihen-optimizing, as well
as optimizing). The compiler may insert instrumentaticio ithe native code to col-
lect profiling information from the program that the compitan later use to perform

optimizations.

104

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

We extend the JIT compilers to insert a small stub at the guanyt and exit point
of every future call. Initially, our system treats everyuté call as a function call,
i.e., the system executes the code on the stack of the ctinreatl. At the same time,
we maintain a small side stack for each thread, calleduae stackSee Figure 6.3).
Every entry in the future stack has two words, one is the btisa future frame on
the current stack, the other is the sample count that holést@mate of how long the
future call has executed. The stubs push an entry onto thesfstack at the beginning
of a future call, and pop the entry when exiting the futuré. 84 implemented these
stubs carefully in the JIT compilers, and ensure that theyaways inlined, to avoid
unnecessary overhead.

To estimate the computation granularity of futures, we rdtihe existing JVM
sampling system. In our prototype JVM, light-weight metrsainpling occurs at
every thread switch (approximately every 10 ms), whichenuents sample counts
of the top two methods on the current stack. Methods with $aogunts exceeding a
certain threshold will be identified as hot methods, andmggted with higher levels
of optimizations. We extend this mechanism by also incrémgrthe sample counts
of executing futures. These sample counts provide our isystgh an estimate of
how long the futures have executed. Our scheduling systemvrspfutures whose

sample counts exceed a particular threshold. This procssdsaspawning short-

105

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

running futures — the overhead of which cannot be amortizethé benefits from
parallel execution.

The system feeds the future sample counts intduh&e controller which cou-
ples the sample counts with dynamic system resource intwm&om the thread
scheduler, e.g., the number of currently active threadsidledorocessors, to adap-
tively make decisions about splitting futures, in orderrialele additional parallelism.

If the future controller decides that it is beneficial to splifuture, it creates a
futureSplitEventhat contains information about the future, such as the draffset
and sample counts. The controller forwards the event tduhee splitter which
splits the current thread into a future thread and a contiomahread, and places
both threads on the appropriate queue of the thread schidduleirther execution.
Note that both the future controller and future splitter seevices invoked by the
current thread, when the thread yields to enable threactlswg. Therefore, we
require no additional synchronization since the systermampnts this process on a

per-thread basis.

6.2.2 Future Splitting Triggers

Ideally, we should spawn a future when there is an idle psmresWe refer to
this approachdleProc triggered In our system, future splitting is initiated by the

running thread, and only occurs during thread switching.pfocessor becomes idle

106

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

during execution, there is a delay before a thread deteistautill makes the splitting
decision. There is also a small delay between when a futspawned, and when
it is scheduled to execute. Thus, the idleProc triggereccyohay not utilize the
system resource fully in some cases.

One alternative is to saturate the system with futures. Tdament this policy,
we maintain twice as many threads as processors for futhatshe system selects.
That s, if the sample count of a future call on stack exceleeltiireshold, and the cur-
rent number of active threads is less than twice the numbgroakessors, the current
thread will be split to make the future call a parallel calle Wéfer to this approach
sampleCount triggeredrhis policy helps to pre-saturate the system if enoughlpara
lelism is available, but imposes a delay for “learning” thduture is long-running,
i.e., the time it takes for the sample count to exceed theskimid.

Therefore, we consider a hybrid approach, which we sathple+idle triggered
Note that in all policies, since the system performs futytétsg (spawning) only at
thread switching, it automatically eliminates futureshwgranularity of less than 10

ms from spawning.

6.2.3 Future Splitter

Figure 6.3 overviews our process for splitting futures. Ha figure, the current

thread has three future calls on its stack. At some pointiuthee controller decides

107

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

Current thread K
Future thread Stac

Stack

future
stack Future call

Future call
future 1
stack Future call
4 L
— Future call |:>
1 /
[

4 Continuation thread [Ejt(ira call

10

Future call Stack future

stack

sample Future

count frame) Dj
offset

Figure 6.3: The future splitting process of LazyFutures.

that it is worthwhile to spawn the oldest future call with sdencount 10 for parallel
execution. The dark line identifies the split point on thekta he future splitter then
creates a new thread for the continuation of the spawnedefatll, copies the stack
frames below the future frame, which corresponds to theiwoation, restores the
execution context from the stack frames, and resumes theoation thread at the
return address of the spawned future call. Note that we étmosreate a new thread
for the continuation instead of the spawned future, so tretiar not need to setup
the execution contexts for both threads. The spawned faalf®ecomes the bottom
frame of the current thread. The system deletes the futaok €ntry so that it is no

longer treated as potential future call.

108

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

6.2.4 Optimizing Synchronizations

If the result of a future is used by its parent, the systematiéick whether or not
the result is available. If it is not, the parent blocks utti# future completes. This
synchronization process can be avoided if the future isp@ivaed. In this case, the
result of the future is ready at the time the future call nesuo its parent, and thus,
will always be ready at its usage points. To optimize thisecage add aonStack
flag to each future object. We initialize the flag to true antdtde false if the future
splitter spawns the future. When the result of a future isestpd, if its onStack flag
is true, the system returns the result directly, otherwigesynchronize the process

with its future execution.

6.3 Experimental Methodology

We implemented LazyFutures in the open source Jikes Reséaichl Machine
(JikesRVM) [84] (x86 version 2.4.2) from IBM Research. To exak the efficacy of
our approach, we also implemented two other alternativespport futures in Java:
one that spawns a thread for every future and another thatais@riable-length
thread pool to execute futures. We refer to these implertientaassingleThread

(ST),thread Pool(TP), respectively.

109

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

To investigate the impact of LazyFutures on different aggilon types, we de-
veloped two sets of benchmarks. The first set includegt, MonteCarlg Series
and SparseMatmultwhich is a subset of the multithreaded version of Java Grand
Benchmark Suite [133]. These four benchmarks are chosembethere is no mu-
tual dependency between spawned parallel tasks in thestianks, which makes
them suitable to be expressed by futures. The structureesttbhenchmarks is sim-
ilar: the main thread spawns several futures to computeaskibt and then it waits
for all futures to finish. The number of futures to spawn casjpecified by users on
the command-line option, and is usually set to the numberadgssors available.
This kind of applications represents coarse-grained lgéisah. The singleThread
implementation is usually sufficient to handle such appilbees. We use this set of
benchmarks to evaluate the overhead introduced by our lLaagg-implementation.

The second set of benchmarks includempint, FFT, Fib, Knapsack, QuickSort,
Raytracer All of the programs employ a divide and conquer model. Wepatioem
from the examples provided by the Satin system [148]. Thersige nature of these
benchmarks results in excessive number of futures with géfgrent granularities.
We use this set of benchmarks to evaluate whether our Laayéunhplementation
can make effective future splitting decisions automaltycahd adaptively.

We conduct our experiments on a dedicated 4-processor bt fPentium 3

(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) with hyper-thdéng enabled. Thus,

110

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

we report results for up to 8 processors. We execute all meadts repeatedly and
present the minimum. For each set of experiments, we repsuits for two JVM
configurations respectively: one with the non-optimizibggeline) compiler and the
other with the highly-optimizing (opt) compiler. For thetopizing configuration,
we use the adaptive setting [8] which optimizes frequentigcated methods only.
To eliminate non-determinism, we use the pseudo-adaptivéguration [14], which
mimics the adaptive compiler in a deterministic manner byiypg the optimizing
compiler to code according to an advice file that we geneifliiee We include re-
sults for both JVM configurations to show how well our futumglementation iden-
tifies long-running futures. Unoptimized futures will exge for a longer duration
than the optimized versions, and consequently, our systdinawtomatically adapt
to the code performance and execution environment, and whiffeeent spawning
decisions.

Finally, we use a sample count of 5 as the splitting thresfalthe sampleCount
policy in our results. We selected this value empiricallynfra wide range of values
that we experimented with. We find that this value, acrosshearks, imposes only
a small “learning” delay, and effectively identifies futar®r which the overhead of

spawning is amortized by parallel execution.

111

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

6.4 Performance Evaluation

In this section, we first evaluate the efficacy of differertufe splitting triggers.
Then we analyze the performance impact of our lazy futurdempntation in detail

for all benchmark sets.

6.4.1 Comparison of Splitting Triggers

As we discussed in section 6.2.2, in our system, futuretsglitan be triggered
by either available idle processors or high future samplentoor both. In this sec-
tion, we compare performance of all three triggers.

Figure 6.4 shows the execution time for all benchmarks witierént splitting
triggers. We normalize the data relativeidteProc for comparison. The first four
benchmarks are from the JavaGrande suite, and the resbaretrr divide and con-
quer suite. Graph (a) shows the results when we use the maselmpiler and graph
(b) shows results with the pseudo adaptive optimizationpset

The data indicates that for applications with few coarsargrd futures (the first
four benchmarks), theampleCountriggered policy is less effective than tlibeProc

policy. This is due to the delay required to “learn” whethduture will be short or

long running by thesampleCounpolicy — when there are several idle processors

available.

112

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

(]
E 15-
.5 i o idleProc = sampleCount m sample+idle
3 1.0
x
()
3]
N 0.5+
=]
g]
] i
Z 0.0- S "
X O) S L A . & & &
BT GG SR M SN R
N A RS & ® >
Qo‘\ & Al <&
@
R
. (a) With baseline compiler
£ 1.5+
IS i o idleProc = sampleCount = sample+idle
3 1.0
] i
x
()
3]
N 0.5+
=]
E]
o i
Z 0.0- oy "
3 X S > A 3l N 2
C}GQ o N Q,\\Q’ & &(\ ({Q Q\Q 6@9 \{‘..90 @9 @Q
N N P «\'Z’Q Y &
@00 \90 ‘L" Q <&
>
R

(b) With optimizing compiler

Figure 6.4: Performance comparison of future splitting triggers.

For applications with a large number of fine-grained futyties remaining bench-
marks), thesampleCountrigger outperforms the&lleProctrigger in most cases since
it helps saturate the system with qualified futures to w@ilize system better. This
trend is more apparent when the baseline compiler is used.ifhecause the base-
line compiler produces unoptimized code for both the sysasich the application,

which makes the process of detecting idle processorstisglénd scheduling futures

113

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

o c

2 K]

5 5

$ 3

= 8 = singleThread 3 8 = singleThread

< | == threadPool T | = threadPool

c 6-mmlazy € 6-mmLazy

3] (3]

g =

g 4+ 2 4+

g] g]

o 2 o 24

% | ’—. %] ’—.

$,l_[Tm g, [T

& 1 2 4 8 & 1 2 4 8
Number of processors Number of processors

(a) with baseline compiler (b) with optimizing compiler

Figure 6.5: Average speedups of LazyFutures for JavaGrande benchmarks

take longer. Thus, pre-saturating the system using the Is&uopnt trigger makes a
bigger difference. In summary, by combining both triggéhng, hybridsample+idle
policy achieves the best performance among all triggergeaults in further sections

use the hybrid trigger.

6.4.2 JavaGrande Performance

In this section, we evaluate the performance impact of owyEature imple-
mentation on the four JavaGrande benchmarks. This set @hb®arks represents
applications with a small number of coarse-grained futures

Figure 6.5 shows the average speedup over the sequensaiverf each bench-
mark. The x-axis is the number of processors used. Note hla8{processor case

is actually the 4-processor case with hyper-threading. &/¢he number of futures

114

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

8- o singleThread
1= threadPool
6 - m lazy

8- singleThread
1= threadPool
6 - m lazy

Speedup over sequential execution
o N S
| |
Speedup over sequential execution
o N ESN
P B |

X Q 5 » o S NS
s P S @“\0 © eo‘{"\ & @@ S
& 2 & 3
@0 r&e @0 {&9
R R
(a) with baseline compiler (b) with optimizing compiler

Figure 6.6: Individual JavaGrande benchmark speedups of LazyFuturts 8v
processors.

in the applications to the number of processors used. Weprdisree implemen-

tation alternatives: one thread per futusen@leThreagl, variable-length thread pool
(threadPoo), and our LazyFuture implementatidaZy). Graph (a) and (b) are results
for the baseline compiler and the optimizing compiler, ezsgpely.

The data shows that with baseline compiler, all three implatations produce
similar average performance: 1% overhead with one procassiaround 2x speedup
with two processors. When there are more processors avadall more futures cre-
ated, the threadPool implementation starts show a smalowement over the sin-
gleThread implementation. Our LazyFuture implementasocompetitive with the

other alternatives, and outperforms them on average asdlbegsor count increases.

115

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

Note that LazyFutures require a “learning time” of at led®ns (time for one thread
switching) for each future spawned to decide if the compartieime warrants paral-
lelization. The other two alternatives do not require areay time.

To investigate these results in greater detail, we prega#dip of the individual
benchmark in Figure 6.6 for the 8 processor data. Graph @)(hare the re-
sults with the baseline compiler and the optimizing compiéspectively. This figure
shows that the LazyFuture implementation does introduseesaverhead< 2%) for
two benchmarks@rypt, SparseMatmylidue to the learning delay. However, for the
other two benchmarks, especiaBgries this slight splitting delay actually improves
performance significantly. We believe that in this case stlght slowdown of future
creations of our system reduces the contentions of systeourees, such as cache
conflicts, comparing to the other alternatives.

The average speedup with 8 processors is 5.0zifgle Thread5.1x forthread-
Pool, 5.9x forlazywhen the baseline compiler is used. With the optimizing citenp
the average speedup is 4.2x &ingleThread4.4x forthreadPoo) and 5.4x forlazy.

In both configurations, our LazyFuture system outperfotmesather two on average.

6.4.3 Divide and Conquer Performance

We next evaluate the performance impact of our LazyFutupgdamentation for

the divide and conquer benchmark suite. We compare our apprto the sin-

116

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

gleThread and threadPool alternatives above using a haradtgranularity thresh-
old. We identify the best performing thresholds experiraiypfor our various con-
figurations and benchmarks. These two alternatives représe case where the
programmer specifies the threshold for spawning given pekfeowledge of the un-
derlying system. This in practice is not feasible for allutg operating and run-
time systems, and processor configurations, and it intresla¢remendous burden on
the programmer. Our LazyFuture system requires only treaptbgrammer specify
which code regions can execute in parallel. The comparistmd®n our LazyFuture
system and the singleThread and threadPool configuratiths$he best, hand-tuned
thresholds indicates the degree to which our system makespipropriate spawning
decisions.

We consider an additional configuration in our result sett@se benchmarks.
Using the current Java Concurrency Utilities [86], the systeill create a future
object for each future regardless of whether it is executkadd or in parallel. In the
hand-tuned alternatives, we do not create future objedteifuture computational
granularity is below the threshold. To investigate and refiee overhead of this
object allocation and to show the overhead inherent in dsmgwe also include
configurations of the hand-tuned alternatives that cradted objects foall future
instances even those that are below the threshold; howeeegnly spawn those

above the threshold.

117

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

O HT-ST ® HT-TP B LAZY
o HT-ST-WO o HT-TP-WO®m LAZY-OPT o HT-ST-WO o HT-TP-WO s LAZY-OPT

Lt MU

(a) with baseline compiler (b) with optimizing compiler

O HT-ST = HT-TP B LAZY

Speedup over sequential execution
Speedup over sequential execution

Figure 6.7: Average speedups of LazyFutures for Divide and conquertbearks.

Figure 6.7 shows the average speedup over the sequensavéor our divide
and conquer benchmarks (fine-grain parallelism). The s-exthe number of pro-
cessors that we used for each experiment. The first two banmeaults for the sin-
gleThread (ST) implementation with hand-tuned (HT-) thadds, the middle two
bars are results for the threadPool (TP) implementation and-tuned (HT-) thresh-
olds. The last two bars are results for the lazy (LAZY) impétation, without and
with optimizing synchronizations (-OPT) (Section 6.2.4)\e use “-WQ” to iden-
tify the configurations that we create wrapper objects fbfusilire instances for the
hand-tuned alternatives.

The data indicates that the overall speedup for this bendhsed is less than that
of the JavaGrande benchmarks due to the fine-grained ndttlmese programs. Our

LazyFuture implementation produces comparable, in sorse batter, performance

118

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

1 oHT-ST 8 HT-TP o LAZY
1 8 HT-ST-WO o HT-TP-WO 8 LAZY-OPT

1 oHT-ST 8 HT-TP o LAZY
1 8 HT-ST-WO o HT-TP-WO & LAZY-OPT

Speedup over sequential execution
Speedup over sequential execution

AN
\°<<<< % 4&\{_@0

R & ¥ & ‘ &P
¥ & @b ¥ &
(a) with baseline compiler (b) with optimizing compiler

Figure 6.8: Individual divide and conquer benchmark speedups of LazyEs with
4 processors.

than the hand-tuned thresholds — when we exclude the owkdierject allocation
(HT-ST-WO and HT-TP-WO). The better performance is due &fttct that thresh-
olds specified by programmers are static, and thus do not tiagsource availability
as our LazyFuture implementation does.

The differences between HT-ST-WO and HT-ST, or HT-TP-WO ldiidlr P show
that the extra unnecessary object allocation has signifjgariormance impact on
applications with fine-grained futures, although an opting compiler reduces the
differences to some degrees (see Figure 6.7(b)).

Since these benchmarks almost always saturate the systéna V@rge number
of futures, hyper-threading does not help to improve théoperance. Therefore, we
show individual speedups with 4 processors for this seto€bmarks in Figure 6.8 to

enable a more detailed analysis. This figure shows as maretiare created (more

119

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

o HT-ST = HT-TP = LAZY o HT-ST = HT-TP = LAZY

o HT-ST-WO o HT-TP-WO m LAZY-OPT o HT-ST-WO o HT-TP-WO m LAZY-OPT

e RE N

(a) with baseline compiler (b) with optimizing compiler

Speedup over non-0OO0 serial

Speedup over non-OO0 serial

Figure 6.9: Average speedups of LazyFutures for Divide and conquerhyearks
over non-OO0 serial version.

K K
% 64 % 6o
8 o HT-ST 8 HT-TP B LAZY 8 o HT-ST 8 HT-TP B LAZY
o 1 8 HT-ST-WO o HT-TP-WO =& LAZY-OPT o 1 8 HT-ST-WO o HT-TP-WO 8 LAZY-OPT
S 4- S 4
c c
o &
3 3
o 2 a 2 -
=} >
e} ©
() ()
2 2
n 0- . n 0- " .

X . ol & X A . '3

Q’Q\(\ (<<< Q\Q ébg @0 ¢ @06 ?:\Q) be\(\ ((Q Q\Q 6@9 @0 (b‘(;@ @Q‘
\?b & ® 'Z?i\ ?b K O 1$'
& o < & o &
(a) with baseline compiler (b) with optimizing compiler

Figure 6.10: Individual divide and conquer benchmark speedups of LazyEs over
non-OO0 serial version with 4 processors.

than 5 million for four benchmarks, see the second columnable’6.1), the larger
is the difference between HT-ST and HT-ST-WO. The Fib beratkmepresents the
worst case by creating almost 40 million futures object. @pgmizing compiler is
able to reduce the overhead primarily by inlining objecbedition and initialization;

however, the overhead is still significant.

120

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

To investigate the performance impact of unnecessary phjecation further,
we re-implemented the serial version of each benchmark inraabject-oriented
(non-00) style. In the non-OO serial version, instead o&ttng a new object and
invoking its virtual method for each computation, we invekstatic method without
creating any object. We then generate speedup numbershavaoh-OO serial ver-
sions, and present the results in Figure 6.9 for averagalapseand Figure 6.10 for
4 processors. The speedup numbers in these two figures atelower than those
in Figure 6.7 and Figure 6.8.

In addition, the more futures are created, the larger is ifherence. These dif-
ferences, and the differences between HT-ST-WO and HT-8H{eTP-WO and
HT-TP), imply that there is a large potential performancendar our LazyFuture
implementation if the system is able to avoid creating uessary objects for fu-
ture calls executed inlined. To achieve this, we believe e language constructs
([126, 27]) as opposed to interface-based constructs (agJava Future API) will
provide the JVM more flexibility and opportunities of optmations, and thus, enable
more efficient support of fine-grained futures. We will intvgate this hypothesis in
depth in next chapter.

Finally, to show the frequency of future spawning, we prédeble 6.2. The
table lists the number of Java threads created by each ineplation alternatives

with 4 processors. Since the “-WQO” configurations have sémeatl number as its

121

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

Bench- HT-ST HT-TP LAZY
marks | base| opt | base| opt | base| opt
AdapInt | 227 | 230| 70 | 62 | 52 | 42
FFT 18 | 29 | 14 | 26 | 43 | 36
Fib 31 | 29 | 158 | 17 | 66 | 50
Knapsack| 137 | 44 | 77 | 144 | 105 | 29
Quicksort| 150 | 77 | 103 | 55 | 103 | 76
Raytracer| 266 | 29 | 30 | 20 | 100 | 48

Table 6.2: Number of Java threads spawned.

corresponding non-WO version and LAZY and LAZY-OPT alsodaimilar counts,
we only show numbers for HT-ST, HT-TP, and LAZY. “base” staifior the baseline
compiler, and “opt” stands for the optimizing compiler. Bdhat each configuration
has different threshold, so the specific values are incoafy@ar Instead, the data
shows the efficacy of our LazyFuture system by comparingtteat number created
by the LAZY implementation to the number of futures creatgdhese applications
(see the second column of Table 6.1). In summary, our LazyEwtystem is able
to make intelligent future inlining/spawning decisionganatically and adaptively,

based on dynamic information of system resource avaitglaifid future granularity.

6.5 Related Work

Load-based inlining93] was the first approach proposed to address the fine-
grained future problem. The idea is to make spawning detsidhe creation time

based on the system load. A future is computed in paralleéifd is enough available

122

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

resource. Otherwise, it is inlined. One major drawback o #pproach is that the
decision is not revocable: once a future is inlined, it cafogoparallelized anymore.
Task starvation may occur due to imbalance work load andytask creation.

Lazy task creatiofLTC) [113] is a more elaborate scheme to support fine-grained
futures. In this approach, all futures are initially evatdlike a sequential call. But
the system maintains minimum information to spawn the cwtiions of futures
retroactively if a future is blocked, or a computation reseubecomes available.
This principle of sequential first, parallel retroactivéflymecessary, can be found in
many systems that target fine-grained parallelism [1205%7,143], each with its
own contexts and refinements. Our system follows the lagipesiciple as well.
However, we believe that our system is the first effort to supfne-grained futures
in a Java Virtual Machine. Our system is built upon the gdnir@ad scheduling
system in the JVM and is incorporated with the sampling systghich was previ-
ously used for dynamic compilation solely. This enablessystem to exploit both
system resource availability and futures’ computatiomglarity while making in-
line decisions. While in the previous system, splitting iggered only by a blocked
task or an idle processor. The task granularity is not mosit@nd considered.

Another effort to support fine-grained futures is calleabfrogging151]. Leapfrog-
ging is a workcrew-style implementation. A task object isated for a future invo-

cation and is put into a task pool. A worker takes a task froenpithol and works on

123

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

them one by one. When a worker is blocked due to some unfinisheckf it steals

a task that the current task is dependent on and starts totexté® stolen task on
top of the current stack. Leapfrogging can be expressed ist&tk frame manage-
ment mechanism, and thus, it is easier to implement and natalge comparing

to LTC. Comparing to our approach, however, it does not consisegranularity of

futures, and it has the queue management overhead intdydes workcrew-style

implementation.

There are several previous works related to our synchrboizaptimization. For
example, in [51], there are two clones of each procedure:staclane used while
the procedure is invoked locally and a slow clone that is wskite the procedure
is stolen by another processor. In the fast clonesylicoperations are translated to
noopto avoid unnecessary synchronization. Our system is $ligliferent in that
we do not keep two clones of a method. Instead, we useriBéacklag which is set
dynamically by the future splitter to eliminate unnecegsynchronization. In [50],
static analysis is used to eliminate redundant touch opesator futures, which is
complementary to our dynamic approach.

Profiling has been used to choose the best parameters dépapdimizations [41]
or the optimal number of threads to use given available sys&sources [88], etc.
In most of these systems, it is assumed that one computatibpennvoked repeat-

edly and the execution will last for a long time. Therefore fystem can use several

124

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

initial runs for learning before making a decision. Our syst however, targets at
fine-grained futures, most of which have very short exeautiime, and usually are
not invoked repeatedly. Thus, we use sampling to monitorloog a future has been
executed, and to make splitting decision for the currentriytinstead of its later in-

vocation. We plan to investigate the possibility of exphagtprofiling for repeatedly

invoked computation as part of future work.

Safe futures proposed in [153] enforce the semantic traaspg of futures auto-
matically using object versioning and task revocation st ffnogrammers are freed
from reasoning about the side-effects of future executtonsnsure correctness of
programs. This is complementary to our system and we plamvistigate the per-
formance impact of LazyFutures in combination with safeifes as part of future
work.

The concept of futures is also employed in distributed emvirents to optimize
task scheduling [81]. Data futures are created to refer ta piaducts that have not
yet been created. Their system is similar to our system is¢hse of dynamic future
scheduling based on cost/benefit estimation. But it is at eanmmmre coarse-grained

level with different cost/benefit tradeoffs.

