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Abstract

Exploiting Adaptation in a Java Virtual Machine to Enable
Both Programmer Productivity and Performance for

Heterogeneous Devices

Lingli Zhang

Computer systems with which we interact on a daily basis consist of a vast di-

versity of devices. At the low end, battery-powered, handheld devices with limited

resources, e.g., personal digital assistants (PDAs), smartphones, etc., are common

and extremely popular. At the high end, powerful, multi- andmany-core processor

systems are increasingly ubiquitous in the laptops, deskside computers, workstations,

and clusters that we use. The pervasiveness of heterogeneous systems requires that

there be programming languages for application development, that are easy to learn

and use, portable across diverse systems, and that facilitate extraction of high perfor-

mance from the underlying, available device technology.

The Java programming language offers many of these characteristics. Its archi-

tecture-independent program transfer format and extant virtual machine technology

for a wide variety of devices, provides programmers with a write once and run any-

where (WORA) model. Moreover, its object-orientation, robust library support, and

high-level syntax, make Java easy to learn and develop applications with. Finally,

modern virtual machine (VM) technology offers powerful adaptive services that com-
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bine program profiling and optimization, to extract high performance from appli-

cations with frequently executed code regions (hot spots).However, the Java lan-

guage and its VM technology to date have not targeted device-specific opportunities

that have the potential for enabling both programmer productivity and scalable high-

performance.

In this dissertation, we investigate potential opportunities for devices at the two

ends of the performance spectrum: battery-powered, handheld PDAs and parallel

processing systems. Our thesis question asks whether we canemploy adaptive JVM

technologies to improve the performance of programs in resource-constrained devices

and to facilitate efficient and scalable parallel programming in multi-core systems.

We address each question with a specific and novel solution: (1) adaptive compiled

code management for low end devices, and (2) adaptive code parallelization for high

end, multiprocessing systems. The goal of our work is to extract high performance

from the underlying device technology through novel JVM extensions while main-

taining the ease-of-use of the Java programming language. We describe each of our

foci in detail and present empirical evidence of its efficacyand potential.

Professor Chandra Krintz

Dissertation Committee Chair
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Chapter 1

Introduction

Modern computing devices are increasingly heterogeneous,pervasive, ubiqui-

tous, and important in our everyday lives. For example, in 2006, world-wide, com-

bined smart-phone and personal digital assistant (PDA) shipments have totalled over

90 million units. The authors in [54] predict that this number will reach114.1 million

and that the number of cell phones will exceed1 billion, in 2007 [53]. The number

of desktop computers is similarly immense: The228.6 million systems in 2006 [55]

has grown10.9% in the first quarter of 2007 [56].

These vast compute resources are very diverse in their architecture and capabili-

ties and continue to grow in complexity. For example, mobilehandheld devices have

limited compute and storage resources and the lifetime of batteries is very short, due

to their constrained form factor. A typical PDA device features a low-power RISC

processor (like ARM) clocked at200-600MHz and32-128MB memory. Reducing

the software resource footprint and power usage is a major design challenge for these
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Chapter 1. Introduction

devices. On the other hand, laptops, desktops, workstations, and high performance

servers are becoming increasingly computationally powerful by adopting multi- and

many-core technology. Major processor manufacturers, such as Intel and AMD, have

released dual-core processors since 2005. Intel launched its quad-core processors in

December 2006. AMD will make its quad-core processors available in 2007. In-

tel has even developed an 80-core research processor [77] todemonstrate the power

of future parallel processor technology. Exploiting parallelism to achieve maximal

performance is a key challenge for high-end, multi-core systems.

The pervasiveness of computing devices significantly increases the demand for

software for these devices. However, the diversity of device architecture and capa-

bilities makes software development very challenging. To build efficient software,

programmers must have expertise on wide variety of device platforms. For example,

resource constrained handheld devices require that programmers carefully design,

implement, and tune their programs to meet the constraints on CPU speed, memory

size, and battery life. For high-end multi-core systems, programmers must effec-

tively parallelize their programs to take advantage of the multiple processors in the

underlying hardware (without introducing synchronization errors).

The complexity and diversity of modern systems make it increasingly difficult for

programmers to extract performance and capability from a wide range of devices,

via the programs that they write. As a result, there is an increasing need for pro-

2



Chapter 1. Introduction

gramming languages that are easy to learn and use by most programmers (including

novices), portable across diverse platforms, and that facilitate the extraction of both

performance and capability regardless of the underlying device technology. One such

language with the potential for enabling programmer productivity and performance

for a wide range of devices is Java [17].

1.1 The Java Programming Language

Java is an object-oriented programming language. It features many modern high

level language constructs, such as exception handling, templates, annotations, among

others. The Java language support provides an extensive library for automatic use

of most common data structures, algorithms, and system facilities. Java’s execu-

tion model is based on a virtual machine [102] (JVMs). Developers compile a Java

source program into an architecture-independent, stack-machine-based, intermediate

and object-oriented format (calledbytecode). At execution time, Java virtual ma-

chines consume bytecode programs incrementally, a module (i.e. class) at a time and

dynamically translates the methods that the program invokes on-demand to native

code. This system enables and ensures both type safety of theprogram as well as

automatic memory management (garbage collection).

3



Chapter 1. Introduction

The virtual machine execution model, the high-level abstractions available in the

Java language, and the type and memory safety the language system guarantees,

makes Java very easy to learn and write programs in – for a vastdiversity of de-

vices and platforms. Moreover, this model enables portability of programs (the Write

Once Run Anywhere (WORA) model). On any machine for which thereis a Java

Virtual Machine (JVM), a Java program will run (with some minor library-support

caveats). For these reasons, Java has emerged as one of the most widely-adopted

programming languages, for application and system development on a broad range

of computing devices, from handheld devices to high performance servers. Based on

TIOBE Programming Community Index [145], in May 2007, Java is the number one

programming language in terms of popularity among programmers. Statistics from

JavaOne 2007 show that there are total5 billion Java-enabled devices to date (May

2007) including desktops, mobile phones, Java cards, set-top boxes, toys, navigation

systems and robots, etc. Among them,1.83 billion are mobile devices [83].

1.2 Performance Adaptation in Java Virtual Machines

The JVM execution model enables many programmer productivity benefits. How-

ever, this benefit does not come for free. The extra layer of abstraction that a JVM

introduces can impose significant performance overhead, since Java programs must
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Chapter 1. Introduction

be interpreted or compiled on-the-fly (consuming both memory and time)duringex-

ecution. Such translation however, enables portability and automates the burden of

developers porting to a vast diversity of devices and systems. Interpretation or fast,

non-optimized compilation produces very poor code qualityand performance. Opti-

mized compilation can produce high-quality, specialized code and high performance

but is very expensive to apply, i.e., its runtime overhead isdifficult to amortize via the

improved execution time. To address this problem, modern Java virtual machines in-

tegrate adaptive compilation support in which the system monitors the application in

a very lightweight way (based on counters [75, 32] or analytic models [7, 8, 9]), and

then identifies the regions of programs that will benefit the most from (and amortize

the cost of) optimized execution.

In particular, current adaptive optimization systems (e.g. [8, 32, 75]) dynamically

identify code regions that consume significant portions of execution time. These

code regions are referred to ashotspots. Hotspots commonly consist of a series of

methods or basic blocks within methods. By optimizing hotspots, virtual machines

attempt to balance compilation overhead and execution speed, and as a result, have

been shown to enable significant performance gains [20, 8, 142, 32, 121]. Adaptive

JVMs are inherently dynamic, have extensive runtime information, and are able to

make decisionsabout andadaptto, program and system behavior while the program

runs, to improve performance.
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Chapter 1. Introduction

1.3 The Thesis Question

Despite its popularity and potential, extant Java technology fails to address many

device-specific problems that challenge today’s programmers. We focus on two par-

ticular limitations as part of this dissertation: (i) dynamic adaptation to improve per-

formance in resource-constrained mobile devices, and (ii)easy yet efficient and scal-

able parallel programming. In the first case, programmers developing code for mobile

devices must choose a slow but compact interpreter-based JVM, or use a compiler-

based JVM and then manually identify opportunities for code-size optimization since

native code is significantly larger than bytecode. The latter enables performance and

effective use of limited resources but imposes a significantchallenge on programmers

thus reducing productivity.

The second problem is an increasingly important one as multi-core systems be-

come ubiquitous. Concurrency in program design is an expert concept and support for

concurrency in Java is non-intuitive to use, significantly different from the sequential,

semantic equivalent, and challenging to debug. One primaryreason that concurrent

program development is extremely difficult, especially fornon-experts, is that the

average programmers trained to use the “average” programming languages typically

are most comfortable with aserial approach to most programming problems. As a

result, novel and effective support for concurrent programming in Java is needed that

6
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enables the average programmer to easily transition from a serial approach to the

concurrent one.

Both of these problems are challenging because their solutions depend on the

way the programs execute at runtime – and the dynamically changing conditions of

the underlying resources and the behavior of the programs. Programmers write static

programs and have a difficult time understanding and accurately estimating all of the

intricacies of the behavior of the executing program and theresources it will consume.

Extant JVMs provide little support to aid developers in these processes.

An alternative way to solve these problems, that has yet to beexplored, is to pro-

vide the JVM with support that facilitates and automates these processes for develop-

ers. To investigate solutions to these problems, we observethat the characteristics of

the problems are similar to those of the problem of trading off compilation overhead

for performance, described above. In particular, we observe that an adaptive system

within a JVM is able to

• Access dynamic runtime services, including dynamic loading, dynamic compi-

lation, garbage collection, thread scheduling, etc.;

• Obtain accurate information on the dynamic behavior of bothapplication exe-

cution and underlying resource availability, at low cost; and,
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• Exploit and control low-level runtime constructs such as the heap, internal

thread representation, thread execution stacks, etc.

As a result, we believe that we can apply similar adaptive technology to address the

problems of mobile program code management and easy-to-useand efficient multi-

threading in high-end, multi-core systems.

Hence, with this dissertation, we investigate the following question:

Can we exploit adaptation in the Java virtual machine in novel ways to
enable both high programmer productivity and high performance of Java
applications for diverse computing systems?

In particular, we investigate

• Efficient memory management of executable code in resource-constrained
JVMs; and

• Easy parallel programming with efficient and scalable future support in Java

The goal of our work is to extract automatically high performance from the un-

derlying device technology while maintaining and improving the ease-of-use of the

Java programming language. This dissertation, as a result,consists of two parts that

build on the same internal adaptive JVM technology: Adaptive Code Unloading for

Resource Constrained Devices, and Easy and Efficient Future Functionality for Multi-

Processing Devices. We overview each in the following subsections.

8
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1.3.1 Adaptive Code Unloading for Resource Constrained Devices

Compilation-based JVMs typically significantly outperforminterpretation-based

JVMs. This is because compilation-based JVMs are able to reuse very high-quality

code. The benefits from code quality and reuse easily amortize the cost of com-

pilation on high-end systems. However, for battery-powered, resource-constrained

devices, interpretation is employed by most JVMs. This is because interpretation im-

poses minimal memory overhead and no compilation cost. The memory overhead

of compilation in such systems can oftentimes even precludesome programs from

executing (e.g. on small-memory systems). Unfortunately,the quality of interpreted

code is very poor and code that is executed repeatedly is re-interpreted, which im-

poses pure overhead, however, without consuming memory forcode storage. If we

are to employ compilation, we must either exert a significantburden on programmers

to shrink their code size or identify solutions that enable the best of both worlds: very

limited memory (as for interpretation) and efficient execution (as for compilation),

without programmer intervention or participation.

To enable easy efficiency for resource-constrained devices, we present a dynamic

and adaptive code unloading framework. Our system dynamically identifies and un-

loads dead or infrequently used, compiled code to reduce thememory footprint of

the JVM. The system exploits the runtime services of JVMs (such as dynamic load-

ing, adaptive compilation, garbage collection, etc.) and information of both program
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behavior and underlying resource availability collected via a lightweight online sam-

pling framework. We investigate a number of implementationalternatives that em-

ploy dynamic feedback from the program and execution environment to identify un-

loading candidates and to trigger unloading efficiently, transparently, and adaptively.

We implement and empirically evaluate our framework and unloading strategies

using a popular, open-source JVM and a set of community benchmarks. Our em-

pirical evaluation shows that our code unloading frameworksignificantly reduces the

memory requirements of a compiler-only JVM, while maintaining the performance

benefits enabled by compilation. In particular, for the best-performing unloading con-

figuration and the community programs that we studied, our system reduces code size

by 36-62% and enables execution time benefits of 23% on average when memory is

highly constrained.

1.3.2 Easy and Efficient Future for Multi-Processing Devices

The second part of this dissertation investigates the use ofadaptation to enable

both programmer productivity (ease of use) and high performance (efficiency as well

as scalability) for emerging multi-core systems. To enableeasy efficiency in this

domain, we focus on thefuture parallel programming construct [70, 126], and its

implementation in the Java programming language [86], for support of fine-grained

parallelism. The future is a simple and elegant construct that programmers can use to
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identify potentially asynchronous computation. The current Java implementation of

futures is a library level implementation with an interface-based programming model.

Users employ a set of APIs to encapsulate potentially asynchronous computation and

to define their own future execution engines.

This model unfortunately is non-intuitive and produces source that is significantly

different from its sequential semantic equivalent (with which most programmers are

most comfortable). Moreover, the library-based approach is unable to exploit infor-

mation about the executing program and underlying resources to make its schedul-

ing decisions. This approach also introduces significant memory overhead in JVM

systems due to the multiple levels of indirection and encapsulation that the interface-

based model can impose. Finally, Java futures require that users identify the regions

of their program thatshouldexecute concurrently to improve performance (not sim-

ply what parts of their programcanbe executed concurrently). This imposition is sig-

nificant since it requires that programmers have expert knowledge of not only their

program and its behavior for all possible inputs, but also ofthe performance char-

acteristics of the machines on which their programs ultimately execute. This latter

requirement conflicts with Java’s write-once-run-anywhere model, since it requires

that programmers develop different schedulers for their concurrent tasks for different

systems and workloads to extract high-performance from their programs.
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Thus, we employ extant JVM adaptation mechanisms to enable future support

for Java, that is easy to use, efficient, and scalable for applications with fine-grained

parallelism. We presentdirective-based, lazy, futures (DBLFutures) with support of

as-if-serialexception handling and side-effect semantics for Java. Using this model,

programmers use a future directive, denoted as a new Java annotation,@future, to

specify potentially asynchronous computations within a serial program. Moreover,

programmers are not responsible for deciding when or how to execute these compu-

tations at runtime. The DBLFuture-aware JVM recognizes the future directive and

makes effective scheduling decision automatically and adaptively by exploiting its

runtime services (recompilation, scheduling, allocation, performance monitoring) as

well as detailed, low-level, knowledge of system and program behavior.

The as-if-serialexception handling mechanism that we present, delivers excep-

tions to the same point at which they are delivered when the program is executed se-

quentially. By simply removing our future annotations, the concurrent version is the

same as the serial version. This model enables programmers to develop and reason

about serial programs first and then introduce parallelism gradually and intuitively,

which significantly simplifies the process of parallel programming so that more appli-

cations programmers, not just expert programmers, are better able to take advantage

of the current and next generation of systems with multiple processing cores.
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We enhance further the programmer productivity of future programming in Java

by supportingas-if-serialsemantics for the execution of side effects. That is, pro-

grammers are no longer required to reason about the shared memory accesses of

future executions and to ensure correctness. Instead, programmers can focus on iden-

tifying potential parallelism. The safe DBLFuture-aware JVM guarantees to deliver

the correctas-if-serialsemantics employing concurrent execution when possible.

The as-if-serial side-effect semantics for futures has been investigated in the Safe

Future project [153]. However, we find that it has similar programmer productivity

and performance disadvantages as the current library-based, Java Future implemen-

tation does. In addition, the system does not support nestedfutures, which makes it

impractical since such support is essential for a wide rangeof applications, in partic-

ular, the divide-and-conquer style of applications (that implement fine-grained paral-

lelism).

We extend our DBLFuture system with techniques of this safe future system. In

addition, we add efficient support for nested futures, and investigate ways to improv-

ing its performance via exploiting the laziness of our DBLFutures system, as well as

the adaptation mechanisms in the JVM.

We implement our system in a popular, open-source JVM and then empirically

evaluate its efficacy using a number of Java programs that implement fine-grained

parallelism. Our results show that the lazy future scheduling system produces com-
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parable performance to the hand-tuned schedulers. In addition, our directive-based

model enables speedups of 2-11 times over the interface-based approach implement

in modern Java systems. Therefore, DBLFutures are significantly more scalable,

and impose very low overhead. Our as-if-serial exception handling implementation

introduces negligible overhead for applications without exceptions, and guarantees

serial semantics of exception handling and side effects forapplications that throw

exceptions. Finally, our as-if-serial side-effect implementation imposes acceptable

overhead for tracking shared data accesses, and negligibleoverhead for managing

execution contexts.

In summary, in this thesis work, we investigate novel ways toexploit the adapta-

tion of a Java virtual machine to enable both programmer productivity and efficiency.

We do so for devices at both ends of the performance spectrum:battery-powered,

resource-constrained devices, and multiprocessing systems. We propose techniques

that use feedback within the JVM about the program executionbehavior and the un-

derlying resource availability, to guide code unloading inlow end devices and to

enable easy and scalable future task execution in high end devices. We implement

our approaches in real JVMs and evaluate their efficacy for a wide range of Java pro-

grams. We show that by employing adaptive JVM technology in novel ways, we are

able to facilitate programmer productivity and application efficiency concurrently to

a much larger degree than that is possible with extant technology.
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1.4 Outline

The outline of the remaining of this dissertation is as follows:

In Chapter 2 we give an overview of state-of-the-art adaptivetechniques for JVM

code optimizations as the background of our work. Many of theconcepts and method-

ologies used in these techniques are important building blocks in our work.

The rest of the dissertation is organized into two parts. Thefirst part discusses

our work on automatic code management for resource constrained JVMs to enable

compilation (and thus high-performance) for memory constrained devices without

programmer intervention. In Chapter 3, we describe the problem of compiled native

code management in resource constrained JVMs. We present analysis data to show

the potentials of solving the problem. In Chapter 4, we discuss how we perform au-

tomatic unloading of compiled native code in a popular research JVM using adaptive

technique and framework. We compare different unloading heuristics using empirical

performance data.

The second part of this dissertation discusses our work on anadaptive implemen-

tation of futures in JVMs to enable easy and efficient parallel programming in Java. In

Chapter 5, we introduce the future construct. We overview thecurrent future support

in Java 5 and discuss the advantages and limitations of its approach. In Chapter 6, we

focus on an adaptive and lazy scheduling technique for fine-grained futures, which
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relieves programmers from managing future scheduling manually and explicitly, and

enables faster execution speed. In Chapter 7, we further improve the easiness of par-

allel programming using futures in Java by allowing directive-based futures. We also

show that directive-based futures have less overhead by creating less future objects

than that of Java 5 futures. In Chapter 8, we discuss the support of as-if-serial excep-

tion handling for our directive-based lazy futures to enable smooth migration of serial

programs to parallel versions. We show that our as-if-serial exception handling sup-

port introduces negligible overhead. In Chapter 9, we complete our support of easy

and efficient futures in Java by enabling as-if-serial side-effect of futures. This allows

not only “safe” future execution, but also easy serial-to-parallel program conversion

coupled with as-if-serial exception handling.

We conclude our work and discuss future work in Chapter 10.
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Background on Adaptive
Optimization in JVMs

In this chapter, we overview the current adaptive optimization techniques. Adap-

tive optimization is the process of optimizing only a small subset of program code

in attempt to trade off the overhead of optimization for improved code quality (and

thus performance). Adaptive optimization systems use dynamic information about

the execution of a program to decide (i) when to apply optimization, (ii) which opti-

mizations to apply, and (iii) whether there are aggressive specializations of the code

that are possible and cost effective. The dynamic information typically identifies fre-

quently executed code regions – adaptive JVMs predict that such regions are likely

to continue executing and thus warrant the overhead required for the application of

optimization. We refer to frequently executed code regionsas “hotspots”.

The representative systems of adaptive optimization in Java include smart JIT [121],

Sun HotSpotTM [74, 117], Intel JUDO [32], IBM Product JIT [141, 142], and IBM

17



Chapter 2. Background on Adaptive Optimization in JVMs

JikesRVM [20, 8]. In the following sections, we will discusssome common issues in

adaptive optimization systems and then detail IBM JikesRVM as an example.

2.1 Execution Models

A decision that an adaptive optimization system must make ishow to execute

the program before any hot spots are identified, i.e., what isthe baseline execu-

tion engine? One solution is to use an interpreter as that in smart JIT [121], Sun

HotSpotTM [74, 117], and IBM Product JIT [141, 142]. The other is to use a fast

compiler which performs very few or even no optimization. The latter is adopted in

Intel JUDO [32] and IBM JikesRVM [20, 8].

Both solutions have their own advantages and disadvantages.The mixed model

(an interpreter and compiler) leads to good responsivenessof the system at startup

time, which is very important for interactive applications. Also this model imposes

less memory burden on the system because only a small portionof the program is

compiled and stored in memory. However, the mixed executionof interpreted code

and compiled code dramatically complicates the runtime system (to facilitate control

transfer between interpreted and compiled code) as a resultof the very different ex-

ecution conventions. Moreover, interpretation is slow dueto poor code quality and

re-interpretation of previously executed code.
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In contrast to the mixed model, thecompiler-onlymodel (a fast compiler and a full

compiler) enables seamless transition between unoptimized and optimized compiled

code. All methods are compiled by the fast compiler and stored for later reuse. This

enables fast execution, but at same time results in a much larger memory footprint

than that of interpretation. In addition, the compiler-only model suffers from slow

startup time (and thus user perception of program performance).

Moreover, two levels of translation may not be sufficient to achieve the best trade-

off between compilation cost and performance. For example,if we specify a lower

threshold for “hotness”, some optimization opportunitiesmay be identified earlier.

However, too many methods may be identified as “hot”, which will introduce larger

compilation cost and longer startup time. On the other hand,if we set a higher thresh-

old for triggering optimization, we may miss some optimization opportunities. Also,

a long learning time is required to identify hot methods.

Multi-level compilers address this limitation [142, 20]. These systems decom-

pose the compilation process into multiple levels, each level with its own threshold

and associated optimizations. The higher the level, the more complex optimizations

the system performs. Such systems also have several drawbacks. For example, the

“hottest” methods must be compiled several times before they reach the highest code

quality, which results in longer learning time and more codeexpansion and compila-

tion overhead. In short, there is no perfect execution model: one must pick one based
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on the tradeoff of memory footprint, responsiveness, and performance for a particular

application suite.

2.2 Profiling: Identify Hot Spots and Collect Applica-

tion Behavior

A precondition of any adaptive optimization is the availability of information

about the runtime behavior of an application. Moreover, theruntime must be able to

extract this information automatically and accurately without programmer interven-

tion. Online profiling is the most commonly used method for identifying hot spots

and collecting application runtime information. However,online profiling faces the

same challenge as that of dynamic compilation: the more accurate the profile is, the

more overhead the profiling introduces since the time for online profiling is also part

of total execution time. As such, a runtime system must carefully trade off profile

accuracy and profiling overhead.

There are primarily two types of online profilers: instrumentation-based and sample-

based. Instrumentation-based profilers guide compiler insertion of extra instructions

into the original program to collect data. For example, the Intel JUDO system [32] in-

serts counters to the entry and loop back edges of a method in the first level compiled

code to catch its execution frequency. More complex and dedicated instrumentation
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can be inserted by the runtime into the original program to gather information such as

branch taken frequency, invoked call sites, and runtime invariants. Instrumentation-

based profiling provides accurate profile data, however, it can also introduce signifi-

cant overhead. In addition, such systems require recompilation to remove the instru-

mentation. To reduce instrumentation overhead, some systems like Intel JUDO do

not instrument the optimized code. But, this disables any additional or multi-level

optimization opportunities.

Sample-based profilers do not insert code into the original program. Instead, a

background thread periodically records snapshots of interesting parts of the runtime

system. For example, the IBM JikesRVM system [8] records the top two frames

on the stack of each thread per 10 ms and uses this informationto approximately

identify hot spots. Sample-based profiling has lower runtime overhead and can be

disabled without any recompilation. Also, results in [154,94] show that sample-

based profiling is accurate enough in most cases to enable significant performance

improvements.

Simple sample-based profiling, however, cannot collect alldesired information.

For example, a coarse-grained sampler can not gather the frequency of basic blocks

and taken branches. Some researchers have proposed mechanisms that combine

instrumentation-based and sample-based profiling techniques. For example, [11,

10] present a low overhead instrumentation framework and its application in online
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feedback-directed optimization for Java. The basic idea isto have duplicate copies of

interesting pieces of code: one that contains the original code and is used for normal

execution; the other that contains instrumented code and isused for gathering profile

data. The instrumented copy is only invoked periodically togather sample data. The

sample frequency is configurable. This instrumentation sampling framework gathers

necessary profile data with low overhead. However, this results in a larger memory

footprint due to code duplication.

[142] proposes another technique to combine instrumentation and sampling. The

instrumenting profiler in this system dynamically inserts instrumentation into the tar-

get method using an instrumentation planner. Later, after the desired data is gathered,

the instrumented code is automatically extracted using code patching. This mecha-

nism does not cause the code space problem, but may introducearchitecture-specific

complexities such as maintaining cache consistency.

Another way to reduce overhead of profiling is to gather profile data offline and

use the information online via annotation [95]. Annotation-based approaches can sig-

nificantly reduce the online profiling overhead and the learning time of optimization

opportunities. However, they suffer the well known cross-input problem: offline-

collected profiles may not reflect the runtime application behavior. Although tech-

niques for coupling online and offline profile information are proposed [94], the

cross-input problem still remains.
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2.3 Decision Models

Once application runtime behavior is collected, the next step is to decide whether

a method is hot enough and which subset of optimizations should be performed. A

simple and commonly used way is threshold-triggered: a threshold is preset for each

level of optimization; once the frequency exceeds the preset threshold, correspond-

ing optimizations are performed. A threshold-triggered decision model is easy to

implement, but is too coarse-grained: whether the benefit gained by the performed

optimization canactuallyoutweigh the overhead is not evaluated.

Instead of using threshold-triggered decision model, the IBM JikesRVM sys-

tem [8, 7] employs a cost/benefit analytic model to determineif a hot method should

be optimized and at which level it should be optimized. Theirmodel is as following:

Lopt = {k|Tk∆ > 0, Tk∆ = max(Tj∆), i ≤ j ≤ N},

Tj∆ = Cj + Tj − Ti,

Tj = Ti ⋆ Si/Sj

WhereLopt is the result optimization level for the methodm, i is the current compiled

level ofm (might be unoptimized level),N is the highest compilation level,Cj is the

compilation cost form at levelj. Ti is the predicted future execution time ofm if

m keeps running at leveli, Tj is the predicted future execution time ofm if it is
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optimized at levelj. Tj can be estimated based onTi and the difference between

speedups of leveli (Si) and levelj(Sj).

This decision model is more accurate than threshold-triggered ones since it de-

cides whether there is any benefit to optimization of a method(T∆ must be positive)

and tries to choose the most profitable optimization level for the method. In addi-

tion, it can promote a hot method directly to the most profitable optimization level

rather than slowly updating it by one level at a time. However, to implement this de-

cision model, some parameters must be provided: the cost of acompilation level, the

speedup of the new optimization level over the previous one,and the future execu-

tion time of the method. All of these parameters are highly application and resource

dependent and the precise prediction of them is still an openresearch problem.

2.4 Example System: JikesRVM

The JikesRVM is a research virtual machine developed at IBM T.J. Watson Re-

search Center. This system is written almost entirely in Javaand is one of the most

advanced adaptive optimization systems currently. We havediscussed its execution

model, profiling techniques, and decision model in the previous sections. In this sec-

tion, we show how different components of JikesRVM work together to deliver high
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performance. We do so since, it is this system that we employ as our base infrastruc-

ture and extend in this dissertation work.

The architecture of the adaptive optimization system in JikesRVM consists three

subsystems: theruntime measurement subsystem, the controller, and therecompi-

lation subsystem. In addition, theAOS databaseprovides a repository of previous

decisions for later query. The runtime measurement subsystem is responsible for

gathering information about the application behavior (by samplers), summarizing the

information (by organizers), and passing the summary to thecontroller via an event

queue. A decay organizer periodically refreshes the sampledata so that more recent

behavior is emphasized.

Currently, two kinds of sample data are collected in JikesRVM: method invoca-

tions and call edges. The former is used to identify hotness and the latter is used

to guide runtime inlining. The controller coordinates the activities of the other two

subsystems based on the profile data. It takes information from the event queue and

uses the cost/benefit analytic model to determine whether a higher level optimization

should be performed and which level yields the best performance tradeoff. Then it

puts the recompilation requests in the compilation queue, along with instrumentation

plans that will provide desired profile data for further optimization. The recompila-

tion subsystem takes compilation plans submitted by the controller and performs the
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requested compilation in the background. Finally, the previous code is replaced by

the newly optimized code and execution continues with the optimized version.

All three subsystems are carefully engineered to impose very little overhead. For

example, the total overhead introduced by the controller and organizers is only about

1%, which is negligible comparing to the significant performance improvements de-

livered by the adaptive optimization system. Performance improvements of 11% on

average and up to 73% are reported for feedback directed inlining in [8].
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Automatic Code Management for

Resource Constrained JVMs
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Chapter 3

Code management in Resource
Constrained JVMs

Java virtual machines (JVMs) [102] have become increasingly popular for execu-

tion of mobile and embedded device applications. Statistics from JavaOne 2007 [83].

show that there are total1.83 billion Java-enabled mobile devices to date (May 2007).

This wide-spread use of Java for embedded systems has resulted from significant ad-

vances in device capability as well as from the ease of program development, security,

and portability enabled by the Java programming language [17] and its execution en-

vironment (JVMs).

To execute a Java program, the JVM translates the code from anarchitecture-

independent format (bytecode) into the native format of theunderlying machine. In

this chapter, we overview two models of code translation in JVMs, i.e., the interpre-

tation model and the compilation model. We compare their advantages and disad-

vantages in the scope of resource constrained environments. In particular, we discuss
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why the compilation model is desirable even for resource constrained systems and the

existing challenges to use the compilation model (e.g., bigmemory footprint, compi-

lation overhead, memory management overhead, etc.). We then provide an empirical

study of size and usage patterns of the compiled code in JVMs for a set of bench-

marks, which reveals many opportunities of efficient, automatic code management

techniques, and motivates our adaptive code unloading workin Chapter4.

3.1 Interpretation Versus Compilation

Most JVMs for embedded and mobile devices translate bytecode employ inter-

pretation, i.e., instruction-by-instruction conversionof the bytecode [99, 26, 89]. The

reason for this is that such translation is easy to implementand imposes no perceiv-

able interruption in program execution. In addition, the native code that is executed

is not stored; if code is re-executed, it is re-interpreted.The primary disadvantage

of using interpretation is that an interpreted program can be orders of magnitude

slower than compiled code due to poor code quality, lack of optimization, and re-

interpretation of previously executed code. As a result, interpretation wastes signifi-

cant resources of embedded devices, e.g., CPU, memory, battery, etc.