125

Chapter 6. Adaptive and Lazy Scheduling for Fine-grainedifestin Java

6.6 Summary

In this chapter, we introduce our first work towards easy dhdent future sup-
port in Java. We enable automatic future task creation ahddsding so that pro-
grammers do not need to manually and explicitly managedigxecution in the code.
We achieve this by providing runtime support in the JVM. Owthod combines lazy
task creation using stack split and adaptive task schegiwlith sophisticated runtime
program sampling. We empirically evaluated our LazyFuystem using a set of
Java benchmarks with different implementation approaehnesconfigurations. Our
results show that our LazyFuture system not only makesdyttmgramming easier
but also enables efficient future execution that is companaiih hand-tuned alter-
natives.

The text of this chapter is in part a reprint of the materiaitesppears in the
proceedings of the Eighteenth International Conferenceavallél and Distributed
Computing Systems (PDCS’06). The dissertation author wapriheary researcher
and author and the co-author listed on this publication @)Léirected and super-

vised the research which forms the basis for Chapter 6.

126

Chapter 7

Directive-based Lazy Futures in Java

The LazyFuture model takes the burden of scheduling futoffgsrogrammers.
However, its programming model follows an interface-baapdroach that is sim-
ilar to (yet more efficient than) Java 5.0 Futures. As a resuinherits similar
programmer productivity and performance disadvantagesd.the interface-based
approach, users must employ object encapsulation of fjtared thus, incur mem-
ory allocation and management overhead. In addition, tligngostyle using this
methodology imposes an extra burden on the programmer ars@ggource code to
be longer and less readable in order to specify and use #raoe. To address these
limitations, in this chapter, we propose a new implemeatatif futures in Java that
we callDirective-based Lazy Futures (DBLFutures)

DBLFutures are inspired by parallel programming models fitvep languages
that employ keywords or directives to identify parallel qartations [15, 101, 27, 3,

115]. Using the DBLFuture programming model in Java, usenetate the variable

127

Chapter 7. Directive-based Lazy Futures in Java

declarations of all variables that store the return valeenfia function that can be
potentially executed concurrently wit ut ur e directives. Using DBLFutures, the
parallel version of a program is the same as the serial wesith annotations on a
subset of variable declarations.

In this chapter, we present the design and implementatiddBifFutures, and
then evaluate the performance impact of this directiveetdgsogramming model for

a set of benchmarks with fine-grained futures.

7.1 Implementation

Our DBLFuture implementation builds upon and extends Laayes to im-
prove the ease-of-use of future-based parallelism in Javeedl as performance and
scalability. DBLFutures exploit the Java language exten$w annotations (JSR-
175 [87]). Annotations are source code directives that epmrogram metadata to
tools, libraries, and JVMs; they do not directly affect prarg semantics. In par-
ticular, we introduce a future annotation (deno@dit ur e in the source code) for
local variables. Users employ our future directive to aat®tocal variables that can
be used as placeholders of results returned by functios ttedk can be potentially
executed concurrently by the system. If a function callestats return value to a an-

notated local variable, it is identified as a future functwa. Note that in our system,

128

Chapter 7. Directive-based Lazy Futures in Java

public class Fib

{
public fib(int n) {
if (n<3) return n;
@uture int x = fib(n-1);
int y=fib(n-2);
return x +vy

}
o

Figure 7.1: The Fibonacci program using DBLFutures

the scope of future annotations is within the method boundathe value of a local
variable with the future annotation is returned by the méthbe future annotation
will not be returned with the return value. Figure 7.1 shoies implementedrib
program using this model.

Our DBLFuture model avoids creation (and thus, user spetidgiteof Cal | abl e,
Fut ur e, LazyFut ur eTask, or other objects when the future is inlined (executed
sequentially) by the system. As such, we avoid the memoogation, memory man-
agement, and extra source code required by previous ap@m®aVith this model,
users easily specify computations that can be safely exeécatparallel with mini-
mal rewriting of the serial programs. This programming moelttiogy also provides
the JVM with the flexibility to implement potentially conaent code regions as ef-
ficiently as possible. Note that with our current impleméontaof DBLFutures, the
JVM makes efficient spawning decisions automatically, batusers are still respon-

sible to ensure the safety of concurrent execution.

129

Chapter 7. Directive-based Lazy Futures in Java

Our DBLFuture-aware JVM recognizes the future directiveshie source and
implements the associated calls using a set of LazyFutuensions and compiler
techniques. First, the future directive in the source i®€das a method attribute in
the bytecode. The class loader of our DBLFuture-aware JVigeizes this attribute
and builds a future local variable table for each method ctvitiontains the name,
index, and bytecode index range of each future local vagial®ur Just-In-Time,
dynamic compiler consults this table during compilation.

Initially, the JVM treats every future call as a function Icand executes the
code on the runtime stack of the current thread. For each®lthhe system also
maintains a small stack that shadows the runtime stack tr daead, called the
future stack This future stack maintains entries for potential futuaé#sconly. Each
entry contains metadata for the corresponding runtimekstame of the future call
that includes the location of the frame on the runtime stamkasample count that
estimates how long the future call has executed. The syssesithis information to
make splitting and spawning decisions.

Each DBLFuture shadow stack frame also contains the loc&htarindex and
the stack slot in the runtime stack of the caller of the futatkk that the compiler has
allocated for this local variable. Our system employs thfsrimation to set up the

future and continuation thread correctly upon a split arahsp

130

Chapter 7. Directive-based Lazy Futures in Java

For LazyFutures, théazyFut ur eTask. run() method is the only marker
of potential future calls in the program. In addition, thegess of storing the return
value of a future call and accessing the value later on is@ipicoded in the applica-
tion viaimplementation of theun() andget () methods ofthéazyFut ur eTask
class. TheLazyFut ur eTask object serves as the placeholder of the computa-
tion result, and is always created regardless of whetherdh®poutation is inlined or
spawned.

The LazyFuture compiler implements a small, inlined, arfitieht, stub in the
prologue and epilogue of theun() method. This stub pushes an entry onto the
future stack at beginning of a future call, and pops the eofirpf the future stack
when exiting the future call. In addition, the return typetwr un() method is void,
so the address of the first instruction of the continuatiahegeturn address of the run
method. Thus, upon future splitting, the system can extracteturn address from
the runtime stack frame for theun() method, and use it as the starting program
counter (PC) of the new thread (that will execute the contionq The system sets
the original return address to a stub that terminates thewcuthread when the future
call completes.

DBLFutures require a somewhat more complex compilationagagr. We main-
tain the future stack for every marked future call as is domé &zyFutures. However,

we want to allow any method call to be specified as a potenitaké call if it can

131

Chapter 7. Directive-based Lazy Futures in Java

be executed safely in parallel. We also want to allow the sara#nod definition to
be used in both a future and a non-future context. The extanpiation strategy
requires that we produce two versions of compiled code feryemethod that may
be used in the future context, and insert stubs into the graia epilog of all such
methods. This is not desirable since it causes unnecessadgybtoat and compilation
overhead. Instead, we expand the future call cites andtifuigare stack maintenance
stubs before and after the call site of the future.

The store of the return value after the future call completgsiires special han-
dling. If the call is not split, the return value must be stbieto the specified local
variable. If the future is split and spawned, the return ®atwst be stored into a
placeholder (i.e. a Future object) for access by the coation thread. To enable
this, we add one word to every runtime stack frame, fepht flag This flag is a
bitmap of spawned futures indexed by the future local véeiaidex in the bytecode
local variable array. For example, if the future call asatezl with a local variable
at index 1 is spawned, the JVM sets the second lowest bit dfageo 1. The JVM
checks this bit at two points in the code: (i) at the store efrturn value and (ii)
at the first use of the return value. We currently support 3@rés (64 for 64-bit
machines) per method given this use of a bitmap. However,ameegtend this by
using the last bit to indicate when there are more futures séoring a reference to a

full-fledged bit-vector if so.

132

Chapter 7. Directive-based Lazy Futures in Java

Our compiler always allocates a slot on the runtime stackvery future-annotated
local variable. This slot holds different variable typesidfierent times: before split-
ting, its type is the declared type of the local variablegafiplitting, it holds a ref-
erence to &ut ur e object which is created and set by the splitting system in the
JVM; after its first use, its type becomes the declared tym@nagTo ensure cor-
rect garbage collection (GC), the compiler includes thisislthe GC maps and the
garbage collector dynamically decides whether it holdsfereace or not using the
split flag.

We compile the return value storage point to a conditionaihbh. If the split flag
is set, the code stores the return value directly in the leaaible slot on the stack.
Otherwise, the code extracts the reference td-titeur e object from the same stack
slot, and stores the return value into et ur e object.

We similarly expand instructions that use the return valtithe split flag is set,
the codes uses the value in the local variable slot on stae&ttli; otherwise, the code
executes thget () method on thé&ut ur e object that it extracts from this same slot
(which will block if the return value is not ready yet). In $hliatter case, when the
system eventually returns a value from a method vigte() method, it also stores
the value in the slot (an thus, the slot at this point holdgype of the original local
variable). If there are multiple use points, our compilelyazonverts the first one

(the one that dominates the others) since all uses thereaéieyuaranteed to access

133

Chapter 7. Directive-based Lazy Futures in Java

the value with the original declared type. In addition, oompiler will insert a fake
use of the future value before the method exit point if thernead usage of the future
to prevent it escaping the method boundary. That is, a metkibaait for all futures
that it spawns to finish before it exits.

Finally, we must set the starting PC of the continuationabreorrectly. Logi-
cally, if a future is split, the continuation thread shouldrsat the point in the code
immediately aftethe point at which the return value is stored. Note, thouigg, this
is not the return address of the future call any longer (asasase for LazyFutures).
To provide this information to the JVM splitting mechanisng insert a fake instruc-
tion after the return value store instruction which we pirotighout the compilation
process. At the end of compilation we remove this instrunGtout, we put its PC and
the index of the associated local variable into a map whicktaee with the compiled
code and query during future splitting.

By extending a JVM, our DBLFutures implementation avoids clicaped source
or bytecode rewriting or multiple code versions and yetlga&siables migration from
inlined to concurrent execution. In addition, our systerab$e to mix future calls
with normal calls naturally since we have access to the Japgeaod stack and local
method state. Non-JVM implementations cannot do this yabibr example, Cilk

and JCilk [15, 101] do not allow non-Cilk method to call a Cilk imed at all since a

134

Chapter 7. Directive-based Lazy Futures in Java

non-Cilk method is not compiled with parallel support (fastialow clones) and is

not migratable.

7.2 Experimental Methodology

We have implemented DBLFutures (as well as LazyFutures)eipdpular, open-
source Jikes Research Virtual Machine (JikesRVM) [84] (x&6sion 2.4.6) from
IBM Research. We have conducted our experiments on a dedidapedcessor
box (Intel Pentium 3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux.2)6with hyper-
threading enabled. We report results for 1, 2, 4, and 8 psacss- 8 enabled virtually
via hyper-threading. We execute each experiment 10 timeépersent performance
data for the best-performing.

For each set of experiments, we report results for two JVMigarations. The
first uses a fast, non-optimizing compiler (BaseVM) and tlewsd employs an adap-
tively optimizing compiler [8] (PAOptVM). With PAOptVM, weemploy pseudo-
adaptation (PA) [14], to reduce non-determinism in our expentation. We include
results for both JVM configurations to show the performamepact of DBLFutures
for systems that dynamically produce very different codality

The benchmarks that we investigate are from the benchmaik isuthe Satin

system [148], includingAdaplnt, FFT, Fib, Knapsack, QuickSort, Raytracé&ach

135

Chapter 7. Directive-based Lazy Futures in Java

implements varying degrees of fine-grained parallelismoré extreme i§ib which

computes very little but creates a very large number of i@y concurrent meth-
ods. At the other extreme IBFT and Raytracerwhich implement few potentially
concurrent methods, each with large computation granylakiVe use this set of
benchmarks to evaluate the performance impact of the tieebised programming

model of our future implementation.

7.3 Performance Evaluation

Compared to the Java 5.0 Future model, our DBLFuture modeigesyprogram-
mers with two advantages: (1) programmers are free from tingelm of scheduling
futures; (2) programmers need not reorganize the serigkano (e.g. wrapping com-
putations inCal | abl e objects, submitting to executors, etc.) to meet interface r
quirements.

Table 6.1 provides evidence that the task of schedulingdsthy programmers is
challenging, tedious, and typically requires expert kremlgle of program and system
behavior to achieve good performance since optimal schegdEecisions vary sig-
nificantly across applications, inputs, available undegyhardware resources, and
execution environments. Frequently, such informationasavailable to program-

mers statically.

136

Chapter 7. Directive-based Lazy Futures in Java

FFT | Raytracer| Adaptint | Quicksort| Knapsack| Fib
J5Future 40 66 40 62 124 | 23
DBLFuture | 27 32 27 38 85| 11
Diff 13 24 13 24 39| 12

Table 7.1: Source lines of code (SLOC) that is related to future impleémn in
both Java 5.0 Future version and DBLFuture version of eacbhmeark.

The metric we use to assess the ease with which our DBLFutudeincan be
used by programmers, is the numbeSofurce Lines Of Cod&LOC), i.e., the num-
ber ofnon-comment non-blarines in the source code of the program. Although this
metric has its limitations, it is known to be a reliable prdr of programmer effort,
and has been used in other research work [27]. Table 7.2HistSLOC for the code
regions related to future implementation in both Java 5t0feuwersion (the first row)
and DBLFuture version (the second row) of each benchmarkthitegerow presents
the difference between the two versions. The data showsthddBLFuture model
shortens the programs significantly, sometime even morefthH (e.g. for Fib).

Another way in which DBLFutures eases programmer effort & thenables
concurrent versions of a program to be very similar to thevedgnt serial version
(semantically). Eliding the “@future” annotations, the DBIlture version is the

same as the serial version.

137

Chapter 7. Directive-based Lazy Futures in Java

Bench- Processor Numbers
marks 1 2 4 8
FFT 1.11x| 1.13x| 1.12x| 1.03x
Raytracer 1.01x| 1.02x| 1.01x| 1.00x
Adaplnt 290x| 297x| 3.02x| 4.61x

QuickSort 553x| 5.29x| 5.22x| 5.65x
Knapsack 1.57x| 158x| 1.64x| 1.64x

Fib 42.55 x| 44.63 x| 46.67 x| 51.09 x
Avg 9.11x| 9.44x| 9.78x| 10.84x
Avg(w/o Fib) | 2.42x| 2.40x| 2.40x| 2.79x
(a) BaseVM

Bench- Processor Numbers

marks 1 2 4 8
FFT 1.08x| 1.12x| 1.01x| 1.00x
Raytracer 1.01x| 1.01x| 1.00x| 1.01x
Adapint 1.23x| 1.18x| 1.26x| 1.47x

QuickSort 1.87 x| 210x| 227x| 2.72x
Knapsack 1.31x| 1.57x| 1.76x| 1.86X
Fib 446 x| 6.64x|12.42x| 18.17x
Avg 1.83x| 2.27x| 3.29x| 4.37x
Avg(w/o Fib) | 1.30x| 1.40x| 1.46x| 1.61x

(b) PAOptVM

Table 7.2: Speedup of DBLFutures over LazyFutures.

7.3.1 Directive-based versus Interface-based

We next compare the scalability of DBLFutures and LazyFgurdable 7.2
shows the speedup of DBLFutures over LazyFutures for eachhbeark, sorted
by the rate of future generation. Columns 2-5 present regoltgncreasing pro-

cessor counts; Table (a) shows the results for BaseVM anch@wssthe results for

138

Chapter 7. Directive-based Lazy Futures in Java

PAOptVM. DBLFutures enable significant performance gainsrdwazyFutures for
all configurations and processor counts. On average, the DBLE implementa-
tion is 9.1 to 10.8 times faster than LazyFutures for all expents for the BaseVM
and 1.8 to 4.4 times faster for the PAOptVM case. Moreover pdrformance gains
increase with the number of futures (e.g. Fib versus Rayfyacgince Fib is an
extreme case relative to the other benchmarks, we also di@average speedups
across benchmarks not including Fib. This average is 2.4&di2es faster for the
BaseVM and 1.3 to 1.6 times faster for the PAOptVM case.

The primary reason for the performance improvement is tbgnamming model
since these two future implementations share the samehakzgdaptive future schedul-
ing system. For LazyFutures, the JVM has the flexibility tacide whether to inline
or spawn a future, but must always create @ | abl e andFut ur e object due
to its interface-based model. The DBLFuture employs a fonetall based model,
which (1) avoids the creation @al | abl e objects completely; (2) grants the JVM
the flexibility to create &ut ur e object only when it decides to spawn a future based
on underlying resource availability and dynamic prograrhawsor. Our in depth
analysis of the performance gains shows that the beneftt®BlaFutures achieve is
due primarily to the avoidance of memory allocation and nganaent.

The improvements for PAOptVM are smaller than for BaseVM duéhe effi-

cient runtime services and dynamic code generation thatpPAd performs (in-

139

Chapter 7. Directive-based Lazy Futures in Java

Benchmarks TS/Tl Tl/TQ Tl/T4 Tl/Tg

FFT 1.00x | 1.88x| 3.09x | 2.86 x
Raytracer 1.00x | 1.93x| 3.66x| 3.78 x
Adapint 0.97 x|| 1.98x| 3.85x| 6.19x

QuickSort 0.91x| 1.83x| 3.28x| 3.87x
Knapsack 0.97 x| 1.86x| 3.68 x| 3.43x

Fib 0.31x| 1.99x| 3.96 x| 4.26 x
Avg 0.86x| 1.91x| 3.59x| 4.07 x
Avg(w/o Fib) | 0.97 x || 1.90x | 3.51 x| 4.03 x
(a) BaseVM
Benchmarks TS/Tl Tl/TQ Tl/T4 Tl/Tg
FFT 0.99x | 1.60x| 1.99x| 1.88x
Raytracer 0.99x | 1.90x| 3.22x| 3.84x
Adapint 0.93x | 1.73x| 3.43x| 5.24x

QuickSort 0.88x || 1.90x | 3.01 x| 3.44x
Knapsack 0.96x| 1.84x| 2.76 x| 2.58 x
Fib 0.34x || 1.98x| 3.94 x| 4.02x
Avg 0.85x || 1.83 x| 3.06 x| 3.50 x
Avg(w/o Fib) | 0.95x || 1.79x | 2.88 x| 3.40x

(b) PAOptVM
Table 7.3: Overhead and scalability of DBLFutures

cluding aggressive optimization of object allocation). alidition, the performance
difference between BaseVM and PAOptVM speedups increasetiwt number of
processors. This is because the more processors that aebke/ahe more acute
the competition for system resources and services. Thuslifmynating most of the
unnecessary object allocation, DBLFuture is able to redneeconflicts in parallel

memory management, which provides additional performgages.

140

Chapter 7. Directive-based Lazy Futures in Java

7.3.2 Overall Performance of DBLFutures

We then analyze the overhead and scalability of our DBLFusystem in Ta-
ble 7.3. The table contains one section each for the BaseVn@the PAOptVM
(b) configurations. We usg to represent the execution time of programs written us-
ing DBLFuture with i processors, and for the execution time of the corresponding
serial version. Note that due to its function-call basedmgdtyle, this serial version
is much faster than the serial version we used as the badefiegaluation of Java
5.0 Futures and LazyFutures in Figure 6.7 and Figure 6.8reftie, we are setting
a higher standard here to evaluate our DBLFuture systemstgain

Columns 2 shows thé; /77 value, our overhead metric. Since there is only func-
tion call overhead for each potential future invocatiorhia serial version, the differ-
ence betweef; (single processor) anf, reveals three sources of overhead: (1) the
bookkeeping employed to maintain the shadow future st&)khgé activities of the
future profiler, controller, and compiler, and (3) the caiwttial processing required
by the DBLFuture version for the storing and first use of theigakturned by a po-
tential future call. The JVMs perform no splitting in eithease. This data shows
that our DBLFuture implementation is very efficient: only hedple overhead is in-
troduced for most benchmarks. The worst cad@bs which shows a 3x slowdown.
This is because the Fib benchmark performs almost no cotnputar each future

invocation (computing a Fibonacci value). The results it benchmark represents

141

Chapter 7. Directive-based Lazy Futures in Java

an upper bound on the overhead of our system. The C impletr@ntar a similar
parallel system, called Cilk, introduce a similar overheaitiiis benchmark (3.63x
slowdown [51]). Our system however, significantly outperfe the Java version of
Cilk (JCilk) which imposes a 27.5x slowdown for this benchm@&]).

The remaining columns for each JVM configuration show thedpps gained by
DBLFuture when we introduce additional processors (whicltarapute ag;/7; as
we increaseé, the processor count). For the BaseVM case, the executiendmv
processors scales almostitaV (average speedup is 1.91x, 3.59x, 4.07x for processor
2, 4, 8 respectively), that is, our system enables apprariménear speedup for
most of the benchmarks that we investigate. Note that owtwee has 4 physical
processors and uses hyperthreading to emulate 8 proceBssgite improvements
in code quality enabled by the PAOptVM case, the DBLFuturesioeris able to
extract average performance gains of 1.83x, 3.06x, 3.50%,fd, and 8 processors,
respectively. Again, we list the average data excludingifithe last row of the
table to avoid Fib skewing the results. In summary, our DBuUFeiimplementation

achieves scalable performance improvements with ne¢gigierhead.

142

Chapter 7. Directive-based Lazy Futures in Java

7.4 Related Work

There are many previous works that support parallel progriaug linguistically,
either language-based, i.e., through the addition of nepw&eds in the language
(e.g., Cilk [15], JCilk [101], X10[27], Fortress [4]), or ditdve-based (e.g. OpenMP
[115]). Many programming languages support the future tansto some extent,
either via a library interface (e.g., Java [86], C++ [151]),directly (e.g., Multil-
isp [126], C [21], X10 [27], Fortress [4]). Some concurrengic programming lan-
guages (e.g., OZ [130]) generalize the concept of futureatteer extremes. In such
languages, all logic variables are conceptually futuréaédes: they can be bound by
a separate thread and threads that access an unbound |ogtdesavill be blocked
until a value is bound to this variable. We follow the dirgetbased approach in-
stead of language-based approach for easy implementdti@nfocus of our paper,
however, is not the linguistic programming model itseltaad, we are interested in
the performance impact of different future implementagiéor Java. We find that a
linguistic approach provides the JVM and compiler with mibegibility to interpret
future calls efficiently.

New extensions to the Java language can also be implemeyntedrisforming
the new constructs to calls to runtime libraries via eith@iree-to-source transfor-

mation [38, 73] or bytecode rewriting [12, 90]. This approdas the advantage of

143

Chapter 7. Directive-based Lazy Futures in Java

portability and easy implementation since it does not negdiVM modification. We
show, in this work, however, that JVM support in a way thaetakdvantage of ex-
tant JVM services is important to achieve high performamzkszalability. Also, our
experiences show that by leveraging extant JVM design apteimentations, and by
eliminating extra abstraction layers, such JVM supportdwa tanguage constructs
can be feasible and sometime even simpler to implement camgpi higher-level

alternatives.

7.5 Summary

In this chapter, we propose an improvement over our LazyEwgystem by fur-
ther liberating programmers from writing complicated fetwreation and manage-
ment code in the Java programming language. We implemeettiie-based fu-
ture programming support via a Java annotation. Our DBLEuprogramming
model enables programmers to identify potential paralelopportunities in their
programs using simpl@ ut ur e directives. DBLFutures make the migration from
serial programming to parallel programming using futuregimeasier than does the
conventional interface-based model. Based on our Lazy&wdystem, DBLFuture
also eliminates unnecessary future object creations anddas better performance.

We evaluate our DBLFuture empirically. The results show thatimplementation

144

Chapter 7. Directive-based Lazy Futures in Java

enables significantly shorter programs, introduces nigddigoverhead, and is signif-
icantly more scalable than prior implementations.

The text of this chapter is in part a reprint of the materiaitesppears in the
proceedings of the Sixteenth International Conference @allBbArchitecture and
Compilation Techniques (PACT’07). The dissertation authaswhe primary re-
searcher and author and the co-author listed on this ptibiica[161]) directed and

supervised the research which forms the basis for Chapter 7.

145

Chapter 8

As-if-serial Exception Handling
Support

An exception handling mechanism is a language control stre¢hat allows pro-
grammers to specify the behavior of the program when an éxcegb (unusual) event
is caused by the program [36]. Exception handling is key éfivgare fault tolerance
and enables developers to produce reliable, robust s@&ftsystems. Many languages
support exception handling as an essential part of the Egguaesign, including
CLU [104], Ada95 [78], C++[139], Java [58], Eiffel [112], andamy others.

As multi-processor computer systems become increasimgylpr, many parallel
programming languages or constructs (e.g. [27, 4, 86, 1@y been proposed
to enable programmers to express potential parallelisnragrams easily so that
the extra computation resources could be exploited. It igomant to extend the
exception handling mechanism to the concurrent contexXaidt tolerance and error

recovery. However, exception handling semantics in a coantisystem are much

146

Chapter 8. As-if-serial Exception Handling Support

more complex than for a serial environment. Their impleragonh requires careful
design and must be implemented efficiently.

A key design goal of DBLFutures is to enable programmers teldgvand reason
about serial programs first and then introduce parallelisadgglly and intuitively.
We take this approach to simplify the process of parallegpoming to improve
programmer productivity so that more applications can t@theantage of the cur-
rent and next generation of systems with multiple procegssores. In a DBLFuture
program, if we elide the future annotations, the progranmigs serial form. As a
result, programmers write their program as if it were segia then identify code
regions that can be safely executed in parallel and cagteresturn value from calls
to these functions using an annotated local variable. Oal\gibh this chapter, thus,
is to maintain thesas-if-serialsemantics and introduce a novel exception handling
mechanism into DBLFutures.

In the following sections, we first review the exception Hargimechanism for
Java 5.0 Futures. We then present the design and implenoentditour as-if-serial
exception handling mechanism in the DBLFuture system. Kinake evaluate the

overhead of our approach and present related works.

147

Chapter 8. As-if-serial Exception Handling Support

8.1 Exception Handling in Java 5.0 Futures

A key feature of the Java programming language is its exaepi@ndling mecha-
nism that enables robust and reliable program executiorcaniglol. Exception han-
dling is also supported for the Java 5.0 Futures. Using the 3& Future APIs, the
get () method of theé=ut ur e interface can throw an exception with typrecu-
ti onExcepti on. If an exception is thrown and not caught during the exeautio
of the submitted future, the Executor intercepts the threweeption, wraps the ex-
ception in arExecut i onExcept i on object, and saves it within tHeut ur e ob-
ject. When the continuation queries the returned value ofthemitted future via
theget () method of thd=ut ur e object, the method throws an exception with type
Excecut i onExcept i on. The continuation can then inspect the actual exception
using theThr owabl e. get Cause() method. Note that the clagxecut i on-
Excepti on is defined as @hecked exceptiofb8, Sec. 11.2] [86]. Therefore, the
calls toFut ur e. get () are required by the Java language specification to be en-
closed by a a try-catch block (unless the caller throws thegption). Without this
encapsulation, the compiler raises a compiler-time errtmeapoint of the call. Fig-
ure 8.1 shows a simplified program for computing the Fibonagmber (Fib) using

the Java 5.0 Future interfaces including the necessamatigh block (linel) ~ 14).

148

Chapter 8. As-if-serial Exception Handling Support

1 public class Fib inplenments Callabl e<l| nteger>
2 {

3 Execut or Servi ce executor = ...;

4 private int n;

5

6 public Integer call() {

7 if (n<3) return n;

8 Fut ure<integer> f = executor.subnmit(new Fib(n-1));
9 int x = (new Fib(n-2)).call();

10 try{

11 return x + f.get();

12 }catch (Executi onException ex){

13

14 }

15 }

16

17}

Figure 8.1: The Fibonacci program using Java 5.0 Futures with try-chlobks

8.2 As-if-serial Exception Handling Design

One way to support exception handling for futures is to pgape exceptions to
the use pointof future return values, as is done in the Java 5.0 Future .ARIs
can apply a similar approach to support exceptions in the DBl system. For
the future thread, in case of exceptions, instead of stametgrned value into the
Fut ur e object that the DBLFuture system creates during stack isigjjitend then
terminating, we can save the thrown and uncaught excepbgctin theFut ur e
object, and then terminate the thread. The continuaticgathcan then extract the
saved the exception at the use points of the return valueu@beof the annotated
variable after the future call). That is, we can propagateptons from the future

thread to the continuation thread via theat ur e object.

149

Chapter 8. As-if-serial Exception Handling Support

1 public int f1() { 1 public int f1() {
2 @uture int x; 2 @uture int x;
3 try{ 3 x = A();
4 x = A(); 4 int y =B();
5 }catch (Exception e){ 5 try {
6 x = defaul t; 6 return x +vy;
7 } 7 }catch (Exception e){
8 inty =B(); 8 return default + y;
9 return x +vy; 9 }
10 } 10 }
(a) (b)

Figure 8.2: Examples of two approaches to exception handling for DBLEstu

One problem with this approach is that it compromises onbehtost important
advantages of the DBLFuture model, i.e., that programmede emd reason about
the logic and correctness of applications in the serialiarrst, and then introduce
parallelism incrementally by adding future annotations.particular, we are intro-
ducing inconsistencies with the serial semantics when weggate exceptions to
the use-point of the future return value. We believe thatibjating the as-if-serial
model, we make programming futures less intuitive.

For example, we can write a simple functibh() that returns the sum of return
values ofA() andB(). The invocation ofA() may throw an exception, in which
case, we use a default value for the function. In additis) andB() can exe-
cute concurrently. In Figure 8.2 (a), we show the correspanderial version for
this function, in which the try-catch clause wraps the poaihere the exceptiomay
be thrown. Using the aforementioned future exception-hagdapproach in which

the exceptions are received at the point of the first use ofuthee return value,

150

Chapter 8. As-if-serial Exception Handling Support

1 public int f2() {

2 @uture int x;

3 int w y, z;

4 try{

5 w = A();

6 x = B(); /1 a future function call
7 y =);

8 }catch (Exceptionl e){
9 X = V1;

10 }catch (Exception2 e){
11 y = V2;

12 }

13 z = D();

14 return w+ x +y + z;
15 }

Figure 8.3: A simple DBLFuture program with exceptions

programmers must write the function as we show in Figureb3.26 this case, the
try-catch clause wraps the use point of return value of theéu If we elide the future

annotation from this program (which produces a correctabeersion using DBLFu-

tures without exception handling support), the resultiagsion is not a correct serial
version of the program due to the exception handling.

To address this limitation, we propoas-if-serialexception semantics for DBL-
Futures. That is, we propose to implement exception hagditirthe same way as
is done for serial Java programs. In particular, we deliver ancaught exception
thrown by a future function call to its caller at the invocatipoint of the future call.
Moreover, we continue program execution as if the futuréhed never executed in

parallel to its continuation.

151

Chapter 8. As-if-serial Exception Handling Support

We use the example in Figure 8.3 to illustrate our approach.a¥éume that the
computation granularity d() is large enough to warrant its parallel execution with
its continuation. There are a number of ways in which exeoutan progress:

casel A(), B(), C(), andD() all finish normally, and the return value of
f2() isA() +B() +C() +D() .

case 2 A() andD() finish normally, but the execution &) throws an excep-
tion of typeExcept i onl. In this case, we propagate the uncaught exception to the
invocation point ofB() in f 2() at line 6, and the execution continuesfig() as
if B() is invoked locally, i.e., the effect of line 5 is preserveuk tontrol is handed
to the exception handler at line 8, and the execution of ling ignored regardless
whetherC() finishes normally or abruptly. Finally the execution is nesudl at line
13. The return value df2() isA() +V1+0+D() .

case 3A(), B(),andX) all finish normally, but the execution &() throws
an exception in typ&xcept i on2. In this case, the uncaught exceptiorGof) will
not be delivered td 2() until B() finishes its execution and the system stores its
return value irx. Following this, the system hands control to the exceptamdter at
line 10. Finally, the system resumes execution at line 13 refturn value of 2()
isA() +B() +V2+DX() .

Note that in this chapter, we focus on the as-if-serial elloagemantics in terms

of the control flow of exception delivering, i.e., which antieve exceptions should

152

Chapter 8. As-if-serial Exception Handling Support

be handled. The complete as-if-serial exception handlamgastics requires that
the global side effects of parallel execution of a DBLFuturegoam is consistent
with that of the serial execution. For example, in case 2 efghove example, any
global side effects o€() must also be undone to restore the state to be the same
as if C() is never executed (since semanticdlly) ' s execution is ignored due to
the exception thrown b()). However, this side effect problem is orthogonal to
the control problem of exception delivering that we addiagkis chapter. We will
address the problem of preserving as-if-serial side-effemantics and describe its

integration with the as-if-serial exception handling saties in the next chapter.

8.3 Implementation

To implement exception handling for DBLFutures, we extenel BBLFuture-
aware Java Virtual Machine implementation described in @&rap In this section,

we detail this implementation.

8.3.1 Total Ordering of Threads

To enable as-if-serial exception handling semantics, wst tnack and maintain a
total order on thread termination across threads thatraigifrom the same context

and execute concurrently. We define this total order as ttheran which the threads

153

Chapter 8. As-if-serial Exception Handling Support

would terminate if the program was executed serially. Waitleow we make use of
this ordering in Section 8.3.3.

To maintain this total order during execution, we add two mefgrences, called
f ut ur ePr ev andf ut ur eNext , to the virtual machine thread representation with
which we link related threads in an acyclic, doubly linkest.liWe establish thread
order at future splitting points, since future-relatecttus are only generated at these
points. Upon a split event, we set the future thread as théepessor of the newly
created, continuation, thread since this is how the thatware executed in the serial
execution. If the future thread already has a successorgd¢h@& new continuation
thread between the future thread and its successor in telliist.

Figure 8.4 gives an example of this process. Stacks in thisdigrow upwards.
Originally, thread T1 is executiniy() . The future function cal”() is initially exe-
cuted on the T1's stack according to the lazy spawning gle@f our system. Later,
the system decides to split T1's stack and spawns a new tii2#&al executéd() ’s
continuation in parallel té\() . At this point, we link T1 and T2 together. Then, after
T2 executes the second future function da{l) , long enough to trigger splitting, the
system again decides to split the execution. At this pold,system creates thread
T3 to executd3() 's continuation, and links T3 to T2 (as T2’s successor).

An interesting case is if there is a future function cal\{n) (D() in our example)

that has a computation granularity that is large enoughigger splitting again. In

154

Chapter 8. As-if-serial Exception Handling Support

1 public int f() { 1 public int A() throws Exceptionl{
2 @uture int x, vy; 2 @uture int u;
3 int z; 3 int v;
4 try{ 4 u=D); //split point 3
5 x = A(); /lsplit point 1 5 v = E();
6 y = B(); //split point 2 6 return u + v;
7 }catch(Exceptionl e){ 7 }
8
9 }
10 z = C);
11 return x +vy + z;
12}

T1 T1 T2 T1 T2 T3

—» —» —»

.er “en a— s A — e A

AQ | AO o |_AO BO

0|] 0|] A o

T1 T4 T2 T3

Ty

Figure 8.4: Example of establishing total ordering of threads.

this case, T1’s stack is split again, the system creates amead, T4, to execute
() ’'s continuation. Note that we must update T2's predecessbetT4 since, if
executed sequentially, the restA(f) after the invocation point di() is executed
beforeB() .

The black lines in the figure denote the split points on theksttar each step. The
shadowed area of the stack denotes the stack frames thataes ¢o the continu-

ation thread. These frames are not reachable by the orifyinak thread once the

155

Chapter 8. As-if-serial Exception Handling Support

split occurs since the future thread terminates once it ¢et@p the future function

call and saves the return value.

8.3.2 Choosing a Thread to Handle the Exception

One important implementation design decision is the chofdbread context in
which we should handle the exception. For example, in Figuteif A() throws an
exception with typeExcept i onl after the first split event, we have the choice of
handling the exceptionin T1 or T2.

Intuitively, we should choose T2 as the handling threadesinseems from the
source code that after splitting, everything after the aatmn point ofA() is handed
to T2 for execution, including the exception handler. Tlydmhs context up to the
return point ofA() , when it will store the future value and then terminate ftsel

The problem is that the exception delivery mechanism in Wit s synchronous,
i.e., whenever an exception is thrown, the system searohediandler on the current
thread’s stack based on the PC (program counter) of the thgguoint. T2 does not
have the throwing context, and will only synchronize withwhen it uses the value
of X. Thus, we must communicate the throwing context on T1Z@nd inform T2 to
pause its current execution at some point to execute thddraftis asynchronous

exception delivering mechanism can be very complex to implet.

156

Chapter 8. As-if-serial Exception Handling Support

Fortunately, since our system operates on the Java staaitlgiand always ex-
ecutes the future function call on the current thread’skstand spawns the continu-
ation, we have a much simpler implementation option. No&¢ tihe shadowed area
on T1'’s stack after the first split event is logically not reable by T1. Physically,
however, these frames are still on T1’s stack. As a resultcavesimplyundothe
splitting as if the splitting never happened via clearing $plit flag of the first shad-
owed stack frame (the caller of A() before splitting), whiohakes the stack reachable
by T1 again. Then, the exception can be handled on T1's conterally using the
existing synchronous exception delivering mechanism @M.

This observation significantly simplifies our implemerdgati Now, T2 and all
threads that originate from T2 can be aborted as if they wewemgenerated. If
some of these threads have thrown an exception that is nghtauvithin its own

context, the thrown exception can also be ignored.

8.3.3 Enforcing Total Order on Thread Termination

In section 8.3.1, we discuss the way to establish a totak@ci®ss related future
threads. In this section, we describe how we use this orgléoipreserve as-if-serial
exception semantics for DBLFutures. Note that these reltitezhds can execute

concurrently, we simply require that their terminationr(ouit) be ordered.

157

Chapter 8. As-if-serial Exception Handling Support

1 void futureStore(T value) {

2 if (currentThread.futurePrev !'= null) {

3 while (currentThread. comit Status == UNNOTI Fl ED) {
4 wai t ;

5

6 } else {

7 current Thread. conmi t St at us = READY

8 }

9 Future f = get FutureQoject();

10 if (currentThread. comit Status == ABORTED){

11 current Thread. futureNext. comm t St at us = ABORTED,
12 f.notifyAbort();

13 cl eanup and term nate current Thread

14 } else {

15 current Thread. fut ureNext. conmmi t St at us = READY:
16 f.set Val ue(val ue)

17 f.notifyReady();

18 term nate current Thread

19 }

20 }

Figure 8.5: Algorithm for the future value storing point

First, we add a field, calledlomni t St at us, to the internal thread representation
of the virtual machine. This field has three possible vallNOT1 FI ED, READY,
ABCRTED. UNNOTI FI EDis the default and initial value of this field. A thread checks
itscom t St at us at three points: (i) the future return value store poin} ke first
future return value use point, and (iii) the exception daiwpoint.

Figure 8.5 shows the pseudocode of the algorithm that wetibe &uture return
value store point. The pre-condition of this function isttttee continuation of the
current future function call is spawned on another thread,thus, &ut ur e object
is already created as the placeholder that both the futufe@mtinuation thread have

access to.

158

Chapter 8. As-if-serial Exception Handling Support

OCoO~NOULWNE

T futureLoad() {

}

Future f = get FutureQoject();
while (!f.isReady() && !currentThread.conm tStatus == ABORTED) {
wai t ;
}
if (currentThread. comm tStatus == ABORTED) {
if (currentThread. futureNext !'= null) {
current Thread. f ut ureNext . conm t St at us = ABORTED,
}
cl eanup and term nate current Thread;
} else {
return f.getValue();

}

Figure 8.6: Algorithm for the future return value use point

This function is invoked by a future thread after it finishies tuture function call

normally, i.e., without any exceptions. First, if the cuntr¢hread has a predecessor,

it waits until its predecessor finishes either normally augally, at which point, the

commitStatus of the current thread is changed from UNNCHIHo either READY

or ABORTED by its predecessor. If the commitStatus is ABORTHi2, current

thread notifies its successor to abort. In addition, theecuithread notifies the thread

that is waiting for the future value to abort. The currenetud then performs any

necessary cleanup and terminates itself. Note that a splitef thread always has a

successor. If the commitStatus of the current thread isosBRIEADY, it stores the

future value in the~ut ur e object, and wakes up any thread waiting for the value

(which may or may not be its immediate successor), and theririates itself.

The algorithm for the future return value use point (Figur@) & similar. This

function is invoked by a thread when it attempts to use tharmetalue of a future

159

Chapter 8. As-if-serial Exception Handling Support

function call that is executed in parallel. The current #arevill wait until either the
future value is ready or it is informed by the system to abdmtthe former case,
this function simply returns the available future value tie latter case, the current
thread first informs its successor (if there is any) to ablsd,aand then cleans up and
terminates itself.

The algorithm for the exception delivering point is sometvinare complicated.
Figure 8.7 shows the pseudocode of the existing exceptilivedag process in our
JVM augmented with our support to as-if-serial semantice.dhiit some unrelated
details for clarity. The function is a large loop that seasfor an appropriate handler
block on each stack frame, from the newest (most recentetolttest. If no handler
is found on the current frame, the stack is unwound by onedrafinally, if the
function finds no handler on the entire stack, it reports tteeption to the system,
and terminates the current thread.

To support as-if-serial exception semantics, we make twdifications to this
process. First, at the beginning of each iteration (Bne- 13 in Figure| 8.7), the
current thread checks whether the current stack frame ig §gawned continuation
that has a split future. If so, it checks whether the currbrgad has already been
aborted by its predecessor. In this case, instead of delgyére exception, it notifies
its successor (if there is any) to abort, cleans up, and #remnates itself. Note that

the system only does this checking for a spawned continudtaone. If a handler

160

Chapter 8. As-if-serial Exception Handling Support

1 voi d deliverException(Exception e) {

2 while (there are nore frames on stack){

3 if (the current frame has a split future) {

4 whil e (currentThread. commit St atus == UNNOTI Fl ED) {
5 wai t ;

6 }

7 if (currentThread. commitStatus == ABORTED){

8 if (currentThread. futureNext !'= null) {

9 current Thread. f ut ureNext . commi t Status = ABORTED,
10 }

11 cl eanup and termi nate current Thread;

12 }

13 }

14 search for a handler for e in the conpiled nethod
15 on the current stack;

16 if (found a handler) {

17 jump to the handler and resunme execution there;
18 /1 not reachabl e

19

20 if (the current frame is for a future function call
21 &% its continuation has been spawned) {

22 if (currentThread.futurePrev !'= null) {

23 whil e (current Thread. commit St atus == UNNOTI FI ED) {
24 wai t;

25 }

26 } else {

27 current Thread. commi t St atus = READY;

28

29 current Thread. fut ureNext. commi t Status = ABORTED,
30 Future f = getFutureQbject();

31 f.notifyAbort();

32 if (currentThread. commit Status == ABORTED){

33 cl eanup and term nate current Thread;

34 }el sef

35 reset the caller frame to non-split status;

36 }

37 }

38 unwi nd the stack frame;

39 }

40 /1 No appropriate catch bl ock found

41 report the exception and term nate;

42 1}

Figure 8.7: Algorithm for the exception delivering point

is found before reaching such a spawned continuation frameeexception will be
delivered as usual since in that case, the exception iswiitie current thread’s local

context.

161

Chapter 8. As-if-serial Exception Handling Support

The second modification is prior stack unwinding (I2fe ~ 37 in Figure 8.7).
The current thread checks if the current frame belongs tdwuadifunction call that
has a spawned continuation. In this case, we must rollbacgglitting decision, and
reset the caller frame of the current frame to be the nextdramthe local stack. This
enables the system to handle the exception on the curreatdisrcontext (where the
exception is thrown) as if no splitting occurred. In additiadhe thread notifies its
successor and any thread that is waiting for the future viawdort since the future
call finishes with an exception. The thread must still need# for the committing
notification from its predecessor (if there is any). In casewhich it is aborted, it
cleans up and terminates, otherwise, it reverses splitteagsion and unwinds the
stack.

Note that our algorithm only enforces the total terminatoder when a thread
finishes its computation and is about to terminate, or whemweat attempts to use
a value that is asynchronously computed by another thraaghigh point it will
be blocked anyway if the value is not ready yet. Therefore,abgorithm does not
prevent threads from executing in parallel in any order, g, does not sacrifice

the parallelism in programs.

162

Chapter 8. As-if-serial Exception Handling Support

8.4 Performance Evaluation

Although the as-if-serial exception handling semantiogiy attractive for pro-
grammer productivity since it significantly simplifies thesk of writing and rea-
soning about DBLFuture programs with exceptions, it is intgot that it does not
introduce significant overhead. In particular, it shoultsiow down applications for
programs that throw no exceptions. If it does so, it compsasithe original intention
of the DBLFuture programming model which is to introduce paliam easily, and
to achieve better performance when there are available etatipnal resources. In
this section, we provide an empirical performance evadmadif our implementation
to evaluate its overhead.

Our implementation is based on the previous DBLFuture systanis an ex-
tension to the popular, open-source Jikes Research Virtaahie (JikesRVM) [84]
(x86 version 2.4.6) from IBM Research. The test machine we sisedi-processor
box (Intel Pentium 3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux.2)6 We only re-
port data for the adaptively optimizing JVM configuratiomguiler [8] (with pseudo-
adaptation (PA) [14] to reduce non-determinism) sincelte$or the non-optimizing
compiler are similar.

The benchmarks that we investigate are from the benchmatek isuthe Satin

system [148]. Each implements varying degrees of fine-gchparallelism. At one

163

Chapter 8. As-if-serial Exception Handling Support

extreme igFib which computes very little but creates a very large numbegyodén-
tially concurrent methods. At the other extremd&sT andRaytracerwhich imple-
ment few potentially concurrent methods, each with largamatation granularity.
Moreover, no future threads in these benchmarks finishegpgiomally. We execute
each experiment 20 times and present the average perfoerdatein Table 8.1.

Table 8.1 has three subtable, each for results with 1, 2, gmdeessors, respec-
tively. The second column of each subtable is the mean erectiine (in seconds)
for each benchmark in the DBLFuture system without exceptiandling support
(denoted adBasein the table). We show the standard deviation across runisein t
parentheses. The third column is the mean execution timge@onds) and standard
deviation (in parentheses) in the DBLFuture system with thé-aerial exception
handling support (denoted &H in the table). The fourth column is the percent
degradation (or improvement) of the DBLFuture system wittegtion handling sup-
port.

To ensure that these results are statistically meaningfionduct the indepen-
dent t-test [52] on each set of data, and present the comdsmpt values in the last
column of each subtable. For experiments with sample sizth2@ value must larger
than 2.093 or smaller than -2.093 to make the difference émtvBase and EH sta-
tistically significant with 95% confidence. We highlight eoverhead numbers that

are statistically significant in the table.

164

Chapter 8. As-if-serial Exception Handling Support

Benchs Base EH Diff T

Adapint | 29.36 (0.09) 27.96 (0.1¢ -4.8% -31.79
FFT 7.89(0.03) 7.78(0.03 -1.5% -11.49
Fib 16.47 (0.13) 17.04 (0.0¢ 3.5% 17.81
Knapsack | 11.27 (0.04) 10.79 (0.0 -4.3% -41.78
QuickSort| 8.11(0.04) 8.01(0.03 -1.3% -9.20
Raytracer | 21.22 (0.09) 20.91 (0.07 -1.4% -12.12

(a) With 1 processor

Benchs Base EH Diff T

Adapint | 15.02 (0.25) 15.40(0.81) 2.5% 1.97
FFT 4.92(0.08) 5.03(0.10 2.2% 3.78
Fib 8.34 (0.09) 8.48(0.06 1.7% 5.94
Knapsack| 6.36(0.16) 6.35(0.14) -0.2% -0.22
QuickSort| 4.31(0.08) 4.28(0.04) -0.5% -1.07
Raytracer | 11.18 (0.10) 11.28 (0.14¢ 0.9% 2.56

(b) With 2 processors

Benchs Base EH Diff T

Adaplnt 8.47 (1.01) 8.67(1.35) 2.4% 0.53
FFT 4.24(0.09) 4.18(0.10 -1.6% -2.33
Fib 4.26 (0.02) 4.33(0.04 1.6% 6.47
Knapsack| 4.40(0.19) 4.40(0.15) 0.1% 0.07
QuickSort| 2.52(0.03) 2.54(0.03 0.9% 2.34
Raytracer | 6.26 (0.07) 6.33(0.07 1.1% 3.27

(c) With 4 processors

Table 8.1: Overhead and scalability of the as-if-serial exceptiondtiag for DBL-
Futures. TheBaseandEH column list the mean execution time (in seconds) and
standard deviation (in parentheses) in the DBLFuture systéhout and with the
as-if-serial exception handling support. Théf column is the difference between
BaseandEH (in percent). The last column is the T statistic computecgisiata

in the first three columns. Those difference numbers thastatestically significant
with 95% confidence are highlighted.

165

Chapter 8. As-if-serial Exception Handling Support

This table shows that our implementation of the as-if-$exxaeption handling
support for DBLFutures introduces only negligible overh&adsome benchmarks.
The maximum percent degradation is 3.5%, which occur&ifdr when one proces-
sor is used. Most of the overhead numbers are less than 2%.

These results may seem counter-intuitive since we enforimdah termination
order across threads to support the as-if-serial exceggomantics. However, our
algorithm only does so (via synchronization of threads)an{s at which a thread
either operates on a future value (stores or uses) or delaerexception. Thus,
our algorithm delays termination of the thread, but doespnetvent it executing its
computation in parallel to other threads. For a thread tttatrgpts to use a future
value, if the value is not ready, this thread will be blockegvaay. Therefore, our
requirement that threads check for an aborted flag comesder f

Moreover, half of the performance results show that our Etéresions actually
improve performance (all negative numbers). This phen@méncommon in the 1-
processor case especially. Itis difficult for us to pinpdiire reasons for the improved
performance phenomenon due to the complexity of JVMs anadimedeterminism
inherent in multi-threaded applications. We suspect thatsystem slows down
thread creation to track total ordering and by doing so,dtioes both thread switch-

ing frequency and the resource contention to improve pedoce.

166

Chapter 8. As-if-serial Exception Handling Support

In terms of scalability, our results do not show a relativer@ase in overhead
when we introduce more processors. Although we only exparimnwith up to 4
processors, given the nature of our implementation, webelhat the overhead will
continue to be low given additional processors.