To overcome the disadvantages imposed by interpretation, some JVMs [32, 141,

5, 75] employ dynamic (Just-In-Time (JIT)) compilation. Programs that are com-
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piled use device resources much more efficiently than if interpreted due to signif-

icantly higher code quality. Compilers translate multiple instructions concurrently

which exposes optimization opportunities that can be exploited and enables more in-

telligent selection of efficient native code sequences. Moreover, compilation-based

systems store code for future reuse obviating the redundantcomputation required for

re-interpretation of the same code. According to studies ofenergy behavior of JVMs

and Java applications in [149, 48], JVMs in the interpreter mode consume signifi-

cantly more energy than in the JIT compiler mode. Thus, the JIT approach is a better

alternative for embedded JVMs from both performance and energy perspectives.

Despite the execution speedup of compiled code over interpreted code and its

power efficiency, dynamic compilation is still not widely used in JVMs for resource-

constrained environments due to the perceived memory requirements. Dynamic com-

pilation enlarges the JVM memory footprint in three primaryways: The extra code

base introduced by the JIT engine, the intermediate data structures generated by the

compiler during compilation, and the compiled code stored for reuse. Significant en-

gineering effort and research [1, 92, 18] have been performed to address the first two

problems by making the JIT compiler more lightweight while still enabling genera-

tion of high quality code.

Compiled native code is significantly larger than its bytecode equivalent. In

resource-constrained environments, since the total available memory is limited, the
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memory consumed by these code blocks reduces the amount of memory available

to the executing application. This increase in memory pressure can preclude some

programs from executing on the device. Moreover, for systems that use garbage

collection to manage compiled code, compiled code increases memory management

costs, which can be significant when memory is severely constrained. If applications’

code and data share the same heap and are managed by the same garbage collector,

the impact of compiled code on memory management costs can beeven more severe.

As a result, dynamic compilation introduces memory overhead for compiled code not

imposed by interpreter-only systems which can in turn negate any benefit enabled by

code reuse and improved code quality. The goal of our work is to reduce the mem-

ory requirements introduced by compiled code to make the compilation model more

feasible for the resource constrained JVMs.

3.2 Characteristics Study of Compiled Code in JVMs

To identify potential solutions for reducing the memory requirements introduced

by compiled code for resource constrained JVMs, we have conducted an empirical

study of the size and usage patterns of the compiled code in JVMs for a wide range of

benchmarks. We have performed a series of experiments that measure various static

and dynamic characteristics of native code, e.g., size, usage statistics, etc.
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Byte ARM Native IA32 Native Dead after
Bench- code Kaffe Kaffe Jikes startup
marks (KB) KB (/BC) KB (/BC) KB (/BC) KB (Pct.)

compres 12.4 210.8 (17.0x) 96.7 (7.8x) 98.0 (7.9x) 70.8 (72%)
db 14.5 242.2 (16.7x) 114.6 (7.9x) 105.9 (7.3x) 89.2 (85%)
jack 42.4 788.6 (18.6x) 318.0 (7.5x) 284.1 (6.7x) 72.5 (26%)
javac 78.3 1252.8 (16.0x) 555.9 (7.1x) 469.8 (6.0x) 75.9 (16%)
jess 32.9 559.3 (17.0x) 250.0 (7.6x) 223.7 (6.8x) 167.9 (75%)
mpeg 56.6 1386.7 (24.5x) 464.1 (8.2x) 452.8 (8.0x) 357.4 (79%)
mtrt 21.1 N/A 173.0 (8.2x) 160.4 (7.6x) 117. 6 (73%)

Table 3.1: Size and behavior of the compiled native code in JVMs.

Table 3.1 shows the size in kilobytes (KB) of the bytecode and native code for

the SpecJVM benchmark suite [135]. Column 2 is bytecode size and columns 3–

5 show the size of native code and the ratio (/BC) of native code size to bytecode

size. We gathered this data using two platforms, ARM and IA32,and two JVMs,

the JikesRVM [5], and the Kaffe embedded JVM [89] with jit3. Since JikesRVM

does not have back-end for ARM, we show only data for IA32. Thisdata shows

that IA32 native code is 6-8 times of that of bytecode for bothJikesRVM and Kaffe

for these programs. ARM code is even larger (16-25 times that of bytecode) since its

RISC-based instructions are simpler than the CISC IA32 instructions (which do more

work per instruction). Even if the systems uses the compact instruction form, e.g.,

ARM/THUMB (potentially reducing native code size by half), the size of compiled

native code is likely to be much larger than that of the corresponding bytecode.
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Figure 3.1: CDF of effective method lifetime as a percentage of total lifetime. The
effective lifetime of a method is the time between its first and last invocations; the
total lifetime of a method is the time from its first invocation to the end of the program.
A point, (x, y), on a curve indicates that y% of that benchmark’s executed methods
have an effective lifetime of less than or equal to x% of its total lifetime.

The final column shows the amount of code that goes unused after program startup

(we define startup as the initial 10% of the execution time). Interestingly, a large

amount of executed code becomes dead after program startup;this portion of code

remains in the systems and consumes precious system memory needlessly.

In addition, we found that a majority of the code that remainsafter startup in

many benchmarks has short life spans. Figure 3.1 graphs the cumulative distribu-

tion functions ofeffective lifetime percentageof methods, i.e., the percentage of the

effective lifetime (time between the first and last invocations of a method) over the

total method lifetime (time from the method’s first invocation to the end of the whole

program). This metric is similar to thetrace lifetimeused in [69]. This figure shows
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that for most of the benchmarks (all butjavacandjack), more than60% of methods

are effectively live for less than5% of the total time they remain in the system.

We also found that methods with long effective lifetimes commonly are invoked

infrequently. For example, method spec.benchmarks.213 javac.ClassPath.<init>

has an effective lifetime of75%, but is only invoked 4 times and executed for only

0.1% of its total effective lifetime.

In summary, the native code size in JVMs is much larger than that of bytecode.

Since native code is stored by compilation-based JVMs for reuse, it consumes pre-

cious memory space on resource constrained devices. Moreover, a big portion of the

compiled code blocks become dead after the startup phase. Finally, for those code

blocks that are live after the startup phase, majority of them have very short lifetime.

All of these invocation characteristics of the compiled code presents many opportu-

nities for removing code blocks from the system temporarilyor permanently.
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Adaptive Code Unloading

To exploit the performance enabled by a compilation-based approach to bytecode

translation, and to reduce the memory requirements of such an approach, we propose

a novel technique, calledadaptive code unloading. Adaptive code unloading is an

alternative to either not compiling code (as in the interpretation model) or keeping

all compiled code (as in the current compilation model). A JVM with adaptive code

unloading compiles all methods initially, then discards (unloads) the compiled code

if unused or infrequently used, or when the system is severely memory constrained.

Our study of size and usage patterns of compiled code in JVMs in Section 3.2

reveals many opportunities for removing code blocks from the system temporarily or

permanently to reduce the memory requirements. For example, code that is not used

after startup can be unloaded after the system passes the startup stage. In addition,

those code blocks that remains in the system after startup but has short life spans

can also be considered candidates for unloading. Finally, when memory is highly

35



Chapter 4. Adaptive Code Unloading

constrained, we can even consider to unload methods with long life spans but are

invoked infrequently to release memory pressure in the system temporarily.

In this chapter, we describe an extensible framework for adaptive code unloading

that we developed to relieve memory pressure imposed by compiled code in resource-

constrained JVMs. We identify the various components of theframework and explain

how each component works and cooperates with the others to facilitate adaptive code

unloading. We then use the framework to investigate a wide range of unloading

strategies that lead to different tradeoffs between the JVMmemory footprint and

execution performance. Finally, we empirically compare the various strategies to

identify the best-performing combination of design decisions, and evaluate the overall

efficacy of the system.

4.1 Code Unloading Framework

Figure 4.1 depicts the extensible framework for adaptive code unloading that

we developed to relieve memory pressure imposed by compliedcode in resource-

constrained JVMs. The outer box is the boundary of a JVM. Inside this box, the

left part is the control-flow of a JVM that employs dynamic andadaptive compila-

tion, which we believe is crucial to achieve high performance with small memory

footprint in resource-constrained environments. Adaptive compilation is the process
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Figure 4.1: Overview of the adaptive code unloading framework

of selectively compiling or recompiling code (guided by online performance mea-

surements) that has been interpreted or compiled previously in an attempt to improve

performance [8, 32, 75]. The right part of the figure shows ourJVM extensions

(darkened components) that enable adaptive code unloading.

While programs are executing, theResource Monitorcollects information about

resource behavior, e.g. heap residency data, garbage collection (GC) invocation fre-

quency, and native code size, etc. The online and offlineprofilers collect informa-

tion about application behavior, such as hot methods and invocation activity of each

method. The code unloading system can share the profilers with the adaptive compi-

lation system if possible to reduce overhead. TheCode Unloadertakes information
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from these components, analyzes the cost and benefit of unloading, and decides when

code unloading should commence and which methods to unload.As such, the frame-

work dynamically and automaticallyidentifies dead or infrequently used native code

bodies and unloads them from the system to relieve memory pressurewhenever nec-

essary.

Once the unloader selects a method, it replaces its code entry in the dispatching

table with a special stub, which we refer to as theexecution stub. This stub is similar

to the mechanism used by the JVMs to enable lazy, Just-In-Time compilation [5,

96]. However, we add additional information to specify how to execute the method,

e.g., interpreting, fast compiling without optimization,or compiling at a particular

optimization level, if it returns to the system after being unloaded.

The system reclaims the native code block of an unloaded method during the

next garbage collection cycle since it is no longer reachable by the program. If the

executing program invokes a method that has been unloaded, the execution stub will

invoke the interpreter or an appropriate compiler to re-translate the method. If the

method is compiled, its address (that of the stub) is replaced with that of the newly

compiled method in the dispatching table. Future invocations of the method by the

program execute the compiled method directly through the table entry.

Since the unloader and other framework components must operatewhile the pro-

gram is executing, we designed the system to be very light-weight. Moreover, the
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framework implements a flexible and extensible foundation via a well-defined inter-

face that we (and others) can use to investigate, implement,and empirically evaluate

various code unloading strategies.

We implemented the framework as an extension to the open-source Jikes Research

Virtual Machine (JikesRVM) [5]. JikesRVM is a compiler-only JVM, and thus, the

special execution stub either fast compiles the method, or optimizes the method at

certain level directly. No interpretation is performed. This implementation can be

easily extended to handle interpretation in the execution stubs if an interpreter is

included in the JVM. We then used the resulting system to investigate four strategies

that identify unloading candidates and four strategies that trigger unloading. We detail

each of these strategies in the following sections.

4.2 Unloading Strategies

There are four primary decisions that any dynamic code unloading system must

make:

• When unloading should be triggered;

• How unloading candidates should be identified and selected;

• Whether optimized code should be handled differently from unoptimized code

or not;
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• How the system should record the profile information used in the decision pro-

cess.

There are a number of possible answers to these questions; each of which leads to

a different tradeoff between the JVM memory footprint and execution performance.

We investigated a number of strategies that attempt to answer these questions in an

effort to identify the best-performing combination of design decisions.

4.2.1 Triggering an Unloading Event

We first investigated various ways in which we can trigger unloading. That is,

we implemented strategies that decidewhento unload. We considered four different

triggers: Maximum invocation count, a timer, GC frequency,and code cache size.

The first strategy is calledMaximum Call Times (MCT)triggered. We use offline

profiling to collect the total invocation times for each method. Then the code unloader

uses this information to trigger unloading of methods following completion of the

last invocation of each. The system records the invocation times upon each method

return. This strategy is not adaptive to execution behaviorbut guarantees all methods

are unloaded when the program is finished with them. The strategy introduces no

additional compilation overhead since unloaded methods will not be reused again

and therefore reloaded. This strategy is not realistic in the sense that it is unlikely

that we will be able to have such accurate information (last call time) for all methods
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given non-deterministic execution and cross-input program behavior. This strategy

does however, capture the potential of unloading dead methods and we use it as a

limits study.

The second strategy isTiMer (TM) triggered. Our system unloads code at fixed,

periodic intervals. To be simple and efficient, we use a thread-switch count to ap-

proximate the timer since thread switching occurs at approximately every 10 ms in

our JVM. This JVM employs stop-the-world style of the garbage collection (GC)

which halts all thread switching during GC. To compensate forthese time periods,

we extended the GC system to update the thread-switch count at the end of each GC

by the amount corresponding to the time spent performing theGC.

SinceTM is timer based, it is not adaptive, i.e., it does not exploit information

about the execution characteristics of the VM, such as memory availability. More-

over, the length of the period is a difficult parameter to set.We found that different

period lengths perform better for different programs and even for the same program

across inputs. We detail the parameters we use in Section 4.3.

To address the limitations of TM, we investigated an adaptive Garbage Collec-

tion (GC)triggered strategy. The intuition behind this strategy is that code unloading

frequency should adapt to the dynamically changing resource availability. Unloading

frequency refers to how often unloading occurs, e.g., every60 seconds, every 10 GC

cycles, etc. When memory is highly constrained, code unloading should be triggered
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more frequently to relieve memory pressure. When unconstrained, the system should

perform unloading less frequently to reduce the overhead ofthe unloading process

itself and to reuse compiled code as much as possible. To thisend, we initially in-

vestigated the use ofheap residency, i.e., the ratio between the amount of memory

occupied and the total heap size, to measure memory usage. Ifthe system is short of

memory, we will see high heap residency following garbage collection.

However, using heap residency alone to measure memory usagemay raise many

false alarms. For example, some programs may allocate most of its memory at the

beginning of execution. The heap residency will remain highand cause repeated un-

loading even when no further allocations are made by the program. To avoid false

alarms, we use heap residency indirectly by considering GC frequency. When the

amount of available memory space is small and programs repeatedly allocate mem-

ory, GC will occur frequently. To capture this behavior, at the end of each GC cycle,

the resource monitor forwards the percentage of execution time spent in garbage col-

lection so far to the unloader so that the unloader can adjustthe unloading frequency.

We specify unloading frequency using a dynamic “unloading window”. Our sys-

tem initiates unloading once per window. The size of an unloading window is defined

by a specific number of garbage collection cycles. Users or system administrator can

specify a minimal window size using command line options. The unloading system

divides this minimal window size by the percentage of time spent in GC to determine
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the dynamic window size adaptively. The value is decremented upon each GC. When

it reaches zero, the system performs unloading. Following each unloading session,

the system resets the window size.

As we showed in Section 3.2, more than70% of code is dead following the initial

10% of program execution time, i.e., the startup phase, for mostbenchmarks. To ex-

ploit thisphasedbehavior, we investigated different unloading strategiesthat operate

at different stages of program lifetime. We define the first 4 GC cycles (which we

empirically determined and which can be changed via a command-line parameter) to

be startup period. During the startup phase, the program uses heap residency alone

to facilitate more aggressive unloading; following this period, the system uses the

percentage of time spent in GC to determine when to unload.

The last strategy that we investigated is acode Cache Size (CS)trigger. This strat-

egy is similar to “code pitching” in the Common Language Runtime (CLR) [16]. In

this strategy, we store the compiled native code in a fix-sizecode cache. When the

cache is exhausted, our system performs unloading. The advantage of this strategy is

that the size of compiled code body is guaranteed to be below aspecified maximum.

However, we found that it is very difficult to find a general optimum cache size for all

applications. An alternative is to use a small size cache initially and allow the cache

to grow as necessary. However, to determine how often and at what increments to

grow is equally difficult and application-specific. Regardless of the limitations, we
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are interested in understanding how this strategy impacts performance. We therefore

parameterized this strategy for initial cache size, the growth increment, and the num-

ber of unloading sessions that triggers cache growth. We discuss how we selected the

parameters for our empirical evaluation in Section 4.3.

4.2.2 Identifying Unloading Candidates

To identify which code should be unloaded, we developed strategies that identify

methods that areunlikelyto be invoked in the future. We hypothesize that the methods

that have not been invoked recently are not likely to be invoked in the near future and

can be unloaded. We present four techniques that use programprofiling as well as

snapshots of the runtime stack to identify unloading candidates.

The first strategy, calledOnline eXhaustive profiling (OnX), uses exhaustive on-

line profiling information to identify unloading candidates. To obtain method invo-

cation counts, we modified the compiler to instrument methods. The instrumented

code marks a bit each time a method is invoked. When unloading is triggered, the

system unloads unmarked methods and resets the mark bits. Inthis way, both dead

methods and infrequently invoked methods can be unloaded. This strategy guarantees

that every method that has been invoked since the last unloading session will have its

mark bit set. Therefore, only recently unused methods will be unloaded. However,
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since profiling is performed for every single method invocation, this strategy has the

potential for introducing significant execution time overhead.

To overcome this limitation, we also investigatedOnline Sample-based profiling

(OnS). In this strategy, the JVM sets the mark bits of the toptwo methods on invo-

cation stacks of application threads for every thread-switch (approximately every 10

ms). We determined this value (two) empirically in an attempt to balance the trade-

off between introducing significant overhead of complete stack scan and incorrectly

unloading used methods. Moreover, this sample-based approach can be turned off

when sufficient memory is available to avoidall overhead. For exhaustive profiling

(OnX), we do not turn off profiling since doing so requires recompilation and possibly

on-stack replacement [49].

We also investigated the efficacy of using perfect knowledgeof method lifetime

– to facilitate our MCT (maximum call times) trigger. For thisstrategy, we gather

the total invocation count for each methodoffline. Then we annotate this value in

the class file as a method attribute for use by the JVM during program execution

using an annotation system that we developed in prior work [95, 94]. At runtime, we

use online profiling to identify a method’s last invocation;at which time, we mark

the method to be unloaded. Instead of the 1-bit counter used in OnX, this strategy

requires that we increment an integer counter for each invocation. We assume that

the same input is used for both offline profiling and online execution, that is, we use
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perfect information of method invocation counts. We refer to this strategy asOffline

exhaustive profiling (Off).

Our final strategy, calledNP for “No Profiling”, simply unloads all methods that

are not currently on the runtime stack when unloading is triggered. This strategy is

the most aggressive one. The advantages include simplicityof implementation and

avoidance of all profiling overhead. However, this strategyis not adaptive and may

unload methods that will be invoked in near future, introducing significant recompi-

lation overhead.

4.2.3 Unloading Optimized Code

Heretofore, we have not considered whether the method we areunloading is op-

timized or not. Unloading optimized code has the potential of increasing the perfor-

mance penalty of unloading when a method is later reused. This is because optimizing

code is much more expensive than compiling code without optimization. We refer to

the latter asfast compilation. For JVM configurations in which only fast compilation

is used, there is no optimized code to unload.

However, in addition to a JVM configured with only a fast compiler, we consider

an adaptiveconfiguration. In an adaptive optimization, a method is initially fast

compiled. The JVM samples methods to identify those where the most time is spent,

i.e., that are “hot”. The system then uses a counter-based model (as HotSpot [75]
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employs) or a cost/benefit analytic model (as JikesRVM [7] employs) to decide when

and at which level to compile or recompile a method dependingon its hotness. Higher

level of optimization enables larger performance improvement, but also introduces

additional compilation overhead.

For an adaptively optimizing JVM configuration equipped with code unloading,

we must determine the level at which unloaded optimized codeshould be compiled

if it is later reused. If we use fast compilation, the method will have to progress

through the optimization levels again if it remains hot after unloading. Alternately, if

we optimize the method at the level at which it was when it leftthe system, it may no

longer be hot when it returns; this imposes unnecessary compilation overhead on the

program.

We implemented three additional strategies to study the performance impact of

unloading optimized code. First, we insert an optimizationlevel hint to the recom-

pilation stub. If an unloaded hot method is later invoked, our system re-compiles it

at the optimization level that it was before unloaded. We call this strategyRO: Re-

Optimize hot methods using an optimization level hint. Second, we avoid unloading

all hot methods. We call this strategyEO: ExcludeOptimized methods from unload-

ing. This strategy avoids the compilation overhead of optimization. However, some

programs may have a significant percentage of hot methods (that should be unloaded).

For example, injavacfrom the SpecJVM98 benchmark suite, there are 78 out of 876
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methods that are hot. In comparison,db only has 3 out of 151 methods that are hot.

Our third strategy accounts for cases likejavac: The optimized (thus hot) methods

will be unloaded. However, we delay unloading until the method is unused for two

consecutive unloading sessions. If an optimized method is unloaded after giving sec-

ond chance, it is fast compiled at next time it is invoked. We call this strategyDO:

Delay unloading ofOptimized methods.

4.2.4 Recording Profile Information

Another implementation issue that we must address is how thesystem should

record profile information. As we described above, for the implementation of the

“what” strategies, we use a bit array to record information gathered either by instru-

mented code or by sampling. Every time a method is invoked or is on the top of stack

when thread switching occurs, the system sets a bit in the array that corresponds to

the method. When unloading occurs, the system unloads all unmarked methods and

resets the array.

The benefits of using a bit array to record profile information, are that the imple-

mentation is simple and access to the array is very efficient.However, a bit array does

not capture the temporal relationship between method invocations. That is, as long as

two methods are invoked since last unloading session, they will be treated equally by

the next unloading session no matter which one is the more recently invoked.
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To evaluate whether such temporal information is importantor not, we imple-

mented an additional mechanism for recording profile information in which all meth-

ods are linked via a doubly linked list. A method is inserted at the end of the list

when it is compiled. Whenever the method is invoked again (in the exhaustive profil-

ing case) or sampled (in the sample-based case), the system moves it to the end of the

list. As a result, all methods are always ordered by their last invocation (or sample)

time. Such an implementation enables our use of the framework to investigate the

efficacy of using the popularLeast Recently Used (LRU)cache replacement policy

for code unloading.

4.3 Experimental Methodology

We implemented and empirically evaluated the efficacy of ourcode unloading

framework and various unloading strategies in the Jikes Research Virtual Machine

(JikesRVM) [5] (x86 version 2.2.1) from IBM Research. Although JikesRVM was

not originally designed for embedded systems, it has two different compilation con-

figurations that we believe are very likely to be implementedin the next-generation

JVMs (embedded or not):Fast, non-optimizing compilation, andAdaptiveoptimiza-

tion (in which only methods that have the most performance impact are optimized).
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We investigate both compiler configurations since it is unclear as to how much opti-

mization should be used by JVMs for embedded devices.

One limitation of JikesRVM is that it does not implement an interpreter and thus,

we are unable to use it directly to evaluate the impact of codeunloading on selective

compilation, i.e., a system that employs interpretation for cold methods and compila-

tion (and increasing levels of optimization) for hot methods, e.g., as in HotSpot JVM

from Sun Microsystems [75]. To our knowledge, no open sourceJVM implements an

interpreter, a highly optimizing compiler, and adaptive optimization. As such, we use

simulation to evaluate the impact of code unloading for selective compilation JVMs

in Section 4.4.3. We describe our simulated setup and assumptions in that section.

We investigate maximum heap sizes of MIN and 32MB to represent memory re-

source constraints. MIN has the minimum heap size that is necessary for each bench-

mark to run completion (identified empirically) without an out of memory exception.

We use MIN as an example of a scenario in which memory is highlyconstrained and

32MB as an example of unconstrained memory. Given this experimental methodol-

ogy, we believe that our results lend insight into the potential benefits of adaptive code

unloading on future, compilation-only and selective compilation JVMs for embedded

systems.

In our experiments, we repeatedly ran the SpecJVM benchmarks (input 100), on

a dedicated Toshiba Protege 2000 laptop (750 MHZ PIII Mobile) with Debian Linux
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Code MIN Memory Exec Time (s) GC Ratio(%) CMP Ratio(%)
Benchs (KB) (MB) Used(MB) min 32MB min 32MB min 32MB
compress 98.4 20 122.2 66.8 61.2 9.99 3.10 0.04 0.04

db 105.3 22 83.7 78.8 50.6 38.96 7.41 0.03 0.05

jack 284.9 6 238.1 624.9 17.9 97.42 28.35 0.01 0.31

javac 468.5 24 232.3 128.9 46.8 77.61 41.89 0.10 0.26

jess 223.1 8 274.3 303.3 27.6 91.99 25.86 0.02 0.20

mpeg 455.4 9 14.3 56.1 54.4 1.69 0.00 0.11 0.11

mtrt 161.3 18 149.3 321.5 29.6 92.66 21.29 0.01 0.12

Table 4.1: Benchmark characteristics for Fast configuration

Code MIN Memory Exec Time (s) GC Ratio(%) CMP Ratio(%)
Benchs (KB) (MB) Used(MB) min 32MB min 32MB min 32MB
compress 143.8 22 130.3 26.3 21.5 23.59 8.07 0.80 1.04

db 157.8 23 95.3 115.6 45.1 64.78 12.42 0.21 0.51

jack 372.4 9 248.4 130.6 18.2 88.72 32.70 0.33 2.04

javac 582.8 26 247.2 152.3 55.5 80.94 49.42 0.44 1.08

jess 311.8 11 288.7 136.4 23.2 88.23 37.34 0.50 2.73

mpeg 541.4 12 45.9 29.7 20.3 30.27 3.27 2.56 4.45

mtrt 237.8 23 152.8 50.4 22.6 71.05 38.70 1.36 2.93

Table 4.2: Benchmark characteristics for Adaptive configuration

(kernel v2.4.20) using both the Fast and Adaptive JikesRVM compilation configura-

tions. In both configurations, the commonly used VM code is compiled into the boot

image. In addition, we employ the default JikesRVM garbage collector, a semispace

copying collector. In all of our results, we refer to the reference (unmodified) system

asclean.

The general benchmark statistics are shown in Table 4.1 (Fast configuration)

and 4.2 (Adaptive configuration) for the clean system. In each table, the first col-

umn is native code size (including all compiled methods, applications and libraries)

in kilobytes (KB). The second column is the empirically identified MIN value. The
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third column is the total size of memory allocated during theexecution. The last six

columns show the total execution time (in seconds), the percentage of time spent in

GC and the percentage of time spent in compilation. Note thatJikesRVM is equipped

with a facility to track the time spent by each thread. For IA32, it uses system call

”gettimeofday” to get the current time. CPU time accumulation of one thread is

stopped when the thread is switched out and resumed once its execution resumes.

Based on this timing facility, JikesRVM is able to measure time spent in GC and time

spent in compilation accurately.

To compare the different strategies, a set of parameters is required. We empiri-

cally evaluated a wide range of parameters for each strategyand only report results

using best-performing values (on average) across all benchmarks. We set 10 GC cy-

cles as the unloading window size for GC (garbage collectiontriggered), 10 seconds

as the interval for TM (timer triggered). For CS (code size triggered), initial cache

size is 64KB and grows by 32KB for every 10 unloading sessions(triggered by a full

cache).

4.4 Performance Evaluation

In the subsections that follow, we evaluate the efficacy of our code unloading

strategies for memory footprint reduction. We then presentthe impact of this reduc-
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What MIN 32MB
Strategies Fast Adaptive Fast Adaptive
Off-TM 38.3 N/A 31.9 N/A
NP-TM 55.1 43.8 51.0 40.3
OnS-TM 53.1 42.8 50.5 38.7
OnX-TM 45.6 34.4 43.7 27.0

When MIN 32MB
Strategies Fast Adaptive Fast Adaptive
Off-MCT 42.7 N/A 50.9 N/A
OnS-CS 52.0 40.3 56.7 41.6
OnS-GC 61.8 46.9 46.3 36.0
OnS-TM 46.7 42.8 30.6 38.7

Table 4.3: Average code size reduction (%) of different “what” and “when” strategies

tion in memory pressure on performance. We evaluated all possible permutations of

“what” and “when” strategies. However, we only present a subset of results in this

section for conciseness and clear illustration. Finally, we explore the potential im-

pact of coupling code unloading and selective compilation,i.e., a JVM configuration

that employs interpretation of cold methods and compilation of hot methods using

increasing levels of optimization.

4.4.1 Memory Footprint Reduction

We first compare the average code size reduction over a clean version of the sys-

tem, in Table 4.3. The clean system is a compile-only JikesRVM system with no code

unloading extensions. The left half of the table is for MIN memory configuration and

the right half is for 32MB (again, MIN is the minimum heap sizein which the pro-
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gram will run and 32MB represents a system with less memory pressure). For each

heap size, we also present the results for different compilation configurations (Fast or

Adaptive). We show two sets of data in this table: one for “what” strategies and the

other for “when” strategies.

The upper part of Table 4.3 shows the four “what” strategies as described in Sec-

tion 4.2.2: Off (Offline profiling), NP (No Profiling), OnS (Online Sample-based

profiling), and OnX (Online eXhaustive profiling). We chooseTimer-triggered (TM)

to be the common “when” strategy since its periodicity enables us to focus only on

the impact of different “what” strategies. We omit the results of Off-TM strategy

for Adaptive configuration since the adaptive optimizationsystem in JikesRVM is

non-deterministic: It uses timing information to decide when and how to optimize

and hence, we are unable to obtain deterministic offline profile of method invocation

counts for the fast compiled version and the optimized version separately, which are

required by Off-TM strategy to trigger unloading correctly.

For both memory configurations,NP-TM performs the best, followed byOnS-

TM, OnX-TMandOff-TM. StrategyOff-TM does not unload a method until it is dead.

Thus, it is the least aggressive.NP-TMalways discards all compiled methods except

those on the runtime stack during an unloading session resulting in the largest reduc-

tion in average code size. Online exhaustive profiling is more accurate than sample-
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based profiling in capturing recently invoked methods. Thus, OnX-TMunloads fewer

methods thanOnS-TM.

The code size reduction in 32MB setting is less than that in MIN setting in most

cases. The reason for this is that programs execute and complete faster when more

memory is available. Hence, fewer unloading sessions were triggered. Similarly, the

reduction in Adaptive configuration is less than that in Fastconfiguration.

The bottom part of Table 4.3 compares four “when” strategiesas described in

Section 4.2.1: MCT (Maximum Call Time triggered), CS (Code Size triggered),

GC (Garbage Collection triggered), and TM (TiMer triggered). We used the best-

performing “what” strategy – OnS (online, sample-based profile) – for these exper-

iments. The MCT “when” strategy requires an accurate, offlineexhaustive profile

of methods’ maximum invocation numbers (thus, we prefix the name with “Off-”).

Again, we omit Off-MCT for Adaptive configuration due to the non-determinism.

Similarly to the results of “what” strategies, all “when” strategies have a signifi-

cant code size reduction for all configurations.OnS-GCadapts the best to the memory

availability: the more the memory is limited, the more native code is unloaded.OnS-

TM is also sensitive to memory pressure since our implementation of this strategy

updates the timer period for the time spent in garbage collection. OnS-TM is less

adaptive than OnS-GC, however, since it does not account for changes in phases of
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Figure 4.2: Size of code residing in the system during program executionof Clean,
OnX (Online eXhaustive profiling) and OnS (Online Sample-based profiling) strate-
gies of Fast Configuration
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program execution. In contrast,Off-MCT andOnS-CSare not sensitive to memory

availability at all.