In summary, our system guarantees the as-if-serial exazeptindling semantics
for future-based applications that throw exceptions. Mwoeg, our implementation

of these semantics introduce little overhead for applcetiwithout exceptions.

8.5 Related Work

Many early languages that support futures (e.g. [126, 21)at provide concur-
rent exception handling mechanisms among the tasks invoMas is because these
languages do not have built-in exception handling mechasi®ven for the serial
case. This is also the case for many other parallel langubgesriginate from serial
languages without exception handling support, such asdfo@0 [45], Split-C [97],
Cilk [15], etc.

For concurrent programming languages that do support égcepandling, most
of them focus on the exception handling mechanism withieatirboundaries, but
have none or limited support for concurrent exception hagdl For example, for

normal Java [58] threads, exceptions that are not handézdlydy a thread will not

167

Chapter 8. As-if-serial Exception Handling Support

be automatically propagated to other threads, insteay ateesilently dropped "on-
the-floor”. The C++ extension Mentat [59] does not addresexoeption handling
problem at all. In OpenMP [115], a thrown exception insideasafiel region must
be caught by the same thread that threw the exception andkéuoeiteon must be
resumed within the same parallel region.

Most of more recent languages that adopt futures (e.g. [B&]2do provide con-
current exception handling for futures to some extent. kaneple, in Java, while fu-
ture values are queried via invokikgt ur e. get (), anExecut i onExcepti on
is thrown to the caller if the future computation terminaabsuptly[86]. Similar ex-
ception propagation strategy is used by the Java Fork/Jaimé&work [100], which
supports the divide-and-conquer parallel programmintg styJava. In Fortress [4],
the spawn statement is conceptually a future construct. The pareaathqueries
the value returned by the spawned thread via invoking dis() method. When a
spawned thread completes exceptionally, the exceptioefermd. Any invocation
of val () then throws the deferred exception. This is similar to thea a0 Future
model.

X10 [27] proposes eoted exceptiomodel, that is, if activity A is the oot - of
activity B and A is suspended at a statement awaiting theitation of B, exceptions
thrown in B are propagated to A at that statement while B teatais. Currently, only

thef i ni sh statement marks code regions as a root activity. We expatftuture

168

Chapter 8. As-if-serial Exception Handling Support

versions of the language may soon introduce more such statsmncluding the
f or ce() method, which extracts the value of a future computation.

The primary difference between our as-if-serial exceptiandling model for fu-
tures and the above approaches is the point at which exospi®@ propagated. In
these languages, exceptions raised in the future computdtat cannot be handled
locally are propagated to the thread that spawns the cotmuighen it attempts to
synchronize with the spawned thread, such as using thenegtwalue. While in our
model, asynchronous exceptions are propagated to theatiwagoint of the future
function call as if the call is executed locally. In this senthe exception handling
mechanism for the Java Remote Method Invocation model [8@lpmser to our ap-
proach since the exception context where remote executt@pédons are propagated
back to the caller thread is the invocation point of the reemaethod. However, an
RMI is usually blocking while a future call is asynchronous.

JCilk [101, 38] is the one most related to our work. JCilk is aaJagsed mul-
tithreaded language that enables a "Cilk-like” parallelggeanming model in Java.
It strives to provide a faithful extension of the semanti€dava’s serial exception
mechanism, that is, if we elide JCilk primitives from a JCillogram, the result pro-
gram is a working serial Java program. In JCilk, an exceptioovtn and uncaughtin
a spawned thread is propagated to the invocation conteRkeiparent thread, which

is same as our model.

169

Chapter 8. As-if-serial Exception Handling Support

However, there are several major differences between tiesd=irst, JCilk does
not enforce ordering among spawned threads before the sgme statement. If
multiple spawned threads throw exceptions simultaneouisé/ runtime randomly
picks one to handle, and aborts all other threads in the samext. In our model,
even when there are several futures spawned in the samattiy-context, there is
always a total ordering among them, and our system seledthamdles exceptions
in their serial order. In this sense, JCilk does not maintamas semantics to the
same degree as our model does. Secondly, JCilk requisgsman statement sur-
rounded by a speciali | k t ry if exceptions are possible. In our DBLFuture model,
normal Java r y clause is sufficient. Finally, since JCilk is implementedilatary
level, it requires very complicated source level transfation, code generation, and
runtime data structures to support concurrent exceptiorectly (e.g.,cat chl et
finallet,try tree, etc.), whereas ourimplementation is much simpler thanks
to the direct access to Java call stacks and the stackmsplichnique.

There are only a few concurrent object-oriented languaggdiave built-in con-
current exception handling support, e.g., DOOCE [76], Aif@te 79], etc. DOOCE
addresses the problem of handling multiple exceptionsathrooncurrently in the
samet ry block by extending theat ch statement to take multiple parameters.
Also, multiplecat ch blocks are allowed to associated with drey block. In case

of exceptions, altat ch blocks that match thrown exceptions, individually or par-

170

Chapter 8. As-if-serial Exception Handling Support

tially, will be executed. In addition, DOOCE supports two dsnof model for the
timing of acceptance and the action of exception handlidy:waiting for all sub-
tasks to complete, either normally or abruptly, beforetstgrhandling exceptions
(using the normat r y clause); (2) if any of the participated objects throws an ex-
ception, the exception is propagated to other objects inmtedgl via anotification
messagéusing thet ry _not i clause). In addition to the common termination model
([227], i.e., execution is resumed after they- cat ch clause), DOOCE supports
resumption viathe esune orr et r y statement in theat ch block, which resumes
execution at the exception throwing point or the start oftthg block.

Arche proposes a cooperation model for exception handlimthis model, there
are two kinds of exceptiongjlobalandconcerted If a process terminates exception-
ally, it signals a global exception, which is propagatedttteo processes that com-
municate synchronously with it. For multiple concurrenteptions, Arche allows
programmers to define a customizedolution functiorthat takes all exceptions as
input parameters and returns@ncertedexception that can be handled in the context
of the calling object.

Other prior works (e.g. [123, 106, 22, 127, 158]) have foduse general models
for exception handling in distributed systems. These nsdslially assume that pro-
cesses participating in a parallel computation are orgaheordinately in a struc-

ture, such as aonversation123] or anatomic action[106]. Processes can enter

171

Chapter 8. As-if-serial Exception Handling Support

such a structure asynchronously, but have to exit the sireictynchronously. In
case that one process throws an exception, all other pexesh be informed and
an appropriate handler is invoked for all participants. Wegards to the problem
of handling concurrently signaled exceptions, a technigaded exception resolu-
tion [22] is used. Multiple exceptions are resolved to a single loased on different
resolution strategies, such as the exception resoluté@n[#2], the exception resolu-
tion graph [157], or user defined resolution functions [80].

Our exception handling mechanism for DBLFutures is diffefesm other work
in concurrent exception handling in that the intention afg@rving serial semantics
grants our model special properties that simplify the impatation significantly.
For example, the exception resolution strategy of our mmdetry simple: pick the
one that should occur first in the serial semantics. Alsbpalgh our model organizes
involved threads in a structured way (a double linked listle thread does not need
to synchronize with all other threads in the group beforémxilike the way conver-
sation and atomic action work. Instead, threads in our systdy communicate with
their predecessors and successors, and exit accordingtal @tder defined by the
serial semantics of the program.

SafeJava futures are described in [153]. Their system usestolgesioning and
task revocation to enforce the semantic transparency ofdstautomatically so that

programmers are freed from reasoning about the side-sftéttiture executions and

172

Chapter 8. As-if-serial Exception Handling Support

ensuring correctness. This transaction style supportngpteEmentary to our as-if-
serial exception handling model, and we plan to integratgatour system as part of
future work. Note that the authors of this work do mentiort Hrauncaught exception
thrown by the future call will be delivered to the caller a¢ thoint of invocation of
ther un method, which is similar to our as-if-serial model. Howeiteis unclear
as to how (or if) they implemented this since the authors igewo details on their

design and implementation.

8.6 Summary

In this chapter, we propose as-if-serialexception handling mechanism for the
DBLFutures. The goal is to identify a design that is both cotipawith the original
language design and that preserves our as-if-serial progngplementation method-
ology. Our as-if-serial exception handling mechanismveedi exceptions at the same
point as they are delivered if the program is executed sdglign In particular, an
exception thrown and uncaught by a future thread will beveedid to the invocation
point of the future call. In contrast, in the Java 5.0 impletagon of futures excep-
tions of future execution are propagated to the point in tlog@am at which future

values are queried (used).

173

Chapter 8. As-if-serial Exception Handling Support

We show that the as-if-serial exception handling mechamsegrates easily into
the DBLFuture system and preserves serial semantics sortigrgpnmers can intu-
itively understand the exception handling behavior androbim their parallel Java
programs. With DBLFutures and as-if-serial exception hagglprogrammers can
focus on the logic and correctness of a program in the seeiaion, including its
exceptional behavior, and then introduce parallelism ga#lg and intuitively. We
present the design and implementation of our exceptionlimgnohechanisms based
on the DBLFuture framework in the Jikes Research Virtual MaehiOur results
show that our implementation introduces negligible ovathtor applications with-
out exceptions, and guarantees serial semantics of egodptndling for applications
that throw exceptions.

The text of this chapter is in part a reprint of the materiaitesppears in the
proceedings of the fifth international symposium on Priles@and practice of pro-
gramming in Java (PPPJ'07). The dissertation author wagrtheary researcher and
author and the co-author listed on this publication ([1&fi¢cted and supervised

the research which forms the basis for Chapter 8.

174

Chapter 9

As-if-serial Side-effect Guarantee

The goal of our directive-based lazy futures (DBLFutureshws-if-serial excep-
tion handling support is to enable programmers to write @&agon about the logic
and correctness of programs in a serial version first, and tihétroduce potential
parallelism gradually and intuitively. To do so, users sfyegsynchronous compu-
tations that can be executed safely in parallel using theut@é” annotation. This
model simplifies parallel programming since programmeligevwin a way that is in-
tuitive to them, i.e., according to serial semantics. Initaid, this model facilitates
migration of legacy serial programs to concurrent programs

However, in this model, programmers still must reason atbdwther it is safe to
execute the future and its continuation in parallel. Theggpmomer must provide pro-
tection for shared data as necessary to avoid data raced) wdm require significant
programmer effort. To simplify this process, we relievesthurden from program-

mers via support oés-if-serial side-effect semantics. With this semantics, regard-

175

Chapter 9. As-if-serial Side-effect Guarantee

less of how the program is executed, sequentially or in [gyahe virtual machine
guarantees that side-effects occur in the same way. Notehbas-if-serial side-
effect semantics is stronger than the extant serializglgémantics that many data
race prevention techniques attempt to achieve, such aslasdd synchronization or
transactional memory techniques: in addition to seribilig, as-if-serial semantics
enforcesthe orderof side-effects according to its serial semantics. AltHotiys
may seem too strong for some cases (and may limit scalahifityconcurrency), it
provides significant programmer productivity benefit: tbaaurrent version is guar-
anteed to be correct once the programmer completes a wa&irgj version, without
requiring that the programmer debug a concurrent version.

In this chapter, we will first evaluate the prior work on thisbgect. We then
investigate ways to exploit the adaptation of the JVM to gusge correct concurrent

execution in DBLFutures.

9.1 Background: the Safe Future System

As-if-serial side-effect semantics for futures has beemstigated in the Safe
Future project [153]. In this section, we overview the pesgming model and im-

plementation of the Safe Future system, and discuss th&tions of the implemen-

176

Chapter 9. As-if-serial Side-effect Guarantee

tation on the support of easy-to-use and efficient parat@@mming using futures

in Java.

9.1.1 Programming Model

The programming model of Safe Futures is similar to that s XaFuture APIs.
The system provides &af eFut ur e class that implements the Jav&6t ur e in-
terface. To spawn a computation as a future, programmetsvfiap the computation
in a class that implements tial | abl e interface. At the spawning point, program-
mers create &af eFut ur e object that takes th€al | abl e object as a parameter,
and then call thé r un() method of theSaf eFut ur e object. Upon the invocation
of thef run() method, the system spawns a new thread to evaluate the catoput
enclosed by th&af eFut ur e object. At the same time, the current thread imme-
diately continues to execute the code right after the ctdldsd thef r un() method
(i.e., the continuation), until it attempts to use the vadlamputed by the future, when
theget () method is invoked. The current thread is blocked until tHeev&s ready.

Figure 9.1 shows a simple example that usesSdifee Fut ur e API.

9.1.2 Execution Contexts

To preserve the as-if-serial side-effect semantics, tlie Bature system divides

the entire program execution into a sequencexacution contextsEach context

177

Chapter 9. As-if-serial Side-effect Guarantee

public int () { T
Future<Integer> f =
new SafeFuture<Integer>(Cp
¢ néw AO); public class A implements
.r];m(& o: \\\ T2 Callable<Integer> {
?ﬁt ar _0 ’foo Ce S public Integer call() {
x = o.foo; .
. ’ int n = o.bar;
inty = f.get(); v Cf ofoo=1:
return X +y; l \\\\\ ’
~ return n;

}

_, >

}
@ ‘@ >

Figure 9.1: Example of execution context creation for Safe Futuresva Ja

encapsulates a fragment of computation that is executeddnygée thread. These

execution contexts are totally ordered based on the logieahl execution order,

which the system implements via a linked list of contexts.

The program execution starts with a primordial context. Jaduture invocation,

the system pauses the current context. The system creagesthnead and a future

context as well as a new continuation context. The systeigrasthe current thread

to the continuation context.

In the linked list, the current context is the predecessdaheffuture context and

the future context is the predecessor of the continuationesd. The future context

ends once it returns from the future computation. The caation context ends at

the invocation point of thget () method which retrieves the result of the future

computation. This process is depicted in Figure 9.1 for gkraxample, wheré’,,

178

Chapter 9. As-if-serial Side-effect Guarantee

Cy, andC. represent the primordial context, the future context, &edcbntinuation
context, respectively. The grayed boxes indicate the ataitend of each context.
The system resumes the primordial conteXf, once the future and continuation

contexts complete successfully.

9.1.3 Preserving As-if-serial Side-effect Semantics

The Safe Future system defines two types of data dependesiayimns:

e Forward dependency violatiow:, does not observe the effect of an operation

performed byC;

e Backward dependency violatiort”; does observe the effect of an operation

performed byC',

For the example in Figure 9.1, reado. f oo beforeT; writes to it, it has the
forward dependency violation. Alternatively, i writes too. bar before7;, reads
it, it has the backward dependency violation. If there is mation, the program
execution is defined as safe, i.e., the as-if-serial sitkee$emantics is preserved.

Every read or write to the shared data is guarded by a corvipgerted barrier,
which tracks shared data accesses by each context. Therbgmevent dependency

violations to preserve as-if-serial semantics.

179

Chapter 9. As-if-serial Side-effect Guarantee

To prevent a backward dependency violation, each contefika private copy
of all shared data that it has written to. Also, each item afetl data maintains a list
of all private copies created for it, which is sorted undgyidal context order. Upon
a write, the execution context creates a private versioheshared data, and put the
new copy tagged with the context ID (via an extra word in thectheader) into the
version list. It also replaces any reference to the dataackstith the new version
so that all subsequent reads get the correct version. Upseida the context searches
the version that tagged by itself or the version createdsomitst recent predecessor,
i.e., a context will never see a version that is created blodial future contexts,
which prevents backward dependency violation.

To prevent the forward dependency violation, the systenmtais two bit-maps
for each execution context to record reads and writes teesldata of the associated
computation fragment. Upon committing, the system deteaislicts by checking
the read bit-map of the execution context against the wittenap of all the execu-
tion contexts in its logical past. If there is any overlap,caftict is detected, and
the context is revoked, i.e., all of its side-effects arecalided, and its associated

computation is re-executed.

180

Chapter 9. As-if-serial Side-effect Guarantee

9.1.4 Committing and Revoking Execution Contexts

There are three outcomes of a context commit: succesg faitel aborted. Suc-
cess means that the side-effects are safe (i.e., they peeastif-serial semantics)
to make permanent and thus, seen by other contexts. Failadstleat all contexts
in the logical past of this context have successfully corteditbut the current con-
text has conflicts with at least one of its predecessors arsd baurevoked. Finally,
aborted means some context in the logical past of this cohtexbeen revoked, and
the current context should be discarded without re-exesyugince the current con-
text will be re-executed within a new context via re-exemuf the revoked context.
Any revocation of a predecessor context results in abodfaill contexts thereatfter.

Different kinds of execution contexts have different corttimg triggers and re-
vocation algorithms. For the future context, the systemnaptts to commit its side-
effects at the end of the future computation. The commit aftaré context triggers
the commit of its primordial context, which recursivelyggers the commit of all
contexts in the logical past. The commit of the continuationtext is triggered by
calling theget () method. The continuation context first waits for its cormrsp
ing future context to finish. If the future context abortsg ttontinuation also aborts.
Otherwise, if there is a conflict detected, the continuationtext is revoked.

Since the computation of a future context is wrapped Gahl| abl e object,

its revocation implementation is straightforward: the pomation is enclosed by a

181

Chapter 9. As-if-serial Side-effect Guarantee

loop with a successful commit as the exit condition. The caton of a continuation
context is more complex. The Safe Future system uses bydaewditing to insert
code at the beginning of a continuation, which saves the stiaall local variables
and stack locations at that point, into the future objecie $ystem also inserts extra
bytecode to restore the saved states from the future objedt,ecords the start of the
code segment as the point of revocation for the continuattnext. The bytecode
rewriter then generates new exception handling code, whnctdles the internae-
vokeexceptions that are thrown by the system when a continuatiotext is revoked.
The exception handler extracts the starting point code sagfrom the future object

encapsulated in the exception, and jumps to that point tosbvegexecution.

9.1.5 Limitations of Safe Futures

The Safe Future system is an interface-based approachstiamilar to Java 5
Futures. As we have shown in previous chapters, this apprbas programmer
productivity and performance disadvantages that we avdid our directive-based
programming model. Programmers must manually identify‘tigit” computation
granularity for spawning a future to amortize the overhetthoead and context
creation. Also, the Safe Future system requires signifiaadtunnecessary object
wrapping, which requires non-trivial rewriting to futueizhe serial program and can

result in significant memory management overhead for fiagngd futures.

182

Chapter 9. As-if-serial Side-effect Guarantee

The second limitation of this system is its assumption ofitiesar future creation
pattern, i.e., it assumes futures are created one aftenemiotthe same function. In
other words, it only allows a continuation context to cresateture, but does not allow
a future to create a future. This assumption simplifies imgletation significantly.
For example, the system can generate context identifienglsiny incrementing a
global counter and organize contexts using a single linkstd However, this also
prevents future composition: what if the future computatalls some functions in
a third-party library, which might also be futurized? Sugpm nesting is the key
to improve the composability of a program [65]. It is also aseantial requirement
for some types of applications to use futures, e.g., theddiand-conquer style of
applications with fine-grained parallelism.

Another limitation of the Safe Future system is that theredgnformation ag-
gregation in the system. Every context must check its reaqo against the write
maps of ALL of its predecessors. As this list grows, so doesotrerhead of conflict
detection.

Finally, the context management of this system is implee @t the bytecode
level. The bytecode rewriter inserts code to save and esher local states of the
program and to correctly handle revocations using excep@mdling. Such rewriting
imposes significant overhead, does not exploit the funatitynof the compiler in the

JVM, and requires extra memory space to perform local sabé&heeping.

183

Chapter 9. As-if-serial Side-effect Guarantee

In summary, the Safe Future system is unnecessarily comgiticult to use,
is only able to support a limited number of concurrent pragtgpes, and does not
exploit the rich information available in the virtual manhito improve performance.
We seek an alternative approach that preserves the agaf-siele-effect semantics
of futures more effectively and more efficiently to make tateduture programming

model practical.

9.2 Supporting Nested Futures Safely

To support as-if-serial side-effect semantics, we extanddoective-based lazy
future implementation to produce a system called Safe DBlfeu{SDBLFuture).
We employ many of the Safe Future technologies includingeddpncy violation
tracking and prevention, execution contexts, data-adzaseers, read/write bit-maps,
and version list maintenance.

However, due to the differences between our DBLFuture agpraad the Safe
Future library-level, interface-based, approach, SDBUFaits significantly different
from the Safe Future system. SDBLFuture system inheritsratjrammer produc-
tivity and performance advantages enabled by DBLFuturesefample, instead of
being forced to carefully hardcode the spawning granylarithe program, program-

mers annotate futures of any granularity. SDBLFuture autmaléy and adaptively

184

Chapter 9. As-if-serial Side-effect Guarantee

spawns futures only when doing so will improve performan€eir approach also
makes serial programs very easy to futurize through our Uied@future” annota-
tion for all potentially asynchronous computations. SDBtLFe only creates future
objects when it spawns a future (via stack splitting) — iteyates no other unneces-
sary wrapper objects. We have presented empirical refidtshow the benefits of
this approach in prior chapters.

SDBLFuture extends Safe Futures in multiple ways. First, wapert as-if-
serial side-effect semantics for any level of future negtihereby supporting a much
broader range of concurrent programs, including dividé-emnquer programs with
fine-grained, function-level parallelism. Our use of awéltmachine implementation
also significantly simplifies the implementation of asefial side-effect semantics.
We require no bytecode rewriting by associating executtoniext creation with stack
splitting. We avoid redundant local state saving and regjdoy accessing context
state directly from Java thread stacks. Finally, we impleineentext revocation with

a bit flip and thus avoid the overhead of revocation via experexception handling.

9.2.1 Layered Context ID

In the Safe Future system, each execution context has aeunantext ID. This
context ID represents the logical order among executiotesdst the earlier a context

in the logical order, the smaller its context ID. An execotomntext tags versions of

185

Chapter 9. As-if-serial Side-effect Guarantee

all objects it creates with this ID using an extra word in thgeat header. The system
uses the tagged ID of object versions to identify the comeetfor a context to read.
The system maintains a global counter which it uses to ashigmext ID when it
creates an execution context. When spawning a future, thiemsygeates the future
context first, then the continuation context to guarantegttie future context has a
smaller ID than the continuation context.

This ID-assignment scheme is simple but does not allow mgstror example,
using this ID scheme, the conte&, C;, andC. in Figure 9.1 gets ID 0, 1, 2 re-
spectively. If the future context creates another future, the new future context will
get an ID 4 using this ID scheme and the consistency betweelogiical order and
context IDs is violated. The first step to enable support stedfutures is to design
a new context ID scheme so that a new context can be createdhdbigrary nesting
level, dynamically, while preserving the order of contexts

We use a hybrid, layered approach for ID assignment. Figi@l®scribes this
scheme. The context ID can be either a pointer to an ID objeatssample ID; the
last bit of the value indicates which (0 for ID, 1 for objecthe last two bits of any
address in our system are unused due to object alignment.

For a simple context ID, we divide the most significant 30 bite 15 layers.
Each layer has one of three binary valueg; 01, and10, which corresponds to the

primordial context, the future context, and the contimatcontext of that nested

186

Chapter 9. As-if-serial Side-effect Guarantee

31 2 Lo
| | | | | Pointer to complex
010 context ID object

|X|X| |X|X| nEan n Simple context ID

(15 levels/pairs)

00 Primordial context
01 Future context

10 Continuation context

Figure 9.2: Layered execution context ID for supporting nested futures

layer, respectively. We set unused layer bits to 0 and ussaditficance to indicate
layer order. The higher the bit significance the lower thetayder.

For example, when the system spawns the first future, thererdy three execu-
tion contexts in the systend,, C'r, andC,), and their ID ar€x00000001, 0x40000001,
and0x80000001 respectively. Upon spawning, the new context inherits theext
ID of the current context, and then sets the next layerltdor a future context or
10 for a continuation context. Note that the current contest(ieat the next higher
layer, which identifies it as the primordial context of thegyp.

Except for the initial primordial context whose ID ix00000001, all contexts
are either a future context or a continuation context negato a spawning point in
the program. The same future or continuation context caméd@timordial context
of the next layer if there is nesting. For example, if the fataontextox40000001
spawns another future, the context ID of the new future carded continuation

context isOx50000001 and0x60000001, respectively. Contexix40000001 becomes

187

Chapter 9. As-if-serial Side-effect Guarantee

the primordial context for this layer. If the continuatioontextOx80000001 spawns
a future, the new context IDs ad&90000001 and0xA0000001.

Using bits from high to low significance makes all sub-cotgespawned by a
future context have context IDs that are smaller than thatlsub-contexts spawned
by the continuation context. This property is preservedtiier entire computation
tree using this model. Therefore, the values of context li@scansistent with the
logical order of execution contexts, which facilitates gienand fast version control.

Our system only supports up to 15 layers for simple contextUgually 15 layers
of nesting is sufficient for most applications since a systbould not spawn so many
layers of futures unless there is a very large number of gsmre available. Our
lazy and adaptive scheduling system is very effective inintaiatelligent spawning
decisions based on the computation granularity and themsystsource availability.
In case that more than 15 layers are necessary, we changentiie sontext ID to
a reference to a ID object that implements bit vectors to supgrbitrary levels of

nesting.

9.2.2 Tree Structure of Execution Contexts

The Safe Future system organizes all execution contextssagyke linked list
based on their logical order. With our hybrid and layeredtesnID scheme, the

single linked list structure is also sufficient to supporfesaested futures in SDBL-

188

Chapter 9. As-if-serial Side-effect Guarantee

Futures: upon spawning, we link the new future and continoatontexts together,
and then insert them after the primordial context that es#tem.

However, there are several disadvantages imposed byrtkeglilist structure. We
use the example in Figure 9.3 in the following discussior. dfarity and concision,
we use base-4 number presentation to represent the cobBexnd omit unused
layers in all of our examples unless specifically noted. @) in this figure is a
simple DBLFuture example; Graph (c) is the linked list of atated contexts.

The linked list structure of contexts loses the parentechierarchy information
of the computation in a program. By definition, both future @odtinuation con-
texts will never conflict with their primordial context siadoth contexts start after
the primordial context and there is no concurrent data adocetveen them and the
primordial context. Similarly, for the nested futures, wanwto avoid false conflicts
between a context and all of its ancestors on the spawnirg pat

For example, in Figure 9.3, the conflicts betw&gn (andC,,) andCg, Cy are
false. The condition that Safe Future uses to avoid sucé talsflicts is that two con-
texts share the same execution thread. This condition oofisifor the continuation
context in their system. So if the future context reads shimgtthat is written by the
primordial context, there is always a revocation which ismecessary. With the new
layered context ID scheme, we are able to detect ancessceddant relationship

among contexts using their context ID. However, using tiiglementation, our sys-

189

Chapter 9. As-if-serial Side-effect Guarantee

public int () { public int A() {)

@future int x, y; @future int u;

int z; int v; — T

x = AQ); u=D() (cw)0

2;28 :6;152;* v; /D() p EQ £ B() > co

rewmx ty+ 7) (o @ (@™ (@)
}

(a) (b)
(o) (o)l e (o)

(c)

Figure 9.3: Tree structure of execution contexts

tem is forced to traverse the entire list prior to a contexgetect such relationships
and avoid false conflicts.

The list implementation also prevents data aggregatiorthénSafe Future sys-
tem, the read/write maps and generated versions of an éxeaantext are kept in
the context even after the context has committed. To deteohéict, the system
compares the read map of a context against the write maps$ affitd predecessor
contexts. For example, the system performs six map congrarifor conflict detec-
tion for contextCy,. Thus, the cost of conflict detection depends on the number of
contexts — the more contexts, the larger the overhead. Merewithout complex
lock management, list access imposes costly synchrooizatierhead. Our goal is
to aggregate map information at primordial contexts antkersmple, low-overhead

access.

190

Chapter 9. As-if-serial Side-effect Guarantee

To address these limitations, we replace the linked listiemgntation with a
context tree. The Graph (b) in Figure 9.3 shows the strudarrehe contexts in the
example. In this structure, the primordial context is theepaiof the future and con-
tinuation contexts. The structure handles primordial exinduspension in a straight-
forward way. The system suspends the context at the poirt fafttire spawn and
resumes it after the future and continuation complete. Twwhgn the system com-
mits a primordial context, then it has committed the entubtsee of computation
below the context.

Upon a context commit, the system merges the shared datssaagénformation
from a child context into the parent. Specifically, the systaerges the read/write
bitmaps of the child context with that of the parent (i.e. fpans a bitwise “OR”
operation on the bitmaps). In addition, for an object versiceated by the child
context, if the parent context also has a private versiothi®same object, we replace
that version with the child’s version; otherwise, the cisildersion is tagged with
parent’s context ID and is recorded as an object versionenldsy the parent context.
Note that a continuation context initiates a commit onlytsf ¢orresponding future
context commits successfully. Therefore, our system requio synchronization for
merging.

With such information aggregation and layout, we only needheck contexts

against a root (primordial context) of a subtree as oppaseatl hodes in the subtree,

191

Chapter 9. As-if-serial Side-effect Guarantee

when checking conflicts for contexts that occur logicalleathe root. For example,
in Figure 9.3(b)(, only needs to check conflicts agaidst, andC', sinceC', has
aggregated information af,; andC\,. We require no synchronization for any tree
update since all are now thread-local. In summary, usingeadtructure of execution

contexts is more natural and efficient to support nested,fsétires.

9.2.3 Adaptive and Lazy Execution Context Creation

Our DBLFuture implementation initially treats a future cadl any other method
invocation. If the system detects that the future compaoriais computationally large
enough to amortize the overhead of spawning, it perforneksplitting to spawn a
new thread for execution of the continuation. The systemdsvoreation of future
objects until a stack split occurs. Similarly, SDBLFuturstgyn does not create new
execution contexts for a future call unless the stack smiitbccurs. This laziness of
context creation avoids unnecessary context managemertiead for fine-grained
future computations.

Given that our system waits until it determines (learng the granularity of an
executed future method, the spawn point of a future is latéme than the function
entry point of the future. Any shared data access (sharddthét continuation) that
occurs in the future prior to spawning is guaranteed to be siatce the system exe-

cutes the future prior to spawning sequentially. Thus, earding delay may avoid

192

Chapter 9. As-if-serial Side-effect Guarantee

conflicts and better enable commits in a way not possibleerS#fe Future system

which trigger spawning eagerly of all futures (without dgla

9.2.4 Simple Context Revocation

The Safe Future system implements context revocation wsingplicated byte-
code rewriting. The bytecode rewriter inserts extra bytiecthat stores and restores
the local states to and from the future object at the beggpina continuation. It
also inserts new exception handlers to catch a revocatioepton, and to transfer
control to the correct revocation point. In our system, wavjate a much simpler im-
plementation of context revocation since we have direcésto the runtime stack
frames of Java threads.

Upon stack splitting, our system spawns a new thread to éxdoe continuation,
and uses the current thread for the execution of the futute The system sets a
split flag on the future call’s caller frame to indicate the spidti When the future
call returns, it checks this flag to decide whether it shoatdnn directly as a normal
function call, or if it should store the computed value intéuture object, prior to
termination. Note that the local state of the continuat®keapt on the future’s stack
even after splitting. Since we have access to both stackeeeg not perform dupli-
cated work to save or restore these states. To revoke thimgatibon, we only need

to reset the split flag of the caller frame of the future cahllisTcauses the future call

193

Chapter 9. As-if-serial Side-effect Guarantee

to return as a normal call, and the current thread continuegecute the code right
immediately following the future call — which completes tt@¥ocation of the con-
tinuation context. This process is similar to the technitpresupporting as-if-serial
exception handling that we described in Chapter 8. To revakeuse context, we

revoke the ancestor context that is (i) closest to the futorgext and (ii) that is a
continuation context. This design may waste the work donedmge contexts, but
it simplifies the implementation of context revocation siigantly: we perform all

revocations by simply reseting the split flag.

9.2.5 Local Commit and Global Commit

Given the tree structure of execution contexts, there acepwiential strategies
for context committing. In the first strategy, the commigtiprocess only detects
local conflicts. That is, the future context always commitscessfully immediately
after it finishes computation, and the continuation contety detects conflicts it has
with its future context. After committing, we merge both texts with the parent
context, i.e., the primordial context of the group. The catting process continues
recursively up to the root of the tree. We call this strategypaal committing

In the second strategy, which we cglbbal committing a context waits for all
the contexts in its logical past to finish, and then it detectsflicts against all the

previous contexts. In case of conflicts, the system pickéitsiecontinuation context

194

Chapter 9. As-if-serial Side-effect Guarantee

(including the current context) on the path up to the roohmdontext tree for revo-
cation. In addition, since we know that all previous corgéxdve finished, we set the
read maps of the revoked context to null to avoid further ectrdietection.

Note that although logically the global committing stratdgrces a context to
wait for and test against all of its predecessors exceptg$aancestors, information
aggregation within the tree structure enables us to onlypawencontexts that contain
aggregated information for all of its predecessors. The¢ tesdidates for such ag-
gregated contexts are the future contexts that are sibdifilpe continuation contexts
that are ancestors of the current context since this setrdégts is able to cover all
predecessors with minimal number of contexts. We defines#ti®f contexts as the
test sebf a context.

For example in Figure 9.4, the test set6f; includesC,qy, while the test set for
Cy9s includesCyyq, Caa1, Ca10, andCigg. In addition, in the test set, a context need
only wait for the context that is closest to itself since thimtext is the latest in the
logical order. Committing of this context indicates thatahtexts in the test set have
committed. For example in Figure 9@;,, only waits forCys;, Coy; Waits for Cyyg,
Cs10 Walts forCygg, and so on.

The advantage of the local committing strategy is the paliaith it enables, es-
pecially when there are no or few conflicts in the programesith@re is no waiting

between a future context and its predecessor contexts ribah ather subtrees. In

195

Chapter 9. As-if-serial Side-effect Guarantee

0/
& ol @
@@@@@@

Figure 9.4: Local committing and global committing of execution corigex

particular, if the function that spawns the future is conagionally intensive (i.e.,

spends time computing after both the future and continnatantexts finish), it is

more efficient (enables more parallelism) to allow the cetstéo commit without

waiting for their predecessors. We refer to this patternashputation as having a
long tail; as opposed tehort tail computations.

The disadvantage of the local committing strategy is thdelays conflict detec-
tion. For some execution patterns, such delay can potgntalise a large amount of
work to be performed wastefully. We use the example contet in Figure 9.4 to
explain this. If there is a conflict betwe&n;, andCs,, the system will detect this
conflict when all contexts in the subtree@f,, have committed to their parent con-
texts, and wheid'yy is detecting conflicts againét;y,. After the conflict is detected,
the system will revoke the computation associated with tht@es subtree ofC5
since after meta data aggregation, the system cannotgliginthe point at which

the conflict occurs@»2s). In contrast, using the global committing strategy, tlue-c

196

Chapter 9. As-if-serial Side-effect Guarantee

flict will be detected wheit’s,, attempts to commit, and the system will revoke only
the computation of’s;.

In summary, there are tradeoffs between the two committiregegjies. The im-
pact of these tradeoffs on performance varies dependingsdindquency of conflicts,
conflict patterns, computation patterns, and other prograthsystem behaviors. To

achieve the advantages of both strategies, we propose i loglnmitting strategy.

9.2.6 Hybrid Committing Strategy

The principle of our hybrid committing strategy is to allow @many contexts as
possible to locally commit to exploit available paralletisbut identify contexts that
impose a significant delay when conflicts occur so that theygbabally commit.

The question is how to identify such contexts efficiently affdctively. First we
note that the amount of wasted work due to local committingelated to distance
between the two conflicted contexts. Since all contexts @yedlly total-ordered,
and a context only checks for conflicts against contextssinogical past, given a
certain context in the tree, the later another conflictingtext is in the logical order,
the more delay penalty due to local committing is. For examnipl the context tree

in Figure 9.4, ifC'5;, conflicts with(C', using local committing, the system detects

this conflict while committingC'5, and revokes” 5y, which wastes all work done

by contexts in the subtree 6f,5,. In contrast, with global committing, the system

197

Chapter 9. As-if-serial Side-effect Guarantee

detects the conflict while committing;»;, and as a result, revokég,, immediately
and abort€’,,. The difference between the two committing strategiesiisr¢ase is
just the partial work done bg'5; (depends on how early the abortion happens) and
the partial work done by';5 after bothC'i5; andC9, commit, which is wasted using
local committing, but not with global committing. For theseathatC,; conflicts
with C119, the local committing still cause all work done 6Y59, C'21, and Ca
wasted. But the global committing is able to preserve the vdmke byC;,; and
Ch20. The penalty difference of the two committing strategiesdoees larger. For
the case thaf’,,, conflicts withCqg, the penalty difference is even larger: global
committing is able to preserve work done by 6 contexts whsdilliwasted if we use
local committing.

We know that for each spawning point, contexts in the fututgree are all earlier
than contexts in the continuation subtree in the logicalltotder. So contexts in the
continuation subtree might appreciate global committielgtively more than those
in the future subtree as we can see from the above examplanplesheuristic we
could use is to give contexts following the continuatiorhgatthe context tree higher
priority to perform global committing than those follow the&ure path at the same
layer.

Using this heuristic, our algorithms works as follows. Weimtain a new prop-

erty, calledspawning levelfor each execution context. The spawning level of the

198

Chapter 9. As-if-serial Side-effect Guarantee

root primordial context i9). For a future context, its spawning level is the spawning
level of its parent context plus one. The spawning level obrtiouation context is
same as its parent context. The spawning levels of contexXgjure 9.4 are labeled
on the right side of the nodes. The deeper a context is in thegfgubtrees, the larger
its spawning level is. The system uses the spawning levatigate the priority with
which the system performs global committing. The smallerdpawning level is, the
higher the priority is.

We then define a parameter called tilebal committing thresholdThe system
decides whether to perform local or global committing foutufe context based on
its spawning level and the global committing threshold. Aufa context performs
global committing only if its spawning level is equal to os¢ethan the global com-
mitting threshold. A continuation context performs globammitting if the corre-
sponding future context globally commits since a contirmnatontext always waits
for its future context. The shadowed nodes in Figure 9.4esgrt contexts that are
globally committed when the global committing thresholdes$ to 1, while those not
in the shadow are locally committed.

Different applications require different global commtii thresholds to achieve
the best tradeoff between parallelism and conflict detedlielay penalty. The fac-
tors that play a role in this tradeoff include conflict freqag (no/light conflicts ver-

sus heavy conflicts), conflict patterns (who conflicts withowt), and computation

199

Chapter 9. As-if-serial Side-effect Guarantee

patterns (long tail computation versus short tail compoitgf etc. The strategy we
use is to set this threshold to 1 initially, i.e., the top twwdls of contexts are glob-
ally committed, and all other contexts are locally comnaditt€his strategy facilitates
parallelism for most of contexts, and at the same time avoiecessary delay of
conflict detection at the top levels, which usually causesmaational waste from

revoked contexts. When the system detects that a contextevdpasvning level is

greater than the current threshold is revoked, it incretmethreshold to that spawn-
ing level adaptively to avoid additional wasted work. Altigi this approach is not
optimal, it is simple and enables good performance for ahefboenchmarks that we

investigate in our experimental evaluation.

9.2.7 History-based Learning

We also exploit the adaptation of the Java virtual machirather ways in SDBL-
Futures. In particular, we investigate two learning styege that attempt to minimize
the number of revocations and wasted work adaptively ugiegbehavior of exe-
cuting contexts. The first strategy we investigate is notpld a future again if its
continuation has been revoked in the past. We callXut To-Split(NTS) learning
strategy. The rationale behind this strategy is straighthod: the continuation will
most likely be revoked, so it is better to execute sequéwntial save computation

resources.

200

Chapter 9. As-if-serial Side-effect Guarantee

pUbliC int f() { ——— creating future context

@future int X,Y, Z; / Te. » creating continuation context

R

1

2

: xeno /
5 =B(); b
8
9

w = D();

VAR
return w +x +y +z; @CO @Do

}

Figure 9.5: A simple program that spawns 4 futures

The NTS learning strategy works effectively for some confbiatterns, but not
always. We use the example in Figure 9.5 to demonstrateidextample, we create
three futures in functiorf (). The corresponding context tree is shown in the right fig-
ure. The base-4 context IDs are labeled inside each corebet, and the associated

computation is tagged on the right.

e case 1AssumeC() andD() have a conflict.

The system revoke§',, after detecting this conflict. At the same time, the
system records this information in a revocation historabase. Iff () is called
again, according to the NTS learning strategy, the systeimat spawn the
continuation for the future call’() at line 7, and the revocation is avoided.
This behavior does not change given different global commmgitthresholds

since the conflict itself is local.

e case 2AssumeB() andD() have a conflict.

201

Chapter 9. As-if-serial Side-effect Guarantee

— case 2.1The global committing threshold is 0, i.e., all contextsfpen
local committing. In this case, conflict detection is delhymtil Cy, at-
tempts to commit. The system revokes,, as a result. Next time, the
system does not spawn the continuatiorBgj at line 6. Although it will
still spawn continuations fad() andC'() since there is no revocation his-
tory in the database for these spawning points, the revmctatiprevented

sinceB() now is executed by an ancestor of the context that exec¢utes

— case 2.ZThe global committing threshold is 1, i.e., all contexts st
tree perform global committing. Now the conflict is detectduen Cyo,
attempts to commit since by global committing, the test $et'g, in-
cludesCgg, Ca10, Cao1. As a result, the system revokes,, at line 7. We
see that for the first round, the global committing strateghp$ to avoid
wasting work done by’s,;. In the second round, the NTS learning strat-
egy prevents the system from spawning the continuatiati(¢fat line 7.
However, this does not prevest) from executing concurrently with()
if the continuation at 6 is spawned. Instead, it takes lohgethe system
to detect the conflict, and one more round to prevent the egimtcom-

pletely.

Forcase 2.2the NTS learning strategy does not work effectively sitdgriores

one piece of important information: the conflict was detéctter all previous con-

202

Chapter 9. As-if-serial Side-effect Guarantee

texts ofCyy9 have successfully committed, otherwisgy, would have been aborted,
instead of revoked, based on the global committing algaritirhis information in-
dicates an important temporal property: as long as we 6&tast after all previous
contexts finish, there will be no conflict.

Based on this observation, we introduce another learniagesty: for a revoked
spawning point in the global committing zone, in the nextuinstead of simply
not splitting, the system performs the stack splitting asaysut suspends the con-
tinuation context right after its creation. The system alstetes the read maps of
the continuation context to avoid conflict detection acitbss context. Once the fu-
ture context commits itself successfully, it will resume uspended continuation
context. We refer this strategy &plit But SuspendSBS) learning strategy. This
learning strategy does not work for local committing sirfeeré is no such temporal
information can be learned from a revoked context that iallpcommitted. There-
fore, we use the NTS strategy for the local committing zoreetae SBS strategy for
the global committing zone, which makes it a hybrid stratége refer this hybrid
strategy aiNTS+SBSearning strategy. Now focase 2.2in the second round, the
continuation context’ys is still spawned at line 7, but suspended uatih; com-
mits successfully and notifies U9, will not perform any conflict detection since
its read-map is null. The system effectively prevents ratioaos and wasted work

completely.

203

Chapter 9. As-if-serial Side-effect Guarantee

9.2.8 Integration with As-if-serial Exception Handling

As-if-serial exception handling attempts to preserve tkeeption handling be-
havior of a concurrently executed future application a$ Vere executed sequen-
tially. This simplifies the task of writing concurrent apgations using futures further
since programmers now can reason about the exception hgris#havior of an ap-
plication in the serial version, and then introduce “@fatuannotations to improve
parallelism without worrying about the exception handl@pavior of the concurrent
version. In Chapter 8, we describe and evaluate our implaatientof as-if-serial ex-
ception handling support for DBLFutures.

Note that the true as-if-serial exception handling sencardiefines which and
where exceptions thrown by concurrently executed comjmsshould be handled,
which was the focus of Chapter 8. However, this semanticsratpaires that all side-
effects caused by computations that are before the hanzt=p®on in the logical
serial order be preserved, while those side-effects trairathe logical future of
the handled exception be discarded. We cannot preservpartisf the as-if-serial
exception handling semantics without the as-if-seria¢-stfect support. Now, with
the as-if-serial side-effect guarantee provided by the SBBure system, we can
support the complete semantics of as-if-serial exceptaorhng, which is our focus

of this section.

204

Chapter 9. As-if-serial Side-effect Guarantee

In Chapter 8, we maintain a total ordering on thread termomasicross threads
that originate from the same future spawning point and exeeconcurrently. In SD-
BLFutures, maintaining this total ordering of threads aré mecessary since we
can derive the required ordering information of threadsnfriheir associated ex-
ecution contexts, which are totally ordered based on tlgjichl serial execution
order. Therefore, all extra data structures that we inttedun algorithms in Chap-
ter 8 for this purpose, such as the new fields of the intermahth objects including
futurePrev,futureNext,andconmi t St at us, are not necessary anymore.

In addition, in Chapter 8, we augment the algorithmfutire StoreandfutureLoad
in the DBLFuture system with the logic that enables the curferead that is wait-
ing for the previous thread in the total ordering to finish atehnup itself if it is
aborted before performing the real actions of both fundtiaee Figure 8.5 and Fig-
ure 8.6). This augmentation is necessary to preserve thieotatering on termination
of threads in this case.

However, in the SDBLFuture system, similar logic is alreadytof the algo-
rithms offutureStoreandfutureLoadto preserve the as-if-serial side-effect semantics,
except that we use execution contexts instead of threads. nidans that the extra
work in futureStoreandfutureLoadthat was required to support as-if-serial exception
handling now comes for free in the SDBLFuture system. Moredhe cleanup on

abortion that is performed by the SDBLFuture system includesoving all private

205

Chapter 9. As-if-serial Side-effect Guarantee

object versions that are created by the aborted contexteSire side-effects of an
execution context are kept as private object versions dfatiatext and will not be

visible until it commits, such cleanup reverts all sideseft of the computation as-
sociated with the aborted context completely which caneaddne by algorithms in

Chapter 8.

The only extra algorithm that is still necessary to supperifaerial exception
handling in the SDBLFuture system is the exception delivégprthm, which has
similar logic to that of the delivery algorithm in Figure 8but with slightly differ-
ent implementation details since now the total orderingniglemented via execution
contexts instead of threads. The new exception deliveryrghgn is shown in Fig-
ure 9.6.

Comparing to the normal exception delivery algorithm in tinenadified virtual
machine, this exception delivery algorithm has two extrdspal he first part is exe-
cuted before searching for a handler in the compiled methtteaurrent frame (line
3 ~ 11 in Figure 9.6). This part ensures that an exception throwa bgntinuation
context, but that is not handled within the continuationteshbefore it unwinds to
the splitting frame, will not be handled unless the curremttext commits success-
fully.

Successfully committing the current context indicates #ileside-effects of the

concurrent executed contexts up to this point are guardritede same as if the

206

Chapter 9. As-if-serial Side-effect Guarantee

©CoO~NOUWNPE

voi d deliverException(Exception e) {

while (there are nore frames on stack){
if (the current frame has a split future) {
/1 a frame for a continuation context
current Context = current Thread. executi onCont ext ;
try to globally commt current Context;
if (currentContext is aborted || currentContext will be revoked){
cl eanup current Cont ext ;
term nate current Thread,;
}
}

search for a handler for e in the conpiled nmethod on the current stack;
if (found a handler) {

jump to the handl er and resume execution there;

/1 not reachable

if (the current frame is for a future function call
&& its continuation has been spawned) {
current Context = current Thread. executi onCont ext ;
try to globally commt current Context;
if (currentContext is aborted) {
cl eanup current Cont ext ;
term nate current Thread;
}el sef
abort continuationContext;
reset the caller frame to non-split status;

}

unwi nd the stack frang;
}
/1 No appropriate catch bl ock found
report the exception and terninate;

Figure 9.6: Algorithm for the exception delivering point in the SDBLFuttsystem

program is executed sequentially. Therefore, we can ptbtesearch for a handler

in the current compiled method as in serial execution. Butéf ¢urrent context is

aborted or revoked, which indicates that the current exaeptay not have existed if

the program is executed sequentially, the current corgeteaned up and the current

exception is ignored. Note that a continuation context Is@ads and commits at

the usage point of the future value, but in case of exceptibesds and commits at

the exception throwing point.

207

Chapter 9. As-if-serial Side-effect Guarantee

The second extra part in this algorithm (lie ~ 28 in Figure 9.6) occurs after
a handler is searched but not found in the current frame, @&hord the stack is
unwound to the next frame. Similar to the first part, this pagures that an exception
thrown by a future context, but that is not handled locallgrewhen the stack is
unwound to the stack frame of the future call, will not be Haddunless the future
context commits successfully. In case of abortion, theemrcontext is cleaned
up and the exception is ignored as in the first part. If thertutontext is indeed
successfully committed, to handle the thrown exceptiorhercurrent stack as if the
future call is a normal call as we described in Section 8.5&,system resets the
split flag of the caller frame to revert the stack splittingheTsystem also aborts the
continuation context, which recursively aborts all cotgar the logical future of the
current context, and reverts all side-effects caused bsetleentexts that should not
exist if the program is executed sequentially. Finally, sheck is unwound, and the
algorithm is repeated for the next stack frame.

In summary, supporting as-if-serial exception handling preserving as-if-serial
side-effect semantics have many common requirements ansheaie many common
implementations. Therefore, integrating the support ef-gerial exception handling
support to the SDBLFuture system is simple and straightfodwisloreover, with the

underlying support of preserving as-if-serial side-effan the SDBLFuture system,

208

Chapter 9. As-if-serial Side-effect Guarantee

the complete as-if-serial exception handling semanti¢schvalso defines the side-

effect behavior in the presence of exceptions, is now supgor

9.3 Performance Evaluation

We have implemented SDBLFutures over the DBLFuture systenchal im-
plemented in IBM Jikes Research Virtual Machine (JikesRVM)][6«86 version
2.4.6). For comparison, we also port the Safe Future systeimetsame version of
JikesRVM. Again, our test machine is a dedicated 4 procdssoi(Intel Pentium 3
(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) that was useddibiof our pre-
vious experiments. Since optimizations are essentiahi®SDBLFuture system to
reduce the significant overhead caused by the large amouveadfwrite barriers, we
only present experiment with the VM configuration that engplan adaptively opti-
mizing compiler. We use pseudo-adaptation [14] to redugedeierminism in our
experiments.