Next, we show how code size changes over time with and withoutunloading. We

only focus on the best-performing combinations ofWhatandWhenstrategies: on-

line, sample-based profiling triggered by GC invocation count (OnS-GC). Figure 4.2

shows code size over the lifetime of each benchmark using MINand the Fast com-

pilation configuration. The x-axis is the elapsed executiontime in seconds and the

y-axis is the native code size in kilobytes. We record code size following each GC

and at the end of execution. If unloading occurs during a GC, werecord the code

size both before and after unloading. We show the results forthe clean, OnS-GC, and

OnX-GC systems. By comparing OnS-GC with OnX-GC, we can betterunderstand

the impact of the more aggressive unloading performed by theOnS strategy. The

vertical line for each graph indicates the time at which the program ends.

The graphs in this figure illustrate the impact of code unloading on heap residency.

Code size in the clean system becomes stable after a very shortstartup period and

remains at a high level until the application ends. In contrast, both OnX-GC and

OnS-GC quickly reduce the code size significantly. OnS-GC ismore aggressive than

OnX-GC since it unloads any methods that it believes (inaccurately) are not used

recently. In addition, both strategies exploit phase behavior by unloading code more

aggressively in the early stages of execution, thus, they reduce code size significantly
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for many applications (such as compress, db, etc.) that havea large amount of dead

code following program startup.

The above results show code size reduction enabled by code unloading. Our

system requires very little memory for the implementation of code unloading in the

form of internal data structures and code. As we discussed inSection 4.2.4, we

use a bit array to record profiling information, one bit per compiled method. This

implementation requires less than 50 bytes of memory on average. In addition, we

add approximately 100 lines of Java code to the code base to perform profiling and

code unloading.

4.4.2 Impact on Execution Performance

Code size reduction is not our only concern. If it were, never caching any code

would be the best choice. Our ultimate goal is to achieve the best execution perfor-

mance while maintaining a reasonably small memory footprint.

The performance of our JVM enhanced by adaptive code unloading is influenced

by the overhead of recompilation, profiling, and memory management. Memory

management overhead refers to the processing cost of storednative code. No matter

how native code is stored in a JVM, when memory size is limited, the more of the

heap that is allocated for native code, the less that is available for the application, and

the more management overhead that is imposed by the stored code. Thus, unloading
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code when memory is highly constrained can reduce management overhead. The sig-

nificance of such reduction, however, depends upon how native code is managed in a

JVM.

In general, there are three ways to manage native code in a JVM: (1) using a

dedicated memory area not managed by the garbage collector (GC); (2) using a GC-

managed heap area separated from application heap; and, (3)using a GC-managed

heap area shared by application. Storing native code in a GC-collectible memory

area eases the memory management because garbage collectorcan manage the code

memory and application memory uniformly. However, this introduces the extra GC

overhead. Storing code in a dedicated memory area removes the interference between

the native code and the applications. However, it also introduces extra overhead for

maintaining multiple heaps and preventing code memory frombeing used by appli-

cations. It is an open question as to which of the three approaches is the best.

In this work, we evaluated the third option, i.e., storing code in the same GC-

managed heap shared by the application. In subsections thatfollow, we compare the

performance impact of different “what” and “when” strategies. We then evaluate the

different ways in which we can handle optimized code and gather profiling informa-

tion. Finally, we summarize two best strategies and show howour strategies adapt to

available heap size.
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 (a) MIN / Fast  (b) 32MB / Fast

 (c) MIN / Adaptive  (d) 32MB / Adaptive

Off-TM NP-TM OnS-TM OnX-TM

Figure 4.3: Comparison of performance impact of the four “what” code unload-
ing strategies. Each graph shows results for one of the four memory and com-
pilation combinations. MIN/32MB indicates the memory configuration used, and
Fast/Adaptive indicates the compilation configuration. Strategies investigated are
Off (Offline profiling), NP (No Profiling), OnS (Online Sample-based profiling), and
OnX (Online eXhaustive profiling), with same “when” strategy, i.e., TM (TiMer trig-
gered).

Comparison of What Strategies

Figure 4.3 shows the performance impact of the various strategies that decide

Whatmethods to unload: offline profiling (Off), no profiling (NP), online sample-

base profiling (OnS), and online exhaustive profiling (OnX). For each strategy, we

use the timer-triggered (TM)Whenstrategy (with a 10 s period).
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The y-axis in all graphs shows the percent improvement (or degradation) over the

clean system. Graphs (a),(b),(c), and (d) show four different combinations of mem-

ory and compilation configurations: (a) and (b) show performance results when no

optimizations are performed (Fast); (c) and (d) are resultswith adaptive compilation;

(a) and (c) show the results when memory highly constrained (MIN); and (b) and (d)

show the results when memory is unconstrained (32MB).

In general, when memory is critical, unloading some code bodies significantly

relieves memory pressure. As stated above, compiled code isstored in a heap that is

shared by the applications and is managed by the garbage collection system, for these

results. The results indicate that, for such systems, reducing the amount of native code

in the system significantly improves performance when memory is highly constrained

since less time is spent in GC.

With the fast compiler (Figure 4.3(a)), Jack, jess, and mtrtshow execution time re-

ductions of over 40%. This is due to the continuous memory allocation requirements

(and hence, GC activity) for these applications. Under highmemory pressure, major-

ity of the execution time is spent on thrashing between allocation and garbage col-

lection. Therefore, a small amount of memory freed up by codeunloading results in

significant performance improvement. Compress and mpegaudio show performance

degradation. This is because both benchmarks have relatively small memory require-

ments (18 and 3 GC cycles, respectively). As such, the benefitfrom unloading turns
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out to be less than the overhead introduced by unloading. Theimpact of code un-

loading also depends on unloading opportunities provided by the application, such

as the percent of short-lived methods. For example, approximately 80% of javac’s

methods have long lifetimes (see Figure 3.1), which substantially limits the potential

of unloading.

Using a fast-compilation JVM configuration, the re-compilation caused by the

unloading imposes little overhead since compilation is very fast: the average total

compilation time (in seconds) when memory is constrained is0.1 (374 methods) for

clean and Off-TM, 0.5 (3822 methods) for NP-TM, 0.4 (3330 methods) for OnS-TM,

and 0.2 (1062 methods) for OnX-TM. Thus, aggressive unloading policies commonly

perform well. One example of this is NP, the second-best-performing strategy overall.

It performs well on average since it imposes no overhead for profiling and the re-

compilation cost is small.

Off-TM, the offline profile-base strategy, performs best in one benchmark (mtrt)

since it is able to only unload dead methods with no recompilation overhead. How-

ever, it is unable to capture infrequently used methods, which turns out to be an

important opportunity for unloading when memory is highly constrained. As such,

Off-TM does not do as well as the other strategies for most benchmarks. Similarly,

OnX-TM does not perform as well as OnS-TM since it is less aggressive than OnS-

TM. The average performance improvement, when memory is highly constrained and
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the fast compiler is used, for each of the strategies, is 20.9% for Off-TM, 21.8% for

NP-TM, 22.2% for OnS-TM, and 19.4% for OnX-TM.

With adaptive compilation, the performance improvements gained by code un-

loading is not as significant as for the Fast configuration. This is because the mini-

mal heap sizes we used for the MIN configuration are the minimal PEAK memory

requirements that programs need to run. Due to optimizations, the Adaptive config-

uration requires larger minimal heap sizes (see Table 4.2).However, optimizations

do not happen all the time, and as such, a larger minimal heap sizes actually reduces

memory pressure, which reduces GC overheads and improvements enabled by code

unloading.

The tradeoff between overheads is slightly different with adaptive compilation

(Figure 4.3(c)). Now recompilation overheads are much larger (since optimization is

used). Blindly discarding all compiled code, as is done in NP-TM, does not enable

the performance levels of the other strategies that use profile information. However,

OnS-TM is still better than OnX-TM, which indicates that theprofile overhead saved

by sampling and the GC overhead reduction enabled by more aggressive unloading of

OnS is still more important than the recompilation overheadintroduced by inaccurate

sampling information when memory is highly constrained. The average performance

improvement in this case is 2.2% for NP-TM, 6.9% for OnS-TM, and 6.2% for OnX-

TM.
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The overhead of unloading (for profiling and recompilation)is more apparent

when memory is unconstrained since unloading is unnecessary and thus, pure over-

head. The average performance improvement (negative for degradation), when mem-

ory is unconstrained and the fast compiler is used (Figure 4.3 (b)), is -2.3% for Off-

TM, -0.9% for NP-TM, -0.2% for OnS-TM, and -1.9% for OnX-TM. Off-TM and

OnX-TM both perform poorly when memory is unconstrained since both impose

overhead for exhaustive method profiling. For the adaptive configuration (Figure 4.3

(d)), the average performance improvement is -3.7% for NP-TM, -1.5% for OnS-TM,

and -1.8% for OnX-TM. We can see that the negative impact of NPstrategy is more

apparent in this configuration due to higher recompilation overhead and less memory

pressure.

In summary, the results indicate that a less aggressive and inexact unloading pol-

icy with low online measurement overhead (OnS) enables significant performance

improvements when memory is critical. In addition, such a strategy imposes little

or no overhead when there is ample memory available. That is,OnS provides an

adequate estimate of infrequently used methods so that GC overhead can be reduced.

Comparison of When Strategies

We next consider the impact of the various strategies that determinewhenunload-

ing should be performed. For all of these results, we use the best-performing “what”
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 (a) MIN / Fast  (b) 32MB / Fast
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Figure 4.4: Comparison of performance impact of the four “when” code un-
loading strategies. Each graph shows results for one of the four memory and
compilation combinations. MIN/32MB indicates the memory configuration used,
and Fast/Adaptive indicates the compilation configuration. Strategies investigated
are MCT (Maximum Call Times triggered), CS (code Cache Size triggered), GC
(Garbage Collection triggered), and TM (TiMer triggered), with the same “what”
strategy, i.e., OnS (Online Sample-based profiling), except MCT, with requires of-
fline profiling (Off) to produce an exact count of maximum invocations.

strategy, OnS (for all strategies except Off-MCT – which requires offline profiling to

produce an exact count of maximum invocations). The fourwhenstrategies that we

investigated are MCT (trigger: max invocation count using perfect-profile informa-

tion), CS (trigger: size of cached code), GC (trigger: GC count), and TM (trigger:

timer alarm).
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Figure 4.4 shows the performance results due to the various “when” unloading

strategies. The format of the figure is the same as those presented previously. The

y-axis in both graphs is the percent improvement (or degradation) over the clean

system. With the fast compiler, the average performance improvement achieved by

our “when” strategies is 17.2% for Off-MCT, 18.4% for OnS-CS, 23.0% for OnS-

GC, and 22.2% for OnS-TM when memory is highly constrained. When memory is

not critical (32MB), recompilation and profiling overhead introduced by code unload

outweighs the GC benefits gained. The average improvement is-7.4% for Off-MCT,

-5.8% for OnS-CS, 0.4% for OnS-GC, and -0.2% for OnS-TM.

In general, the best-performing strategy is GC which uses the frequency of garbage

collections to trigger unloading. MCT imposes large profiling overhead. It also re-

quires an accurate, input-specific, offline profile, which may not be realistic for mo-

bile programs. CS works well when method working set size is similar to the code

cache size. However, it is impossible to accurately predictcode cache size. An in-

correct prediction may cause significant performance degradation since it results in

unnecessary unloading sessions, thus, introducing recompilation overhead. For ex-

ample, the code cache size of javac in Fast configuration grows to 360 KB at the end

of execution; this is much larger than the initial code cachesize (64KB).

The performance impact for the Adaptive configuration is similar, except that:

first, the GC benefits due to code unloading is smaller becauseof the larger MIN
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sizes as discussed previously; and second, the recompilation penalty of aggressive

unloading is larger because of expensive optimizations. Insummary, the average

performance improvement is 2.5% for OnS-CS, 7.9% for OnS-GC, and 6.9% for

OnS-TM when memory is highly constrained. When memory is not critical, the

improvement (degradation if negative) is -10.2% , -0.4% , and -1.5% respectively.

Handling Optimized Code

To improve the performance of code unloading for the adaptive compiler configu-

ration, we investigated three additional variants of OnS for unloading optimized code.

They include delaying unloading of optimized code for an additional unloading ses-

sion (OnS-DO), excluding optimized code when unloading (OnS-EO) and unloading

optimized code and re-optimizing it at the same level if re-invoked (OnS-RO). The

default OnS uses fast compilation when the unloaded method is re-invoked. All these

strategies use the best “when” strategy, GC (garbage collection triggered). Figure 4.5

shows the results with both MIN (a) and 32MB (b) configurations.

The data in the figure shows that OnS-DO-GC (delay unloading)works best for

most of benchmarks. The reason for this is that it gives the optimized code an ex-

tra chance to stay in the system. It also exploits the opportunities to unload outdated

optimized code, unlike OnS-EO-GC. OnS-RO-GC saves the learning time to progres-

sively re-compile a hot method when it is re-invoked. However, the result shows that
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Figure 4.5: Comparison of four variants of online sample-based profile for Adap-
tive configuration. MIN/32MB indicates the memory configuration used. The strate-
gies investigated are OnS-GC (Online Sample-based profiling, Garbage Collection
triggered) with different ways to handle optimized code: OnS-GC treats optimized
methods as same as other methods and recompiles them with thefast compiler; OnS-
DO-GC gives the optimized methods a second chance to stay in the system, but re-
compiles them with the fast compiler if they do get unloaded and reinvoked later;
OnS-EO-GC excludes optimized methods from unloading at all; OnS-RO-GC un-
loads a optimized method normally, but recompiles it at the optimizing level that it
was compiled before unloaded.

in most cases, it does not work well because many of hot methods are no longer hot

following unloading/reloading. For example, method201 compress.InputBuffer.

getbyte()is hot (invoked more than 1.5 million times) before it is unloaded the first

time. Due to the phase shift of the program, it is less hot during subsequent execution.

However, the method is still invoked periodically (approximately 10 invocations be-

tween the two unloading sessions). Since its hotness is not enough to be recognized

by the sampling profiler, it is unloaded during every unloading session and optimized

upon returning. This introduces unnecessary yet significant overhead.
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In summary, the average performance improvement (or degradation if negative),

is 7.9% for OnS-GC, 9.8% for OnS-DO-GC, 8.0% for OnS-EO-GC, and 7.8% for

OnS-RO-GC when memory is highly constrained (MIN). When resources are uncon-

strained (32MB), it is -0.4% for OnS-GC, 0.8% for OnS-DO-GC, -1.8% for OnS-

EO-GC, and -1.3% for OnS-RO-GC.

Comparison With LRU

As we mentioned in Section 4.2.4, we used a bit array to recordprofile infor-

mation with low overhead. One limitation of this implementation is that it does not

capture temporal order of method invocations. One possibleimplementation alter-

native that can record temporal information is a LRU list: all methods are linked

together in the order of their last invocations; whenever a method is invoked or sam-

pled, it is moved to the end of the list. The overhead of maintaining this LRU list is

much higher than that of a bit array since it requires severallinked-list operations for

each update. Moreover, the LRU list requires memory space for two reference fields

per method. In this section, we investigate whether more accurate temporal order of

method invocations will enable more efficient code unloading in spite of the memory

overhead introduced.

We selected our best “what” and “when” strategy combinations so far (OnS-GC

for the Fast configuration and OnS-DO-GC for the Adaptive configuration) and reim-
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plemented their mechanism of recording profile informationusing a LRU linked list.

Note that for the bit array, we unload all unmarked methods and reset all bit to 0

when unloading is triggered. Thus, the aggressiveness of unloading is controlled by

the “when” strategy and no parameter is needed during code unloading. While with a

LRU list, the profile information is not discrete (0 or 1), andhence, we need an extra

parameter to decide how much we should unload from the LRU list when unloading

is triggered. For now, we added a new command-line option, called unloadFraction,

to control the portion in terms of code size of the LRU list that will be unloaded dur-

ing each unloading session. We chose a fraction parameter instead of a absolute code

size parameter to adapt to different workloads.

Similar to the scenarios of other parameterized strategies, there is no generally

best value for thisunloadFractionparameter across programs. We empirically evalu-

ated a wide range of values for this parameter, and report results using best-performing

parameter values (on average) across the benchmarks studied. They are: 40% for the

MIN/Fast configuration, and 10% for the other configurations. Figure 4.6 shows our

performance results: OnS-GC (OnS-DO-GC) labels the bit array implementation and

SLRU-GC (SLRU-DO-GC) labels the LRU implementation. The memory and com-

pilation configurations are: (a) MIN/Fast; (b) 32MB/Fast; (c) MIN/Adaptive; and (d)

32MB/Adaptive. This figure shows that with a fast compiler, more accurate temporal

information provided by the LRU implementation does not enable enough benefits
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 (a) MIN / Fast  (b) 32MB / Fast

 (c) MIN / Adaptive  (d) 32MB / Adaptive

OnS-GC SLRU-GC OnS-DO-GC SLR-DO-GC

Figure 4.6: Comparison of performance impact of the two ways to record profile
information: bit array (OnS-GC/OnS-DO-GC) and LRU list (SLRU-GC/SLRU-DO-
GC). Each graph shows results for one of the four memory and compilation com-
binations. MIN/32MB indicates the memory configuration used, and Fast/Adaptive
indicates the compilation configuration.

to amortize the additional overhead introduced. With an adaptive compilation con-

figuration, the bit array still performs better than the LRU list in most cases.mtrt

is an exceptional case, in which accurate temporal order of method invocations does

enable more efficient code unloading. One possible reason isthat mtrt is the only

multi-threaded application in the benchmark suite. The interaction between threads

makes its performance more sensitive to temporal order of method invocations. In

such cases, maintaining a LRU list can improve performance since it enables more
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accurate code unloading. The average performance improvements across benchmarks

are: 23.6% for OnS-GC and 21.6% for SLRU-GC in the MIN/Fast setting; 0.6% for

OnS-GC and -0.3% for SLRU-GC in the 32MB/Fast setting; 9.8% for OnS-DO-GC

and 8.0% for SLRU-DO-GC in the MIN/Adaptive setting; 0.8% for OnS-DO-GC and

-0.7% for SLRU-DO-GC in the 32MB/Adaptive setting.

In summary, we conclude that for the cases we studied, maintaining a LRU list

does not enable significantly more efficient code unloading;the bit array implemen-

tation is a better choice since it imposes lower overhead andeffectively trades off the

costs and the benefits of unloading.

Adaptation to heap sizes

Next, we summarize the improvements on code size and overallperformance for

a range of heap sizes. These results indicate the adaptability of our strategies. We

present results of the best-performing combination ofWhatandWhenstrategies: on-

line, sample-based profiling using GC invocation count triggered unloading (OnS-

GC) for the Fast configuration, and OnS-DO-GC for the adaptiveJVM configuration

(Figures 4.7).

In all of the graphs in Figure 4.7, the x-axis is heap size. They-axis in the left

graphs is the average code size normalized to the clean version and the y-axis in

right graphs is the execution time normalized to the clean version. Graph (a) displays
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Figure 4.7: Summary of code side reduction and performance improvements enabled
by our best strategies (OnS-GC for fast compilation and OnS-DO-GC for adaptive
compilation) across different heap sizes.

the impact of OnS-GC on code size when the heap size grows fromthe minimum to

32MB. We can see that when memory is limited, OnS-GC unloads more aggressively,

resulting in 61% code size reduction on average. When memory availability grows,

the aggressiveness decreases quickly since fewer garbage collections are invoked. On

the other hand, the startup strategy guarantees that even when memory is not critical,

e.g., 32MB, the dead code in the startup phase will be unloaded. The code size

reduction with a 32MB heap is 43% on average.
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The reduction in code size enables execution time benefits while imposing very

little overhead. Graph (b) shows the normalized execution time of OnS-GC for dif-

ferent heap sizes. We can see that with constrained memory space, unloading can

not only reduce the size of cached code, but also improve execution speed by trading

off GC time for compilation overhead. When memory size grows,the improvement

decreases quickly since there is not much GC overhead to reduce. These results show

that our framework and the OnS-GC strategy are able to adapt to dynamic memory

availability using the Fast compiler configuration.

Similarly, Graph (c) summarizes the effect of OnS-DO-GC on code size and (d)

shows its impact on execution time, with the Adaptive configuration. Since the adap-

tive configuration requires a larger minimal heap size than that of Fast configuration,

the curves in (c) and (d) start from a larger initial heap size. On average, the code size

reduction for OnS-DO-GC is 43% with minimal heap size and 38%with 32MB. The

performance improvement is 10.3% and 0.1%, for MIN and 32MB, respectively.

4.4.3 Code Unloading for Selective Compilation Systems

The results in the previous section show that adaptive code unloading is able to

monitor the system with low overhead, to make intelligent decisions about what meth-

ods to unload and when to trigger unloading, and to reduce code size dramatically

without sacrificing performance. Moreover, if system memory is highly constrained,
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unloading code can enable significant performance improvement when code is stored

with application on the garbage-collected heap since much less time is spent perform-

ing memory management.

The experimental methodology that we consider is a compile-only Java Virtual

Machine, JikesRVM. An alternative to a compile-only systemfor embedded devices

is one that employsselective compilation: methods are initially interpreted then com-

piled using increasingly higher levels of optimization as they become “hot”. Even

though interpretation of methods that are invoked multipletimes has been shown

to waste significant resources on embedded devices [149, 48], selective compilation

JVMs produce less compiled code since they interpret many methods. In addition, for

methods that are executed for a very small portion of total program execution time,

the overhead required to compile them may not be amortized; selective compilation

systems can interpret these methods.

In this section, we consider the impact of code unloading on selective compi-

lation JVMs for resource-constrained systems. Code unloading has the potential to

impact the performance of these systems in two ways. First, unloading will reduce

the amount of native code stored in the system and possibly reduce memory man-

agement overhead by evicting a subset of compiled methods. Second, using code

unloading, selective compilation systems can be more aggressive about compilation

and optimization decisions. That is, since code unloading reduces the effective mem-
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ory requirements for stored native code, more interpreted methods can be compiled

– which has the potential for improving performance for methods that are invoked

repeatedly.

Since our research platform, JikesRVM, is a compile-only system and there are no

open-source, selective compilation, systems available (that implement an interpreter,

a highly optimizing compiler, and an adaptive optimizationsystem), we investigated

the impact of code unloading for selective compilation JVMsusing simulation. As we

did previously, we consider the CISC, IA-32 architecture. Codeunloading for a RISC

system, e.g., one that uses the StrongARM processor, will produce even better results

in terms of the amount of code unloaded since, as we articulated earlier, RISC native

code is 16-25 times larger than x86 equivalent. As such, by considering x86, our

results indicate a lower bound on the potential of code unloading for RISC systems.

Selective compilation systems decide which methods to compile and when to

compile them using a number of system metrics in much the sameway as the compile-

only system. Such systems must consider the cost of applyingcompilation and op-

timization and the performance that will result if compilation is applied (or not ap-

plied). The latter metric requires an estimate of how long the method under con-

sideration will execute in the future. If a method is hot and compiled too late, the

compilation overhead may not be amortized and the resultingperformance improve-

ment may not impact overall program performance. A hot method thus, should be
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compiled (i.e., the selective compilation system must identify the method) as early as

possible.

A selective compilation system can use a performance model to decide when

to compile a method. For this discussion and our evaluation we assume that the

model estimates total application execution time as the sumof execution times of

every method invocation. We also assume that the speedup of compiled code over

interpretation is a constant factor for all methods given the same compilation level.

Given these assumptions, we can model the execution time of an application as:

Texe =
n

∑

i=1



















Tjiti + Tintrpi
∗ Ii +

Tintrpi

speedup
∗ (Ni − Ii) if Ii < Ni

Tintrpi
∗ Ni otherwise

(4.1)

wherei = 1, ..., n denotes an invoked method, assuming there aren methods in-

voked.Texe denotes the estimated overall execution time,Tjiti denotes the time spent

compiling theith method,Tintrpi
denotes the execution time of one invocation of a

method if it is interpreted,speedup is the performance improvement achieved by ex-

ecuting stored compiled code,Ii denotes the invocation count of a method before it

is compiled, andNi denotes the total invocation count of a method. If methodi is

compiled at some point, the first case of the formula is used, otherwise, the second

case is used.

Ideally, if the performance gain that results from compiling a method exceeds the

compilation cost, the system should compile the method uponinitial invocation of
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the method to enable optimal improvement, i.e.,Ii should be zero for such a method.

However, it takes time for a real system to identify (i.e.learn about) profitable meth-

ods, and thus,Ii will be greater than zero and is equivalent toNi for those methods

for which compilation overhead cannot be amortized.

The actual value ofIi depends on the mechanism that a JVM uses to define a

“hot” method. One way a JVM can identify hot methods is by using counters. When

the invocation count of a method exceeds a pre-defined threshold, the method is com-

piled. With this technique,Ii is same for all methods and can be replaced by the

threshold in the model. Note that most systems also count back edges to catch meth-

ods with long loops; we ignore backedges in this portion of the study to simplify our

analysis. In summary, model (4.1) indicates that the execution time of an application

varies given different levels of JIT efficiency, the qualityof the compiled code, and

the mechanism the JVM uses to identify hot methods.

To understand the dynamics of selective compilation and code unloading, we con-

ducted several experiments. First, we employed the profiling facilities of the Kaffe

virtual machine [89] to gather execution time and compilation time for each method

of the SpecJVM98 benchmark suite. Although Kaffe is not the only JVM with such

profiling ability, we chose Kaffe since it is an open source project and we can easily

extend the profiler to gather more information, e.g. bytecode size, compiled code size,
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etc. Moreover, Kaffe implements an interpreter and a JIT (but does not implement

selective compilation, i.e., mixed-mode execution).

The average speedup that results from using JIT compilationover interpretation

in Kaffe is over 20 times. This is because the interpreter is not well-tuned in any

way (and not because the JIT applies aggressive optimization – only very simple op-

timizations are implemented in Kaffe). In a product JVM withselective compilation

and a highly tuned interpreter, e.g., HotSpot, the difference between interpreted and

JIT execution is much smaller, e.g., 3∼15 times. Since HotSpot is not an open source

system, we estimate the speedup enabled by selective compilation over interpretation

using the speedups and compilation rates (bytecode in bytesper millisecond) that the

JikesRVM compilers enable.

We obtain the compilation rates and speedups enabled by the JikesRVM compil-

ers (and used by JikesRVM to make adaptive optimization decisions) by computing

the geometric mean of each across a large set of applications. We assume that com-

pilation with the minimal amount of optimization enables a speedup of 2 times over

interpretation of a method; this value has been shown to be a reasonable and con-

servative estimate in other studies [1, 92, 141, 159]. We then use the JikesRVM

compilation rates and speedups for higher levels of optimization (used when methods

remain hot for a long period).
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Figure 4.8: Average execution time and code size estimation for SpecJVM98 bench-
marks using three parameters: compilation threshold, JIT overhead, and speedup of
compiled code over interpreted code. The x-axis is the compilation threshold in log
scale. The left y-axis denotes the estimated execution timein seconds, and the right
y-axis is the estimated code size in kilobytes. The four dashed lines denote the esti-
mated execution time at the four compilation levels, and thesolid line represents the
changes in code size for different thresholds.

We simulate the execution time and the size of compiled code using different

“hot” thresholds (method invocation counts). In Figure 4.8we show the average im-

pact of this compilation threshold (x-axis using a log scale) across all of our bench-

marks. The left y-axis denotes the estimated execution timein seconds, and the right

y-axis is the estimated code size in kilobytes. The four dashed upward lines denote

the estimated execution time at the four compilation levels. The solid downward line

represents the changes in code size for different thresholds. We provide the estimated

speedup and compilation rate (byte code in bytes per millisecond (bcb/ms)) of each

compilation level in the legend. Since Kaffe does not have multiple compilation lev-

els, we cannot accurately estimate the change in code size for each compilation level.

80



Chapter 4. Adaptive Code Unloading

We measured the average size of native code produced by JikesRVM using different

compilation levels. The size ratios ofopt0, opt1, andopt2 comparing to the quick

compiler are around 0.64, 1.00, 1.11. Levelopt1andopt2produce larger code than

level opt0due to more aggressive inlining. We used these ratios to estimate roughly

code size changes for different thresholds. Since all of thecode size estimation lines

are parallel, we only show the line for the quick compiler forclarity.

The figure indicates that a threshold of 10 achieves the best balance between code

size and performance across all compilation overhead/speedup configurations. Code

size drops dramatically when threshold moves from 0 to 10, which indicates that

many methods are invoked fewer than 10 times. In addition, the performance im-

provements gains that result from compilation are negligible or negative if we com-

pile these methods since the compilation overhead is not amortized. Once the thresh-

old exceeds 10, the rate of decrease in code size slows while the performance gain

becomes more apparent.

A smaller threshold results in more compiled code being stored by the system. At

threshold 10, the size of generated code is about half of thatof a compiler-only JVM

and yet is still substantial ( 250KB) for embedded devices andcan result in signifi-

cant memory management overhead. If the memory is highly constrained, the JVM

may not be able to store these code blocks to achieve the optimal performance. Our

adaptive code unloading system can help in this situation. Bymonitoring the exe-
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Figure 4.9: CDF of effective method lifetime as a percentage of total lifetime as
shown in Figure 3.1. However, we only consider hot methods here. On average, 30%
of these methods have effective lifetime percentage of lessthan 5%. The effective
lifetime percentage for most of the other 70% of the “hot” methods is less than 60%.

cution behavior of the applications and resource availability with low overhead, the

adaptive code unloading system enables the JVM to make better use of the precious

memory by evicting less useful code blocks so that more aggressive compilation can

be performed to carry out performance that is closer to optimal.

Another interesting question that we investigated is: How many methods continue

to be hot after they are compiled and how long is their hot period? To investigate this

question, we considered the effective lifetimes of methods(as we did previously in

Section 3.2 in Figure 3.1). In Figure 4.9, we again plot effective lifetimes but omit

those methods identified as cold (invoked fewer than 10 times) in the previous data

set. The data shows that for hot methods, on average 30% of them have effective

lifetime percentage of less than 5%. That is, the time between the first and last invo-

cations of a method is less than 5% of the total time these methods are in the system.
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Moreover, the effective lifetime percentage of most of the other 70% of all methods

executed is less than 60%.

This data indicates that most methods compiled in a selective compilation system

become useless very soon after they are compiled. Our adaptive code unloading

system can remove these methods to avoid this memory waste, to reduce memory

management overhead, and to enable aggressive compilationdecisions in selective

compilation JVMs as well as compile-only JVMs.

4.5 Related Work

This body of research is related to two primary areas of priorwork: code man-

agement systems and code size reduction techniques.

Several code cache management techniques have been proposed in prior work.

One such technique iscode pitchingwhich is used in Microsoft .NET Compact

Framework [140]. The virtual machine for this framework uses a JIT compiler to

translate intermediate code (CIL) into native code without optimization. When the

total size of the code area exceeds a specified maximum, the system “pitches” (dis-

cards) the entire contents of the buffer [136, 140]. The VM expands the code cache

when a newly compiled method cannot be accommodated even after code pitching

or if the overhead of pitching is greater than 5% of the total execution time. Users
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can specify the initial code cache size and the upper bound ofgrowing. The default

value is 64MB for the initial size and the maximum integer value for the upper bound.