In the following sections, we evaluate the performance ofSIDBLFuture sys-
tem. First, we compare its performance with our DBLFuturgesysand the Safe
Future system for a set of benchmarks that have no dependasations. We then

study the performance impact of our various strategiesimvitre SDBLFuture sys-

209

Chapter 9. As-if-serial Side-effect Guarantee

tem, such as local committing versus global committing, diffdrent learning strate-
gies for a wide rage of computation patterns and conflicepast

For all the experiments in this section, we measure the ¢xgctme (I') of each
configuration, and present the speedup over the serial ggedime (I,), which
is computed ad/7T. That is, if the speedup is bigger than 1, there is performanc
improvement over serial execution. Otherwise, there iBp@ance degradation over

the serial version.

9.3.1 Performance of Benchmarks with No Dependency Viola-
tions

For experiments in this section, we use two sets of bencrsndilike first set in-
cludes three benchmarkSirypt, Series SparseMatmujtfrom the multithreaded ver-
sion of Java Grande Benchmark Suite [133]. The second satiesktwo benchmarks
(Fib, Adaptin) from the divide-and-conquer style of benchmarks that wepset
from the Satin system [148]. There are no data races (ca@)flicthese benchmarks,
so there is no revocation overhead.

The number of created futures for the benchmarks in the #tsisshe number
of processors used (up to 4 for a 4-processor machine). fOnerehe overhead of
managing execution contexts for these three benchmarkegigible. We use this

set of benchmarks to show the overhead of tracking accessbsited data.

210

Chapter 9. As-if-serial Side-effect Guarantee

Speedup over serial execution

Speedup over serial execution

2.0

= DBLFuture
= SDBLFuture
1.5 = SafeFuture

1.0+
- “ |—I |—I |—I
\\ 1
X . Q:O O Q\' O
OéQ @Q}\ ’Z’ré\ 6'er\ XN
5 v
>
o

(a) With 1 processor

| == DBLFuture

5| = SDBLFuture
{1 =@ SafeFuture

4 -

3_

2_

1_

0

(b) With 4 processors

Q\‘O

Figure 9.7: Performance evaluation of the SDBLFuture system for bencdksweaith
no dependency violations comparing to the DBLFuture systamf{rst bar) and the
Safe Future system (the third bar). The left three benchsnaresent applications
with a small number of coarse grained futures and the rightrepresent applications
with a large number of fine-grained futures. There is no desdlable for the Safe
Future system for the second set of benchmarks since thisnsydoes not support
nested futures.

211

Chapter 9. As-if-serial Side-effect Guarantee

In contrast, there are a large amount of futures createchtotwo benchmarks
in the second set given their recursive nature, and ther&ear@accesses to shared
data. Thus, we use this set of benchmarks to evaluate théeaerof execution
context management. Figure 9.7 shows the speedup (degradat: 1) gained by
the SDBLFuture system for each benchmark over its unmodiégdl®xecution. For
comparison, we also show the performance of the DBLFutureesys/hich has no
as-if-serial side-effect guarantee and the Safe Futuresyen the side. The Safe
Future system does not support nested futures, so theredatador the second set
of benchmarks for this system.

Our results show that for the first set of benchmarks, theopmdnce of our
SDBLFuture system is about the same as that of the Safe Fuytstens since they
share the same implementation for tracking accesses te dag. In addition, the
overhead is similar to DBLFuture system, which does not hayesapport of the as-
if-serial side-effect semantics. On average, with 1 preaefGraph (a)), the speedup
(degradation in this case) caused by the DBLFuture systen§EBLFuture system,
and the Safe Future system, &@8, 0.93, 0.92, respectively. With 4 processors
(Graph (b)), all systems are able to achieve almost lineen super-linear speedup
(on averagéd.22, 3.31, and3.31 for the three systems in order) for these benchmarks.
The super-linear speedups we believe, are due to the inghrtaia locality of the

multithreaded versions of the benchmarks over their seeiaions.

212

Chapter 9. As-if-serial Side-effect Guarantee

The results for the second set of benchmarks, which havgagmount of poten-
tial future spawning pointss(78 million for Adaptint, 102.33 million for Fib), show
that the management of execution contexts in our SDBLFuistes introduce neg-
ligible overhead compared to the unsafe DBLFuture systera.aVbrage degradation
of the DBLFuture system and the SDBLFuture system with 1 psmresre).64 and
0.62, while with 4 processors, the speedupsapd and2.19 on average.

In summary, for benchmarks without data races, our SDBLIEutystem intro-
duces acceptable overhead for tracking accesses to steteedrdaddition, the over-
head of managing execution contexts, even with a large nuofdatures, is negli-
gible comparing to the un-safe DBLFuture system. With mormamating resources
available, our SDBLFuture system is able to achieve gooddsgeéor both set of

benchmarks.

9.3.2 Parallelism of Local Commit versus Global Commit

In our SDBLFuture system, local committing is a committingustgy that allows
an execution context to commit to its parent without waitiogother contexts in its
logical past. The conflict detection algorithm for local qoitting only tests conflicts
in the scope of the current context group. That is, the futorgext of the group al-
ways commits successfully to its parent, and the continnatontext only fails when

it has conflicts with its future context. The conflict deteatwith other predecessor

213

Chapter 9. As-if-serial Side-effect Guarantee

c 40
s Tl
- R SN
S 3.0 AL TS
< s
CIL) A \‘.\\
n T e - __
5 2.090 —x— shortTail AL ¢
> A
S ---a-- longTail Arvorea A
E3 - -— - randomTail
B 1.0
[}
o
)
0.0 T T T T T T 1
0 1 2 3 4 5 6 7

Global committing threshold

Figure 9.8: Performance impact of global committing threshold for @as compu-

tation patterns. The longTail pattern refers to the casteaharge amount of work
is executed after the continuation context ends in a funcfidve shortTail pattern is
the opposite case, and the amount of work distributed dfeecontinuation context
ends in the randomTail pattern is randomly generated afglifabetween the other
two cases.

contexts is delegated to the parent context. In contrastglitbal committing strat-
egy requires a context to wait for and to test against allexdstin its logical past.
Our system employs a hybrid scheme that adaptively chobse®mmitting strategy
for an execution context according to its spawning level #redglobal committing
threshold, which is a dynamically changed parameter of gstes. In this section,
we investigate the parallelism of the committing strategig the next section, we
will compare their ability to handle dependency violatiagigen different conflict
patterns.

The benchmark we use for this study is a synthetic prograredobas the Fi-

bonacci computation (Fib). We modify Fib to make each ragargvocation of

214

Chapter 9. As-if-serial Side-effect Guarantee

fi b() dosome extra amount of computation so that its executianig €énough to
trigger the spawning testing. We also modify our systemsiecimodel to always
split the stack when making the spawning decision. Thesdfioations help us to
force the system to generate large enough layeigs pur experiments) of nested
futures that we can use for further evaluation of our systé&r. the extra amount
of computation in each invocation, we divide it into two garbne part is executed
before the future call, and the other part is executed dfecontinuation ends (the
usage point of the value computed by the future). We changesttio of these two
parts to model three computation patterns: (1) All work iselbefore the future call
(shortTail); (2) All work is done after the continuation ender{gTail); (3) The ratio
between the two parts is randomaiidomTai). We then collect execution time for
all three patterns and different global committing thréddbo Figure 9.8 shows the
speedups over the serial execution for all configurations.

The results shows that with the shortTail pattern, the catimgi strategy does
not impact performance. However, for the longTail pattéhe, smaller the global
committing threshold is, i.e., the more contexts are albweedo local committing
without waiting, the larger speedup the system is able toeeseh The curve of the
randomTail pattern falls in between the two extreme pastdrat still shows the same

trend as the longTail pattern does.

215

Chapter 9. As-if-serial Side-effect Guarantee

In summary, when there are no or few dependency violatitraslacal commit-
ting strategy enables more parallelism compared to glotwaineitting. This is the
reason that we choose to set the initial global committimgshold to a small num-
ber so that more parallelism in the program could be exmloita next section, we
will explain why we set threshold to 1 instead of O althouglhchiaves the best per-

formance for the experiments in this section.

9.3.3 The OO7 Benchmark with Controlled Conflict Patterns

The OO7 benchmark suite [25, 24] is a well known benchmarkéndbjected-
oriented database field. The OO7 benchmark operates onaadfiaral structure of
data. On the top level, there are a certain number of modeksh consisting of
several assemblies, which consist either of some comppaits (abaseassembly)
or several assemblies @mplexassembly). Each composite part consists a number
of atomic parts that may connect to others via a bi-direatimmection. The number
of modules, assemblies per module, assemblies per assspddimposite parts per
assembly, atomic parts per composite part, and the layezsieéd assemblies are all
controllable via program parameters. For each iteratidghe@éxecution, the program
performs a certain number of operations on this data hieyaeach operation ran-
domly follows paths in the hierarchy tree to pick a compogéd, and then traverses

the atomic parts of that composite part. For each visitethat@art, the program

216

Chapter 9. As-if-serial Side-effect Guarantee

either changes some attributes of that part if it is a writet does nothing. Another
nice parameter is the lock depth of data accessing. Thisgea controls at which
level, a lock is used to protect a data access. The deepevdkealépth is, the finer
the lock’s granularity is.

The authors of [153] choose this benchmark to evaluate tHerpgance of the
Safe Future system since it allows easy control over the atmoiucontention for
access to shared data via flexible benchmark parameterasutdtabase structures,
ratios between private and shared reads/writes. In thek wioey useV/ +1 modules
for M futures. Each future has a private module for private reattes, and the extra
module is used for shared reads/writes.

In this work, we also use the OO7 benchmark to evaluate thi®mpeance of
our SDBLFuture system. The purpose of this set of experimientts investigate
the ability of our system to handle dependency violatiorth wifferent committing
strategies (local versus global), and different learnitigtegies (no learning, not-
to-split (NTS), or split-but-suspend (SBS)). We find thahaiigh the fractions of
private/shared reads/writes could control the contengoel of shared data in the
program, they do not directly reflect the conflict patternoagfutures due to the
randomness of data access distribution. To make the resals meaningful in our
evaluation, we have modified the OO7 benchmark and set upxiperiments as

follows:

217

Chapter 9. As-if-serial Side-effect Guarantee

Instead of generatingy/ + 1 modules forM futures, we only generate 1 module

for all futures. That is, all data accesses are shared at dlaeilien level.

At each hierarchy, we generaté + 1 sub-components (assemblies or compos-
ite parts). Thenth future picks theath sub-component to operate on if it's a

private operation. Otherwise, it operates on the last subponent.

Each future performs a set of operations, including zeronar shared read,

zero or one shared write, and several private reads andswrite

Whether a future performs shared read/write is controlled psogram param-
eter, callecconflict pattern The conflict pattern parameter is used as a bit-map,
with higher bits representing earlier futures. A futurel\werform one shared
read and one shared write if its corresponding bit in the cxirghttern is set.
For example, with 4 futures, if the conflict pattern ig)0, then the first and sec-
ond futures both perform the shared data access, whiclisésal dependency
violation between them. We tried 12 conflict patterns for tfes, including

0000, 1100, 1010, 1001, 0110, 0101, 0011, 1110, 1101, 1011, 0111, and1111.

The timing of the shared write operation among all operatisncontrolled
by a parameter calledritePosition The value of this parameter @sto 100.

0 means that the shared write operation should be done asshegeration,

218

Chapter 9. As-if-serial Side-effect Guarantee

while 100 means it should be the last operation. A valumeans the shared

write operation should be performed afté of operations have been done.

e For each execution of the OO7 benchmark, two identical titana are exe-
cuted. Each iteration spawg futures, each works ofV operations. For all

results in this set)/ =4, N = 10.

e Other parameters of OO7 are set as same as in [153]: 7 asstawbly, 20
atomic parts per composite part, 3 connections per atonmt¢ goad the docu-

ment size is 2000 bytes, the manual size is 100000 bytes.

By removing the randomness in the program and designatingmeafic path for
shared data accesses, we guarantee that if it is a sharedopeitation, it indeed op-
erates on the same component, which will result in a depaydaalation. This help
us to understand the results better and to draw meaninghalusions accordingly.

For each conflict pattern, we have investigated two globalradting thresholds
and three learning strategies. For the OO7 benchmark,taligsiare created linearly
at the same level. So setting global committing threshold naake all contexts lo-
cally committed. If it's set to 1, all contexts are then glthpaommitted. We tried
both setting to study their performance across differenflmb patterns. The three
learning strategies we evaluated include no learnBasig, not-to-split if revoked

(NT9, and not-to-split if locally committed and split-but-g&nd if globally commit-

219

Chapter 9. As-if-serial Side-effect Guarantee

ted NTS+SB$ The results are shown in Figure 9.9 (for 1 processor) agdrEi9.10
(for 4 processors). Each graph in these two figures repregentormance data for
all strategy combinations for one particular conflict patttel he x-axis is the global
committing threshold used. The y-axis is the speedup oféhersd iteration over the
serial execution. We choose to show the performance of ttmnsedteration to eval-
uate the effectiveness of different learning strategidsclvare represented by the
three bars in the graphs. In addition, to help understandethdts better, we list the
total number of created futures and revocations for eacligimation in Table 9.1.
In each column of data, the first number is the total numbereéted futures for
two iterations. The corresponding revocation count igtlsnside the parentheses.
Theses numbers are the same for 1 processor runs and 4 processbecause they
are only dependent on conflict patterns. Note that the nuwifdfertures created and
the number of revocation do not always map to the executioe.tFor example, it is
possible that the number of futures created by a faster éreads larger than a slow
execution since there might be more futures created buklyuadorted in the first
case. Butin general, these two numbers reflect the amountr&f wcluding wasted
work, that one execution has done. Especially the revatati@ve a big impact on
end performance.

Our first observation from these results is that when theme igarning involved,

the global committing strategy works better than the locahmitting strategy in gen-

220

Chapter 9. As-if-serial Side-effect Guarantee

| oBasic. ®mNTS m NTS+SB

n
iancn

Speedup over serial execution
o [N w B
| I ! 1

Speedup over serial executid
o [l N w B
| I ! 1

Speedup over serial executid
o [l N w B
L 1 1 1

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(a) conflict pattern: 0000 _(b) conflict pattern: 1100 _ (c) ciehfpattern: 1010

Speedup over serial execut
o [N w IS
| I ! 1

Speedup over serial executio
o [N w BN
| I ! 1

Speedup over serial execution
o = N w BN
L 1 1 1

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(d) conflict pattern: 1001 _(e) conflict pattern: 0110 _ (f) cantfpattern: 0101

10

Speedup over serial execut
o [N w
| I ! 1
Speedup over serial executi
o [N w ESN
| I ! 1
Speedup over serial execution
o [N w
L 1 1 1

IN

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(h) conflict pattern: 0011 (i) conflict pattern: 1110 _ (j) cactfpattern: 1101

Speedup over serial execut
o [N w B
| I ! 1
Speedup over serial execut|
o [N w IS
| I ! 1
Speedup over serial execution
o [N w B
L 1 1 1

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(k) conflict pattern: 1011 () conflict pattern: 0111 (m) cactfpattern: 1111

Figure 9.9: Performance impact of global committing threshold andrieay strate-
gies on the 12 controlled conflict patterns of the OO7 benckifiaprocessor).

221

Chapter 9. As-if-serial Side-effect Guarantee

| oBasic. ®mNTS m NTS+SB

n
iancn

Speedup over serial execution
o [N w B
| I ! 1

Speedup over serial executid
o [l N w B
| I ! 1

Speedup over serial executid
o [l N w B
L 1 1 1

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(a) conflict pattern: 0000 _(b) conflict pattern: 1100 _ (c) ciehfpattern: 1010

Speedup over serial execut
o [N w IS
| I ! 1

Speedup over serial executio
o [N w BN
| I ! 1

Speedup over serial execution
o = N w »
L 1 1 1

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(d) conflict pattern: 1001 _(e) conflict pattern: 0110 _ (f) cantfpattern: 0101

10

Speedup over serial execut
o [l N w
| I ! 1
Speedup over serial executi
o [l N w £y
| I ! 1
Speedup over serial execution
o [l N w
L 1 1 1

IN

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(h) conflict pattern: 0011 (i) conflict pattern: 1110 _ (j) cactfpattern: 1101

Speedup over serial execut|
o [N w B
| I ! 1
Speedup over serial execut|
o [N w IS
| I ! 1
Speedup over serial execution
o [N w N
L 1 1 1

0 1 0 1 0 1
Global committing threshold Global committing threshold Global committing threshold

(k) conflict pattern: 1011 () conflict pattern: 0111 (m) cactfpattern: 1111

Figure 9.10: Performance impact of global committing threshold and rieey
strategies on the 12 controlled conflict patterns of the O&whmark (4 processors).

222

Chapter 9. As-if-serial Side-effect Guarantee

Conflict Local Committing Global Committing
patterns| Basic NTS NTS+SBS| Basic NTS NTS+SBS
0000 8 (0| 8 (0) 8 (0) 8 (O)| 8 (0 8 (0)
1100 14 ()| 10 1| 10 @] 14 @ 10 1) 10 (1
1010 14 (2)| 10 (1) 10 ()| 12 (2)| 11 (2) 9 (1)
1001 14 (2)| 10 (1) 10 ()| 10 2| 9 (2 8 (1)
0110 12 (2)| 9 (1) 9)| 12 2| 9 (1) 9 (1)
0101 12 2)| 9 (1) 9)] 10 @] 9 @ 8 (1)

8

1

0

0011 | 10 (2| 8 () 8 (1)) 10 (2| 8 (1) (1)
1110 | 22 (6)| 10)| 10 2| 18 4| 11 @] 11 (2
1101 | 22 (6)| 10 ()| 10 (2| 16 4| 11 @] 10 (2
1011 | 18 ()| 9 (2) 9) 14 (@] 10 (3 9 (2)
0111 | 16 (6)| 8 (2) 8) 14 4| 9 (2 9 (2
1111 | 30 (14)| 8 (3) 8 (3| 20 (6)| 11 (3)| 11 (3)
Avg | 16.0(4.2)] 9.1(1.4)] 9.1(1.4)] 13.2(2.8)| 9.7(1.8)] 9.2(1.4)

Table 9.1: The number of created futures and revocations of the firsitevations
for the 12 controlled conflict patterns of the OO7 benchmasikg different global
committing thresholds and learning strategies.

eral for this benchmark. For example, for the worst conflattgrn1111 (see Graph
(m) in Figure 9.9 and Figure 9.10), i.e., all futures confiaceach other, the speedup
value (degradation) on 1 processor with local committing.l, while the global
committing strategy is able to achiev@85, although still very low due to the heavy
conflicts in this pattern. This is because the global conimgjtstrategy enables ear-
lier detection of dependency violations, and has finer ginevocation (revoking the
problematic context instead of the whole subtree of somesdacof the problematic
context). From Table 9.1, we see that the local committirsgllts in 30 futures and
14 revocations, which is a significant amount of wasted wditke global commit-

ting reduces the number to 20 futures and 6 revocations,hadrie much lower. On

223

Chapter 9. As-if-serial Side-effect Guarantee

average, without learning (the first bar of all graphs), theal committing achieves
speedup.50 with 1 processor, andl.32 with 4 processors. While the speedups of
global committing ar®.58 and1.46 for 1 and 4 processors respectively. Based on the
above observation, we set the initial global committing#old of our SDBLFuture
system to 1 instead of O to take advantage of the betteryabfliglobal committing

to handle revocations for applications like OO7.

The second observation from these results is that the rglio(NTS) learning
strategy works very effectively to reduce wasted work faalocommitted contexts.
For example, for the worst pattett11, NTS is able to reduce the number of created
futures from 30 to 8 with only 3 revocations, instead of 14té\ihat for this conflict
pattern, the NTS strategy not only helps to eliminate retrona completely in the
second iteration since it learns that all spawning poirgsnat safe, it even helps in
the first iteration to avoid splitting the same spawning paepeatedly which reduces
wasted work significantly . The average speedups gaineddgttiategy combination
are(.86 for 1 processor antl.47 for 4 processors, which are much better comparing
to the basic, non-learning configuration.

The third observation is that for globally committed cogexhe NTS strategy
improves performance for some conflict patterns, but degraérformance for other
patterns including 010, 1001, 0101, 1011. We found that this is because the NTS

strategy delays the conflict detection in the second i@matiue to its not-to-split

224

Chapter 9. As-if-serial Side-effect Guarantee

decision. For example, for the conflict pattéi 0, in the first iteration, the conflict
is detected when the first future attempts to commit. As altiebe system revokes
the whole continuation of the second future. Now in the sddteration, the NTS
strategy decides not to spawn the continuation of the seftduce, which makes the
second future perform double amount of work that was donénbysecond and the
third futures in the first iteration. The conflict is detectetden the second future
attempts to commit, which is much later comparing to the fiesation. When there
are 4 processors, the performance impact of this delay besamre significant since
the NTS strategy results in idleness of some processorshveoiuld have been used
to detect the conflict earlier. On average, the strategy amatibn (global committing
+ NTS) achieved).73 speedup with 1 processor, which is slightly better than the
basic, non-learning configuration. With 4 processors, {eedup gained by this
combination is onlyi.20, which is worse than the basic, non-learning one.
Fortunately, our hybrid NTS+SBS learning strategy worksematelligent than
the NTS strategy does. For locally committed contexts, tkedhe exact same way
as the NTS strategy. Therefore, their performance numbreralanost the same.
For the globally committed contexts, this strategy expldite temporal information
available in a revocation, i.e., all contexts in the logipakt of the current context
have committed successfully at the point when the conflde¢tscted, thus, as long as

the current context starts after its previous context casyrthere will be no conflict.

225

Chapter 9. As-if-serial Side-effect Guarantee

So instead of simply not splitting, this strategy splits buspends the problematic
context in the second round, which eliminates revocatiorthe second iteration for
all the patterns. The average speedups gained by thisgstredenbination (global
committing + NTS+SBS) are.89 and1.52 for 1 and 4 processors respectively, which
is the best performing strategy combination among what wesiigated.

Another interesting observation is that the performancsltg of not learning,
which is significant with 1 processor, becomes much sma#leen negligible for
some cases, when there are more processors available. dakes sense because with
extra processors, it is OK to perform some wasted work if wtigee some processors
are idle. In addition, in some cases, it actually helps tectetonflicts earlier com-
paring to other learning strategies. Of course, with lichitemputation resources,
it's better to employ learning strategies to avoid wasteckvas much as possible.

In summary, the combination of global committing and therig/kearning strat-
egy, i.e., NTS for locally committed contexts and SBS for glbpbcommitted con-
texts, is the most effective strategy among all strategylsoations across all conflict
patterns to prevent wasted work given revocation historytfe studied benchmark.

We next compare the OO7’s performance using our SDBLFutwstesy (using
the best strategy combination) with three other altereaticoarse-grained lock im-
plementation, fine-grained lock implementation, and Safeifés. For both lock im-

plementations of OO7, we use 4 threads instead of futuresrform same amount

226

Chapter 9. As-if-serial Side-effect Guarantee

| o CoarselLock @ FineLock m SafeFutureo SDBLFuture-1stm SDBLFuture—an
=
4

w
|

=
|

Speedup over serial execution
N
!

Speedup over serial executio

o
|

el

early late early late
Conflict write position Conflict write position
(a) average with 1 processor (b) average with 4 processor

Figure 9.11: Average performance of lock-based, SafeFuture, and SDBIt&ut
implementations of the OO7 benchmark across 12 controbbedlict patterns. The
conflict write position parameter specifies when a sharetbwsiperformed among
all operations. “early” means the shared write is the firsggrapon, while “late”
means the shared write is the last operation. SDBLFuturésike performance of
the first iteration for the SDBLFuture version, and SDBLFutBrel is for the second
iteration. For the other three versions, only the perforeeasf the second iteration is
shown since there is no difference between the two.

of assigned operations. For the coarse-grained lock versie set the lockDepth
parameter of OO7 to 1, which synchronizes at the module.l&althe fine-grained
lock version, we set the lockDepth to 9, which synchronizetha composite part
level. The Safe Future version is similar to our SDBLFuturesian, but using the
interface-based SafeFuture APIs. Another parameter wedt@s this set of exper-
iments are the timing of the shared write. We tried both em&ease: early write
(writePosition = 0) and late write {rite Position = 100). Again, we collect the

results for all conflict patterns. Figure 9.11 gives the agerspeedups across all

227

Chapter 9. As-if-serial Side-effect Guarantee

conflict patterns for each implementation version and waasition. For the SDBL-
Future version, we show the results for both the first itera(EDBLFuture-1gtand
the second iterationSDBLFuture-2niito demonstrate its learning ability. For the
other three versions, only the data for the second iterasiarsed since there is no
difference between the two iterations. The left graph dosttne results for 1 proces-
sor, and the right graph is for 4 processors. The x-axes isdh#ict write position
used, and the y-axes are the speedups over the serial executi

First of all, from these results, we can see that coarsewggdock limits the par-
allelism of the program. The speedup of this version of OG¥ a aboutl for
both conflict write positions with 1 or 4 processors, whicham&this coarse-grained
lock implementation basically serializes the program. @irse, this implementa-
tion (lock at the module level) is kind of dumb and extremd, ibmakes the point
that coarse-grained lock is easy to program, but might herfiopmance due to its
limited parallelism. With more processors, the fine-grditack version performs
much better than the coarse-grained one since it enablels mare parallel execu-
tions. In terms of conflict patterns, both lock-based versiare not as sensitive as
the two future-based implementations, since there is nocadion, thus, no wasted
work in the lock versions. But with 4 processors, the positbrthe shared write
does makes a difference on the performance of the fine-grémek implementation

(average speedups &€ for early, and3.16 for late). This is because the later the

228

Chapter 9. As-if-serial Side-effect Guarantee

conflicted write is, the later each thread has to synchronitteother threads, and as
a result, the better parallelism of the execution is.

Second, we find that for the early conflict write pattern, oDB&EFuture system
performs much better than the Safe Future version. The gee@eedup achieved by
the Safe Future version with 4 processork4§ in this case, while the SDBLFuture is
able to achiev8.00 speedup, which is even better than the fine-grained lockorers
whose average speedupigl. Thisis due to the laziness of our SDBLFuture system:
a future is split only after the system has executed it for dendnd predicts that it's
beneficial to split it given its granularity and current gyatresource availability.
With the early conflict write pattern, this laziness helpsvant all conflicts in the
execution since the spawning happens after the shared hastdoeen done by the
current primordial context. The reason that the SDBLFutersion works better than
the fine-grained lock version in this case is that there isymalsronization overhead
in the SDBLFuture version provided its optimism nature imteiof data contention
(i.e., assume no contention initially, but revoke if coniens occur).

For the late conflict write pattern, the SDBLFuture versiomkgasimilarly to the
Safe Future version for the first iteration, but it is abledduce the penalty of revoca-
tions more effectively in the second iteration which carb®tione by the Safe Future
implementation. Again, with more processors, this diffeebecomes smaller since

the performance penalty of wasted work is not big anymoré wibre computation

229

Chapter 9. As-if-serial Side-effect Guarantee

resources available. The average speedups with 1 prodess62 versus0.89 for
the Safe Future version and the SDBLFuture version resgdgtiwhile with 4 pro-
cessors, the results arel8 versusl.52.

Finally, we find that with extra computation resources, datlare implementa-
tions, which even have significant revocation overheall,agthieves better perfor-
mance than the coarse-grained lock version. This is engmgaince the goal of
many automatic memory protection techniques, includinig Satures, our SDBL-
Futures, and all transactional memory work, is to achievt bte easiness of using
coarse-grained locks to program, and the efficiency of fia@gd locks. Our results
show some promising potentials of these systems in thistibre

In summary, for applications with no dependency violatjomsr SDBLFuture
system introduces acceptable overhead for tracking shdeitsd accesses and for
maintaining meta data. In addition, the overhead of marmpgiecution contexts
is negligible even for a large amount of futures. For appilices do have shared data
contentions, our SDBLFuture system is able to achieve bp&gormance than the
Safe Future system, sometime even better than the fineegréock version, thanks
to its laziness and the learning ability that are enabledkpioging the rich, low level

information and the adaptation of the Java virtual machine.

230

Chapter 9. As-if-serial Side-effect Guarantee

9.4 Related Work

Besides the SafeFuture system [153], which we have discussgéction 9.1,
the techniques we use to preserve as-if-serial side-eftFnantics in our SDBLFu-
ture system are related to two closely related active abedsbth exploit optimistic
concurrency: thread-level speculation (TLS) and trangaat memory (TM).

Thread-level speculation (TLS) is a technique that attertgautomatically ex-
tract parallelism from sequential programs. It optimisllic execute chunks of code
in the sequential program in parallel threads although uinsertain whether those
code areas are actually independent. The system tracks niyaeuess to detect any
inter-thread data dependency violations according toeghalexecution ordering. In
case that any dependency violation does occur, the offgriiread is squashed, and
all side-effects of the offending thread is discarded. Té&hnhiques complement the
traditional parallel compiler techniques and help to ex@gtra parallelism from the
applications whose data dependency information cannatalgzed statically. There

has been a rich body of research on TLS, which are either mgaéed completely in

hardware (e.g. [134, 147, 146, 61, 138]), or completely ftwere (e.g. [124, 60, 91,
33,119)), or hybrid(e.g. [137, 62, 118, 34]). Most of the won TLS has targeted

at the loop-level parallelism (e.g. [147, 34, 43, 30, 60,,123]). Others exploit the

231

Chapter 9. As-if-serial Side-effect Guarantee

speculative parallelism at the method-level parallelieny.([29, 152, 116, 31, 105]),

even at basic block level (e.g. [150]).

SDBLFutures share many common aspects with TLS techniquesyith one
big difference: the SDLFuture system relies on programrteerdentify the poten-
tial parallelization points using the “@future” annotaitsy while one of the main
tasks of TLS systems is to automatically identify paratiglion candidates via static
analysis (e.g. [43, 31]) or profile informations (e.g. [3051111, 156]). The co-
operative model between programmers and the system of SOBtdasignificantly
simplifies the compiler and runtime implementation sincegpammers usually have
better knowledge of the program structure and semanticsweMer, those future
annotations are only hints to the system, and we still neezhtefully select prof-
itable spawning points that are able to amortize paraiébn overhead, and that
have less probability of dependency violations. Currently,have exploited some
profile-based techniques to refine the parallelization ickates, such as the sampling
based adaptive and lazy future scheduling mechanism anceWoeation history-
based learning strategies. In future work, we could appéy dtatic analysis and
profile-based techniques that have been exploited in the Wiu®s to make wiser
scheduling decisions.

Transactional memory (TM) is an optimistic synchronizatiechnique that was

proposed as an alternative to lock-based synchronizatdith the transactional

232

Chapter 9. As-if-serial Side-effect Guarantee

memory programming model, programmers enclose code seti@ should be ex-
ecuted atomically in a transaction, and the system guaaritee atomicy and se-
rializability of transaction executions and at same tinterapts to achieve as high
concurrency as possible. The TM model is much simpler to useh&lps address
many problems of lock-based synchronization, such as e priority inversion,
non-composability, etc. It has been an active researchraceatly. Similar to TLS,
these works can be categorized to hardware-based (e.¢6378, 114]), software-
based (e.g. [131, 71, 64, 46, 66, 2, 110]), or hybrid (e.g2[88, 37, 129, 23, 132]).
There are two main differences between SDBLFutures and Thhtgues. First,
TM techniques target at the synchronization problem, wiia@rthogonal to the par-
allelization problem. The TM techniques usually assumé ¢bacurrent execution
has been introduced to the program via some parallelizatiotiel, such as threads.
In contrast, our SDBLFuture is a parallel language constuith introduces par-
allelism to serial programs. To guarantee the as-if-ssidg-effect semantics, our
system maps the whole concurrent tasks (futures and catitbms) as transactions,
which is more aggressive than most of current TM work thay om&ps critical sec-
tions to transactions. Secondly, there is no ordering camstin general TM sys-
tem, while our SDBLFuture system enforces the as-if-ser@é¢iong among all tasks.
Nevertheless, SDBLFutures can be seen as one applicatiod afiddel with serial

ordering constraints. Therefore, as part of future work.system could exploit many

233

Chapter 9. As-if-serial Side-effect Guarantee

techniques that attempt to reduce the overhead of TM systspscially those run-

time optimizations [66, 2] and adaptation among varioudémentation alternatives

[128, 108, 109].
9.5 Summary

In summary, our SDBLFuture system inherits many programmefyctivity and
performance advantages from the DBLFuture system. SDBLE&tnwifds upon and
extends extant work on safe future implementation, yetides/support for nested
futures, improved efficiency, and a simpler implementatiBg employing the rich,
low-level information available in the Java virtual maahjrand the JVM'’s ability
to learn about and modify program behavior dynamically, weable to construct
a simple system that dynamically adapt the performance atla vange of applica-
tion and computation patterns. These features enablesigrgforward and efficient
programming model for parallel computing in Java that sifigd programmer effort

significantly and advances the current state of the art in-baskd parallelization.

234

Chapter 10

Conclusion

Providing an easy way to program applications for a diversitcomputing de-
vices for average developers is a real challenge in the epgrBsive computing.
Specialized in their own application areas, computingcevdiffer in terms of capa-
bility and resource availability. A fair amount of expertdwledge is required to write
programs on different devices to achieve efficiency. Java,universal programming
language for a large spectrum of devices, is portable, tilersand easy to program.
However, its potential to reconcile the differences amoagaks and to provide a
uniform, efficient and powerful programming method by immyilag device specific
knowledge in its runtime system has not been exploited tmégimal extent. More
specifically, the real power of Java resides in its runtimecakon environment, i.e.
the Java virtual machine (JVM). The JVM has accurate runtifeemation of both
program execution and system resources, can access to idymatme services and

low level runtime constructs and is able to make adaptivésg@tbased on the run-

235

Chapter 10. Conclusion

time information and apply control over the runtime sersic# is this adaptability

that enables this thesis work.

10.1 Contribution

In general, this thesis work contributes to the goal of ptmg easy and efficient
Java programming for diverse devices by applying JVM’s gatagn to the problem
of automatic management of system resource and capaligjficiency. By en-
abling this management in JVM runtime system and simplgyitnin programming
interface, programmers do not have to make explicit effants$ thus can be more fo-
cused on the application logic. By utilizing the JVM runtine\sces and constructs,
the system resources and capabilities can be managed inesefffiorent way, which
is not achievable at application level.

In particular, our work focuses on two problems: managindeconemory on
resource constrained devices, and providing easy ancegifigtogramming interface
for exploiting the parallel capability of multi-core systs.

Just-in-time (JIT) compiler enables high performance oM3V However, on
resource constrained devices, e.g. smart phones, peigital assistants (PDAS),
etc., JIT-based JVMs have limited presence. One of the reasons is that compiled

native code occupies a large amount of memory. By analysidindehat there is

236

Chapter 10. Conclusion

a great potential to remove “dead code” from the code memdytlaus reduce the
memory footprint of JIT compilers. However, it is not fedsibo unload “dead code”
at application level by programmers. We build an adaptivedeconloading system
based on modern JVMs’ runtime services that completelyraating the process of
code memory management. By monitoring the system resousskalaility in real
time and making unloading decision according to a cost{itemedel, we are able
to greatly reduce code memory size for a set of Java benclsmlvk also achieve
better performance for most of these benchmarks due to eeldyarbage collection
overhead. This part of our work makes it more promising tayagpl compilation
technology to mobile devices to achieve faster executieedpf Java programs.

At the high end, multi-core processors have made their wey niot only just
high performance servers, but also daily-used desktops.nidre and more widely
available massive hardware parallelism demands an easgfficidnt programming
support to extract maximal performance from the hardwares fbtential candidate
is Java future. Future as a language construct aims to ma&igbprogramming easy
to do. However, the current future implementation in Javaoitsonly cumbersome,
but also inefficient. It is mostly because it is built at tHeéiry level and lacks runtime
support. Programmers have to manually create and schedtdélgh future tasks
using their inaccurate hunches. We build an adaptive sysiesupport better future

programming in the following four aspects:

237

Chapter 10. Conclusion

e A lazy future support that creates and schedule future aatioally accord-
ing to the computation granularity and the available haréwearallelism. We
achieve optimal performance for a set of benchmarks thabrsparable to

hand-tuned alternatives with much less programmer effort.

e A directive-based future programming interface. With tlailsguage support,
programmers can identify parallelism in their programsibypte annotations.

It also has the performance benefit due to the reduced fubjeetacreation.

e As-if-serial exception handling support. This makes ityetmsmigrate serial
programs to parallel environment. Programmers can simplgldp and reason
serially and switch to parallel version without worryingaaib changing the
exception handling behavior. The empirical results shoat the introduce

negligible overhead.

o As-if-serial side effect guarantee. This enables “safeé(ifes. Programmers
thus do not need to worry about access to shared objects goaoalie! future
tasks. Itis also easy to switch from serial program sincestreal access or-
der of shared objects maintains. Our support of “safe” edwgnables nested

futures, simplifies implementations and improves perforoea

238

Chapter 10. Conclusion

In summary, our safe, directive-based, lazy future (SDBLFa)timplementation en-
ables easy and efficient parallel programming for devicek miassive parallelism

capability, which may accelerate the adoption of multiectechnology.

10.2 Future Work

This thesis work is our attempt to achieve the ultimate gbaihabling easy and
efficient programming for diverse devices. It is far from quete. We believe it
can be improved in many aspects. In particular, there dtergtny interesting open
research problems associated with the SDBLFuture system.

First, our online future scheduling system takes both @ogand system behav-
ior to make profitable spawning decisions. Currently, we leyoited the estimated
execution time and revocation history of contexts colléatia low overhead online
profiling techniques to guide this decision. We plan to explmore static and dy-
namic program information to refine this decision model. &xample, we could
perform static analysis and dynamic profiling to estimagerttemory accessing pat-
terns of contexts, and use that to avoid spawning potentalhflicting contexts.

Second, there are various implementation alternativetsdoking shared data ac-
cesses, detecting conflicts, and managing execution dsnté¥e want to evaluate

these alternative to achieve better performance. For ebeatgre are two important

239

Chapter 10. Conclusion

methods to maintain speculative updates to shared datée-buffering and undo-
logging. With write-buffering, an execution context keepgrivate copy of every
shared data it has modified, and makes them visible to otheexis only after suc-
cessfully committing. Undo-logging instead writes theaddirectly to the shared
memory, but keeps logs for undoing its side-effects in cdseewocation. It has
been shown in the transactional memory (TM) community tinaiodlogging is more
efficient in most situations [128]. However, given the tatadering constraint of ex-
ecution contexts in our SDBLFuture system, it is unclear Wisdetter. We want to
make a contrast study as our future work.

Third, our current implementation associates executiariecas with the whole
future and continuation computation, which might resulvany long contexts. As
we have demonstrated in our discussion on local commit aoldaglcommit, the
granularity of contexts has a great impact on overall peréorce, because larger
contexts lead to more wasted computation in case of revmwati Fortunately, the
as-if-serial semantics does not require us to map contéxte doundaries of future
and context computation, although that is the simplest andt mature mapping.
One optimization we could explore is to slice the contextsadyically to reduce the
computation size so that when conflict happens, we can rendikesr granularity and

save more “innocent” work. However, slicing means creatimage context and thus

240

Chapter 10. Conclusion

larger overhead in maintaining them. We want to apply ouptda infrastructure to
achieve the balance and eventually better performance.

Our as-if-serial methodology provides great programmedpctivity benefit,
however, it also limits the potential parallelism due thesg total ordering con-
straint. It would be interesting to investigate how muchafialism is sacrificed in
order to preserve the as-if-serial semantics, includinggption handling behavior
and side effects. Based on this study, we want to provide an&thd of annotation,
say “@ufuture”, to allow programmers informing the systanrelax the ordering
constraint to improve better performance.

In addition, complete software-level implementation ofB8[F-utures suffers the
hight overhead of managing shared data accessing. If a heedvansactional mem-
ory or thread-level speculation system is available (sayltBC system from Stan-
ford [63]), it would be very interesting to investigate a higbsystem, where the
language level future semantics is mapping to the low owtherdware support
to improve performance, while the software (virtual maefigystem provides more
flexible policy control and adaptation.

Moreover, we want to use our SDBLFutures to develop a widegahgeal appli-
cations, such as web servers, game engines, to study thiéitysaid limitations of

the future programming model, and to gain insights on a bp#gallel programming

241

Chapter 10. Conclusion

model that is easier to use and able to provide the runtintersygreater flexibility
to improve performance.

Beyond our two foci, namely code management and easy anceefficitures, in
this thesis work, we believe the adaptive infrastructurddiM that we build is appli-
cable in a broader area. Specifically, we want to explore tssipility of managing
energy consumption adaptively in JVM. This is interestimge power has become
a critical issue not just for battery powered low end devideg also for high end
servers and desktops (e.g. the global warming problem).

Finally, given our experiences in supporting adaptive ises/to solve program-
ming problems, we want to study a better virtual machinegtesiFor example, we
want to provide modular programming interfaces to fadéiteasy exploitation of the
JVM'’s adaptation for other language designs, especiaflygtsy and efficient parallel

programming models.

242

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and JicBnoth. Fast,
Effective Code Generation in a Just-In-Time Java CompilerPrivceedings
of the ACM SIGPLAN Conference on Programming Language Desidim-
plementation (PLDl)pages 280-290. ACM Press, May 1998.

A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. $aland T. Sh-
peisman. Compiler and runtime support for efficient softwaa@sactional
memory. InProceedings of the 2006 Conference on Programming language
design and implementatippages 26—-37. Jun 2006.

E. Allan, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G5.LJr., and
S. Tobin-Hochstadt. The Fortress language specificatimiore0.785. Tech-
nical report, Sun Microsystems, 2005.

E. Allan, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G5.LJr., and
S. Tobin-Hochstadt. The Fortress language specificatimsiore0.954. Tech-
nical report, Sun Microsystems, 2006.

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Chengd).JChoi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. LieBérLitvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. Tiap& Virtual
Machine.IBM Systems JournaB9(1):211-221, 2000.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leisersord &n Lie.
Unbounded transactional memory. HPCA '05: Proceedings of the 11th
International Symposium on High-Performance Computer itecture pages
316—-327, Washington, DC, USA, 2005. IEEE Computer Society.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. ajptive opti-
mization in the Jalage JVM: the controller’s analytical mode. Brd ACM
Workshop on Feedback-Directed and Dynamic Optimizatidd¥P-3), Dec.
2000.

243

Bibliography

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.apdive optimiza-
tion in the jalapeo jvm. IiProceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, pplications (OOP-
SLA'00) pages 47-65, 2000.

M. Arnold, M. Hind, and B. Ryder. An empirical study of setee optimiza-
tion. In 13th International Workshop on Languages and Compilers éoakel
Computing (LCPC’0Q)August 2000.

M. Arnold, M. Hind, and B. G. Ryder. Online feedback-dited optimization

of java. InProceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applicat{®@OPSLA'02)
pages 111-129, 2002.

M. Arnold and B. G. Ryder. A framework for reducing the cobinstrumented
code. InProceedings of the ACM SIGPLAN 2001 conference on Progragimin
language design and implementation (PLDI'Ofgges 168—-179, 2001.

The AspectJ Project. http://www.eclipse.org/aspect

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a trareqmt dynamic op-
timization system. IfProceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PL.pjges 1-12. ACM
Press, 2000.

S. M. Blackburn and A. L. Hosking. Barriers: friend or foéf? Proceedings
of the 4th international symposium on Memory managenpages 143-151,
2004.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, KRendall,
and Y. Zhou. Cilk: an efficient multithreaded runtime systémProceedings
of the fifth ACM SIGPLAN symposium on Principles and practigeacallel

programming pages 207-216, 1995.

D. Box. Essential .NET, Volume I: The Common Language Runtiddison
Wesley, Nov. 2002.

G. Bracha, J. Gosling, B. Joy, and G. Stekhe Java Language Specification
Addison Wesley, second edition, June 2000.

D. Bruening and E. Duesterwald. Exploring Optimal Corapdn Unit Shapes
for an Embedded Just-In-Time Compiler.3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-3)ec. 2000.

244

Bibliography

[19] D. Bruening, T. Garnett, and S. Amarasinghe. An infiactire for adap-
tive dynamic optimization. IfProceedings of the International Symposium on
Code Generation and Optimization (CG(Qages 265-275. IEEE Computer
Society, Mar. 2003.

[20] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkil. J. Serrano,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The jalapeo dignaptimiz-
ing compiler for java. InProceedings of the ACM 1999 conference on Java
Grande pages 129-141, 1999.

[21] D. Callahan and B. Smith. A future-based parallel languéy a general-
purpose highly-parallel computer. 8elected papers of the second workshop
on Languages and compilers for parallel computipgges 95-113, 1990.

[22] R.H. Campbell and B. Randell. Error recovery in asynchrersystemslEEE
Trans. Softw. Eng12(8):811-826, 1986.

[23] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. BronshrCasper,
C. Kozyrakis, and K. Olukotun. An effective hybrid transac@l memory
system with strong isolation guarantees. Froceedings of the 34th Annual
International Symposium on Computer Architecturen 2007.

[24] M. J. Carey, D. J. DeWitt, C. Kant, and J. F. Naughton. Ausateport on the
007 oodbms benchmarking effort. @OPSLA ’'94: Proceedings of the ninth
annual conference on Object-oriented programming systéenguage, and
applications pages 414-426, New York, NY, USA, 1994. ACM.

[25] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007 berak. InSIG-
MOD '93: Proceedings of the 1993 ACM SIGMOD international fevence
on Management of datpages 12-21, New York, NY, USA, 1993. ACM.

[26] ChaiVM. http://www.chai.hp.com.

[27] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kials. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an object-oriented apprtmobn-uniform
cluster computing. IfProceedings of the 20th ACM SIGPLAN conference on
Object oriented programming systems languages and apits pages 519—
538, 2005.

[28] A. Chatterjee. Futures: a mechanism for concurrencyrgabjects. InSu-
percomputing '89: Proceedings of the 1989 ACM/IEEE confegeon Super-
computing pages 562-567, 1989.

245

Bibliography

[29] M. K. Chen and K. Olukotun. Exploiting method-level plelsm in single-
threaded java programs. RACT '98: Proceedings of the 1998 International
Conference on Parallel Architectures and Compilation Tegbhag page 176,
Washington, DC, USA, 1998. IEEE Computer Society.

[30] M. K. Chen and K. Olukotun. The jrpm system for dynamigadarallelizing
java programs. INSCA '03: Proceedings of the 30th annual international
symposium on Computer architectupages 434-446, New York, NY, USA,
2003. ACM.

[31] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. Ke.LEompiler
support for speculative multithreading architecture yitbbabilistic points-to
analysis. InPPPoPP '03: Proceedings of the ninth ACM SIGPLAN symposium
on Principles and practice of parallel programmingages 25-36, New York,
NY, USA, 2003. ACM.

[32] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicipglo: Java under
dynamic optimizations. IRroceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation (PLD))'Pages 13—
26, 2000.

[33] M. Cintra and D. R. Llanos. Toward efficient and robust waite speculative
parallelization on multiprocessors. RPoPP ’'03: Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of paradtelgram-
ming pages 13-24, New York, NY, USA, 2003. ACM.

[34] M. Cintra, J. F. Maiinez, and J. Torrellas. Architectural support for scalable
speculative parallelization in shared-memory multipssogs. InISCA ’00:
Proceedings of the 27th annual international symposium om@&der archi-
tecture pages 13-24, New York, NY, USA, 2000. ACM.

[35] The cldc hotspot(tm) implementation virtual maching/hite Paper, 2003.
http://web2.java.sun.com/products/cldc/wp/CLIBIotSpotWhitePaper.pdf.

[36] F. Cristian. Exception handling and software fault talece. IEEE Transac-
tions on Computers31(6):531-540, 1982.

[37] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. MoirdaD. Nussbaum.
Hybrid transactional memory. IASPLOS-XII: Proceedings of the 12th inter-
national conference on Architectural support for programgilanguages and
operating systempages 336—346, New York, NY, USA, 2006. ACM.

246

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. S. Danaher. The jcilk-1 runtime system. Master'ssiheMassachusetts
Institute of Technology Department of Electrical Enginegrand Computer
Science, June 2005.

S. Debray and W. Evans. Profile-guided code compresdliorProceedings
of the ACM SIGPLAN Conference on Programming Language Desidira-
plementation (PLDl)pages 95-105. ACM Press, 2002.

G. Desoli, N. Mateey, E. Duesterwald, P. Faraboschd, ArA. Fisher. Deli: A
new run-time control point. IProceedings of the 35th Annual International
Symposium on Microarchitecture (MICR@pgges 257-268, Nov. 2002.

P. C. Diniz and M. C. Rinard. Dynamic feedback: an effecteehnique for
adaptive computing. IRroceedings of the ACM SIGPLAN conference on Pro-
gramming language design and implementatipages 71-84, 1997.

M. Drini¢, D. Kirovski, and H. Vo. Code optimization for code compiess
In Proceedings of the International Symposium on Code Gemeraind Op-
timization (CGO) pages 315-324. IEEE Computer Society, 2003.

Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. NgA cost-driven
compilation framework for speculative parallelizationsefquential programs.
In PLDI '04: Proceedings of the ACM SIGPLAN 2004 conference am Pr
gramming language design and implementatioages 71-81, New York, NY,
USA, 2004. ACM.

K. Ebcioglu, E. R. Altman, M. Gschwind, and S. W. Sathagnamic binary
translation and optimizationlEEE Transactions on Computers0(6):529—
548, 2001.

Ellis, T. M. R., I. R. Phillips, and T. M. Lahey.Fortran 90 Programming
Addison Wesley, first edition, 1994.

R. Ennals. Efficient software transactional memory. hfecal Report IRC-
TR-05-051, Intel Research Cambridge Tech Report, Jan 2005.

J. Ernst, W. Evans, C. W. Fraser, T. A. Proebsting, anduscb. Code com-
pression. IrProceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDbages 358-365. ACM Press,
1997.

K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M. Arste. Quantifying
the energy consumption of a pocket computer and a Java Mnaehine. In

247

Bibliography

Proceedings of ACM SIGMETRICS International Conference orshMiement
and Modeling of Computer Systerpages 252-263, June 2000.