The minimum initial size allowed specified is 64KB. Code pitching is easy to imple-

ment and imposes no profiling overhead. However, it needlessly unloads code when

resources are not constrained. In addition, it discards allcode (even hot methods)

requiring recompilation of all methods that are invoked in the future.

Code cache management has also been used in binary translation systems. The

Dynamo project [13] and its successor DELI [40] from HP, extract and optimize hot

instruction traces from an executing program being translated. These systems store

hot traces, called “fragments”, in a fragment cache to be reused. When the cache fills,

the systems “flush” the cache, discarding all fragments. Dynamo also performs a flush

when it detects a dramatic increase in fragments over a shorttime. These systems

employ this simple flushing strategy since many fragments are linked together in the

fragment cache and selective unloading can introduce significant unlinking overhead.

Our target is the Java virtual machine for which cached code is commonly method-

based and unlinked. As such, selectively unloading code using lightweight profiling

techniques like sample-based profiling are able to achieve good performance without

unlinking overhead.

DynamoRIO [19] is another Dynamo extension that performs dynamic binary op-

timization. DynamoRIO uses an unbounded code cache by default. However, users
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can specify a size limit for the code cache. To manage a bounded code cache, Dy-

namoRIO employs a circular buffer similar to that described in [68]. The granularity

of such a circular buffer mechanism (FIFO) is investigated in [67]. Their results show

that a medium-grained eviction policy results in better performance than both coarse

and fine granularities.

The DAISY software emulation system from IBM [44] also employs code cache

management. DAISY uses “tree-groups” to represent translated instructions, where

control flow joins are disallowed. This causes a code space expansion problem due to

tail duplication. The authors overview a simple, low-overhead, generational garbage

collection technique to manage a large translation cache (100MB or more). How-

ever, we did not find any implementation details on this approach and thus were not

able to compare it to our framework. [69] investigates a similar mechanism using

DynamoRIO [19] and a generational cache simulator. Our strategies described in

Section 4.2.3 handle the optimized code separately and can be considered as a sim-

plified form of generational cache management.

The purpose of our work is to provide an flexible framework to empirically in-

vestigate the efficacy of different unloading strategies and implementation designs,

and to help the JVM designers choose the best strategies. Bothstrategies used in the

.NET compact framework and in Dynamo can be configured asNP-CSin our frame-

work. NP-CS uses code cache size as the unloading trigger and throws away anything
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without any profile information when unloading is performed. Our results indicate

however, that doing so does not work as well as using a sample-based, GC-triggered

configuration.

Code size reduction for restricted resource environments isanother research area

that is related to our work. Sun’s HotSpot technology [75, 35] limits the size of com-

piled code by only compiling the hottest methods and interpreting all other meth-

ods. Other work usesprofile-driven deferredcompilation or optimization [18, 155]

to avoid generating code for cold spots in the programs. In contrast to their “never

cache cold methods” strategy, which may impose large re-interpretation overheads,

our framework enables a more flexible code caching strategy which can adapt to sys-

tem resource status: whether and how long a method’s code is cached is dynamically

determined by the code unloader according to runtime information and system mem-

ory status. Moreover, our code unloading techniques can also be used to manage

“hot” methods in these “never cache cold methods” systems,

Another mechanism for code size reduction that have been pursued by other re-

searchers is compression. Compression is a compact encodingof data to reduce stor-

age and transfer requirements. A number of different techniques for compressing

compiled code are described in [47, 107, 39, 42]. These techniques, like those for

deferred compilation, are complementary to our approach and can be used in combi-
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nation with our code unloading framework to further reduce the memory overhead of

compiled code.

4.6 Summary

In this chapter, we propose a framework for dynamic and adaptive unloading of

compiled code so that more aggressive dynamic compilation can be performed. Our

goal with this system is not only to reduce the size of compiled code. If it were,

interpretation would be the better choice. Instead, our goal is to enable performance

improvement via dynamic compilationwhile reducing the dynamic memory require-

ments of the JVM. That is, we seek to adaptively balance not storing any code (as

in an interpreter-based JVM) and caching all generated code(as in a compile-only

JVM), according todynamic memory availability, i.e., the amount of memory avail-

able to the executing application for allocation of data (asopposed to code) over time.

Our code unloading system decideswhat code to unload andwhenunloading

should commence. Each of these decisions can be made using a wide range of un-

loading strategies, each resulting in different tradeoffsbetween several sources of

overhead and benefit. To study these tradeoffs, we used the framework to investigate

a number of unloading strategies which employ dynamic feedback from the program

and execution environment to identify unloading candidates and to trigger unloading

efficiently and transparently.
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We implemented and empirically evaluated our code unloading framework and

unloading strategies using a high-performance, open source Java Virtual Machine

from IBM T. J. Watson Research Center, the Jikes Research VirtualMachine [5]

(JikesRVM). Our results indicate that by adaptively unloading compiled code, we are

able to reduce code size by 36%-62% on average over the lifetime of the programs.

Since the system is able to adapt to memory availability, it introduces no overhead

when resources are unconstrained. When memory is highly constrained, reductions

in code size translate into execution time improvements of 23% on average for the

programs and JVM configurations that we studied.

Note that our code unloading system achieves the above code size reduction and

performance improvement completely automatically, without requiring programmer

intervention or participation. Our adaptive code unloading system allows program-

mers to develop applications without the concern for code size, yet facilitates efficient

execution that results from doing so. Without such support,programmers must care-

fully reduce the code size by hand while developing applications so that they can

fit into the constrained resources, which requires expert knowledge and significantly

more programmer effort. Therefore, our system improves programmer productivity

by providing automatic support of code unloading.

In summary, this work wakes the following contributions:
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Opportunity Analysis . It provides an empirical analysis of code unloading opportu-

nities.

Analysis Framework. It presents a novel code unloading framework that automat-

ically unloads native code to reduce the overhead of performing garbage collection.

This framework facilitates the implementation and empirical evaluation of unloading

strategies.

Adaptive Algorithms . It describes a number of techniques that use dynamically

changing program and system memory behavior to decidewhat code to unload and

whento unload it.

Experimental Results. It presents an empirical comparison of our adaptive unload-

ing techniques. We identify a set of strategies that, when resources are unconstrained,

reduces code size by 47% while introducing zero overhead, onaverage. When mem-

ory is highly constrained, our system reduces code size by 62% and execution time

by 23% on average for the programs and JVM configurations studied.

The text of chapter 3 and Chapter 4 is in part a reprint of the material as it appears

ACM Transactions on Architecture and Code Optimization (TACO), Vol. 2, Number

2. The dissertation author was the primary researcher and author and the co-author

listed on this publication ( [160]) directed and supervisedthe research which forms

the basis for these two chapters.
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Easy and Efficient Parallel

Programming Using Futures in Java
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Chapter 5

Futures and its Support in Java

The second part of this dissertation, focuses on how to use the same adaptive

framework as we did for code unloading for resource constrained devices, for high-

end systems. In particular, we investigate doing so to facilitate easy efficiency of the

futureparallel programming construct in Java. In this chapter, wedescribe the future

construct, its design rationale, its programming model, and the history of its use. We

then overview the existing support of futures in Java. We detail the library support for

this approach with simple examples, and then discuss the advantages and limitations

of this approach.

5.1 The Future Construct

A future is a simple parallel programming language construct that lets program-

mers to specify computations that can be potentially executed in parallel. This con-
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struct was first proposed by Baker and Hewitt in the 70s [70], and made well-known

by Halstead in MultiLisp [126]. Several years later, the same idea was reinvented

as another parallel language construct, called Promise [103] by Liskov and Shrira.

From then on, futures have appeared in many languages, such as Mul-T [93], Concur-

rent ML [125], C++ [28, 151], and more recently, Java 5.0 concurrent package [86],

X10 [27], and Fortress [4].

By definition, a future is a value available in future. It is a placeholder of the

value evaluated by an asynchronous computation. The futureis immediately returned

to the calling site as if the computation had finished and the value had been returned.

The calling function continues execution until it accessesthe future value, at which

point, it is implicitly blocked until the value is made readyby the asynchronous com-

putation.

The future construct is a simple and elegant way to introduceconcurrency to

serial program since it enables the decoupling of the parallel scheduling from the

application logic. In addition, in this model, the synchronization is implicit and is

delayed to the latest possible point (the future value usagepoint).

The original rationale behind futures is that “the programmer takes on the bur-

den of identifyingwhat can be computed safely in parallel, leaving the decision of

exactly how the division will take place to the run-time system” [113]. The em-

phasis on “minimal programmer effort” of futures frees programmers from worrying
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about whether the overhead of spawning a computation in parallel can be paid off

by its benefits, which usually is not an easy decision for programmers to make stat-

ically. As a result, programmers might specify a large number of small granularity

computation as futures. It is, therefore, vital for performance that the runtime imple-

mentation of futures be efficient, and effectively make wisescheduling decisions, to

avoid overhead, and to exploit concurrency. One of our goalsfor the second part of

this dissertation is to investigate ways to enable such an efficient future scheduling

system for Java by exploiting the adaptability of the Java virtual machine.

5.2 Support for Futures in Java

Version 5.0 of the Java programming language introduces thesupport of futures

via a set of APIs in thejava.util.concurrent package. The primary APIs

includeCallable, Future, andExecutor. Figure 5.1 shows code snippets of

these interfaces.

Using the Java 5.0 Future APIs, programmers encapsulate a potentially parallel

computation in aCallable object and submit it to anExecutor for execution.

The Executor returns aFuture object that the current thread can use to query the

computed result later via itsget() method. The current thread immediately ex-

ecutes the code right after the submitted computation (i.e., the continuation) until

it invokes theget() method of theFuture object, at which point it blocks un-
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public interface Callable<T>{
T call() throws Exception;

}

public interface Future<T>{
...
T get() throws InterruptedException,

ExecutionException;
}

public interface ExecutorService extends Executor{
...
<T> Future<T> submit(Callable<T> task)

throws RejectedExecutionException,
NullPointerException;

}

Figure 5.1: Thejava.util.concurrent Futures APIs

public class Fib implements Callable<Integer>
{

ExecutorService executor = ...;
private int n;

public Integer call() {
if (n < 3) return n;
Future<Integer> f = executor.submit(new Fib(n-1));
int x = (new Fib(n-2)).call();
return x + f.get();

}
...

}

Figure 5.2: The Fibonacci program using Java 5.0 Futures API

til the submitted computation finishes and the result is ready. The Java 5.0 library

provides several implementations ofExecutor with various scheduling strategies.

Programmers can also implement their own customized Executors that meet their spe-

cial scheduling requirements. Figure 5.2 shows a simplifiedprogram for computing

the Fibonacci number (Fib) using the Java 5.0 Future interfaces.

The Java 5.0 Future programming model is simpler than a thread-based model

since it decouples thread scheduling from application logic. However, there are sev-
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eral drawbacks of the current Java 5.0 Future model. First, given that the model is

based on interfaces, it is non-trivial to convert serial versions of programs to paral-

lel versions since programmers must reorganize the programs to match the provided

interfaces, e.g., wrapping potentially asynchronous computations into objects.

Secondly, the multiple levels of encapsulation of this model results in significant,

but unnecessary, memory consumption which can degrade performance significantly

due to the extra memory management overhead.

Finally, to achieve high-performance and scalability, it is vital for a future imple-

mentation to make effective scheduling decisions, e.g., tospawn futures only when

the overhead of parallel execution can be amortized by doingso. Such decisions must

consider both the granularity of computation and the underlying resource availability.

However, in the Java 5.0 Future model, the scheduling components (Executors) are

implemented at the library level, i.e., outside and independent of the runtime. As a

result, these components are unable to acquire accurate information about either com-

putation granularity or underlying resource availabilitythat is necessary to make good

scheduling decisions. Poor scheduling decisions can severely degrade performance

and scalability, especially for applications with fine-grained parallelism.

Users can create their own Executors and/or hard-code thresholds that attempt to

identify when to spawn (and amortize the cost of spawning) orinline futures. How-

ever, this is against the originalminimal programmer effortrationale of futures. Also,
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this requires expert knowledge about the dynamic behavior of the program and the

characteristics (the spawn cost of futures, and the compilation systems, processor

count and availability, etc.) of the platform on which the application ultimately exe-

cutes. Moreover, regardless of the expertise with which thescheduling decisions are

made, this model, since it is implemented outside and independent of the runtime,

is unable to exploit the services (recompilation, scheduling, allocation, performance

monitoring) and detailed knowledge of the system and program that the execution

environment has access to.

All of these limitations motivate our work of the directive-based lazy futures with

as-if-serial exception handling support, and as-if-serial side-effect guarantee, which

we will discuss in details in the following chapters.

The text of this chapter is in part a reprint of the material asit appears in the

proceedings of the Sixteenth International Conference on Parallel Architecture and

Compilation Techniques (PACT’07) and the proceedings of the fifth international

symposium on Principles and practice of programming in Java(PPPJ’07). The dis-

sertation author was the primary researcher and author and the co-author listed on

this publication ( [161, 162]) directed and supervised the research which forms the

basis for Chapter 5.
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Chapter 6

Adaptive and Lazy Scheduling for
Fine-grained Futures in Java

Given theminimum programmer effortdesign goal of futures, it is possible for

a programmer to specify a large number of futures for programs that contain fine-

grained, independent computations. For example, a simple Fibonacci program writ-

ten using the Java Future APIs can easily produces more than millions of futures and

most of them contained tiny-grained computations. It is, therefore, vital for perfor-

mance that the runtime implementation of futures be efficient, and effectively amor-

tize the cost of spawning a future in parallel, or execute thefuture sequentially (inline

it into the current context). Naı̈ve future implementations (e.g. one thread per future

or with thread pool support) can result in significant overhead, and inefficient, even

degraded, execution. Such future implementations in Java can quickly bring the sys-

tem to a halt due to the multiple layers of abstraction and virtualization in the Java
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Virtual Machine (JVM) for the support of system services, such as, threads, memory

management, and compilation.

To limit the number of independent contexts that are spawnedfor fine-grained fu-

tures, programmers commonly specify thresholds to identify futures that will perform

enough computation to warrant parallelization. This approach is time-consuming,

and error prone. The thresholds are specific to, and different across applications, in-

puts for the same application, available underlying hardware resources, and execution

environment, thereby, requiring significant effort and expertise by the programmer to

identify optimal, or even efficient settings. Moreover, therequirement that users par-

ticipate in deciding which futures to spawn or inline, is inconsistent with the original

design goal of futures of placing a minimal burden on the programmer.

In this chapter, we investigate a runtime implementation that efficiently supports

fine-grained futures without requiring programmer intervention with parallelization

decisions. Prior work proposes several solutions for such support within functional

languages or C++ [93, 113, 151]. Our focus is on supporting efficient fine-grained

futures in Java. In contrast to the Java 5.0 library-level implementation of futures,

we follow an runtime-based approach and extend the JVM runtime to effectively

support futures. We do so since the JVM has access to low-level information about

the executing program, and underlying resource availability.
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Our approach, which we callLazyFuture, builds from, combines, and extends (i)

lazy task creation [113] and (ii) a JVM program sampling infrastructure (common

to many state-of-the-art JVM implementations) previouslyused solely for dynamic

and adaptive compiler optimization. We couple these techniques with dynamic state

information from the underlying, shared-memory, multiprocessor resources, to adap-

tively identify when to spawn or inline futures.

In the following sections, we first describe the design and implementation details

of our LazyFuture system. We then empirically compare the various implementation

alternatives and evaluate the overall efficacy of our system. Finally, we discuss the

related work and then conclude.

6.1 Programming Model

LazyFuture is a futures implementation for Java that we propose to support ef-

ficient execution of fine-grained futures. Our goal is to eliminate the need for pro-

grammers to decide when, and how to spawn futures in parallelfor applications with

fine-grained futures. For such applications, programmers commonly specify a com-

putational granularity that amortizes the cost of spawninga future in parallel. Fig-

ure 6.1 (a) is the Fibonacci program using the Java 5.0 FutureAPIs. This program

uses a threshold to avoid spawning overhead for small computations.
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Bench- Inputs Total# of CPU 1.60GHz CPU 1.60GHz CPU 2.40GHz CPU 2.40GHz
marks size futures proc#=2(base) proc#=4(base) proc#=2(base) proc#=2(opt)

AdapInt 0-250000 5782389 7000000 8000000 17000000 19000000
FFT 218 262143 4096 32768 16384 65536
Fib 38 39088168 30 32 36 33

Knapsack 24 8466646 5 7 6 4
Quicksort 224 8384315 131072 131072 131072 524288
Raytracer pics/balls.nff 265409 32 16 32 64

Table 6.1: Evidence that threshold values vary widely across configurations for the
same program and input. We identified these thresholds empirically from a wide
range of threshold values.

In practice, this threshold is difficult and tedious to identify, and can have a large

impact on performance since the optimal values vary significantly across applica-

tions, inputs, available underlying hardware resources, and execution environments.

To validate this claim, we empirically identified the thresholds for optimal perfor-

mance for six benchmarks. We present these thresholds in Table 6.1. We gathered

results on two machines: one with four 1.60GHZ processors, the other with two

2.40GHZ processors. On the 4-processor machine, we collected data with 2 as well

as 4 processors. On the 2-processor machine, we used two different configurations of

the same JVM. We provide specific details of our methodology in Section 6.3. This

data confirms that the best thresholds vary across differentconfigurations. LazyFu-

ture frees the programmers from the task of threshold specification, and enable the

system to decide when and how to spawn futures in parallel adaptively.

We define a new abstraction, calledLazyFutureTask, which implemented the

Future interface in Java 5.0 Future APIs. Users create aLazyFutureTask ob-
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public class Fib
implement Callable<Integer>

{
private int n;
public Fib(int n){this.n = n};

ExecutorService executor = ...;

public Integer call(){
if(n < 3) return 1;

if(n < THRESHOLD) {
return (new Fib(n-1)).call()

+ (new Fib(n-2)).call();
}else{
Future<Integer> f =

executor.submit(new Fib(n-1));
int x = (new Fib(n-2)).call();
return x + f.get();

}
}

}

public class Fib
implements Callable<Integer>

{
private int n;

public Integer call() {
if (n < 3) return n;
LazyFutureTask<Integer> f =

new LazyFutureTask(new Fib(n-1));
f.run();
int x = (new Fib(n-2)).call();
return x + f.get();

}
...

}

(a) Fib using Java 5.0 Futures (b) Fib using LazyFutures

Figure 6.1: Comparing programming models of Java 5.0 Futures and LazyFutures

ject for each potentially asynchronous computation and invoke itsrun() method

directly (in a way similar the traditional Java thread model). Figure 6.1 (b) shows

the LazyFuture implementation ofFib. The LazyFuture-aware JVM recognizes this

run() method (in eachLazyFutureTask), and makes scheduling decisions au-

tomatically and adaptively based on the computation granularity and the underlying

resource availability to achieve the best performance.
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6.2 Implementation

Our implementation of LazyFutures is inspired by the technique proposed by

Mohr et al. [113], calledlazy task creation(LTC). LTC initially implements all futures

as function calls. The system then maintains special data structures for the compu-

tation of future’s parent, the caller (called a continuation), to be spawned. When

there is an idle processor available, the idle processor steals continuations from the

first processor and executes code in parallel with the future. Similar techniques are

employed in many systems to support fine-grained parallelism [120, 51, 57, 144].

Our system, although similar, is different from these priorapproaches in several

ways. First, we combine information about computation granularity with resource

availability. Prior work commonly considers only the latter, since estimating the com-

putation granularity at runtime is complex, and can introduce significant overhead.

Our implementation is, however, targeted at state-of-the-art JVMs, which implement

a low-overhead runtime profiling system that the runtime uses to guide adaptive com-

pilation and optimization [8, 117, 141, 85]. We leverage this mechanism to extract

accurate and low-level program (e.g. long running methods)and system information

(e.g. number of available processors) with low overhead.

The second unique aspect of our implementation is that we do not employ a

worker-based, specialized runtime system for futures. Systems like LTC typically
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associate a worker with each physical processor, and this worker is responsible for

executing the current task, stealing tasks from other workers, and managing the task

queues. Such systems assume that futures (or special kind oftasks that the system

supports) are the only kind of parallel activities in the system. In addition, these sys-

tems map runtime threads directly to operating system (OS) threads. Such a setup is

not appropriate for a JVM since this would equate to mapping worker threads to Java

threads (which are themselves mapped to OS threads), thereby, adding an additional

level of indirection, and overhead to scheduling. Moreover, a JVM would need to

accommodate varied types of parallel constructs specified in Java, other than futures.

In our system, we integrate future management with the existing thread schedul-

ing mechanism in the JVM. When the system identifies a future tospawn on the run-

time call stack of a thread, the system splits the thread intotwo – one that executes

the future,and the other that performs the continuation. Both threads are considered

Java threads by the thread scheduler. With this implementation, we take advantage of

the highly-tuned JVM thread scheduler, synchronization, and load-balancing mech-

anisms, which significantly simplifies the implementation of futures, and makes our

implementation compatible with Java threads and other parallel constructs.

Finally, as opposed to the commonly used work-stealing approach [113, 51], a

thread in our LazyFuture system voluntarily splits its stack and spawns its continu-

ation using a new thread. The system performs such splits at thread-switch points
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Figure 6.2: Overview of LazyFuture implementation.

(method entries and loop back-edges), when the monitoring system identifies an un-

spawned future call as long-running (“hot” in adaptive-optimization terms). With the

volunteer stack splitting mechanism, we avoid the synchronization overhead incurred

by work-stealing, which can be significant in a Java system [38].

6.2.1 Implementation Overview

Figure 6.2 overviews our system. All shaded components identify our extensions

to the JVM. After a class is loaded by the class loader, the method bytecodes are

translated to native code by the Just-in-time (JIT) compiler (non-optimizing, as well

as optimizing). The compiler may insert instrumentation into the native code to col-

lect profiling information from the program that the compiler can later use to perform

optimizations.
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We extend the JIT compilers to insert a small stub at the entrypoint and exit point

of every future call. Initially, our system treats every future call as a function call,

i.e., the system executes the code on the stack of the currentthread. At the same time,

we maintain a small side stack for each thread, called afuture stack(See Figure 6.3).

Every entry in the future stack has two words, one is the offset of a future frame on

the current stack, the other is the sample count that holds anestimate of how long the

future call has executed. The stubs push an entry onto the future stack at the beginning

of a future call, and pop the entry when exiting the future call. We implemented these

stubs carefully in the JIT compilers, and ensure that they are always inlined, to avoid

unnecessary overhead.

To estimate the computation granularity of futures, we extend the existing JVM

sampling system. In our prototype JVM, light-weight methodsampling occurs at

every thread switch (approximately every 10 ms), which increments sample counts

of the top two methods on the current stack. Methods with sample counts exceeding a

certain threshold will be identified as hot methods, and recompiled with higher levels

of optimizations. We extend this mechanism by also incrementing the sample counts

of executing futures. These sample counts provide our system with an estimate of

how long the futures have executed. Our scheduling system spawns futures whose

sample counts exceed a particular threshold. This process avoids spawning short-

105



Chapter 6. Adaptive and Lazy Scheduling for Fine-grained Futures in Java

running futures – the overhead of which cannot be amortized by the benefits from

parallel execution.

The system feeds the future sample counts into thefuture controller, which cou-

ples the sample counts with dynamic system resource information from the thread

scheduler, e.g., the number of currently active threads andidle processors, to adap-

tively make decisions about splitting futures, in order to enable additional parallelism.

If the future controller decides that it is beneficial to split a future, it creates a

futureSplitEventthat contains information about the future, such as the frame offset

and sample counts. The controller forwards the event to thefuture splitter, which

splits the current thread into a future thread and a continuation thread, and places

both threads on the appropriate queue of the thread scheduler for further execution.

Note that both the future controller and future splitter areservices invoked by the

current thread, when the thread yields to enable thread switching. Therefore, we

require no additional synchronization since the system implements this process on a

per-thread basis.

6.2.2 Future Splitting Triggers

Ideally, we should spawn a future when there is an idle processor. We refer to

this approachidleProc triggered. In our system, future splitting is initiated by the

running thread, and only occurs during thread switching. Ifa processor becomes idle
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during execution, there is a delay before a thread detects this and makes the splitting

decision. There is also a small delay between when a future isspawned, and when

it is scheduled to execute. Thus, the idleProc triggered policy may not utilize the

system resource fully in some cases.

One alternative is to saturate the system with futures. To implement this policy,

we maintain twice as many threads as processors for futures that the system selects.

That is, if the sample count of a future call on stack exceeds the threshold, and the cur-

rent number of active threads is less than twice the number ofprocessors, the current

thread will be split to make the future call a parallel call. We refer to this approach

sampleCount triggered. This policy helps to pre-saturate the system if enough paral-

lelism is available, but imposes a delay for “learning” thata future is long-running,

i.e., the time it takes for the sample count to exceed the threshold.

Therefore, we consider a hybrid approach, which we callsample+idle triggered.

Note that in all policies, since the system performs future splitting (spawning) only at

thread switching, it automatically eliminates futures with granularity of less than 10

ms from spawning.

6.2.3 Future Splitter

Figure 6.3 overviews our process for splitting futures. In the figure, the current

thread has three future calls on its stack. At some point, thefuture controller decides
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Figure 6.3: The future splitting process of LazyFutures.

that it is worthwhile to spawn the oldest future call with sample count 10 for parallel

execution. The dark line identifies the split point on the stack. The future splitter then

creates a new thread for the continuation of the spawned future call, copies the stack

frames below the future frame, which corresponds to the continuation, restores the

execution context from the stack frames, and resumes the continuation thread at the

return address of the spawned future call. Note that we choose to create a new thread

for the continuation instead of the spawned future, so that we do not need to setup

the execution contexts for both threads. The spawned futurecall becomes the bottom

frame of the current thread. The system deletes the future stack entry so that it is no

longer treated as potential future call.
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6.2.4 Optimizing Synchronizations

If the result of a future is used by its parent, the system willcheck whether or not

the result is available. If it is not, the parent blocks untilthe future completes. This

synchronization process can be avoided if the future is not spawned. In this case, the

result of the future is ready at the time the future call returns to its parent, and thus,

will always be ready at its usage points. To optimize this case, we add aonStack

flag to each future object. We initialize the flag to true and set it to false if the future

splitter spawns the future. When the result of a future is requested, if its onStack flag

is true, the system returns the result directly, otherwise,we synchronize the process

with its future execution.

6.3 Experimental Methodology

We implemented LazyFutures in the open source Jikes ResearchVirtual Machine

(JikesRVM) [84] (x86 version 2.4.2) from IBM Research. To evaluate the efficacy of

our approach, we also implemented two other alternatives tosupport futures in Java:

one that spawns a thread for every future and another that uses a variable-length

thread pool to execute futures. We refer to these implementations assingleThread

(ST), thread Pool(TP), respectively.
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To investigate the impact of LazyFutures on different application types, we de-

veloped two sets of benchmarks. The first set includesCrypt, MonteCarlo, Series

andSparseMatmult, which is a subset of the multithreaded version of Java Grande

Benchmark Suite [133]. These four benchmarks are chosen because there is no mu-

tual dependency between spawned parallel tasks in these benchmarks, which makes

them suitable to be expressed by futures. The structure of these benchmarks is sim-

ilar: the main thread spawns several futures to compute subtasks, and then it waits

for all futures to finish. The number of futures to spawn can bespecified by users on

the command-line option, and is usually set to the number of processors available.

This kind of applications represents coarse-grained parallelism. The singleThread

implementation is usually sufficient to handle such applications. We use this set of

benchmarks to evaluate the overhead introduced by our LazyFuture implementation.

The second set of benchmarks includesAdapInt, FFT, Fib, Knapsack, QuickSort,

Raytracer. All of the programs employ a divide and conquer model. We adopt them

from the examples provided by the Satin system [148]. The recursive nature of these

benchmarks results in excessive number of futures with verydifferent granularities.

We use this set of benchmarks to evaluate whether our LazyFuture implementation

can make effective future splitting decisions automatically and adaptively.

We conduct our experiments on a dedicated 4-processor box (Intel Pentium 3

(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) with hyper-threading enabled. Thus,
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we report results for up to 8 processors. We execute all benchmarks repeatedly and

present the minimum. For each set of experiments, we report results for two JVM

configurations respectively: one with the non-optimizing (baseline) compiler and the

other with the highly-optimizing (opt) compiler. For the optimizing configuration,

we use the adaptive setting [8] which optimizes frequently executed methods only.

To eliminate non-determinism, we use the pseudo-adaptive configuration [14], which

mimics the adaptive compiler in a deterministic manner by applying the optimizing

compiler to code according to an advice file that we generate offline. We include re-

sults for both JVM configurations to show how well our future implementation iden-

tifies long-running futures. Unoptimized futures will execute for a longer duration

than the optimized versions, and consequently, our system will automatically adapt

to the code performance and execution environment, and makedifferent spawning

decisions.

Finally, we use a sample count of 5 as the splitting thresholdfor the sampleCount

policy in our results. We selected this value empirically from a wide range of values

that we experimented with. We find that this value, across benchmarks, imposes only

a small “learning” delay, and effectively identifies futures for which the overhead of

spawning is amortized by parallel execution.
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6.4 Performance Evaluation

In this section, we first evaluate the efficacy of different future splitting triggers.

Then we analyze the performance impact of our lazy future implementation in detail

for all benchmark sets.

6.4.1 Comparison of Splitting Triggers

As we discussed in section 6.2.2, in our system, future splitting can be triggered

by either available idle processors or high future sample count, or both. In this sec-

tion, we compare performance of all three triggers.

Figure 6.4 shows the execution time for all benchmarks with different splitting

triggers. We normalize the data relative toidleProc for comparison. The first four

benchmarks are from the JavaGrande suite, and the rest are from our divide and con-

quer suite. Graph (a) shows the results when we use the baseline compiler and graph

(b) shows results with the pseudo adaptive optimization setup.

The data indicates that for applications with few coarse-grained futures (the first

four benchmarks), thesampleCounttriggered policy is less effective than theidleProc

policy. This is due to the delay required to “learn” whether afuture will be short or

long running by thesampleCountpolicy – when there are several idle processors

available.
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Figure 6.4: Performance comparison of future splitting triggers.

For applications with a large number of fine-grained futures(the remaining bench-

marks), thesampleCounttrigger outperforms theidleProctrigger in most cases since

it helps saturate the system with qualified futures to utilize the system better. This

trend is more apparent when the baseline compiler is used. This is because the base-

line compiler produces unoptimized code for both the systemand the application,

which makes the process of detecting idle processors, splitting and scheduling futures
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Figure 6.5: Average speedups of LazyFutures for JavaGrande benchmarks.

take longer. Thus, pre-saturating the system using the sampleCount trigger makes a

bigger difference. In summary, by combining both triggers,the hybridsample+idle

policy achieves the best performance among all triggers. All results in further sections

use the hybrid trigger.

6.4.2 JavaGrande Performance

In this section, we evaluate the performance impact of our LazyFuture imple-

mentation on the four JavaGrande benchmarks. This set of benchmarks represents

applications with a small number of coarse-grained futures.

Figure 6.5 shows the average speedup over the sequential version of each bench-

mark. The x-axis is the number of processors used. Note that the 8-processor case

is actually the 4-processor case with hyper-threading. We set the number of futures
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Figure 6.6: Individual JavaGrande benchmark speedups of LazyFutures with 8
processors.

in the applications to the number of processors used. We present three implemen-

tation alternatives: one thread per future (singleThread), variable-length thread pool

(threadPool), and our LazyFuture implementation (lazy). Graph (a) and (b) are results

for the baseline compiler and the optimizing compiler, respectively.

The data shows that with baseline compiler, all three implementations produce

similar average performance: 1% overhead with one processor and around 2x speedup

with two processors. When there are more processors available and more futures cre-

ated, the threadPool implementation starts show a small improvement over the sin-

gleThread implementation. Our LazyFuture implementationis competitive with the

other alternatives, and outperforms them on average as the processor count increases.
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Note that LazyFutures require a “learning time” of at least 10ms (time for one thread

switching) for each future spawned to decide if the computation time warrants paral-

lelization. The other two alternatives do not require a learning time.

To investigate these results in greater detail, we present speedup of the individual

benchmark in Figure 6.6 for the 8 processor data. Graph (a) and (b) are the re-

sults with the baseline compiler and the optimizing compiler respectively. This figure

shows that the LazyFuture implementation does introduce some overhead (< 2%) for

two benchmarks (Crypt, SparseMatmult) due to the learning delay. However, for the

other two benchmarks, especiallySeries, this slight splitting delay actually improves

performance significantly. We believe that in this case, theslight slowdown of future

creations of our system reduces the contentions of system resources, such as cache

conflicts, comparing to the other alternatives.

The average speedup with 8 processors is 5.0x forsingleThread, 5.1x for thread-

Pool, 5.9x forlazywhen the baseline compiler is used. With the optimizing compiler,

the average speedup is 4.2x forsingleThread, 4.4x for threadPool, and 5.4x forlazy.

In both configurations, our LazyFuture system outperforms the other two on average.

6.4.3 Divide and Conquer Performance

We next evaluate the performance impact of our LazyFuture implementation for

the divide and conquer benchmark suite. We compare our approach to the sin-
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gleThread and threadPool alternatives above using a hand-tuned granularity thresh-

old. We identify the best performing thresholds experimentally for our various con-

figurations and benchmarks. These two alternatives represent the case where the

programmer specifies the threshold for spawning given perfect knowledge of the un-

derlying system. This in practice is not feasible for all inputs, operating and run-

time systems, and processor configurations, and it introduces a tremendous burden on

the programmer. Our LazyFuture system requires only that the programmer specify

which code regions can execute in parallel. The comparison between our LazyFuture

system and the singleThread and threadPool configurations with the best, hand-tuned

thresholds indicates the degree to which our system makes the appropriate spawning

decisions.

We consider an additional configuration in our result set forthese benchmarks.

Using the current Java Concurrency Utilities [86], the system will create a future

object for each future regardless of whether it is executed inlined or in parallel. In the

hand-tuned alternatives, we do not create future objects ifthe future computational

granularity is below the threshold. To investigate and report the overhead of this

object allocation and to show the overhead inherent in doingso, we also include

configurations of the hand-tuned alternatives that create future objects forall future

instances even those that are below the threshold; however,we only spawn those

above the threshold.
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Figure 6.7: Average speedups of LazyFutures for Divide and conquer benchmarks.

Figure 6.7 shows the average speedup over the sequential version for our divide

and conquer benchmarks (fine-grain parallelism). The x-axis is the number of pro-

cessors that we used for each experiment. The first two bars are results for the sin-

gleThread (ST) implementation with hand-tuned (HT-) thresholds, the middle two

bars are results for the threadPool (TP) implementation with hand-tuned (HT-) thresh-

olds. The last two bars are results for the lazy (LAZY) implementation, without and

with optimizing synchronizations (-OPT) (Section 6.2.4).We use “-WO” to iden-

tify the configurations that we create wrapper objects for all future instances for the

hand-tuned alternatives.

The data indicates that the overall speedup for this benchmark set is less than that

of the JavaGrande benchmarks due to the fine-grained nature of these programs. Our

LazyFuture implementation produces comparable, in some case better, performance
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Figure 6.8: Individual divide and conquer benchmark speedups of LazyFutures with
4 processors.

than the hand-tuned thresholds – when we exclude the overhead of object allocation

(HT-ST-WO and HT-TP-WO). The better performance is due to the fact that thresh-

olds specified by programmers are static, and thus do not adapt to resource availability

as our LazyFuture implementation does.

The differences between HT-ST-WO and HT-ST, or HT-TP-WO andHT-TP show

that the extra unnecessary object allocation has significant performance impact on

applications with fine-grained futures, although an optimizing compiler reduces the

differences to some degrees (see Figure 6.7(b)).

Since these benchmarks almost always saturate the system with a large number

of futures, hyper-threading does not help to improve the performance. Therefore, we

show individual speedups with 4 processors for this set of benchmarks in Figure 6.8 to

enable a more detailed analysis. This figure shows as more futures are created (more
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Figure 6.9: Average speedups of LazyFutures for Divide and conquer benchmarks
over non-OO serial version.
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Figure 6.10: Individual divide and conquer benchmark speedups of LazyFutures over
non-OO serial version with 4 processors.

than 5 million for four benchmarks, see the second column of Table 6.1), the larger

is the difference between HT-ST and HT-ST-WO. The Fib benchmark represents the

worst case by creating almost 40 million futures object. Theoptimizing compiler is

able to reduce the overhead primarily by inlining object allocation and initialization;

however, the overhead is still significant.
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To investigate the performance impact of unnecessary object allocation further,

we re-implemented the serial version of each benchmark in a non-object-oriented

(non-OO) style. In the non-OO serial version, instead of creating a new object and

invoking its virtual method for each computation, we invokea static method without

creating any object. We then generate speedup numbers over the non-OO serial ver-

sions, and present the results in Figure 6.9 for average speedups and Figure 6.10 for

4 processors. The speedup numbers in these two figures are much lower than those

in Figure 6.7 and Figure 6.8.

In addition, the more futures are created, the larger is the difference. These dif-

ferences, and the differences between HT-ST-WO and HT-ST (or HT-TP-WO and

HT-TP), imply that there is a large potential performance gain for our LazyFuture

implementation if the system is able to avoid creating unnecessary objects for fu-

ture calls executed inlined. To achieve this, we believe that the language constructs

([126, 27]) as opposed to interface-based constructs (e.g., the Java Future API) will

provide the JVM more flexibility and opportunities of optimizations, and thus, enable

more efficient support of fine-grained futures. We will investigate this hypothesis in

depth in next chapter.

Finally, to show the frequency of future spawning, we present Table 6.2. The

table lists the number of Java threads created by each implementation alternatives

with 4 processors. Since the “-WO” configurations have same thread number as its
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Bench- HT-ST HT-TP LAZY
marks base opt base opt base opt

AdapInt 227 230 70 62 52 42
FFT 18 29 14 26 43 36
Fib 31 29 158 17 66 50

Knapsack 137 44 77 144 105 29
Quicksort 150 77 103 55 103 76
Raytracer 266 29 30 20 100 48

Table 6.2: Number of Java threads spawned.

corresponding non-WO version and LAZY and LAZY-OPT also have similar counts,

we only show numbers for HT-ST, HT-TP, and LAZY. “base” stands for the baseline

compiler, and “opt” stands for the optimizing compiler. Note that each configuration

has different threshold, so the specific values are incomparable. Instead, the data

shows the efficacy of our LazyFuture system by comparing the thread number created

by the LAZY implementation to the number of futures created by these applications

(see the second column of Table 6.1). In summary, our LazyFuture system is able

to make intelligent future inlining/spawning decisions automatically and adaptively,

based on dynamic information of system resource availability and future granularity.

6.5 Related Work

Load-based inlining[93] was the first approach proposed to address the fine-

grained future problem. The idea is to make spawning decision at the creation time

based on the system load. A future is computed in parallel if there is enough available
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resource. Otherwise, it is inlined. One major drawback of this approach is that the

decision is not revocable: once a future is inlined, it cannot be parallelized anymore.

Task starvation may occur due to imbalance work load and bursty task creation.

Lazy task creation(LTC) [113] is a more elaborate scheme to support fine-grained

futures. In this approach, all futures are initially evaluated like a sequential call. But

the system maintains minimum information to spawn the continuations of futures

retroactively if a future is blocked, or a computation resource becomes available.

This principle of sequential first, parallel retroactivelyif necessary, can be found in

many systems that target fine-grained parallelism [120, 57,51, 143], each with its

own contexts and refinements. Our system follows the laziness principle as well.

However, we believe that our system is the first effort to support fine-grained futures

in a Java Virtual Machine. Our system is built upon the general thread scheduling

system in the JVM and is incorporated with the sampling system which was previ-

ously used for dynamic compilation solely. This enables oursystem to exploit both

system resource availability and futures’ computation granularity while making in-

line decisions. While in the previous system, splitting is triggered only by a blocked

task or an idle processor. The task granularity is not monitored and considered.

Another effort to support fine-grained futures is calledleapfrogging[151]. Leapfrog-

ging is a workcrew-style implementation. A task object is created for a future invo-

cation and is put into a task pool. A worker takes a task from the pool and works on
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them one by one. When a worker is blocked due to some unfinished future, it steals

a task that the current task is dependent on and starts to execute the stolen task on

top of the current stack. Leapfrogging can be expressed in C’sstack frame manage-

ment mechanism, and thus, it is easier to implement and more portable comparing

to LTC. Comparing to our approach, however, it does not consider the granularity of

futures, and it has the queue management overhead introduced by its workcrew-style

implementation.

There are several previous works related to our synchronization optimization. For

example, in [51], there are two clones of each procedure: a fast clone used while

the procedure is invoked locally and a slow clone that is usedwhile the procedure

is stolen by another processor. In the fast clone, allsyncoperations are translated to

noop to avoid unnecessary synchronization. Our system is slightly different in that

we do not keep two clones of a method. Instead, we use theonStackflag which is set

dynamically by the future splitter to eliminate unnecessary synchronization. In [50],

static analysis is used to eliminate redundant touch operations for futures, which is

complementary to our dynamic approach.

Profiling has been used to choose the best parameters of parallel optimizations [41]

or the optimal number of threads to use given available system resources [88], etc.

In most of these systems, it is assumed that one computation will be invoked repeat-

edly and the execution will last for a long time. Therefore the system can use several
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initial runs for learning before making a decision. Our system, however, targets at

fine-grained futures, most of which have very short execution time, and usually are

not invoked repeatedly. Thus, we use sampling to monitor howlong a future has been

executed, and to make splitting decision for the current future, instead of its later in-

vocation. We plan to investigate the possibility of exploiting profiling for repeatedly

invoked computation as part of future work.

Safe futures proposed in [153] enforce the semantic transparency of futures auto-

matically using object versioning and task revocation so that programmers are freed

from reasoning about the side-effects of future executionsto ensure correctness of

programs. This is complementary to our system and we plan to investigate the per-

formance impact of LazyFutures in combination with safe futures as part of future

work.

The concept of futures is also employed in distributed environments to optimize

task scheduling [81]. Data futures are created to refer to data products that have not

yet been created. Their system is similar to our system in thesense of dynamic future

scheduling based on cost/benefit estimation. But it is at a much more coarse-grained

level with different cost/benefit tradeoffs.
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6.6 Summary

In this chapter, we introduce our first work towards easy and efficient future sup-

port in Java. We enable automatic future task creation and scheduling so that pro-

grammers do not need to manually and explicitly manage future execution in the code.

We achieve this by providing runtime support in the JVM. Our method combines lazy

task creation using stack split and adaptive task scheduling with sophisticated runtime

program sampling. We empirically evaluated our LazyFuturesystem using a set of

Java benchmarks with different implementation approachesand configurations. Our

results show that our LazyFuture system not only makes future programming easier

but also enables efficient future execution that is comparable with hand-tuned alter-

natives.

The text of this chapter is in part a reprint of the material asit appears in the

proceedings of the Eighteenth International Conference on Parallel and Distributed

Computing Systems (PDCS’06). The dissertation author was theprimary researcher

and author and the co-author listed on this publication ( [163]) directed and super-

vised the research which forms the basis for Chapter 6.
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Chapter 7

Directive-based Lazy Futures in Java

The LazyFuture model takes the burden of scheduling futuresoff programmers.

However, its programming model follows an interface-basedapproach that is sim-

ilar to (yet more efficient than) Java 5.0 Futures. As a result, it inherits similar

programmer productivity and performance disadvantages. Using the interface-based

approach, users must employ object encapsulation of futures, and thus, incur mem-

ory allocation and management overhead. In addition, the coding style using this

methodology imposes an extra burden on the programmer and causes source code to

be longer and less readable in order to specify and use the interface. To address these

limitations, in this chapter, we propose a new implementation of futures in Java that

we callDirective-based Lazy Futures (DBLFutures).

DBLFutures are inspired by parallel programming models for other languages

that employ keywords or directives to identify parallel computations [15, 101, 27, 3,

115]. Using the DBLFuture programming model in Java, users annotate the variable
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declarations of all variables that store the return value from a function that can be

potentially executed concurrently with@future directives. Using DBLFutures, the

parallel version of a program is the same as the serial version with annotations on a

subset of variable declarations.

In this chapter, we present the design and implementation ofDBLFutures, and

then evaluate the performance impact of this directive-based programming model for

a set of benchmarks with fine-grained futures.

7.1 Implementation

Our DBLFuture implementation builds upon and extends LazyFutures to im-

prove the ease-of-use of future-based parallelism in Java as well as performance and

scalability. DBLFutures exploit the Java language extension for annotations (JSR-

175 [87]). Annotations are source code directives that convey program metadata to

tools, libraries, and JVMs; they do not directly affect program semantics. In par-

ticular, we introduce a future annotation (denoted@future in the source code) for

local variables. Users employ our future directive to annotate local variables that can

be used as placeholders of results returned by function calls that can be potentially

executed concurrently by the system. If a function call stores its return value to a an-

notated local variable, it is identified as a future functioncall. Note that in our system,
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public class Fib
{

public fib(int n) {
if (n < 3) return n;
@future int x = fib(n-1);
int y = fib(n-2);
return x + y;

}
...

}

Figure 7.1: The Fibonacci program using DBLFutures

the scope of future annotations is within the method boundary. If the value of a local

variable with the future annotation is returned by the method, the future annotation

will not be returned with the return value. Figure 7.1 shows the implementedFib

program using this model.

Our DBLFuture model avoids creation (and thus, user specification) ofCallable,

Future, LazyFutureTask, or other objects when the future is inlined (executed

sequentially) by the system. As such, we avoid the memory allocation, memory man-

agement, and extra source code required by previous approaches. With this model,

users easily specify computations that can be safely executed in parallel with mini-

mal rewriting of the serial programs. This programming methodology also provides

the JVM with the flexibility to implement potentially concurrent code regions as ef-

ficiently as possible. Note that with our current implementation of DBLFutures, the

JVM makes efficient spawning decisions automatically, but the users are still respon-

sible to ensure the safety of concurrent execution.
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Our DBLFuture-aware JVM recognizes the future directives inthe source and

implements the associated calls using a set of LazyFuture extensions and compiler

techniques. First, the future directive in the source is saved as a method attribute in

the bytecode. The class loader of our DBLFuture-aware JVM recognizes this attribute

and builds a future local variable table for each method, which contains the name,

index, and bytecode index range of each future local variable. Our Just-In-Time,

dynamic compiler consults this table during compilation.

Initially, the JVM treats every future call as a function call, and executes the

code on the runtime stack of the current thread. For each suchcall, the system also

maintains a small stack that shadows the runtime stack for each thread, called the

future stack. This future stack maintains entries for potential future calls only. Each

entry contains metadata for the corresponding runtime stack frame of the future call

that includes the location of the frame on the runtime stack and a sample count that

estimates how long the future call has executed. The system uses this information to

make splitting and spawning decisions.

Each DBLFuture shadow stack frame also contains the local variable index and

the stack slot in the runtime stack of the caller of the futurecall that the compiler has

allocated for this local variable. Our system employs this information to set up the

future and continuation thread correctly upon a split and spawn.
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For LazyFutures, theLazyFutureTask.run() method is the only marker

of potential future calls in the program. In addition, the process of storing the return

value of a future call and accessing the value later on is explicitly coded in the applica-

tion via implementation of therun() andget()methods of theLazyFutureTask

class. TheLazyFutureTask object serves as the placeholder of the computa-

tion result, and is always created regardless of whether thecomputation is inlined or

spawned.

The LazyFuture compiler implements a small, inlined, and efficient, stub in the

prologue and epilogue of therun() method. This stub pushes an entry onto the

future stack at beginning of a future call, and pops the entryoff of the future stack

when exiting the future call. In addition, the return type oftherun()method is void,

so the address of the first instruction of the continuation isthe return address of the run

method. Thus, upon future splitting, the system can extractthe return address from

the runtime stack frame for therun() method, and use it as the starting program

counter (PC) of the new thread (that will execute the continuation). The system sets

the original return address to a stub that terminates the current thread when the future

call completes.

DBLFutures require a somewhat more complex compilation approach. We main-

tain the future stack for every marked future call as is done for LazyFutures. However,

we want to allow any method call to be specified as a potential future call if it can
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be executed safely in parallel. We also want to allow the samemethod definition to

be used in both a future and a non-future context. The extant compilation strategy

requires that we produce two versions of compiled code for every method that may

be used in the future context, and insert stubs into the prolog and epilog of all such

methods. This is not desirable since it causes unnecessary code bloat and compilation

overhead. Instead, we expand the future call cites and insert future stack maintenance

stubs before and after the call site of the future.

The store of the return value after the future call completesrequires special han-

dling. If the call is not split, the return value must be stored into the specified local

variable. If the future is split and spawned, the return value must be stored into a

placeholder (i.e. a Future object) for access by the continuation thread. To enable

this, we add one word to every runtime stack frame, for asplit flag. This flag is a

bitmap of spawned futures indexed by the future local variable index in the bytecode

local variable array. For example, if the future call associated with a local variable

at index 1 is spawned, the JVM sets the second lowest bit of theflag to 1. The JVM

checks this bit at two points in the code: (i) at the store of the return value and (ii)

at the first use of the return value. We currently support 32 futures (64 for 64-bit

machines) per method given this use of a bitmap. However, we can extend this by

using the last bit to indicate when there are more futures, and storing a reference to a

full-fledged bit-vector if so.
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Our compiler always allocates a slot on the runtime stack forevery future-annotated

local variable. This slot holds different variable types atdifferent times: before split-

ting, its type is the declared type of the local variable; after splitting, it holds a ref-

erence to aFuture object which is created and set by the splitting system in the

JVM; after its first use, its type becomes the declared type again. To ensure cor-

rect garbage collection (GC), the compiler includes this slot in the GC maps and the

garbage collector dynamically decides whether it holds a reference or not using the

split flag.

We compile the return value storage point to a conditional branch. If the split flag

is set, the code stores the return value directly in the localvariable slot on the stack.

Otherwise, the code extracts the reference to theFuture object from the same stack

slot, and stores the return value into theFuture object.

We similarly expand instructions that use the return value.If the split flag is set,

the codes uses the value in the local variable slot on stack directly; otherwise, the code

executes theget()method on theFuture object that it extracts from this same slot

(which will block if the return value is not ready yet). In this latter case, when the

system eventually returns a value from a method via theget()method, it also stores

the value in the slot (an thus, the slot at this point holds thetype of the original local

variable). If there are multiple use points, our compiler only converts the first one

(the one that dominates the others) since all uses thereafter are guaranteed to access
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the value with the original declared type. In addition, our compiler will insert a fake

use of the future value before the method exit point if there is no usage of the future

to prevent it escaping the method boundary. That is, a methodwill wait for all futures

that it spawns to finish before it exits.

Finally, we must set the starting PC of the continuation thread correctly. Logi-

cally, if a future is split, the continuation thread should start at the point in the code

immediately afterthe point at which the return value is stored. Note, though, that this

is not the return address of the future call any longer (as is the case for LazyFutures).

To provide this information to the JVM splitting mechanism,we insert a fake instruc-

tion after the return value store instruction which we pin throughout the compilation

process. At the end of compilation we remove this instruction; but, we put its PC and

the index of the associated local variable into a map which westore with the compiled

code and query during future splitting.

By extending a JVM, our DBLFutures implementation avoids complicated source

or bytecode rewriting or multiple code versions and yet easily enables migration from

inlined to concurrent execution. In addition, our system isable to mix future calls

with normal calls naturally since we have access to the Java operand stack and local

method state. Non-JVM implementations cannot do this easily. For example, Cilk

and JCilk [15, 101] do not allow non-Cilk method to call a Cilk method at all since a
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non-Cilk method is not compiled with parallel support (fast and slow clones) and is

not migratable.

7.2 Experimental Methodology

We have implemented DBLFutures (as well as LazyFutures) in the popular, open-

source Jikes Research Virtual Machine (JikesRVM) [84] (x86 version 2.4.6) from

IBM Research. We have conducted our experiments on a dedicated4-processor

box (Intel Pentium 3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) with hyper-

threading enabled. We report results for 1, 2, 4, and 8 processors – 8 enabled virtually

via hyper-threading. We execute each experiment 10 times and present performance

data for the best-performing.

For each set of experiments, we report results for two JVM configurations. The

first uses a fast, non-optimizing compiler (BaseVM) and the second employs an adap-

tively optimizing compiler [8] (PAOptVM). With PAOptVM, weemploy pseudo-

adaptation (PA) [14], to reduce non-determinism in our experimentation. We include

results for both JVM configurations to show the performance impact of DBLFutures

for systems that dynamically produce very different code quality.

The benchmarks that we investigate are from the benchmark suite in the Satin

system [148], includingAdapInt, FFT, Fib, Knapsack, QuickSort, Raytracer. Each
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implements varying degrees of fine-grained parallelism. Atone extreme isFib which

computes very little but creates a very large number of potentially concurrent meth-

ods. At the other extreme isFFT andRaytracerwhich implement few potentially

concurrent methods, each with large computation granularity. We use this set of

benchmarks to evaluate the performance impact of the directive-based programming

model of our future implementation.

7.3 Performance Evaluation

Compared to the Java 5.0 Future model, our DBLFuture model provides program-

mers with two advantages: (1) programmers are free from the burden of scheduling

futures; (2) programmers need not reorganize the serial program (e.g. wrapping com-

putations inCallable objects, submitting to executors, etc.) to meet interface re-

quirements.

Table 6.1 provides evidence that the task of scheduling futures by programmers is

challenging, tedious, and typically requires expert knowledge of program and system

behavior to achieve good performance since optimal scheduling decisions vary sig-

nificantly across applications, inputs, available underlying hardware resources, and

execution environments. Frequently, such information is not available to program-

mers statically.
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FFT Raytracer AdaptInt Quicksort Knapsack Fib
J5Future 40 66 40 62 124 23
DBLFuture 27 32 27 38 85 11
Diff 13 24 13 24 39 12

Table 7.1: Source lines of code (SLOC) that is related to future implementation in
both Java 5.0 Future version and DBLFuture version of each benchmark.

The metric we use to assess the ease with which our DBLFuture model can be

used by programmers, is the number ofSource Lines Of Code(SLOC), i.e., the num-

ber ofnon-comment non-blanklines in the source code of the program. Although this

metric has its limitations, it is known to be a reliable predictor of programmer effort,

and has been used in other research work [27]. Table 7.1 liststhe SLOC for the code

regions related to future implementation in both Java 5.0 Future version (the first row)

and DBLFuture version (the second row) of each benchmark. Thethird row presents

the difference between the two versions. The data shows thatour DBLFuture model

shortens the programs significantly, sometime even more than half (e.g. for Fib).

Another way in which DBLFutures eases programmer effort is that it enables

concurrent versions of a program to be very similar to the equivalent serial version

(semantically). Eliding the “@future” annotations, the DBLFuture version is the

same as the serial version.
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Bench- Processor Numbers
marks 1 2 4 8

FFT 1.11 x 1.13 x 1.12 x 1.03 x
Raytracer 1.01 x 1.02 x 1.01 x 1.00 x
AdapInt 2.90 x 2.97 x 3.02 x 4.61 x
QuickSort 5.53 x 5.29 x 5.22 x 5.65 x
Knapsack 1.57 x 1.58 x 1.64 x 1.64 x
Fib 42.55 x 44.63 x 46.67 x 51.09 x
Avg 9.11 x 9.44 x 9.78 x 10.84 x
Avg(w/o Fib) 2.42 x 2.40 x 2.40 x 2.79 x

(a) BaseVM

Bench- Processor Numbers
marks 1 2 4 8

FFT 1.08 x 1.12 x 1.01 x 1.00 x
Raytracer 1.01 x 1.01 x 1.00 x 1.01 x
AdapInt 1.23 x 1.18 x 1.26 x 1.47 x
QuickSort 1.87 x 2.10 x 2.27 x 2.72 x
Knapsack 1.31 x 1.57 x 1.76 x 1.86 x
Fib 4.46 x 6.64 x 12.42 x 18.17 x
Avg 1.83 x 2.27 x 3.29 x 4.37 x
Avg(w/o Fib) 1.30 x 1.40 x 1.46 x 1.61 x

(b) PAOptVM

Table 7.2: Speedup of DBLFutures over LazyFutures.

7.3.1 Directive-based versus Interface-based

We next compare the scalability of DBLFutures and LazyFutures. Table 7.2

shows the speedup of DBLFutures over LazyFutures for each benchmark, sorted

by the rate of future generation. Columns 2-5 present resultsfor increasing pro-

cessor counts; Table (a) shows the results for BaseVM and (b) shows the results for
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PAOptVM. DBLFutures enable significant performance gains over LazyFutures for

all configurations and processor counts. On average, the DBLFuture implementa-

tion is 9.1 to 10.8 times faster than LazyFutures for all experiments for the BaseVM

and 1.8 to 4.4 times faster for the PAOptVM case. Moreover, the performance gains

increase with the number of futures (e.g. Fib versus Raytracer). Since Fib is an

extreme case relative to the other benchmarks, we also show the average speedups

across benchmarks not including Fib. This average is 2.4 to 2.8 times faster for the

BaseVM and 1.3 to 1.6 times faster for the PAOptVM case.

The primary reason for the performance improvement is the programming model

since these two future implementations share the same lazy and adaptive future schedul-

ing system. For LazyFutures, the JVM has the flexibility to decide whether to inline

or spawn a future, but must always create theCallable andFuture object due

to its interface-based model. The DBLFuture employs a function-call based model,

which (1) avoids the creation ofCallable objects completely; (2) grants the JVM

the flexibility to create aFuture object only when it decides to spawn a future based

on underlying resource availability and dynamic program behavior. Our in depth

analysis of the performance gains shows that the benefits that DBLFutures achieve is

due primarily to the avoidance of memory allocation and management.

The improvements for PAOptVM are smaller than for BaseVM due to the effi-

cient runtime services and dynamic code generation that PAOptVM performs (in-
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Benchmarks Ts/T1 T1/T2 T1/T4 T1/T8

FFT 1.00 x 1.88 x 3.09 x 2.86 x
Raytracer 1.00 x 1.93 x 3.66 x 3.78 x
AdapInt 0.97 x 1.98 x 3.85 x 6.19 x
QuickSort 0.91 x 1.83 x 3.28 x 3.87 x
Knapsack 0.97 x 1.86 x 3.68 x 3.43 x
Fib 0.31 x 1.99 x 3.96 x 4.26 x
Avg 0.86 x 1.91 x 3.59 x 4.07 x
Avg(w/o Fib) 0.97 x 1.90 x 3.51 x 4.03 x

(a) BaseVM

Benchmarks Ts/T1 T1/T2 T1/T4 T1/T8

FFT 0.99 x 1.60 x 1.99 x 1.88 x
Raytracer 0.99 x 1.90 x 3.22 x 3.84 x
AdapInt 0.93 x 1.73 x 3.43 x 5.24 x
QuickSort 0.88 x 1.90 x 3.01 x 3.44 x
Knapsack 0.96 x 1.84 x 2.76 x 2.58 x
Fib 0.34 x 1.98 x 3.94 x 4.02 x
Avg 0.85 x 1.83 x 3.06 x 3.50 x
Avg(w/o Fib) 0.95 x 1.79 x 2.88 x 3.40 x

(b) PAOptVM

Table 7.3: Overhead and scalability of DBLFutures

cluding aggressive optimization of object allocation). Inaddition, the performance

difference between BaseVM and PAOptVM speedups increase with the number of

processors. This is because the more processors that are available, the more acute

the competition for system resources and services. Thus, byeliminating most of the

unnecessary object allocation, DBLFuture is able to reduce the conflicts in parallel

memory management, which provides additional performancegains.
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7.3.2 Overall Performance of DBLFutures

We then analyze the overhead and scalability of our DBLFuturesystem in Ta-

ble 7.3. The table contains one section each for the BaseVM (a)and the PAOptVM

(b) configurations. We useTi to represent the execution time of programs written us-

ing DBLFuture with i processors, andTs for the execution time of the corresponding

serial version. Note that due to its function-call based coding style, this serial version

is much faster than the serial version we used as the baselinefor evaluation of Java

5.0 Futures and LazyFutures in Figure 6.7 and Figure 6.8. Therefore, we are setting

a higher standard here to evaluate our DBLFuture system against.

Columns 2 shows theTs/T1 value, our overhead metric. Since there is only func-

tion call overhead for each potential future invocation in the serial version, the differ-

ence betweenT1 (single processor) andTs reveals three sources of overhead: (1) the

bookkeeping employed to maintain the shadow future stack, (2) the activities of the

future profiler, controller, and compiler, and (3) the conditional processing required

by the DBLFuture version for the storing and first use of the value returned by a po-

tential future call. The JVMs perform no splitting in eithercase. This data shows

that our DBLFuture implementation is very efficient: only negligible overhead is in-

troduced for most benchmarks. The worst case isFib, which shows a 3x slowdown.

This is because the Fib benchmark performs almost no computation for each future

invocation (computing a Fibonacci value). The results for this benchmark represents
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an upper bound on the overhead of our system. The C implementation for a similar

parallel system, called Cilk, introduce a similar overhead for this benchmark (3.63x

slowdown [51]). Our system however, significantly outperforms the Java version of

Cilk (JCilk) which imposes a 27.5x slowdown for this benchmark[38]).