[49] S. J. Fink and F. Qian. Design, implementation and at&ua of adaptive re-
compilation with on-stack replacement. Broceedings of the International
Symposium on Code Generation and Optimization (CGiayes 241-252.
IEEE Computer Society, Mar. 2003.

[50] C. Flanagan and M. Felleisen. The semantics of futureitangse in program
optimization. INPOPL '95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 209-220, 1995.

[51] M. Frigo, C. E. Leiserson, and K. H. Randall. The implenagion of the cilk-5
multithreaded language. FProceedings of the ACM SIGPLAN conference on
Programming language design and implementatjmages 212—-223, 1998.

[52] G. W. Hill. ACM Alg. 395: Student’s T-DistributionCommunications of the
ACM, 13(10):617-619, Oct. 1970.

[53] Gartner Inc., Market Share: Mobile Terminals, Worldej 2Q06, Aug. 2006.
http://www.gartner.com/.

[54] Gartner Inc., Quarterly Statistics: PDA and Smartgh&hipment Forecast,
Mar. 2007. http://www.gartner.com/.

[55] IDC’s Worldwide Quarterly PC Tracker, Jan. 2007. htipww.idc.com/.
[56] IDC’'s Worldwide Quarterly PC Tracker, Apr. 2007. htfpnvw.idc.com!/.

[57] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazyatise implementing
a fast parallel callJ. Parallel Distrib. Comput.37(1):5-20, 1996.

[58] J. Gosling, B. Joy, G. Steel, and G. BracHi&e Java Language Specification
Second EditionAddison Wesley, second edition, 2000.

[59] A. S. Grimshaw. Easy-to-use object-oriented pargtecessing with mentat.
Computer 26(5):39-51, 1993.

[60] M. Gupta and R. Nim. Techniques for speculative run-tipaeallelization
of loops. InSupercomputing '98: Proceedings of the 1998 ACM/IEEE con-
ference on Supercomputing (CDRQNdages 1-12, Washington, DC, USA,
1998. IEEE Computer Society.

248

Bibliography

[61] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, aadOluko-
tun. The stanford hydra cmpEEE Micro, 20(2):71-84, 2000.

[62] L. Hammond, M. Willey, and K. Olukotun. Data speculatsupport for a chip
multiprocessor. IRSPLOS-VIII: Proceedings of the eighth international con-
ference on Architectural support for programming languaged operating
systemspages 58—-69, New York, NY, USA, 1998. ACM.

[63] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, Rrtzberg,
M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Tracisanal mem-
ory coherence and consistency. IBCA '04: Proceedings of the 31st annual
international symposium on Computer architectupage 102, Washington,
DC, USA, 2004. IEEE Computer Society.

[64] T. Harris and K. Fraser. Language support for lightiaeigansactions. In
Object-Oriented Programming, Systems, Languages, anticAtipns pages
388-402. Oct 2003.

[65] T. Harris, M. Herlihy, S. Marlow, and S. Peyton-Jones. n(pmsable mem-
ory transactions. IfProceedings of the ACM Symposium on Principles and
Practice of Parallel Programming, to appealun 2005.

[66] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optmmg memory trans-
actions. InProceedings of the 2006 Conference on Programming language
design and implementatippages 14—-25. ACM Press, Jun 2006.

[67] K. Hazelwood and J. E. Smith. Exploring code cache euicgranularities in
dynamic optimization systems. Rroceedings of the International Symposium
on Code Generation and Optimization (CG@ages 89-99. IEEE Computer
Society, 2004.

[68] K. Hazelwood and M. D. Smith. Code cache management sebdan dy-
namic optimizers. IrProceedings of the Workshop on Interaction between
Compilers and Computer Architecture (Interact-pages 92—100, Feb. 2002.

[69] K. Hazelwood and M. D. Smith. Generational cache mameagg of code
traces in dynamic optimization systems.Hroceedings of the 36th Annual In-
ternational Symposium on Microarchitecture (MICR@ages 169-179, Dec.
2003.

[70] J. Henry C. Baker and C. Hewitt. The incremental garbagkecidn of pro-
cesses. IrProceedings of the 1977 symposium on Artificial intelligenad
programming languagepages 55-59, 1977.

249

Bibliography

[71] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scher. Software
transactional memory for dynamic-sized data structuresgep 92—-101, Jul
2003.

[72] M. Herlihy and J. E. B. Moss. Transactional memory: amttural support
for lock-free data structures. ISCA '93: Proceedings of the 20th annual in-
ternational symposium on Computer architectyrages 289-300, New York,
NY, USA, 1993. ACM.

[73] B. Hindman and D. Grossman. Atomicity via source-tofseutranslation.
In MSPC ’'06: Proceedings of the 2006 workshop on Memory systeforpe
mance and correctnesgages 82-91, 2006.

[74] The Java Hotspot performance engine architecture, . ApB99.
http://java.sun.com/products/hotspot/whitepapet.htm

[75] The Java HotSpot Virtual Machine. White
Paper, 2001. http://java.sun.com/products/
hotspot/docs/whitepaper/Jat#otSpot WP_Final 4_30_01.ps.

[76] S.ichi Tazunekiand T. Yoshida. Concurrent exceptiamdtiag in a distributed
object-oriented computing environment. IMPADS '00: Proceedings of the
Seventh International Conference on Parallel and DistrdalSystems: Work-
shops page 75, Washington, DC, USA, 2000. IEEE Computer Society.

[77] Intel Research Advances ’'Era Of Tera), Feb. 2007.
http://www.intel.com/pressroom/archive/releasesrZED4comp.htm.

[78] I. Intermetrics, editor.Information Technology — Programming Languages —
Ada ISO/IEC 8652:1995(E), 1995.

[79] V. Issarny. An exception handling model for parallebgramming and its
verification. INSIGSOFT '91: Proceedings of the conference on Software for
citical systemspages 92-100, 1991.

[80] V. Issarny. An exception handling mechanism for paladbject-oriented pro-
gramming: Towards reusable, robust distributed softwdoeirnal of Object-
Oriented Programming6(6):29-39, 1993.

[81] H. A. James and K. A. Hawick. Data futures in discworldn HPCN
Europe 2000: Proceedings of the 8th International Confeeena High-
Performance Computing and Networkjnmages 41-50, London, UK, 2000.
Springer-Verlag.

250

Bibliography

[82] Java Remote Method Invocation Specification.
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/.

[83] JavaOne 2007 Press Kit, May 2007. http://www.sun.aadtsun/media/
presskits/javaone2007/index.jsp.

[84] IBM Jikes Research Virtual Machine (RVM). http://www-
124.ibm.com/developerworks/oss/jikesrvm.

[85] BEA JRockit, Java for the Enterprise. http://www.
bea.com/content/newsvents/whitepapers/BEAJRockit Ent-

Javabusinesswp.pdf.

[86] JSR166: Concurrency utilities. http://java.sun.c@s¢y/
1.5.0/docs/guide/concurrency.

[87] JSR 175: A Metadata Facility for the JavaTM Programmirenguage.
http://jcp.org/en/jsr/detail?id=175.

[88] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive executiomméques for smt
multiprocessor architectures. Rroceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel programmipgges 236246,
2005.

[89] Kaffe — An opensource Java virtual machine, 1998. Hitpvw.kaffe.org.

[90] M. Karaorman and P. Abercrombie. jcontractor: Introithg design-by-
contract to java using reflective bytecode instrumentatorm. Methods Syst.
Des, 27(3):275-312, 2005.

[91] I. H. Kazi and D. J. Lilja. Javaspmt: A speculative thigaipelining paral-
lelization model for java programs. Ii*DPS '00: Proceedings of the 14th
International Symposium on Parallel and Distributed Presiag page 559,
Washington, DC, USA, 2000. IEEE Computer Society.

[92] A. Krall. Efficient JavaVM just-in-time compilationnlProceedings of the In-
ternational Conference on Parallel Architectures and Coumtin Techniques
(PACT) pages 205-212. North-Holland, 1998.

[93] D. A. Kranz, J. R. H. Halstead, and E. Mohr. Mul-T: a higeHormance
parallel Lisp. InProceedings of the ACM SIGPLAN 1989 Conference on Pro-
gramming language design and implementatjpeges 81-90, 1989.

251

Bibliography

[94] C. Krintz. Coupling On-Line and Off-Line Profile Informah to Improve
Program Performance. International Symposium on Code Generation and
Optimization (CGO’03)Mar. 2003.

[95] C. Krintz and B. Calder. Using Annotation to Reduce Dynampti@ization
Time. InProceedings of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLPpages 156167, June 2001.

[96] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the®ead of Dy-
namic Compilation Software-Practice and Experienc&L(8):717-738, 2001.

[97] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldsies. Lumetta,
T. von Eicken, and K. Yelick. Parallel programming in sgitth Supercomput-
ing '93: Proceedings of the 1993 ACM/IEEE conference on Sigueputing
pages 262-273, 1993.

[98] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. kdiytsansac-
tional memory. InProceedings of Symposium on Principles and Practice of
Parallel ProgrammingMar 2006.

[99] Java(TM) 2 Platform Micro Edition(J2ME(TM)) Technol-
ogy for Creating Mobile Devices. White Paper, May 2000.
http://java.sun.com/products/cldc/wp/KVMwp.pdf.

[100] D. Lea. A java fork/join framework. IJAVA '00: Proceedings of the ACM
2000 conference on Java Grangmges 36—43, 2000.

[101] I.-T. A. Lee. The JCilk multithreaded language. Mastéresis, Massachusetts
Institute of Technology Department of Electrical Enginegrand Computer
Science, Aug. 2005.

[102] T. Lindholm and F. Yellin.The Java Virtual Machine SpecificatioAddison
Wesley, second edition, Apr. 1999.

[103] B. Liskov and L. Shrira. Promises: linguistic suppoot efficient asyn-
chronous procedure calls in distributed systemsProceedings of the ACM
SIGPLAN 1988 conference on Programming Language desigihnaplémen-
tation, pages 260-267, 1988.

[104] B. Liskov and A. Snyder. Exception handling in CLUEEE Transactions on
Software EngineeringSE-5(6):546-558, Nov. 1979.

252

Bibliography

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]
[113]

[114]

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, afi@rellas. Posh:
a tls compiler that exploits program structure.ARoPP '06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and peofiparallel
programming pages 158-167, New York, NY, USA, 2006. ACM.

D. B. Lomet. Process structuring, synchronizatior estovery using atomic
actions. InProceedings of an ACM conference on Language design fobtelia
software pages 128-137, 1977.

S. Lucco. Split-stream dictionary program compressi In Proceedings of
the ACM SIGPLAN Conference on Programming Language Designrand
plementation (PLDl)pages 27-34. ACM Press, 2000.

V. J. Marathe, W. N. Scherer Ill, and M. L. Scott. Desigadeoffs in mod-
ern software transactional memory systemsPiaceedings of the 7th Work-
shop on Languages, Compilers, and Run-time Systems forBe&ut-
ers Houston, TX, Oct 2004.

V. J. Marathe, W. N. Scherer Ill, and M. L. Scott. Adagtisoftware trans-
actional memory. InProceedings of the 19th International Symposium on
Distributed ComputingCracow, Poland, Sep 2005. Earlier but expanded ver-
sion available as TR 868, University of Rochester Computeer®a Depit.,
May2005.

V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Bsiat, W. N. Scherer
[Il, and M. L. Scott. Lowering the overhead of software tractsonal memory.
Technical report, Jun 2006. Held in conjunction with PLDDBO0Expanded
version available as TR 893, Department of Computer Scidiecwersity of
Rochester, March 2006.

P. Marcuello and A. Gorétez. Thread-spawning schemes for speculative mul-
tithreading. INHPCA ’02: Proceedings of the 8th International Symposium on
High-Performance Computer Architecturnpage 55, Washington, DC, USA,
2002. IEEE Computer Society.

B. Meyer.Eiffel: The LanguagePrentice Hall, second edition, 1992.

E. Mohr, D. A. Kranz, and J. R. H. Halstead. Lazy task ttora A tech-
nique for increasing the granularity of parallel programg€E Trans. Parallel
Distrib. Syst. 2(3):264—-280, 1991.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. Adad. Logtm:
Log-based transactional memory. Rroceedings of the 12th International

253

Bibliography

Symposium on High-Performance Computer Architecimges 254—-265. Feb
2006.

[115] OpenMP specifications. http://www.openmp.org/spec

[116] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search cé@gative thread-
level parallelism. IFPACT '99: Proceedings of the 1999 International Confer-
ence on Parallel Architectures and Compilation Techniquege 303, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[117] M. Paleczny, C. Vick, and C. Click. The Java HotSpot(TMjvee Compiler.
In USENIX Java Virtual Machine Research and Technology Symmppsipr.
2001.

[118] I. Park, B. Falsafi, and T. N. Vijaykumar. Implicitly-rithreaded proces-
sors. InISCA '03: Proceedings of the 30th annual international sysipm
on Computer architecturgpages 39-51, New York, NY, USA, 2003. ACM.

[119] C. J. F. Pickett and C. Verbrugge. Sablespmt: a softwammdwork for
analysing speculative multithreading in javé&8IGSOFT Softw. Eng. Notes
31(1):59-66, 2006.

[120] J. Plevyak, V. Karamcheti, X. Zhang, and A. A. Chien. Abhy execution
model for fine-grained languages on distributed memory ioatiputers. In
Supercomputing '95: Proceedings of the 1995 ACM/IEEE cemiex on Su-
percomputing (CDROM)age 41, 1995.

[121] M. P. Plezbert and R. K. Cytron. Does “just in time” = “Betlate than never”.
In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on plésci
of programming languages (POPL'9f)ages 120-131, 1997.

[122] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transaabal memory. INSCA
'05: Proceedings of the 32nd annual international sympasnn Computer
Architecture pages 494-505, Washington, DC, USA, 2005. IEEE Computer
Society.

[123] B. Randell. System structure for software fault toleeanin Proceedings of
the international conference on Reliable softwagrages 437-449, 1975.

[124] L. Rauchwerger and D. Padua. The Irpd test: speculativgime paralleliza-
tion of loops with privatization and reduction paralletiom. In PLDI '95:
Proceedings of the ACM SIGPLAN 1995 conference on Progragiham-
guage design and implementatjgrages 218—-232, New York, NY, USA, 1995.
ACM.

254

Bibliography

[125] J. H. Reppy.Concurrent Programming in ML Cambridge University Press,
1999.

[126] J. Robert H. Halstead. Multilisp: a language for coment symbolic compu-
tation. ACM Trans. Program. Lang. Syst.(4):501-538, 1985.

[127] A. Romanovsky, J. Xu, and B. Randell. Exception handlind gesolution in
distributed object-oriented systems.IGCDCS '96: Proceedings of the 16th In-
ternational Conference on Distributed Computing Systems QS®6) page
545, Washington, DC, USA, 1996. IEEE Computer Society.

[128] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and Brtiberg.
Mcrt-stm: a high performance software transactional megnsystem for a
multi-core runtime. InPPoPP '06: Proceedings of the eleventh ACM SIG-
PLAN symposium on Principles and practice of parallel pppgming pages
187-197, New York, NY, USA, 2006. ACM Press.

[129] B. Saha, A.-R. AdI-Tabatabai, and Q. Jacobson. Architatsupport for soft-
ware transactional memory. MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitectupages 185-196,
Washington, DC, USA, 2006. IEEE Computer Society.

[130] S.Haridi and N.Franz. Tutorial of Oz, Mozart docunai@ns.
http://www.mozart-oz.org/ documentation/tutorial/ @xchtml.

[131] N. Shavit and D. Touitou. Software transactional mgmdn Proceedings
of the 14th ACM Symposium on Principles of Distributed Comgupages
204-213. Aug 1995.

[132] A. Shriraman, M. F. Spear, H. Hossain, V. J. MaratheDP#&arkadas, and
M. L. Scott. An integrated hardware-software approach talfle transac-
tional memory. INISCA '07: Proceedings of the 34th annual international
symposium on Computer architectypages 104-115, New York, NY, USA,
2007. ACM.

[133] L. A. Smith and J. M. Bull. A multithreaded java grandenbbmark suite. In
Proceedings of the Third Workshop on Java for High Perforoes@omputing
June 2001.

[134] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multisegbrocessors. In
ISCA '95: Proceedings of the 22nd annual international sysiyom on Com-
puter architecturepages 414-425, New York, NY, USA, 1995. ACM.

255

Bibliography

[135] SpecJVM'98 Benchmarks. http://www.spec.org/0S998.

[136] Rotor - the shared source cli, 2002. http://researidnasoft.com/programs/
europe/rotor/default.aspx.

[137] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The giade approach
to thread-level speculatioMCM Trans. Comput. Sys23(3):253-300, 2005.

[138] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A sb&aapproach
to thread-level speculation. B$CA '00: Proceedings of the 27th annual in-
ternational symposium on Computer architectyrages 1-12, New York, NY,
USA, 2000. ACM.

[139] B. Stroustrup.The C++ Programming LanguageAddison Wesley, second
edition, 1991.

[140] D. Stutz, T. Neward, and G. Dhillingghared Source CLI Essentigjsage 251.
O’Reilly Associates, Inc., Mar. 2003.

[141] T. Suganuma, T. Ogasawara, K. Kawachiya, M. Takeu&hi,lshizaki,
A. Koseki, T. Inagaki, T. Yasue, M. Kawahito, T. Onodera, HhrKatsu, and
T. Nakatani. Evolution of a java just-in-time compiler far82 platformsiBM
J. Res. Dey48(5/6):767—-795, 2004.

[142] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and dkdfani. A dy-
namic optimization framework for a java just-in-time cotepi In Proceed-
ings of the 16th ACM SIGPLAN conference on Object orientegraraming,
systems, languages, and applications (OOPSLA'P4yes 180-195, 2001.

[143] K. Taura, K. Tabata, and A. Yonezawa. Stackthreadsimtpgrating futures
into calling standards. IRroceedings of the seventh ACM SIGPLAN sympo-
sium on Principles and practice of parallel programmjmgges 60—71, 1999.

[144] K. Taura and A. Yonezawa. Fine-grain multithreadinghwninimal compiler
supporta cost effective approach to implementing effiameulitithreading lan-
guages. IrProceedings of the ACM SIGPLAN conference on Programming
language design and implementatigrages 320-333, 1997.

[145] TIOBE Programming Community Index for May 2007.
http://www.tiobe.com/tpci.htm.

[146] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and5STse. The
majc architecture: A synthesis of parallelism and scailgbil[EEE Micro,
20(6):12-25, 2000.

256

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yewhelsuperthreaded
processor architecturédEEE Trans. Comput48(9):881-902, 1999.

R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and H. B. Batin: Simple
and efficient Java-based grid programmiggalable Computing: Practice and
Experience6(3):19-32, September 2005.

N. Vijaykrishnan, M. Kandemir, S. Tomar, S. Kim, A. 8subramaniam, and
M. J. Irwin. Energy Characterization of Java Applicationgnfra Memory
Perspective. IProceedings of the USENIX Java Virtual Machine Research
and Technology Symposiuspr. 2001.

T. N. Vijaykumar and G. S. Sohi. Task selection for a tisghlar processor.
In MICRO 31: Proceedings of the 31st annual ACM/IEEE internati@ym-
posium on Microarchitecturepages 81-92, Los Alamitos, CA, USA, 1998.
IEEE Computer Society Press.

D. B. Wagner and B. G. Calder. Leapfrogging: a portablanee for imple-
menting efficient futures. IProceedings of the fourth ACM SIGPLAN sym-
posium on Principles and practice of parallel programmipgges 208-217,
1993.

F. Warg and P. Stenstm. Limits on speculative module-level parallelism in
imperative and object-oriented programs on cmp platfotmBACT '01: Pro-
ceedings of the 2001 International Conference on Parallehftectures and
Compilation Techniquepages 221-230, Washington, DC, USA, 2001. IEEE
Computer Society.

A. Welc, S. Jagannathan, and A. Hosking. Safe futuoegava. InOOP-
SLA '05: Proceedings of the twentieth ACM SIGPLAN conferemc®lgject
oriented programming systems languages and applicatipages 439-453,
2005.

J. Whaley. A portable sampling-based profiler for jawdal machines. In
Proceedings of the ACM 2000 conference on Java Grapaiges 78—87, 2000.

J. Whaley. Partial Method Compilation using Dynamic flednformation.
In Proceedings of the ACM Conference on Object-Oriented Progriaig Sys-
tems, Languages, and Applications (OOPSL#8ges 166-179. ACM Press,
Oct. 2001.

J. Whaley and C. Kozyrakis. Heuristics for profile-dnwaethod-level spec-
ulative parallelization. IMCPP '05: Proceedings of the 2005 International

257

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Conference on Parallel Processingages 147-156, Washington, DC, USA,
2005. IEEE Computer Society.

J. Xu, A. Romanovsky, and B. Randell. Coordinated excagtandling in dis-
tributed object systems: From model to system implememntatnICDCS "98:
Proceedings of the The 18th International Conference onribiged Comput-
ing Systemgpage 12, Washington, DC, USA, 1998. IEEE Computer Society.

J. Xu, A. Romanovsky, and B. Randell. Concurrent exceptiandling and
resolution in distributed object systemH=EE Trans. Parallel Distrib. Syst.
11(10):1019-1032, 2000.

B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C. Ch&ndim,
K. Ebcioglu, and E. Altman. LaTTe: A Java VM Just-in-Time Calapwith
Fast and Efficient Register Allocation. Rroceedings of the International
Conference on Parallel Architectures and Compilation Teghas (PACT)
pages 128-138. North-Holland, 1999.

L. Zhang and C. Krintz. The design, implementation, enaluation of adap-
tive code unloading for resource-constrained devicé&M Trans. Archit.
Code Optim.2(2):131-164, 2005.

L. Zhang, C. Krintz, and P. Nagpurkar. Language ancugirmachine sup-
port for efficient fine-grained futures in java. RACT '07: Proceedings of
the 16th International Conference on Parallel Architectared Compilation
Techniques (PACT 200/fages 130-139, Washington, DC, USA, 2007. IEEE
Computer Society.

L. Zhang, C. Krintz, and P. Nagpurkar. Supporting exicephandling for
futures in java. IlPPPJ '07: Proceedings of the 5th international symposium
on Principles and practice of programming in Jayages 175-184, New York,
NY, USA, 2007. ACM.

L. Zhang, C. Krintz, and S. Soman. Efficient Support afd-grained Futures
in Java. Ininternational Conference on Parallel and Distributed Compgt
Systems (PDC$S2006.

258

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	The Java Programming Language
	Performance Adaptation in Java Virtual Machines
	The Thesis Question
	Adaptive Code Unloading for Resource Constrained Devices
	Easy and Efficient Future for Multi-Processing Devices

	Outline

	Background on Adaptive Optimization in JVMs
	Execution Models
	Profiling: Identify Hot Spots and Collect Application Behavior
	Decision Models
	Example System: JikesRVM

	I Automatic Code Management for Resource Constrained JVMs
	Code management in Resource Constrained JVMs
	Interpretation Versus Compilation
	Characteristics Study of Compiled Code in JVMs

	Adaptive Code Unloading
	Code Unloading Framework
	Unloading Strategies
	Triggering an Unloading Event
	Identifying Unloading Candidates
	Unloading Optimized Code
	Recording Profile Information

	Experimental Methodology
	Performance Evaluation
	Memory Footprint Reduction
	Impact on Execution Performance
	Code Unloading for Selective Compilation Systems

	Related Work
	Summary

	II Easy and Efficient Parallel Programming Using Futures in Java
	Futures and its Support in Java
	The Future Construct
	Support for Futures in Java

	Adaptive and Lazy Scheduling for Fine-grained Futures in Java
	Programming Model
	Implementation
	Implementation Overview
	Future Splitting Triggers
	Future Splitter
	Optimizing Synchronizations

	Experimental Methodology
	Performance Evaluation
	Comparison of Splitting Triggers
	JavaGrande Performance
	Divide and Conquer Performance

	Related Work
	Summary

	Directive-based Lazy Futures in Java
	Implementation
	Experimental Methodology
	Performance Evaluation
	Directive-based versus Interface-based
	Overall Performance of DBLFutures

	Related Work
	Summary

	As-if-serial Exception Handling Support
	Exception Handling in Java 5.0 Futures
	As-if-serial Exception Handling Design
	Implementation
	Total Ordering of Threads
	Choosing a Thread to Handle the Exception
	Enforcing Total Order on Thread Termination

	Performance Evaluation
	Related Work
	Summary

	As-if-serial Side-effect Guarantee
	Background: the Safe Future System
	Programming Model
	Execution Contexts
	Preserving As-if-serial Side-effect Semantics
	Committing and Revoking Execution Contexts
	Limitations of Safe Futures

	Supporting Nested Futures Safely
	Layered Context ID
	Tree Structure of Execution Contexts
	Adaptive and Lazy Execution Context Creation
	Simple Context Revocation
	Local Commit and Global Commit
	Hybrid Committing Strategy
	History-based Learning
	Integration with As-if-serial Exception Handling

	Performance Evaluation
	Performance of Benchmarks with No Dependency Violations
	Parallelism of Local Commit versus Global Commit
	The OO7 Benchmark with Controlled Conflict Patterns

	Related Work
	Summary

	Conclusion
	Contribution
	Future Work

	Bibliography