The remaining columns for each JVM configuration show the speedups gained by

DBLFuture when we introduce additional processors (which wecompute asT1/Ti as

we increasei, the processor count). For the BaseVM case, the execution time onN

processors scales almost to1/N (average speedup is 1.91x, 3.59x, 4.07x for processor

2, 4, 8 respectively), that is, our system enables approximately linear speedup for

most of the benchmarks that we investigate. Note that our hardware has 4 physical

processors and uses hyperthreading to emulate 8 processors. Despite improvements

in code quality enabled by the PAOptVM case, the DBLFuture version is able to

extract average performance gains of 1.83x, 3.06x, 3.50x for 2, 4, and 8 processors,

respectively. Again, we list the average data excluding Fibin the last row of the

table to avoid Fib skewing the results. In summary, our DBLFuture implementation

achieves scalable performance improvements with negligible overhead.
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7.4 Related Work

There are many previous works that support parallel programming linguistically,

either language-based, i.e., through the addition of new keywords in the language

(e.g., Cilk [15], JCilk [101], X10 [27], Fortress [4]), or directive-based (e.g. OpenMP

[115]). Many programming languages support the future construct to some extent,

either via a library interface (e.g., Java [86], C++ [151]), or directly (e.g., Multil-

isp [126], C [21], X10 [27], Fortress [4]). Some concurrent logic programming lan-

guages (e.g., OZ [130]) generalize the concept of futures torather extremes. In such

languages, all logic variables are conceptually future variables: they can be bound by

a separate thread and threads that access an unbound logic variable will be blocked

until a value is bound to this variable. We follow the directive-based approach in-

stead of language-based approach for easy implementation.The focus of our paper,

however, is not the linguistic programming model itself, instead, we are interested in

the performance impact of different future implementations for Java. We find that a

linguistic approach provides the JVM and compiler with moreflexibility to interpret

future calls efficiently.

New extensions to the Java language can also be implemented by transforming

the new constructs to calls to runtime libraries via either source-to-source transfor-

mation [38, 73] or bytecode rewriting [12, 90]. This approach has the advantage of
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portability and easy implementation since it does not require JVM modification. We

show, in this work, however, that JVM support in a way that takes advantage of ex-

tant JVM services is important to achieve high performance and scalability. Also, our

experiences show that by leveraging extant JVM design and implementations, and by

eliminating extra abstraction layers, such JVM support to new language constructs

can be feasible and sometime even simpler to implement comparing to higher-level

alternatives.

7.5 Summary

In this chapter, we propose an improvement over our LazyFuture system by fur-

ther liberating programmers from writing complicated future creation and manage-

ment code in the Java programming language. We implement directive-based fu-

ture programming support via a Java annotation. Our DBLFuture programming

model enables programmers to identify potential parallelism opportunities in their

programs using simple@future directives. DBLFutures make the migration from

serial programming to parallel programming using futures much easier than does the

conventional interface-based model. Based on our LazyFuture system, DBLFuture

also eliminates unnecessary future object creations and provides better performance.

We evaluate our DBLFuture empirically. The results show thatour implementation
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enables significantly shorter programs, introduces negligible overhead, and is signif-

icantly more scalable than prior implementations.

The text of this chapter is in part a reprint of the material asit appears in the

proceedings of the Sixteenth International Conference on Parallel Architecture and

Compilation Techniques (PACT’07). The dissertation author was the primary re-

searcher and author and the co-author listed on this publication ( [161]) directed and

supervised the research which forms the basis for Chapter 7.
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As-if-serial Exception Handling
Support

An exception handling mechanism is a language control structure that allows pro-

grammers to specify the behavior of the program when an exceptional (unusual) event

is caused by the program [36]. Exception handling is key for software fault tolerance

and enables developers to produce reliable, robust software systems. Many languages

support exception handling as an essential part of the language design, including

CLU [104], Ada95 [78], C++ [139], Java [58], Eiffel [112], and many others.

As multi-processor computer systems become increasingly popular, many parallel

programming languages or constructs (e.g. [27, 4, 86, 101])have been proposed

to enable programmers to express potential parallelism in programs easily so that

the extra computation resources could be exploited. It is important to extend the

exception handling mechanism to the concurrent context forfault tolerance and error

recovery. However, exception handling semantics in a concurrent system are much
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more complex than for a serial environment. Their implementation requires careful

design and must be implemented efficiently.

A key design goal of DBLFutures is to enable programmers to develop and reason

about serial programs first and then introduce parallelism gradually and intuitively.

We take this approach to simplify the process of parallel programming to improve

programmer productivity so that more applications can takeadvantage of the cur-

rent and next generation of systems with multiple processing cores. In a DBLFuture

program, if we elide the future annotations, the program is in its serial form. As a

result, programmers write their program as if it were serialand then identify code

regions that can be safely executed in parallel and capture the return value from calls

to these functions using an annotated local variable. Our goal with this chapter, thus,

is to maintain theseas-if-serialsemantics and introduce a novel exception handling

mechanism into DBLFutures.

In the following sections, we first review the exception handling mechanism for

Java 5.0 Futures. We then present the design and implementation of our as-if-serial

exception handling mechanism in the DBLFuture system. Finally, we evaluate the

overhead of our approach and present related works.
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8.1 Exception Handling in Java 5.0 Futures

A key feature of the Java programming language is its exception handling mecha-

nism that enables robust and reliable program execution andcontrol. Exception han-

dling is also supported for the Java 5.0 Futures. Using the Java 5.0 Future APIs, the

get() method of theFuture interface can throw an exception with typeExecu-

tionException. If an exception is thrown and not caught during the execution

of the submitted future, the Executor intercepts the thrownexception, wraps the ex-

ception in anExecutionException object, and saves it within theFuture ob-

ject. When the continuation queries the returned value of thesubmitted future via

theget() method of theFuture object, the method throws an exception with type

ExcecutionException. The continuation can then inspect the actual exception

using theThrowable.getCause() method. Note that the classExecution-

Exception is defined as achecked exception[58, Sec. 11.2] [86]. Therefore, the

calls toFuture.get() are required by the Java language specification to be en-

closed by a a try-catch block (unless the caller throws this exception). Without this

encapsulation, the compiler raises a compiler-time error at the point of the call. Fig-

ure 8.1 shows a simplified program for computing the Fibonacci number (Fib) using

the Java 5.0 Future interfaces including the necessary try-catch block (line10 ∼ 14).
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1 public class Fib implements Callable<Integer>
2 {
3 ExecutorService executor = ...;
4 private int n;
5
6 public Integer call() {
7 if (n < 3) return n;
8 Future<Integer> f = executor.submit(new Fib(n-1));
9 int x = (new Fib(n-2)).call();
10 try{
11 return x + f.get();
12 }catch (ExecutionException ex){
13 ...
14 }
15 }
16 ...
17 }

Figure 8.1: The Fibonacci program using Java 5.0 Futures with try-catchblocks

8.2 As-if-serial Exception Handling Design

One way to support exception handling for futures is to propagate exceptions to

the use pointof future return values, as is done in the Java 5.0 Future APIs. We

can apply a similar approach to support exceptions in the DBLFuture system. For

the future thread, in case of exceptions, instead of storingreturned value into the

Future object that the DBLFuture system creates during stack splitting, and then

terminating, we can save the thrown and uncaught exception object in theFuture

object, and then terminate the thread. The continuation thread can then extract the

saved the exception at the use points of the return value (theuse of the annotated

variable after the future call). That is, we can propagate exceptions from the future

thread to the continuation thread via theFuture object.
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1 public int f1() {
2 @future int x;
3 try{
4 x = A();
5 }catch (Exception e){
6 x = default;
7 }
8 int y = B();
9 return x + y;
10 }

1 public int f1() {
2 @future int x;
3 x = A();
4 int y = B();
5 try {
6 return x + y;
7 }catch (Exception e){
8 return default + y;
9 }
10 }

(a) (b)

Figure 8.2: Examples of two approaches to exception handling for DBLFutures

One problem with this approach is that it compromises one of the most important

advantages of the DBLFuture model, i.e., that programmers code and reason about

the logic and correctness of applications in the serial version first, and then introduce

parallelism incrementally by adding future annotations. In particular, we are intro-

ducing inconsistencies with the serial semantics when we propagate exceptions to

the use-point of the future return value. We believe that by violating the as-if-serial

model, we make programming futures less intuitive.

For example, we can write a simple functionf1() that returns the sum of return

values ofA() andB(). The invocation ofA() may throw an exception, in which

case, we use a default value for the function. In addition,A() andB() can exe-

cute concurrently. In Figure 8.2 (a), we show the corresponding serial version for

this function, in which the try-catch clause wraps the pointwhere the exceptionmay

be thrown. Using the aforementioned future exception-handling approach in which

the exceptions are received at the point of the first use of thefuture return value,
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1 public int f2() {
2 @future int x;
3 int w, y, z;
4 try{
5 w = A();
6 x = B(); // a future function call
7 y = C();
8 }catch (Exception1 e){
9 x = V1;
10 }catch (Exception2 e){
11 y = V2;
12 }
13 z = D();
14 return w + x + y + z;
15 }

Figure 8.3: A simple DBLFuture program with exceptions

programmers must write the function as we show in Figure 8.2(b). In this case, the

try-catch clause wraps the use point of return value of the future. If we elide the future

annotation from this program (which produces a correct serial version using DBLFu-

tures without exception handling support), the resulting version is not a correct serial

version of the program due to the exception handling.

To address this limitation, we proposeas-if-serialexception semantics for DBL-

Futures. That is, we propose to implement exception handling in the same way as

is done for serial Java programs. In particular, we deliver any uncaught exception

thrown by a future function call to its caller at the invocation point of the future call.

Moreover, we continue program execution as if the future call has never executed in

parallel to its continuation.
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We use the example in Figure 8.3 to illustrate our approach. We assume that the

computation granularity ofB() is large enough to warrant its parallel execution with

its continuation. There are a number of ways in which execution can progress:

case 1: A(), B(), C(), andD() all finish normally, and the return value of

f2() is A()+B()+C()+D().

case 2: A() andD() finish normally, but the execution ofB() throws an excep-

tion of typeException1. In this case, we propagate the uncaught exception to the

invocation point ofB() in f2() at line 6, and the execution continues inf2() as

if B() is invoked locally, i.e., the effect of line 5 is preserved, the control is handed

to the exception handler at line 8, and the execution of line 7is ignored regardless

whetherC() finishes normally or abruptly. Finally the execution is resumed at line

13. The return value off2() is A()+V1+0+D().

case 3: A(), B(), andD() all finish normally, but the execution ofC() throws

an exception in typeException2. In this case, the uncaught exception ofC() will

not be delivered tof2() until B() finishes its execution and the system stores its

return value inx. Following this, the system hands control to the exception handler at

line 10. Finally, the system resumes execution at line 13. The return value off2()

is A()+B()+V2+D().

Note that in this chapter, we focus on the as-if-serial exception semantics in terms

of the control flow of exception delivering, i.e., which and where exceptions should
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be handled. The complete as-if-serial exception handling semantics requires that

the global side effects of parallel execution of a DBLFuture program is consistent

with that of the serial execution. For example, in case 2 of the above example, any

global side effects ofC() must also be undone to restore the state to be the same

as if C() is never executed (since semanticallyC()’s execution is ignored due to

the exception thrown byB()). However, this side effect problem is orthogonal to

the control problem of exception delivering that we addressin this chapter. We will

address the problem of preserving as-if-serial side-effect semantics and describe its

integration with the as-if-serial exception handling semantics in the next chapter.

8.3 Implementation

To implement exception handling for DBLFutures, we extend the DBLFuture-

aware Java Virtual Machine implementation described in Chapter 7. In this section,

we detail this implementation.

8.3.1 Total Ordering of Threads

To enable as-if-serial exception handling semantics, we must track and maintain a

total order on thread termination across threads that originate from the same context

and execute concurrently. We define this total order as the order in which the threads
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would terminate if the program was executed serially. We detail how we make use of

this ordering in Section 8.3.3.

To maintain this total order during execution, we add two newreferences, called

futurePrev andfutureNext, to the virtual machine thread representation with

which we link related threads in an acyclic, doubly linked list. We establish thread

order at future splitting points, since future-related threads are only generated at these

points. Upon a split event, we set the future thread as the predecessor of the newly

created, continuation, thread since this is how the the threads are executed in the serial

execution. If the future thread already has a successor, we add the new continuation

thread between the future thread and its successor in the linked list.

Figure 8.4 gives an example of this process. Stacks in this figure grow upwards.

Originally, thread T1 is executingf(). The future function callA() is initially exe-

cuted on the T1’s stack according to the lazy spawning principle of our system. Later,

the system decides to split T1’s stack and spawns a new threadT2 to executeA()’s

continuation in parallel toA(). At this point, we link T1 and T2 together. Then, after

T2 executes the second future function call,B(), long enough to trigger splitting, the

system again decides to split the execution. At this point, the system creates thread

T3 to executeB()’s continuation, and links T3 to T2 (as T2’s successor).

An interesting case is if there is a future function call inA() (D() in our example)

that has a computation granularity that is large enough to trigger splitting again. In
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1 public int f() {
2 @future int x, y;
3 int z;
4 try{
5 x = A(); //split point 1
6 y = B(); //split point 2
7 }catch(Exception1 e){
8 ...
9 }
10 z = C();
11 return x + y + z;
12 }

1 public int A() throws Exception1{
2 @future int u;
3 int v;
4 u = D(); //split point 3
5 v = E();
6 return u + v;
7 }

Figure 8.4: Example of establishing total ordering of threads.

this case, T1’s stack is split again, the system creates a newthread, T4, to execute

D()’s continuation. Note that we must update T2’s predecessor to be T4 since, if

executed sequentially, the rest ofA() after the invocation point ofD() is executed

beforeB().

The black lines in the figure denote the split points on the stack for each step. The

shadowed area of the stack denotes the stack frames that are copied to the continu-

ation thread. These frames are not reachable by the originalfuture thread once the
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split occurs since the future thread terminates once it completes the future function

call and saves the return value.

8.3.2 Choosing a Thread to Handle the Exception

One important implementation design decision is the choiceof thread context in

which we should handle the exception. For example, in Figure8.4, if A() throws an

exception with typeException1 after the first split event, we have the choice of

handling the exception in T1 or T2.

Intuitively, we should choose T2 as the handling thread since it seems from the

source code that after splitting, everything after the invocation point ofA() is handed

to T2 for execution, including the exception handler. T1 only has context up to the

return point ofA(), when it will store the future value and then terminate itself.

The problem is that the exception delivery mechanism in our JVM is synchronous,

i.e., whenever an exception is thrown, the system searches for a handler on the current

thread’s stack based on the PC (program counter) of the throwing point. T2 does not

have the throwing context, and will only synchronize with T1when it uses the value

of x. Thus, we must communicate the throwing context on T1 to T2 and inform T2 to

pause its current execution at some point to execute the handler. This asynchronous

exception delivering mechanism can be very complex to implement.
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Fortunately, since our system operates on the Java stack directly and always ex-

ecutes the future function call on the current thread’s stack, and spawns the continu-

ation, we have a much simpler implementation option. Note that the shadowed area

on T1’s stack after the first split event is logically not reachable by T1. Physically,

however, these frames are still on T1’s stack. As a result, wecan simplyundo the

splitting as if the splitting never happened via clearing the split flag of the first shad-

owed stack frame (the caller of A() before splitting), whichmakes the stack reachable

by T1 again. Then, the exception can be handled on T1’s context normally using the

existing synchronous exception delivering mechanism of the JVM.

This observation significantly simplifies our implementation. Now, T2 and all

threads that originate from T2 can be aborted as if they were never generated. If

some of these threads have thrown an exception that is not caught within its own

context, the thrown exception can also be ignored.

8.3.3 Enforcing Total Order on Thread Termination

In section 8.3.1, we discuss the way to establish a total order across related future

threads. In this section, we describe how we use this ordering to preserve as-if-serial

exception semantics for DBLFutures. Note that these relatedthreads can execute

concurrently, we simply require that their termination (commit) be ordered.
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1 void futureStore(T value) {
2 if (currentThread.futurePrev != null) {
3 while (currentThread.commitStatus == UNNOTIFIED){
4 wait;
5 }
6 } else {
7 currentThread.commitStatus = READY;
8 }
9 Future f = getFutureObject();
10 if (currentThread.commitStatus == ABORTED){
11 currentThread.futureNext.commitStatus = ABORTED;
12 f.notifyAbort();
13 cleanup and terminate currentThread;
14 } else {
15 currentThread.futureNext.commitStatus = READY;
16 f.setValue(value);
17 f.notifyReady();
18 terminate currentThread;
19 }
20 }

Figure 8.5: Algorithm for the future value storing point

First, we add a field, calledcommitStatus, to the internal thread representation

of the virtual machine. This field has three possible values:UNNOTIFIED, READY,

ABORTED.UNNOTIFIED is the default and initial value of this field. A thread checks

itscommitStatus at three points: (i) the future return value store point, (ii) the first

future return value use point, and (iii) the exception delivery point.

Figure 8.5 shows the pseudocode of the algorithm that we use at the future return

value store point. The pre-condition of this function is that the continuation of the

current future function call is spawned on another thread, and thus, aFuture object

is already created as the placeholder that both the future and continuation thread have

access to.
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1 T futureLoad() {
2 Future f = getFutureObject();
3 while (!f.isReady() && !currentThread.commitStatus == ABORTED){
4 wait;
5 }
6 if (currentThread.commitStatus == ABORTED){
7 if (currentThread.futureNext != null) {
8 currentThread.futureNext.commitStatus = ABORTED;
9 }
10 cleanup and terminate currentThread;
11 } else {
12 return f.getValue();
13 }
14 }

Figure 8.6: Algorithm for the future return value use point

This function is invoked by a future thread after it finishes the future function call

normally, i.e., without any exceptions. First, if the current thread has a predecessor,

it waits until its predecessor finishes either normally or abruptly, at which point, the

commitStatus of the current thread is changed from UNNOTIFIED to either READY

or ABORTED by its predecessor. If the commitStatus is ABORTED,the current

thread notifies its successor to abort. In addition, the current thread notifies the thread

that is waiting for the future value to abort. The current thread then performs any

necessary cleanup and terminates itself. Note that a split future thread always has a

successor. If the commitStatus of the current thread is set to READY, it stores the

future value in theFuture object, and wakes up any thread waiting for the value

(which may or may not be its immediate successor), and then terminates itself.

The algorithm for the future return value use point (Figure 8.6) is similar. This

function is invoked by a thread when it attempts to use the return value of a future
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function call that is executed in parallel. The current thread will wait until either the

future value is ready or it is informed by the system to abort.In the former case,

this function simply returns the available future value. Inthe latter case, the current

thread first informs its successor (if there is any) to abort also, and then cleans up and

terminates itself.

The algorithm for the exception delivering point is somewhat more complicated.

Figure 8.7 shows the pseudocode of the existing exception delivering process in our

JVM augmented with our support to as-if-serial semantics. We omit some unrelated

details for clarity. The function is a large loop that searches for an appropriate handler

block on each stack frame, from the newest (most recent) to the oldest. If no handler

is found on the current frame, the stack is unwound by one frame. Finally, if the

function finds no handler on the entire stack, it reports the exception to the system,

and terminates the current thread.

To support as-if-serial exception semantics, we make two modifications to this

process. First, at the beginning of each iteration (line3 ∼ 13 in Figure 8.7), the

current thread checks whether the current stack frame is fora spawned continuation

that has a split future. If so, it checks whether the current thread has already been

aborted by its predecessor. In this case, instead of delivering the exception, it notifies

its successor (if there is any) to abort, cleans up, and then terminates itself. Note that

the system only does this checking for a spawned continuation frame. If a handler
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1 void deliverException(Exception e) {
2 while (there are more frames on stack){
3 if (the current frame has a split future) {
4 while (currentThread.commitStatus == UNNOTIFIED){
5 wait;
6 }
7 if (currentThread.commitStatus == ABORTED){
8 if (currentThread.futureNext != null) {
9 currentThread.futureNext.commitStatus = ABORTED;
10 }
11 cleanup and terminate currentThread;
12 }
13 }
14 search for a handler for e in the compiled method
15 on the current stack;
16 if (found a handler) {
17 jump to the handler and resume execution there;
18 // not reachable
19 }
20 if (the current frame is for a future function call
21 && its continuation has been spawned) {
22 if (currentThread.futurePrev != null) {
23 while (currentThread.commitStatus == UNNOTIFIED){
24 wait;
25 }
26 } else {
27 currentThread.commitStatus = READY;
28 }
29 currentThread.futureNext.commitStatus = ABORTED;
30 Future f = getFutureObject();
31 f.notifyAbort();
32 if (currentThread.commitStatus == ABORTED){
33 cleanup and terminate currentThread;
34 }else{
35 reset the caller frame to non-split status;
36 }
37 }
38 unwind the stack frame;
39 }
40 // No appropriate catch block found
41 report the exception and terminate;
42 }

Figure 8.7: Algorithm for the exception delivering point

is found before reaching such a spawned continuation frame,the exception will be

delivered as usual since in that case, the exception is within the current thread’s local

context.
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The second modification is prior stack unwinding (line20 ∼ 37 in Figure 8.7).

The current thread checks if the current frame belongs to a future function call that

has a spawned continuation. In this case, we must rollback the splitting decision, and

reset the caller frame of the current frame to be the next frame on the local stack. This

enables the system to handle the exception on the current thread’s context (where the

exception is thrown) as if no splitting occurred. In addition, the thread notifies its

successor and any thread that is waiting for the future valueto abort since the future

call finishes with an exception. The thread must still needs wait for the committing

notification from its predecessor (if there is any). In case for which it is aborted, it

cleans up and terminates, otherwise, it reverses splittingdecision and unwinds the

stack.

Note that our algorithm only enforces the total terminationorder when a thread

finishes its computation and is about to terminate, or when a thread attempts to use

a value that is asynchronously computed by another thread, at which point it will

be blocked anyway if the value is not ready yet. Therefore, our algorithm does not

prevent threads from executing in parallel in any order, andthus, does not sacrifice

the parallelism in programs.
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8.4 Performance Evaluation

Although the as-if-serial exception handling semantics isvery attractive for pro-

grammer productivity since it significantly simplifies the task of writing and rea-

soning about DBLFuture programs with exceptions, it is important that it does not

introduce significant overhead. In particular, it should not slow down applications for

programs that throw no exceptions. If it does so, it compromises the original intention

of the DBLFuture programming model which is to introduce parallelism easily, and

to achieve better performance when there are available computational resources. In

this section, we provide an empirical performance evaluation of our implementation

to evaluate its overhead.

Our implementation is based on the previous DBLFuture systemthat is an ex-

tension to the popular, open-source Jikes Research Virtual Machine (JikesRVM) [84]

(x86 version 2.4.6) from IBM Research. The test machine we use is a 4-processor

box (Intel Pentium 3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9). We only re-

port data for the adaptively optimizing JVM configuration compiler [8] (with pseudo-

adaptation (PA) [14] to reduce non-determinism) since results for the non-optimizing

compiler are similar.

The benchmarks that we investigate are from the benchmark suite in the Satin

system [148]. Each implements varying degrees of fine-grained parallelism. At one
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extreme isFib which computes very little but creates a very large number ofpoten-

tially concurrent methods. At the other extreme isFFT andRaytracerwhich imple-

ment few potentially concurrent methods, each with large computation granularity.

Moreover, no future threads in these benchmarks finished exceptionally. We execute

each experiment 20 times and present the average performance data in Table 8.1.

Table 8.1 has three subtable, each for results with 1, 2, and 4processors, respec-

tively. The second column of each subtable is the mean execution time (in seconds)

for each benchmark in the DBLFuture system without exceptionhandling support

(denoted asBasein the table). We show the standard deviation across runs in the

parentheses. The third column is the mean execution time (inseconds) and standard

deviation (in parentheses) in the DBLFuture system with the as-if-serial exception

handling support (denoted asEH in the table). The fourth column is the percent

degradation (or improvement) of the DBLFuture system with exception handling sup-

port.

To ensure that these results are statistically meaningful,we conduct the indepen-

dent t-test [52] on each set of data, and present the corresponding t values in the last

column of each subtable. For experiments with sample size 20, the t value must larger

than 2.093 or smaller than -2.093 to make the difference between Base and EH sta-

tistically significant with 95% confidence. We highlight those overhead numbers that

are statistically significant in the table.

164



Chapter 8. As-if-serial Exception Handling Support

Benchs Base EH Diff T
AdapInt 29.36 (0.09) 27.96 (0.18) -4.8% -31.79
FFT 7.89 (0.03) 7.78 (0.03) -1.5% -11.49
Fib 16.47 (0.13) 17.04 (0.06) 3.5% 17.81
Knapsack 11.27 (0.04) 10.79 (0.03) -4.3% -41.78
QuickSort 8.11 (0.04) 8.01 (0.03) -1.3% -9.20
Raytracer 21.22 (0.09) 20.91 (0.07) -1.4% -12.12

(a) With 1 processor

Benchs Base EH Diff T
AdapInt 15.02 (0.25) 15.40 (0.81) 2.5% 1.97
FFT 4.92 (0.08) 5.03 (0.10) 2.2% 3.78
Fib 8.34 (0.09) 8.48 (0.06) 1.7% 5.94
Knapsack 6.36 (0.16) 6.35 (0.14) -0.2% -0.22
QuickSort 4.31 (0.08) 4.28 (0.04) -0.5% -1.07
Raytracer 11.18 (0.10) 11.28 (0.14) 0.9% 2.56

(b) With 2 processors

Benchs Base EH Diff T
AdapInt 8.47 (1.01) 8.67 (1.35) 2.4% 0.53
FFT 4.24 (0.09) 4.18 (0.10) -1.6% -2.33
Fib 4.26 (0.02) 4.33 (0.04) 1.6% 6.47
Knapsack 4.40 (0.19) 4.40 (0.15) 0.1% 0.07
QuickSort 2.52 (0.03) 2.54 (0.03) 0.9% 2.34
Raytracer 6.26 (0.07) 6.33 (0.07) 1.1% 3.27

(c) With 4 processors

Table 8.1: Overhead and scalability of the as-if-serial exception handling for DBL-
Futures. TheBaseandEH column list the mean execution time (in seconds) and
standard deviation (in parentheses) in the DBLFuture systemwithout and with the
as-if-serial exception handling support. TheDiff column is the difference between
BaseandEH (in percent). The last column is the T statistic computed using data
in the first three columns. Those difference numbers that arestatistically significant
with 95% confidence are highlighted.
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This table shows that our implementation of the as-if-serial exception handling

support for DBLFutures introduces only negligible overheadfor some benchmarks.

The maximum percent degradation is 3.5%, which occurs forFib when one proces-

sor is used. Most of the overhead numbers are less than 2%.

These results may seem counter-intuitive since we enforce atotal termination

order across threads to support the as-if-serial exceptionsemantics. However, our

algorithm only does so (via synchronization of threads) at points at which a thread

either operates on a future value (stores or uses) or delivers an exception. Thus,

our algorithm delays termination of the thread, but does notprevent it executing its

computation in parallel to other threads. For a thread that attempts to use a future

value, if the value is not ready, this thread will be blocked anyway. Therefore, our

requirement that threads check for an aborted flag comes for free.

Moreover, half of the performance results show that our EH extensions actually

improve performance (all negative numbers). This phenomenon is common in the 1-

processor case especially. It is difficult for us to pinpointthe reasons for the improved

performance phenomenon due to the complexity of JVMs and thenon-determinism

inherent in multi-threaded applications. We suspect that our system slows down

thread creation to track total ordering and by doing so, it reduces both thread switch-

ing frequency and the resource contention to improve performance.
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In terms of scalability, our results do not show a relative increase in overhead

when we introduce more processors. Although we only experiment with up to 4

processors, given the nature of our implementation, we believe that the overhead will

continue to be low given additional processors.

In summary, our system guarantees the as-if-serial exception handling semantics

for future-based applications that throw exceptions. Moreover, our implementation

of these semantics introduce little overhead for applications without exceptions.

8.5 Related Work

Many early languages that support futures (e.g. [126, 21]) do not provide concur-

rent exception handling mechanisms among the tasks involved. This is because these

languages do not have built-in exception handling mechanisms, even for the serial

case. This is also the case for many other parallel languagesthat originate from serial

languages without exception handling support, such as Fortran 90 [45], Split-C [97],

Cilk [15], etc.

For concurrent programming languages that do support exception handling, most

of them focus on the exception handling mechanism within thread boundaries, but

have none or limited support for concurrent exception handling. For example, for

normal Java [58] threads, exceptions that are not handled locally by a thread will not
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be automatically propagated to other threads, instead, they are silently dropped ”on-

the-floor”. The C++ extension Mentat [59] does not address theexception handling

problem at all. In OpenMP [115], a thrown exception inside a parallel region must

be caught by the same thread that threw the exception and the execution must be

resumed within the same parallel region.

Most of more recent languages that adopt futures (e.g. [86, 27, 4]) do provide con-

current exception handling for futures to some extent. For example, in Java, while fu-

ture values are queried via invokingFuture.get(), anExecutionException

is thrown to the caller if the future computation terminatesabruptly[86]. Similar ex-

ception propagation strategy is used by the Java Fork/Join Framework [100], which

supports the divide-and-conquer parallel programming style in Java. In Fortress [4],

thespawn statement is conceptually a future construct. The parent thread queries

the value returned by the spawned thread via invoking itsval() method. When a

spawned thread completes exceptionally, the exception is deferred. Any invocation

of val() then throws the deferred exception. This is similar to the Java 5.0 Future

model.

X10 [27] proposes arooted exceptionmodel, that is, if activity A is theroot-of

activity B and A is suspended at a statement awaiting the termination of B, exceptions

thrown in B are propagated to A at that statement while B terminates. Currently, only

thefinish statement marks code regions as a root activity. We expect that future
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versions of the language may soon introduce more such statements, including the

force() method, which extracts the value of a future computation.

The primary difference between our as-if-serial exceptionhandling model for fu-

tures and the above approaches is the point at which exceptions are propagated. In

these languages, exceptions raised in the future computation that cannot be handled

locally are propagated to the thread that spawns the computation when it attempts to

synchronize with the spawned thread, such as using the returned value. While in our

model, asynchronous exceptions are propagated to the invocation point of the future

function call as if the call is executed locally. In this sense, the exception handling

mechanism for the Java Remote Method Invocation model [82] iscloser to our ap-

proach since the exception context where remote execution exceptions are propagated

back to the caller thread is the invocation point of the remote method. However, an

RMI is usually blocking while a future call is asynchronous.

JCilk [101, 38] is the one most related to our work. JCilk is a Java-based mul-

tithreaded language that enables a ”Cilk-like” parallel programming model in Java.

It strives to provide a faithful extension of the semantics of Java’s serial exception

mechanism, that is, if we elide JCilk primitives from a JCilk program, the result pro-

gram is a working serial Java program. In JCilk, an exception thrown and uncaught in

a spawned thread is propagated to the invocation context in the parent thread, which

is same as our model.
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However, there are several major differences between thesetwo. First, JCilk does

not enforce ordering among spawned threads before the samesync statement. If

multiple spawned threads throw exceptions simultaneously, the runtime randomly

picks one to handle, and aborts all other threads in the same context. In our model,

even when there are several futures spawned in the same try-catch context, there is

always a total ordering among them, and our system selects and handles exceptions

in their serial order. In this sense, JCilk does not maintain serial semantics to the

same degree as our model does. Secondly, JCilk requires aspawn statement sur-

rounded by a specialcilk try if exceptions are possible. In our DBLFuture model,

normal Javatry clause is sufficient. Finally, since JCilk is implemented at library

level, it requires very complicated source level transformation, code generation, and

runtime data structures to support concurrent exception correctly (e.g.,catchlet,

finallet, try tree, etc.), whereas our implementation is much simpler thanks

to the direct access to Java call stacks and the stack splitting technique.

There are only a few concurrent object-oriented languages that have built-in con-

current exception handling support, e.g., DOOCE [76], Arche[80, 79], etc. DOOCE

addresses the problem of handling multiple exceptions thrown concurrently in the

sametry block by extending thecatch statement to take multiple parameters.

Also, multiplecatch blocks are allowed to associated with onetry block. In case

of exceptions, allcatch blocks that match thrown exceptions, individually or par-
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tially, will be executed. In addition, DOOCE supports two kinds of model for the

timing of acceptance and the action of exception handling: (1) waiting for all sub-

tasks to complete, either normally or abruptly, before starting handling exceptions

(using the normaltry clause); (2) if any of the participated objects throws an ex-

ception, the exception is propagated to other objects immediately via anotification

message(using thetry noti clause). In addition to the common termination model

( [127], i.e., execution is resumed after thetry-catch clause), DOOCE supports

resumption via theresume orretry statement in thecatch block, which resumes

execution at the exception throwing point or the start of thetry block.

Arche proposes a cooperation model for exception handling.In this model, there

are two kinds of exceptions:globalandconcerted. If a process terminates exception-

ally, it signals a global exception, which is propagated to other processes that com-

municate synchronously with it. For multiple concurrent exceptions, Arche allows

programmers to define a customizedresolution functionthat takes all exceptions as

input parameters and returns aconcertedexception that can be handled in the context

of the calling object.

Other prior works (e.g. [123, 106, 22, 127, 158]) have focused on general models

for exception handling in distributed systems. These models usually assume that pro-

cesses participating in a parallel computation are organized coordinately in a struc-

ture, such as aconversation[123] or anatomic action[106]. Processes can enter

171



Chapter 8. As-if-serial Exception Handling Support

such a structure asynchronously, but have to exit the structure synchronously. In

case that one process throws an exception, all other processes will be informed and

an appropriate handler is invoked for all participants. With regards to the problem

of handling concurrently signaled exceptions, a technique, calledexception resolu-

tion [22] is used. Multiple exceptions are resolved to a single one based on different

resolution strategies, such as the exception resolution tree [22], the exception resolu-

tion graph [157], or user defined resolution functions [80].

Our exception handling mechanism for DBLFutures is different from other work

in concurrent exception handling in that the intention of preserving serial semantics

grants our model special properties that simplify the implementation significantly.

For example, the exception resolution strategy of our modelis very simple: pick the

one that should occur first in the serial semantics. Also, although our model organizes

involved threads in a structured way (a double linked list),one thread does not need

to synchronize with all other threads in the group before exiting like the way conver-

sation and atomic action work. Instead, threads in our system only communicate with

their predecessors and successors, and exit according to a total order defined by the

serial semantics of the program.

SafeJava futures are described in [153]. Their system uses object versioning and

task revocation to enforce the semantic transparency of futures automatically so that

programmers are freed from reasoning about the side-effects of future executions and
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ensuring correctness. This transaction style support is complementary to our as-if-

serial exception handling model, and we plan to integrate itinto our system as part of

future work. Note that the authors of this work do mention that an uncaught exception

thrown by the future call will be delivered to the caller at the point of invocation of

therun method, which is similar to our as-if-serial model. Howeverit is unclear

as to how (or if) they implemented this since the authors provide no details on their

design and implementation.

8.6 Summary

In this chapter, we propose anas-if-serialexception handling mechanism for the

DBLFutures. The goal is to identify a design that is both compatible with the original

language design and that preserves our as-if-serial program implementation method-

ology. Our as-if-serial exception handling mechanism delivers exceptions at the same

point as they are delivered if the program is executed sequentially. In particular, an

exception thrown and uncaught by a future thread will be delivered to the invocation

point of the future call. In contrast, in the Java 5.0 implementation of futures excep-

tions of future execution are propagated to the point in the program at which future

values are queried (used).
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We show that the as-if-serial exception handling mechanismintegrates easily into

the DBLFuture system and preserves serial semantics so that programmers can intu-

itively understand the exception handling behavior and control in their parallel Java

programs. With DBLFutures and as-if-serial exception handling, programmers can

focus on the logic and correctness of a program in the serial version, including its

exceptional behavior, and then introduce parallelism gradually and intuitively. We

present the design and implementation of our exception handling mechanisms based

on the DBLFuture framework in the Jikes Research Virtual Machine. Our results

show that our implementation introduces negligible overhead for applications with-

out exceptions, and guarantees serial semantics of exception handling for applications

that throw exceptions.

The text of this chapter is in part a reprint of the material asit appears in the

proceedings of the fifth international symposium on Principles and practice of pro-

gramming in Java (PPPJ’07). The dissertation author was theprimary researcher and

author and the co-author listed on this publication ( [162])directed and supervised

the research which forms the basis for Chapter 8.
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As-if-serial Side-effect Guarantee

The goal of our directive-based lazy futures (DBLFutures) with as-if-serial excep-

tion handling support is to enable programmers to write and reason about the logic

and correctness of programs in a serial version first, and then to introduce potential

parallelism gradually and intuitively. To do so, users specify asynchronous compu-

tations that can be executed safely in parallel using the “@future” annotation. This

model simplifies parallel programming since programmers write in a way that is in-

tuitive to them, i.e., according to serial semantics. In addition, this model facilitates

migration of legacy serial programs to concurrent programs.

However, in this model, programmers still must reason aboutwhether it is safe to

execute the future and its continuation in parallel. The programmer must provide pro-

tection for shared data as necessary to avoid data races, which can require significant

programmer effort. To simplify this process, we relieve this burden from program-

mers via support ofas-if-serialside-effect semantics. With this semantics, regard-
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less of how the program is executed, sequentially or in parallel, the virtual machine

guarantees that side-effects occur in the same way. Note that the as-if-serial side-

effect semantics is stronger than the extant serializability semantics that many data

race prevention techniques attempt to achieve, such as lock-based synchronization or

transactional memory techniques: in addition to serializability, as-if-serial semantics

enforcesthe orderof side-effects according to its serial semantics. Although this

may seem too strong for some cases (and may limit scalabilityand concurrency), it

provides significant programmer productivity benefit: the concurrent version is guar-

anteed to be correct once the programmer completes a workingserial version, without

requiring that the programmer debug a concurrent version.

In this chapter, we will first evaluate the prior work on this subject. We then

investigate ways to exploit the adaptation of the JVM to guarantee correct concurrent

execution in DBLFutures.

9.1 Background: the Safe Future System

As-if-serial side-effect semantics for futures has been investigated in the Safe

Future project [153]. In this section, we overview the programming model and im-

plementation of the Safe Future system, and discuss the limitations of the implemen-
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tation on the support of easy-to-use and efficient parallel programming using futures

in Java.

9.1.1 Programming Model

The programming model of Safe Futures is similar to that of Java 5 Future APIs.

The system provides aSafeFuture class that implements the Java 5Future in-

terface. To spawn a computation as a future, programmers first wrap the computation

in a class that implements theCallable interface. At the spawning point, program-

mers create aSafeFuture object that takes theCallable object as a parameter,

and then call thefrun() method of theSafeFuture object. Upon the invocation

of thefrun() method, the system spawns a new thread to evaluate the computation

enclosed by theSafeFuture object. At the same time, the current thread imme-

diately continues to execute the code right after the call site of thefrun() method

(i.e., the continuation), until it attempts to use the valuecomputed by the future, when

theget() method is invoked. The current thread is blocked until the value is ready.

Figure 9.1 shows a simple example that uses theSafeFuture API.

9.1.2 Execution Contexts

To preserve the as-if-serial side-effect semantics, the Safe Future system divides

the entire program execution into a sequence ofexecution contexts. Each context
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Figure 9.1: Example of execution context creation for Safe Futures in Java

encapsulates a fragment of computation that is executed by asingle thread. These

execution contexts are totally ordered based on the logicalserial execution order,

which the system implements via a linked list of contexts.

The program execution starts with a primordial context. Upon a future invocation,

the system pauses the current context. The system creates a new thread and a future

context as well as a new continuation context. The system assigns the current thread

to the continuation context.

In the linked list, the current context is the predecessor ofthe future context and

the future context is the predecessor of the continuation context. The future context

ends once it returns from the future computation. The continuation context ends at

the invocation point of theget() method which retrieves the result of the future

computation. This process is depicted in Figure 9.1 for a simple example, whereCp,
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Cf , andCc represent the primordial context, the future context, and the continuation

context, respectively. The grayed boxes indicate the startand end of each context.

The system resumes the primordial context,Cp, once the future and continuation

contexts complete successfully.

9.1.3 Preserving As-if-serial Side-effect Semantics

The Safe Future system defines two types of data dependency violations:

• Forward dependency violation:Cc does not observe the effect of an operation

performed byCf ;

• Backward dependency violation:Cf does observe the effect of an operation

performed byCc

For the example in Figure 9.1, ifT1 reado.foo beforeT2 writes to it, it has the

forward dependency violation. Alternatively, ifT1 writes too.bar beforeT2 reads

it, it has the backward dependency violation. If there is no violation, the program

execution is defined as safe, i.e., the as-if-serial side-effect semantics is preserved.

Every read or write to the shared data is guarded by a compiler-inserted barrier,

which tracks shared data accesses by each context. The barriers prevent dependency

violations to preserve as-if-serial semantics.
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To prevent a backward dependency violation, each context keeps a private copy

of all shared data that it has written to. Also, each item of shared data maintains a list

of all private copies created for it, which is sorted under logical context order. Upon

a write, the execution context creates a private version of the shared data, and put the

new copy tagged with the context ID (via an extra word in the object header) into the

version list. It also replaces any reference to the data on stack with the new version

so that all subsequent reads get the correct version. Upon a read, the context searches

the version that tagged by itself or the version created by its most recent predecessor,

i.e., a context will never see a version that is created by itslogical future contexts,

which prevents backward dependency violation.

To prevent the forward dependency violation, the system maintains two bit-maps

for each execution context to record reads and writes to shared data of the associated

computation fragment. Upon committing, the system detectsconflicts by checking

the read bit-map of the execution context against the write bit-map of all the execu-

tion contexts in its logical past. If there is any overlap, a conflict is detected, and

the context is revoked, i.e., all of its side-effects are discarded, and its associated

computation is re-executed.
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9.1.4 Committing and Revoking Execution Contexts

There are three outcomes of a context commit: success, failed, and aborted. Suc-

cess means that the side-effects are safe (i.e., they preserve as-if-serial semantics)

to make permanent and thus, seen by other contexts. Failed means that all contexts

in the logical past of this context have successfully committed, but the current con-

text has conflicts with at least one of its predecessors and must be revoked. Finally,

aborted means some context in the logical past of this context has been revoked, and

the current context should be discarded without re-execution, since the current con-

text will be re-executed within a new context via re-execution of the revoked context.

Any revocation of a predecessor context results in abortionof all contexts thereafter.

Different kinds of execution contexts have different committing triggers and re-

vocation algorithms. For the future context, the system attempts to commit its side-

effects at the end of the future computation. The commit of a future context triggers

the commit of its primordial context, which recursively triggers the commit of all

contexts in the logical past. The commit of the continuationcontext is triggered by

calling theget() method. The continuation context first waits for its correspond-

ing future context to finish. If the future context aborts, the continuation also aborts.

Otherwise, if there is a conflict detected, the continuationcontext is revoked.

Since the computation of a future context is wrapped in aCallable object,

its revocation implementation is straightforward: the computation is enclosed by a
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loop with a successful commit as the exit condition. The revocation of a continuation

context is more complex. The Safe Future system uses bytecode rewriting to insert

code at the beginning of a continuation, which saves the state of all local variables

and stack locations at that point, into the future object. The system also inserts extra

bytecode to restore the saved states from the future object,and records the start of the

code segment as the point of revocation for the continuationcontext. The bytecode

rewriter then generates new exception handling code, whichhandles the internalre-

vokeexceptions that are thrown by the system when a continuationcontext is revoked.

The exception handler extracts the starting point code segment from the future object

encapsulated in the exception, and jumps to that point to begin re-execution.

9.1.5 Limitations of Safe Futures

The Safe Future system is an interface-based approach that is similar to Java 5

Futures. As we have shown in previous chapters, this approach has programmer

productivity and performance disadvantages that we avoid with our directive-based

programming model. Programmers must manually identify the“right” computation

granularity for spawning a future to amortize the overhead of thread and context

creation. Also, the Safe Future system requires significantand unnecessary object

wrapping, which requires non-trivial rewriting to futurize the serial program and can

result in significant memory management overhead for fine-grained futures.
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The second limitation of this system is its assumption of thelinear future creation

pattern, i.e., it assumes futures are created one after another in the same function. In

other words, it only allows a continuation context to createa future, but does not allow

a future to create a future. This assumption simplifies implementation significantly.

For example, the system can generate context identifiers simply by incrementing a

global counter and organize contexts using a single linked list. However, this also

prevents future composition: what if the future computation calls some functions in

a third-party library, which might also be futurized? Supporting nesting is the key

to improve the composability of a program [65]. It is also an essential requirement

for some types of applications to use futures, e.g., the divide-and-conquer style of

applications with fine-grained parallelism.

Another limitation of the Safe Future system is that there isno information ag-

gregation in the system. Every context must check its read map against the write

maps of ALL of its predecessors. As this list grows, so does the overhead of conflict

detection.

Finally, the context management of this system is implemented at the bytecode

level. The bytecode rewriter inserts code to save and restore the local states of the

program and to correctly handle revocations using exception handling. Such rewriting

imposes significant overhead, does not exploit the functionality of the compiler in the

JVM, and requires extra memory space to perform local state bookkeeping.
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In summary, the Safe Future system is unnecessarily complex, difficult to use,

is only able to support a limited number of concurrent program types, and does not

exploit the rich information available in the virtual machine to improve performance.

We seek an alternative approach that preserves the as-if-serial side-effect semantics

of futures more effectively and more efficiently to make the safe future programming

model practical.

9.2 Supporting Nested Futures Safely

To support as-if-serial side-effect semantics, we extend our directive-based lazy

future implementation to produce a system called Safe DBLFuture (SDBLFuture).

We employ many of the Safe Future technologies including dependency violation

tracking and prevention, execution contexts, data-accessbarriers, read/write bit-maps,

and version list maintenance.

However, due to the differences between our DBLFuture approach and the Safe

Future library-level, interface-based, approach, SDBLFuture is significantly different

from the Safe Future system. SDBLFuture system inherits all programmer produc-

tivity and performance advantages enabled by DBLFutures. For example, instead of

being forced to carefully hardcode the spawning granularity in the program, program-

mers annotate futures of any granularity. SDBLFuture automatically and adaptively
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spawns futures only when doing so will improve performance.Our approach also

makes serial programs very easy to futurize through our use of the “@future” annota-

tion for all potentially asynchronous computations. SDBLFuture only creates future

objects when it spawns a future (via stack splitting) – it generates no other unneces-

sary wrapper objects. We have presented empirical results that show the benefits of

this approach in prior chapters.

SDBLFuture extends Safe Futures in multiple ways. First, we support as-if-

serial side-effect semantics for any level of future nesting, thereby supporting a much

broader range of concurrent programs, including divide-and-conquer programs with

fine-grained, function-level parallelism. Our use of a virtual machine implementation

also significantly simplifies the implementation of as-if-serial side-effect semantics.

We require no bytecode rewriting by associating execution context creation with stack

splitting. We avoid redundant local state saving and restoring by accessing context

state directly from Java thread stacks. Finally, we implement context revocation with

a bit flip and thus avoid the overhead of revocation via expensive exception handling.

9.2.1 Layered Context ID

In the Safe Future system, each execution context has a unique context ID. This

context ID represents the logical order among execution contexts: the earlier a context

in the logical order, the smaller its context ID. An execution context tags versions of
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all objects it creates with this ID using an extra word in the object header. The system

uses the tagged ID of object versions to identify the correctone for a context to read.

The system maintains a global counter which it uses to assignthe next ID when it

creates an execution context. When spawning a future, the system creates the future

context first, then the continuation context to guarantee that the future context has a

smaller ID than the continuation context.

This ID-assignment scheme is simple but does not allow nesting. For example,

using this ID scheme, the contextCp, Cf , andCc in Figure 9.1 gets ID 0, 1, 2 re-

spectively. If the future contextCf creates another future, the new future context will

get an ID 4 using this ID scheme and the consistency between the logical order and

context IDs is violated. The first step to enable support of nested futures is to design

a new context ID scheme so that a new context can be created at an arbitrary nesting

level, dynamically, while preserving the order of contexts.

We use a hybrid, layered approach for ID assignment. Figure 9.2 describes this

scheme. The context ID can be either a pointer to an ID object or a simple ID; the

last bit of the value indicates which (0 for ID, 1 for object).The last two bits of any

address in our system are unused due to object alignment.

For a simple context ID, we divide the most significant 30 bitsinto 15 layers.

Each layer has one of three binary values:00, 01, and10, which corresponds to the

primordial context, the future context, and the continuation context of that nested
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Figure 9.2: Layered execution context ID for supporting nested futures

layer, respectively. We set unused layer bits to 0 and use bitsignificance to indicate

layer order. The higher the bit significance the lower the layer order.

For example, when the system spawns the first future, there are only three execu-

tion contexts in the system (Cp, Cf , andCc), and their ID are0x00000001, 0x40000001,

and0x80000001 respectively. Upon spawning, the new context inherits the context

ID of the current context, and then sets the next layer to01 for a future context or

10 for a continuation context. Note that the current context has 00 at the next higher

layer, which identifies it as the primordial context of the group.

Except for the initial primordial context whose ID is0x00000001, all contexts

are either a future context or a continuation context relative to a spawning point in

the program. The same future or continuation context can be the primordial context

of the next layer if there is nesting. For example, if the future context0x40000001

spawns another future, the context ID of the new future context and continuation

context is0x50000001 and0x60000001, respectively. Context0x40000001 becomes
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the primordial context for this layer. If the continuation context0x80000001 spawns

a future, the new context IDs are0x90000001 and0xA0000001.

Using bits from high to low significance makes all sub-contexts spawned by a

future context have context IDs that are smaller than that ofall sub-contexts spawned

by the continuation context. This property is preserved forthe entire computation

tree using this model. Therefore, the values of context IDs are consistent with the

logical order of execution contexts, which facilitates simple and fast version control.

Our system only supports up to 15 layers for simple context ID. Usually 15 layers

of nesting is sufficient for most applications since a systemshould not spawn so many

layers of futures unless there is a very large number of processors available. Our

lazy and adaptive scheduling system is very effective in making intelligent spawning

decisions based on the computation granularity and the system resource availability.

In case that more than 15 layers are necessary, we change the simple context ID to

a reference to a ID object that implements bit vectors to support arbitrary levels of

nesting.

9.2.2 Tree Structure of Execution Contexts

The Safe Future system organizes all execution contexts as asingle linked list

based on their logical order. With our hybrid and layered context ID scheme, the

single linked list structure is also sufficient to support safe nested futures in SDBL-

188



Chapter 9. As-if-serial Side-effect Guarantee

Futures: upon spawning, we link the new future and continuation contexts together,

and then insert them after the primordial context that creates them.

However, there are several disadvantages imposed by this linked-list structure. We

use the example in Figure 9.3 in the following discussion. For clarity and concision,

we use base-4 number presentation to represent the context IDs and omit unused

layers in all of our examples unless specifically noted. Graph (a) in this figure is a

simple DBLFuture example; Graph (c) is the linked list of all created contexts.

The linked list structure of contexts loses the parent-child hierarchy information

of the computation in a program. By definition, both future andcontinuation con-

texts will never conflict with their primordial context since both contexts start after

the primordial context and there is no concurrent data access between them and the

primordial context. Similarly, for the nested futures, we want to avoid false conflicts

between a context and all of its ancestors on the spawning path.

For example, in Figure 9.3, the conflicts betweenC11 (andC12) andC10, C00 are

false. The condition that Safe Future uses to avoid such false conflicts is that two con-

texts share the same execution thread. This condition only works for the continuation

context in their system. So if the future context reads something that is written by the

primordial context, there is always a revocation which is not necessary. With the new

layered context ID scheme, we are able to detect ancestor-descendant relationship

among contexts using their context ID. However, using this implementation, our sys-
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Figure 9.3: Tree structure of execution contexts

tem is forced to traverse the entire list prior to a context, to detect such relationships

and avoid false conflicts.

The list implementation also prevents data aggregation. Inthe Safe Future sys-

tem, the read/write maps and generated versions of an execution context are kept in

the context even after the context has committed. To detect aconflict, the system

compares the read map of a context against the write maps of all of its predecessor

contexts. For example, the system performs six map comparisons for conflict detec-

tion for contextC22. Thus, the cost of conflict detection depends on the number of

contexts – the more contexts, the larger the overhead. Moreover, without complex

lock management, list access imposes costly synchronization overhead. Our goal is

to aggregate map information at primordial contexts and enable simple, low-overhead

access.
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To address these limitations, we replace the linked list implementation with a

context tree. The Graph (b) in Figure 9.3 shows the structurefor the contexts in the

example. In this structure, the primordial context is the parent of the future and con-

tinuation contexts. The structure handles primordial context suspension in a straight-

forward way. The system suspends the context at the point of th future spawn and

resumes it after the future and continuation complete. Thus, when the system com-

mits a primordial context, then it has committed the entire subtree of computation

below the context.

Upon a context commit, the system merges the shared data accessing information

from a child context into the parent. Specifically, the system merges the read/write

bitmaps of the child context with that of the parent (i.e. performs a bitwise “OR”

operation on the bitmaps). In addition, for an object version created by the child

context, if the parent context also has a private version forthe same object, we replace

that version with the child’s version; otherwise, the child’s version is tagged with

parent’s context ID and is recorded as an object version created by the parent context.

Note that a continuation context initiates a commit only if its corresponding future

context commits successfully. Therefore, our system requires no synchronization for

merging.

With such information aggregation and layout, we only need to check contexts

against a root (primordial context) of a subtree as opposed to all nodes in the subtree,
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when checking conflicts for contexts that occur logically after the root. For example,

in Figure 9.3(b),C22 only needs to check conflicts againstC21 andC10, sinceC10 has

aggregated information ofC11 andC12. We require no synchronization for any tree

update since all are now thread-local. In summary, using a tree structure of execution

contexts is more natural and efficient to support nested, safe futures.

9.2.3 Adaptive and Lazy Execution Context Creation

Our DBLFuture implementation initially treats a future callas any other method

invocation. If the system detects that the future computation is computationally large

enough to amortize the overhead of spawning, it performs stack splitting to spawn a

new thread for execution of the continuation. The system avoids creation of future

objects until a stack split occurs. Similarly, SDBLFuture system does not create new

execution contexts for a future call unless the stack splitting occurs. This laziness of

context creation avoids unnecessary context management overhead for fine-grained

future computations.

Given that our system waits until it determines (i.e.learns) the granularity of an

executed future method, the spawn point of a future is later in time than the function

entry point of the future. Any shared data access (shared with the continuation) that

occurs in the future prior to spawning is guaranteed to be safe since the system exe-

cutes the future prior to spawning sequentially. Thus, our learning delay may avoid
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conflicts and better enable commits in a way not possible in the Safe Future system

which trigger spawning eagerly of all futures (without delay).

9.2.4 Simple Context Revocation

The Safe Future system implements context revocation usingcomplicated byte-

code rewriting. The bytecode rewriter inserts extra bytecode that stores and restores

the local states to and from the future object at the beginning of a continuation. It

also inserts new exception handlers to catch a revocation exception, and to transfer

control to the correct revocation point. In our system, we provide a much simpler im-

plementation of context revocation since we have direct access to the runtime stack

frames of Java threads.

Upon stack splitting, our system spawns a new thread to execute the continuation,

and uses the current thread for the execution of the future call. The system sets a

split flag on the future call’s caller frame to indicate the splitting. When the future

call returns, it checks this flag to decide whether it should return directly as a normal

function call, or if it should store the computed value into afuture object, prior to

termination. Note that the local state of the continuation is kept on the future’s stack

even after splitting. Since we have access to both stacks, weneed not perform dupli-

cated work to save or restore these states. To revoke the continuation, we only need

to reset the split flag of the caller frame of the future call. This causes the future call
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to return as a normal call, and the current thread continues to execute the code right

immediately following the future call – which completes therevocation of the con-

tinuation context. This process is similar to the techniquefor supporting as-if-serial

exception handling that we described in Chapter 8. To revoke afuture context, we

revoke the ancestor context that is (i) closest to the futurecontext and (ii) that is a

continuation context. This design may waste the work done bysome contexts, but

it simplifies the implementation of context revocation significantly: we perform all

revocations by simply reseting the split flag.

9.2.5 Local Commit and Global Commit

Given the tree structure of execution contexts, there are two potential strategies

for context committing. In the first strategy, the committing process only detects

local conflicts. That is, the future context always commits successfully immediately

after it finishes computation, and the continuation contextonly detects conflicts it has

with its future context. After committing, we merge both contexts with the parent

context, i.e., the primordial context of the group. The committing process continues

recursively up to the root of the tree. We call this strategy as local committing.

In the second strategy, which we callglobal committing, a context waits for all

the contexts in its logical past to finish, and then it detectsconflicts against all the

previous contexts. In case of conflicts, the system picks thefirst continuation context
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(including the current context) on the path up to the root in the context tree for revo-

cation. In addition, since we know that all previous contexts have finished, we set the

read maps of the revoked context to null to avoid further conflict detection.

Note that although logically the global committing strategy forces a context to

wait for and test against all of its predecessors except for its ancestors, information

aggregation within the tree structure enables us to only compare contexts that contain

aggregated information for all of its predecessors. The best candidates for such ag-

gregated contexts are the future contexts that are siblingsof the continuation contexts

that are ancestors of the current context since this set of contexts is able to cover all

predecessors with minimal number of contexts. We define thisset of contexts as the

test setof a context.

For example in Figure 9.4, the test set ofC211 includesC100, while the test set for

C222 includesC221, C221, C210, andC100. In addition, in the test set, a context need

only wait for the context that is closest to itself since thiscontext is the latest in the

logical order. Committing of this context indicates that allcontexts in the test set have

committed. For example in Figure 9.4,C222 only waits forC221, C221 waits forC210,

C210 waits forC100, and so on.

The advantage of the local committing strategy is the parallelism it enables, es-

pecially when there are no or few conflicts in the program since there is no waiting

between a future context and its predecessor contexts that are in other subtrees. In
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Figure 9.4: Local committing and global committing of execution contexts

particular, if the function that spawns the future is computationally intensive (i.e.,

spends time computing after both the future and continuation contexts finish), it is

more efficient (enables more parallelism) to allow the contexts to commit without

waiting for their predecessors. We refer to this pattern of computation as having a

long tail; as opposed toshort tail computations.

The disadvantage of the local committing strategy is that itdelays conflict detec-

tion. For some execution patterns, such delay can potentially cause a large amount of

work to be performed wastefully. We use the example context tree in Figure 9.4 to

explain this. If there is a conflict betweenC110 andC222, the system will detect this

conflict when all contexts in the subtree ofC200 have committed to their parent con-

texts, and whenC200 is detecting conflicts againstC100. After the conflict is detected,

the system will revoke the computation associated with the entire subtree ofC200

since after meta data aggregation, the system cannot distinguish the point at which

the conflict occurs (C222). In contrast, using the global committing strategy, this con-
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flict will be detected whenC222 attempts to commit, and the system will revoke only

the computation ofC222.

In summary, there are tradeoffs between the two committing strategies. The im-

pact of these tradeoffs on performance varies depending on the frequency of conflicts,

conflict patterns, computation patterns, and other programand system behaviors. To

achieve the advantages of both strategies, we propose a hybrid committing strategy.

9.2.6 Hybrid Committing Strategy

The principle of our hybrid committing strategy is to allow as many contexts as

possible to locally commit to exploit available parallelism, but identify contexts that

impose a significant delay when conflicts occur so that they can globally commit.

The question is how to identify such contexts efficiently andeffectively. First we

note that the amount of wasted work due to local committing isrelated to distance

between the two conflicted contexts. Since all contexts are logically total-ordered,

and a context only checks for conflicts against contexts in its logical past, given a

certain context in the tree, the later another conflicting context is in the logical order,

the more delay penalty due to local committing is. For example, in the context tree

in Figure 9.4, ifC121 conflicts withC110, using local committing, the system detects

this conflict while committingC120 and revokesC120, which wastes all work done

by contexts in the subtree ofC120. In contrast, with global committing, the system
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detects the conflict while committingC121, and as a result, revokesC120 immediately

and abortsC122. The difference between the two committing strategies for this case is

just the partial work done byC122 (depends on how early the abortion happens) and

the partial work done byC120 after bothC121 andC122 commit, which is wasted using

local committing, but not with global committing. For the case thatC122 conflicts

with C110, the local committing still cause all work done byC120, C121, andC122

wasted. But the global committing is able to preserve the workdone byC121 and

C120. The penalty difference of the two committing strategies becomes larger. For

the case thatC222 conflicts withC110, the penalty difference is even larger: global

committing is able to preserve work done by 6 contexts which is all wasted if we use

local committing.

We know that for each spawning point, contexts in the future subtree are all earlier

than contexts in the continuation subtree in the logical total order. So contexts in the

continuation subtree might appreciate global committing relatively more than those

in the future subtree as we can see from the above example. A simple heuristic we

could use is to give contexts following the continuation path in the context tree higher

priority to perform global committing than those follow thefuture path at the same

layer.

Using this heuristic, our algorithms works as follows. We maintain a new prop-

erty, calledspawning level, for each execution context. The spawning level of the
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root primordial context is0. For a future context, its spawning level is the spawning

level of its parent context plus one. The spawning level of a continuation context is

same as its parent context. The spawning levels of contexts in Figure 9.4 are labeled

on the right side of the nodes. The deeper a context is in the future subtrees, the larger

its spawning level is. The system uses the spawning level to indicate the priority with

which the system performs global committing. The smaller the spawning level is, the

higher the priority is.

We then define a parameter called theglobal committing threshold. The system

decides whether to perform local or global committing for a future context based on

its spawning level and the global committing threshold. A future context performs

global committing only if its spawning level is equal to or less than the global com-

mitting threshold. A continuation context performs globalcommitting if the corre-

sponding future context globally commits since a continuation context always waits

for its future context. The shadowed nodes in Figure 9.4 represent contexts that are

globally committed when the global committing threshold isset to 1, while those not

in the shadow are locally committed.

Different applications require different global committing thresholds to achieve

the best tradeoff between parallelism and conflict detection delay penalty. The fac-

tors that play a role in this tradeoff include conflict frequency (no/light conflicts ver-

sus heavy conflicts), conflict patterns (who conflicts with whom), and computation
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patterns (long tail computation versus short tail computation), etc. The strategy we

use is to set this threshold to 1 initially, i.e., the top two levels of contexts are glob-

ally committed, and all other contexts are locally committed. This strategy facilitates

parallelism for most of contexts, and at the same time avoidsunnecessary delay of

conflict detection at the top levels, which usually causes computational waste from

revoked contexts. When the system detects that a context whose spawning level is

greater than the current threshold is revoked, it increasesthe threshold to that spawn-

ing level adaptively to avoid additional wasted work. Although this approach is not

optimal, it is simple and enables good performance for all ofthe benchmarks that we

investigate in our experimental evaluation.

9.2.7 History-based Learning

We also exploit the adaptation of the Java virtual machine inother ways in SDBL-

Futures. In particular, we investigate two learning strategies that attempt to minimize

the number of revocations and wasted work adaptively using the behavior of exe-

cuting contexts. The first strategy we investigate is not to split a future again if its

continuation has been revoked in the past. We call thisNot-To-Split(NTS) learning

strategy. The rationale behind this strategy is straightforward: the continuation will

most likely be revoked, so it is better to execute sequentially to save computation

resources.
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Figure 9.5: A simple program that spawns 4 futures

The NTS learning strategy works effectively for some conflict patterns, but not

always. We use the example in Figure 9.5 to demonstrate. In this example, we create

three futures in functionf(). The corresponding context tree is shown in the right fig-

ure. The base-4 context IDs are labeled inside each context node, and the associated

computation is tagged on the right.

• case 1AssumeC() andD() have a conflict.

The system revokesC222 after detecting this conflict. At the same time, the

system records this information in a revocation history database. Iff() is called

again, according to the NTS learning strategy, the system will not spawn the

continuation for the future callC() at line 7, and the revocation is avoided.

This behavior does not change given different global committing thresholds

since the conflict itself is local.

• case 2AssumeB() andD() have a conflict.
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– case 2.1The global committing threshold is 0, i.e., all contexts perform

local committing. In this case, conflict detection is delayed until C220 at-

tempts to commit. The system revokesC220 as a result. Next time, the

system does not spawn the continuation ofB() at line 6. Although it will

still spawn continuations forA() andC() since there is no revocation his-

tory in the database for these spawning points, the revocation is prevented

sinceB() now is executed by an ancestor of the context that executesD().

– case 2.2The global committing threshold is 1, i.e., all contexts in this

tree perform global committing. Now the conflict is detectedwhenC222

attempts to commit since by global committing, the test set of C222 in-

cludesC100, C210, C221. As a result, the system revokesC222 at line 7. We

see that for the first round, the global committing strategy helps to avoid

wasting work done byC221. In the second round, the NTS learning strat-

egy prevents the system from spawning the continuation ofC() at line 7.

However, this does not preventB() from executing concurrently withD()

if the continuation at 6 is spawned. Instead, it takes longerfor the system

to detect the conflict, and one more round to prevent the revocation com-

pletely.

For case 2.2, the NTS learning strategy does not work effectively since it ignores

one piece of important information: the conflict was detected after all previous con-

202



Chapter 9. As-if-serial Side-effect Guarantee

texts ofC222 have successfully committed, otherwise,C222 would have been aborted,

instead of revoked, based on the global committing algorithm. This information in-

dicates an important temporal property: as long as we startC222 after all previous

contexts finish, there will be no conflict.

Based on this observation, we introduce another learning strategy: for a revoked

spawning point in the global committing zone, in the next round, instead of simply

not splitting, the system performs the stack splitting as usual, but suspends the con-

tinuation context right after its creation. The system alsodeletes the read maps of

the continuation context to avoid conflict detection acrossthis context. Once the fu-

ture context commits itself successfully, it will resume the suspended continuation

context. We refer this strategy asSplit But Suspend(SBS) learning strategy. This

learning strategy does not work for local committing since there is no such temporal

information can be learned from a revoked context that is locally committed. There-

fore, we use the NTS strategy for the local committing zone and the SBS strategy for

the global committing zone, which makes it a hybrid strategy. We refer this hybrid

strategy asNTS+SBSlearning strategy. Now forcase 2.2, in the second round, the

continuation contextC222 is still spawned at line 7, but suspended untilC221 com-

mits successfully and notifies it.C222 will not perform any conflict detection since

its read-map is null. The system effectively prevents revocations and wasted work

completely.
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9.2.8 Integration with As-if-serial Exception Handling

As-if-serial exception handling attempts to preserve the exception handling be-

havior of a concurrently executed future application as if it were executed sequen-

tially. This simplifies the task of writing concurrent applications using futures further

since programmers now can reason about the exception handling behavior of an ap-

plication in the serial version, and then introduce “@future” annotations to improve

parallelism without worrying about the exception handlingbehavior of the concurrent

version. In Chapter 8, we describe and evaluate our implementation of as-if-serial ex-

ception handling support for DBLFutures.

Note that the true as-if-serial exception handling semantics defines which and

where exceptions thrown by concurrently executed computations should be handled,

which was the focus of Chapter 8. However, this semantics alsorequires that all side-

effects caused by computations that are before the handled exception in the logical

serial order be preserved, while those side-effects that are in the logical future of

the handled exception be discarded. We cannot preserve thispart of the as-if-serial

exception handling semantics without the as-if-serial side-effect support. Now, with

the as-if-serial side-effect guarantee provided by the SDBLFuture system, we can

support the complete semantics of as-if-serial exception handling, which is our focus

of this section.
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In Chapter 8, we maintain a total ordering on thread termination across threads

that originate from the same future spawning point and execute concurrently. In SD-

BLFutures, maintaining this total ordering of threads are not necessary since we

can derive the required ordering information of threads from their associated ex-

ecution contexts, which are totally ordered based on their logical serial execution

order. Therefore, all extra data structures that we introduced in algorithms in Chap-

ter 8 for this purpose, such as the new fields of the internal thread objects including

futurePrev, futureNext, andcommitStatus, are not necessary anymore.

In addition, in Chapter 8, we augment the algorithms offutureStoreandfutureLoad

in the DBLFuture system with the logic that enables the current thread that is wait-

ing for the previous thread in the total ordering to finish andcleanup itself if it is

aborted before performing the real actions of both functions (see Figure 8.5 and Fig-

ure 8.6). This augmentation is necessary to preserve the total ordering on termination

of threads in this case.

However, in the SDBLFuture system, similar logic is already part of the algo-

rithms offutureStoreandfutureLoadto preserve the as-if-serial side-effect semantics,

except that we use execution contexts instead of threads. This means that the extra

work in futureStoreandfutureLoadthat was required to support as-if-serial exception

handling now comes for free in the SDBLFuture system. Moreover, the cleanup on

abortion that is performed by the SDBLFuture system includesremoving all private

205



Chapter 9. As-if-serial Side-effect Guarantee

object versions that are created by the aborted context. Since the side-effects of an

execution context are kept as private object versions of that context and will not be

visible until it commits, such cleanup reverts all side-effects of the computation as-

sociated with the aborted context completely which cannot be done by algorithms in

Chapter 8.

The only extra algorithm that is still necessary to support as-if-serial exception

handling in the SDBLFuture system is the exception delivery algorithm, which has

similar logic to that of the delivery algorithm in Figure 8.7, but with slightly differ-

ent implementation details since now the total ordering is implemented via execution

contexts instead of threads. The new exception delivery algorithm is shown in Fig-

ure 9.6.

Comparing to the normal exception delivery algorithm in the unmodified virtual

machine, this exception delivery algorithm has two extra parts. The first part is exe-

cuted before searching for a handler in the compiled method of the current frame (line

3 ∼ 11 in Figure 9.6). This part ensures that an exception thrown bya continuation

context, but that is not handled within the continuation context before it unwinds to

the splitting frame, will not be handled unless the current context commits success-

fully.

Successfully committing the current context indicates that all side-effects of the

concurrent executed contexts up to this point are guaranteed to be same as if the
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1 void deliverException(Exception e) {
2 while (there are more frames on stack){
3 if (the current frame has a split future) {
4 // a frame for a continuation context
5 currentContext = currentThread.executionContext;
6 try to globally commit currentContext;
7 if (currentContext is aborted || currentContext will be revoked){
8 cleanup currentContext;
9 terminate currentThread;
10 }
11 }
12 search for a handler for e in the compiled method on the current stack;
13 if (found a handler) {
14 jump to the handler and resume execution there;
15 // not reachable
16 }
17 if (the current frame is for a future function call
18 && its continuation has been spawned) {
19 currentContext = currentThread.executionContext;
20 try to globally commit currentContext;
21 if (currentContext is aborted) {
22 cleanup currentContext;
23 terminate currentThread;
24 }else{
25 abort continuationContext;
26 reset the caller frame to non-split status;
27 }
28 }
29 unwind the stack frame;
30 }
31 // No appropriate catch block found
32 report the exception and terminate;
33 }

Figure 9.6: Algorithm for the exception delivering point in the SDBLFuture system

program is executed sequentially. Therefore, we can proceed to search for a handler

in the current compiled method as in serial execution. But if the current context is

aborted or revoked, which indicates that the current exception may not have existed if

the program is executed sequentially, the current context is cleaned up and the current

exception is ignored. Note that a continuation context usually ends and commits at

the usage point of the future value, but in case of exceptions, it ends and commits at

the exception throwing point.
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The second extra part in this algorithm (line17 ∼ 28 in Figure 9.6) occurs after

a handler is searched but not found in the current frame, and before the stack is

unwound to the next frame. Similar to the first part, this partensures that an exception

thrown by a future context, but that is not handled locally even when the stack is

unwound to the stack frame of the future call, will not be handled unless the future

context commits successfully. In case of abortion, the current context is cleaned

up and the exception is ignored as in the first part. If the future context is indeed

successfully committed, to handle the thrown exception on the current stack as if the

future call is a normal call as we described in Section 8.3.2,the system resets the

split flag of the caller frame to revert the stack splitting. The system also aborts the

continuation context, which recursively aborts all contexts in the logical future of the

current context, and reverts all side-effects caused by these contexts that should not

exist if the program is executed sequentially. Finally, thestack is unwound, and the

algorithm is repeated for the next stack frame.

In summary, supporting as-if-serial exception handling and preserving as-if-serial

side-effect semantics have many common requirements and can share many common

implementations. Therefore, integrating the support of as-if-serial exception handling

support to the SDBLFuture system is simple and straightforward. Moreover, with the

underlying support of preserving as-if-serial side-effects in the SDBLFuture system,
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the complete as-if-serial exception handling semantics, which also defines the side-

effect behavior in the presence of exceptions, is now supported.

9.3 Performance Evaluation

We have implemented SDBLFutures over the DBLFuture system, which is im-

plemented in IBM Jikes Research Virtual Machine (JikesRVM) [84] (x86 version

2.4.6). For comparison, we also port the Safe Future system to the same version of

JikesRVM. Again, our test machine is a dedicated 4 processorbox (Intel Pentium 3

(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) that was used forall of our pre-

vious experiments. Since optimizations are essential for the SDBLFuture system to

reduce the significant overhead caused by the large amount ofread/write barriers, we

only present experiment with the VM configuration that employs an adaptively opti-

mizing compiler. We use pseudo-adaptation [14] to reduce non-determinism in our

experiments.

In the following sections, we evaluate the performance of our SDBLFuture sys-

tem. First, we compare its performance with our DBLFuture system and the Safe

Future system for a set of benchmarks that have no dependencyviolations. We then

study the performance impact of our various strategies within the SDBLFuture sys-
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tem, such as local committing versus global committing, anddifferent learning strate-

gies for a wide rage of computation patterns and conflict patterns.

For all the experiments in this section, we measure the execution time (T ) of each

configuration, and present the speedup over the serial execution time (Ts), which

is computed asTs/T . That is, if the speedup is bigger than 1, there is performance

improvement over serial execution. Otherwise, there is performance degradation over

the serial version.

9.3.1 Performance of Benchmarks with No Dependency Viola-

tions

For experiments in this section, we use two sets of benchmarks. The first set in-

cludes three benchmarks (Crypt, Series, SparseMatmult) from the multithreaded ver-

sion of Java Grande Benchmark Suite [133]. The second set includes two benchmarks

(Fib, AdaptInt) from the divide-and-conquer style of benchmarks that we adopted

from the Satin system [148]. There are no data races (conflicts) in these benchmarks,

so there is no revocation overhead.

The number of created futures for the benchmarks in the first set is the number

of processors used (up to 4 for a 4-processor machine). Therefore, the overhead of

managing execution contexts for these three benchmarks is negligible. We use this

set of benchmarks to show the overhead of tracking accesses to shared data.

210



Chapter 9. As-if-serial Side-effect Guarantee

Cry
pt

Ser
ies

Spa
rs

eM
at

m
ult

Ada
pI

nt Fib
0.0

0.5

1.0

1.5

2.0

S
pe

ed
up

 o
ve

r 
se

ria
l e

xe
cu

tio
n

DBLFuture
SDBLFuture
SafeFuture

(a) With 1 processor

Cry
pt

Ser
ies

Spa
rs

eM
at

m
ult

Ada
pI

nt Fib
0

1

2

3

4

5

6

S
pe

ed
up

 o
ve

r 
se

ria
l e

xe
cu

tio
n

DBLFuture
SDBLFuture
SafeFuture

(b) With 4 processors

Figure 9.7: Performance evaluation of the SDBLFuture system for benchmarks with
no dependency violations comparing to the DBLFuture system (the first bar) and the
Safe Future system (the third bar). The left three benchmarks represent applications
with a small number of coarse grained futures and the right two represent applications
with a large number of fine-grained futures. There is no data available for the Safe
Future system for the second set of benchmarks since this system does not support
nested futures.
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In contrast, there are a large amount of futures created for the two benchmarks

in the second set given their recursive nature, and there arefew accesses to shared

data. Thus, we use this set of benchmarks to evaluate the overhead of execution

context management. Figure 9.7 shows the speedup (degradation if < 1) gained by

the SDBLFuture system for each benchmark over its unmodified serial execution. For

comparison, we also show the performance of the DBLFuture system which has no

as-if-serial side-effect guarantee and the Safe Future system on the side. The Safe

Future system does not support nested futures, so there is nodata for the second set

of benchmarks for this system.

Our results show that for the first set of benchmarks, the performance of our

SDBLFuture system is about the same as that of the Safe Future system since they

share the same implementation for tracking accesses to share data. In addition, the

overhead is similar to DBLFuture system, which does not have any support of the as-

if-serial side-effect semantics. On average, with 1 processor (Graph (a)), the speedup

(degradation in this case) caused by the DBLFuture system, the SDBLFuture system,

and the Safe Future system, are0.98, 0.93, 0.92, respectively. With 4 processors

(Graph (b)), all systems are able to achieve almost linear, even super-linear speedup

(on average4.22, 3.31, and3.31 for the three systems in order) for these benchmarks.

The super-linear speedups we believe, are due to the improved data locality of the

multithreaded versions of the benchmarks over their serialversions.
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The results for the second set of benchmarks, which have a large amount of poten-

tial future spawning points (5.78 million for AdaptInt,102.33 million for Fib), show

that the management of execution contexts in our SDBLFuture system introduce neg-

ligible overhead compared to the unsafe DBLFuture system. The average degradation

of the DBLFuture system and the SDBLFuture system with 1 processor are0.64 and

0.62, while with 4 processors, the speedups are2.24 and2.19 on average.

In summary, for benchmarks without data races, our SDBLFuture system intro-

duces acceptable overhead for tracking accesses to shared data. In addition, the over-

head of managing execution contexts, even with a large number of futures, is negli-

gible comparing to the un-safe DBLFuture system. With more computing resources

available, our SDBLFuture system is able to achieve good speedup for both set of

benchmarks.

9.3.2 Parallelism of Local Commit versus Global Commit

In our SDBLFuture system, local committing is a committing strategy that allows

an execution context to commit to its parent without waitingfor other contexts in its

logical past. The conflict detection algorithm for local committing only tests conflicts

in the scope of the current context group. That is, the futurecontext of the group al-

ways commits successfully to its parent, and the continuation context only fails when

it has conflicts with its future context. The conflict detection with other predecessor

213



Chapter 9. As-if-serial Side-effect Guarantee

0 1 2 3 4 5 6 7

Global committing threshold

0.0

1.0

2.0

3.0

4.0

S
pe

ed
up

 o
ve

r 
se

ria
l e

xe
cu

tio
n

shortTail
longTail
randomTail

Figure 9.8: Performance impact of global committing threshold for various compu-
tation patterns. The longTail pattern refers to the case that a large amount of work
is executed after the continuation context ends in a function. The shortTail pattern is
the opposite case, and the amount of work distributed after the continuation context
ends in the randomTail pattern is randomly generated and falls in between the other
two cases.

contexts is delegated to the parent context. In contrast, the global committing strat-

egy requires a context to wait for and to test against all contexts in its logical past.

Our system employs a hybrid scheme that adaptively chooses the committing strategy

for an execution context according to its spawning level andthe global committing

threshold, which is a dynamically changed parameter of our system. In this section,

we investigate the parallelism of the committing strategies. In the next section, we

will compare their ability to handle dependency violationsgiven different conflict

patterns.

The benchmark we use for this study is a synthetic program based on the Fi-

bonacci computation (Fib). We modify Fib to make each recursive invocation of
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fib() do some extra amount of computation so that its execution is long enough to

trigger the spawning testing. We also modify our system decision model to always

split the stack when making the spawning decision. These modifications help us to

force the system to generate large enough layers (7 in our experiments) of nested

futures that we can use for further evaluation of our system.For the extra amount

of computation in each invocation, we divide it into two parts: one part is executed

before the future call, and the other part is executed after the continuation ends (the

usage point of the value computed by the future). We change the ratio of these two

parts to model three computation patterns: (1) All work is done before the future call

(shortTail); (2) All work is done after the continuation ends (longTail); (3) The ratio

between the two parts is random (randomTail). We then collect execution time for

all three patterns and different global committing thresholds. Figure 9.8 shows the

speedups over the serial execution for all configurations.

The results shows that with the shortTail pattern, the committing strategy does

not impact performance. However, for the longTail pattern,the smaller the global

committing threshold is, i.e., the more contexts are allowed to do local committing

without waiting, the larger speedup the system is able to achieve. The curve of the

randomTail pattern falls in between the two extreme patterns, but still shows the same

trend as the longTail pattern does.
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In summary, when there are no or few dependency violations, the local commit-

ting strategy enables more parallelism compared to global committing. This is the

reason that we choose to set the initial global committing threshold to a small num-

ber so that more parallelism in the program could be exploited. In next section, we

will explain why we set threshold to 1 instead of 0 although 0 achieves the best per-

formance for the experiments in this section.

9.3.3 The OO7 Benchmark with Controlled Conflict Patterns

The OO7 benchmark suite [25, 24] is a well known benchmark in the objected-

oriented database field. The OO7 benchmark operates on a hierarchical structure of

data. On the top level, there are a certain number of modules,each consisting of

several assemblies, which consist either of some compositeparts (abaseassembly)

or several assemblies (acomplexassembly). Each composite part consists a number

of atomic parts that may connect to others via a bi-directionconnection. The number

of modules, assemblies per module, assemblies per assemblies, composite parts per

assembly, atomic parts per composite part, and the layer of nested assemblies are all

controllable via program parameters. For each iteration ofthe execution, the program

performs a certain number of operations on this data hierarchy, each operation ran-

domly follows paths in the hierarchy tree to pick a compositepart, and then traverses

the atomic parts of that composite part. For each visited atomic part, the program
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either changes some attributes of that part if it is a write, or it does nothing. Another

nice parameter is the lock depth of data accessing. This parameter controls at which

level, a lock is used to protect a data access. The deeper the lock depth is, the finer

the lock’s granularity is.

The authors of [153] choose this benchmark to evaluate the performance of the

Safe Future system since it allows easy control over the amount of contention for

access to shared data via flexible benchmark parameters suchas database structures,

ratios between private and shared reads/writes. In their work, they useM +1 modules

for M futures. Each future has a private module for private reads/writes, and the extra

module is used for shared reads/writes.

In this work, we also use the OO7 benchmark to evaluate the performance of

our SDBLFuture system. The purpose of this set of experimentsis to investigate

the ability of our system to handle dependency violations with different committing

strategies (local versus global), and different learning strategies (no learning, not-

to-split (NTS), or split-but-suspend (SBS)). We find that although the fractions of

private/shared reads/writes could control the contentionlevel of shared data in the

program, they do not directly reflect the conflict patterns among futures due to the

randomness of data access distribution. To make the resultsmore meaningful in our

evaluation, we have modified the OO7 benchmark and set up the experiments as

follows:
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• Instead of generatingM +1 modules forM futures, we only generate 1 module

for all futures. That is, all data accesses are shared at the module level.

• At each hierarchy, we generateM +1 sub-components (assemblies or compos-

ite parts). Thenth future picks thenth sub-component to operate on if it’s a

private operation. Otherwise, it operates on the last sub-component.

• Each future performs a set of operations, including zero or one shared read,

zero or one shared write, and several private reads and writes.

• Whether a future performs shared read/write is controlled bya program param-

eter, calledconflict pattern. The conflict pattern parameter is used as a bit-map,

with higher bits representing earlier futures. A future will perform one shared

read and one shared write if its corresponding bit in the conflict pattern is set.

For example, with 4 futures, if the conflict pattern is1100, then the first and sec-

ond futures both perform the shared data access, which results in a dependency

violation between them. We tried 12 conflict patterns for 4 futures, including

0000, 1100, 1010, 1001, 0110, 0101, 0011, 1110, 1101, 1011, 0111, and1111.

• The timing of the shared write operation among all operations is controlled

by a parameter calledwritePosition. The value of this parameter is0 to 100.

0 means that the shared write operation should be done as the first operation,
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while 100 means it should be the last operation. A valuex means the shared

write operation should be performed afterx% of operations have been done.

• For each execution of the OO7 benchmark, two identical iterations are exe-

cuted. Each iteration spawnsM futures, each works onN operations. For all

results in this set,M = 4, N = 10.

• Other parameters of OO7 are set as same as in [153]: 7 assemblylevels, 20

atomic parts per composite part, 3 connections per atomic part, and the docu-

ment size is 2000 bytes, the manual size is 100000 bytes.

By removing the randomness in the program and designating onespecific path for

shared data accesses, we guarantee that if it is a shared write operation, it indeed op-

erates on the same component, which will result in a dependency violation. This help

us to understand the results better and to draw meaningful conclusions accordingly.

For each conflict pattern, we have investigated two global committing thresholds

and three learning strategies. For the OO7 benchmark, all futures are created linearly

at the same level. So setting global committing threshold to0 make all contexts lo-

cally committed. If it’s set to 1, all contexts are then globally committed. We tried

both setting to study their performance across different conflict patterns. The three

learning strategies we evaluated include no learning (Basic), not-to-split if revoked

(NTS), and not-to-split if locally committed and split-but-suspend if globally commit-
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ted (NTS+SBS). The results are shown in Figure 9.9 (for 1 processor) and Figure 9.10

(for 4 processors). Each graph in these two figures represents performance data for

all strategy combinations for one particular conflict pattern. The x-axis is the global

committing threshold used. The y-axis is the speedup of the second iteration over the

serial execution. We choose to show the performance of the second iteration to eval-

uate the effectiveness of different learning strategies, which are represented by the

three bars in the graphs. In addition, to help understand theresults better, we list the

total number of created futures and revocations for each configuration in Table 9.1.

In each column of data, the first number is the total number of created futures for

two iterations. The corresponding revocation count is listed inside the parentheses.

Theses numbers are the same for 1 processor runs and 4 processor runs because they

are only dependent on conflict patterns. Note that the numberof futures created and

the number of revocation do not always map to the execution time. For example, it is

possible that the number of futures created by a faster execution is larger than a slow

execution since there might be more futures created but quickly aborted in the first

case. But in general, these two numbers reflect the amount of work, including wasted

work, that one execution has done. Especially the revocations have a big impact on

end performance.

Our first observation from these results is that when there isno learning involved,

the global committing strategy works better than the local committing strategy in gen-
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Figure 9.9: Performance impact of global committing threshold and learning strate-
gies on the 12 controlled conflict patterns of the OO7 benchmark (1 processor).
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(k) conflict pattern: 1011 (l) conflict pattern: 0111 (m) conflict pattern: 1111

Figure 9.10: Performance impact of global committing threshold and learning
strategies on the 12 controlled conflict patterns of the OO7 benchmark (4 processors).
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Conflict Local Committing Global Committing
patterns Basic NTS NTS+SBS Basic NTS NTS+SBS

0000 8 (0) 8 (0) 8 (0) 8 (0) 8 (0) 8 (0)
1100 14 (2) 10 (1) 10 (1) 14 (2) 10 (1) 10 (1)
1010 14 (2) 10 (1) 10 (1) 12 (2) 11 (2) 9 (1)
1001 14 (2) 10 (1) 10 (1) 10 (2) 9 (2) 8 (1)
0110 12 (2) 9 (1) 9 (1) 12 (2) 9 (1) 9 (1)
0101 12 (2) 9 (1) 9 (1) 10 (2) 9 (2) 8 (1)
0011 10 (2) 8 (1) 8 (1) 10 (2) 8 (1) 8 (1)
1110 22 (6) 10 (2) 10 (2) 18 (4) 11 (2) 11 (2)
1101 22 (6) 10 (2) 10 (2) 16 (4) 11 (3) 10 (2)
1011 18 (6) 9 (2) 9 (2) 14 (4) 10 (3) 9 (2)
0111 16 (6) 8 (2) 8 (2) 14 (4) 9 (2) 9 (2)
1111 30 (14) 8 (3) 8 (3) 20 (6) 11 (3) 11 (3)
Avg 16.0 (4.2) 9.1 (1.4) 9.1 (1.4) 13.2 (2.8) 9.7 (1.8) 9.2 (1.4)

Table 9.1: The number of created futures and revocations of the first twoiterations
for the 12 controlled conflict patterns of the OO7 benchmark using different global
committing thresholds and learning strategies.

eral for this benchmark. For example, for the worst conflict pattern1111 (see Graph

(m) in Figure 9.9 and Figure 9.10), i.e., all futures conflictto each other, the speedup

value (degradation) on 1 processor with local committing is0.24, while the global

committing strategy is able to achieves0.35, although still very low due to the heavy

conflicts in this pattern. This is because the global committing strategy enables ear-

lier detection of dependency violations, and has finer grained revocation (revoking the

problematic context instead of the whole subtree of some ancestor of the problematic

context). From Table 9.1, we see that the local committing results in 30 futures and

14 revocations, which is a significant amount of wasted work.The global commit-

ting reduces the number to 20 futures and 6 revocations, which are much lower. On
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average, without learning (the first bar of all graphs), the local committing achieves

speedup0.50 with 1 processor, and1.32 with 4 processors. While the speedups of

global committing are0.58 and1.46 for 1 and 4 processors respectively. Based on the

above observation, we set the initial global committing threshold of our SDBLFuture

system to 1 instead of 0 to take advantage of the better ability of global committing

to handle revocations for applications like OO7.

The second observation from these results is that the not-to-split (NTS) learning

strategy works very effectively to reduce wasted work for local committed contexts.

For example, for the worst pattern1111, NTS is able to reduce the number of created

futures from 30 to 8 with only 3 revocations, instead of 14. Note that for this conflict

pattern, the NTS strategy not only helps to eliminate revocations completely in the

second iteration since it learns that all spawning points are not safe, it even helps in

the first iteration to avoid splitting the same spawning point repeatedly which reduces

wasted work significantly . The average speedups gained by this strategy combination

are0.86 for 1 processor and1.47 for 4 processors, which are much better comparing

to the basic, non-learning configuration.

The third observation is that for globally committed contexts, the NTS strategy

improves performance for some conflict patterns, but degrades performance for other

patterns including1010, 1001, 0101, 1011. We found that this is because the NTS

strategy delays the conflict detection in the second iteration due to its not-to-split
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decision. For example, for the conflict pattern1010, in the first iteration, the conflict

is detected when the first future attempts to commit. As a result, the system revokes

the whole continuation of the second future. Now in the second iteration, the NTS

strategy decides not to spawn the continuation of the secondfuture, which makes the

second future perform double amount of work that was done by the second and the

third futures in the first iteration. The conflict is detectedwhen the second future

attempts to commit, which is much later comparing to the firstiteration. When there

are 4 processors, the performance impact of this delay becomes more significant since

the NTS strategy results in idleness of some processors, which could have been used

to detect the conflict earlier. On average, the strategy combination (global committing

+ NTS) achieves0.73 speedup with 1 processor, which is slightly better than the

basic, non-learning configuration. With 4 processors, the speedup gained by this

combination is only1.20, which is worse than the basic, non-learning one.

Fortunately, our hybrid NTS+SBS learning strategy works more intelligent than

the NTS strategy does. For locally committed contexts, it works the exact same way

as the NTS strategy. Therefore, their performance numbers are almost the same.

For the globally committed contexts, this strategy exploits the temporal information

available in a revocation, i.e., all contexts in the logicalpast of the current context

have committed successfully at the point when the conflict isdetected, thus, as long as

the current context starts after its previous context commits, there will be no conflict.
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So instead of simply not splitting, this strategy splits butsuspends the problematic

context in the second round, which eliminates revocations in the second iteration for

all the patterns. The average speedups gained by this strategy combination (global

committing + NTS+SBS) are0.89 and1.52 for 1 and 4 processors respectively, which

is the best performing strategy combination among what we investigated.

Another interesting observation is that the performance penalty of not learning,

which is significant with 1 processor, becomes much smaller,even negligible for

some cases, when there are more processors available. This makes sense because with

extra processors, it is OK to perform some wasted work if otherwise some processors

are idle. In addition, in some cases, it actually helps to detect conflicts earlier com-

paring to other learning strategies. Of course, with limited computation resources,

it’s better to employ learning strategies to avoid wasted work as much as possible.

In summary, the combination of global committing and the hybrid learning strat-

egy, i.e., NTS for locally committed contexts and SBS for globally committed con-

texts, is the most effective strategy among all strategy combinations across all conflict

patterns to prevent wasted work given revocation history for the studied benchmark.

We next compare the OO7’s performance using our SDBLFuture system (using

the best strategy combination) with three other alternatives: coarse-grained lock im-

plementation, fine-grained lock implementation, and Safe Futures. For both lock im-

plementations of OO7, we use 4 threads instead of futures to perform same amount
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(a) average with 1 processor (b) average with 4 processor

Figure 9.11: Average performance of lock-based, SafeFuture, and SDBLFuture
implementations of the OO7 benchmark across 12 controlled conflict patterns. The
conflict write position parameter specifies when a shared write is performed among
all operations. “early” means the shared write is the first operation, while “late”
means the shared write is the last operation. SDBLFuture-1stis the performance of
the first iteration for the SDBLFuture version, and SDBLFuture-2nd is for the second
iteration. For the other three versions, only the performance of the second iteration is
shown since there is no difference between the two.

of assigned operations. For the coarse-grained lock version, we set the lockDepth

parameter of OO7 to 1, which synchronizes at the module level. For the fine-grained

lock version, we set the lockDepth to 9, which synchronizes at the composite part

level. The Safe Future version is similar to our SDBLFuture version, but using the

interface-based SafeFuture APIs. Another parameter we tested in this set of exper-

iments are the timing of the shared write. We tried both extreme case: early write

(writePosition = 0) and late write (writePosition = 100). Again, we collect the

results for all conflict patterns. Figure 9.11 gives the average speedups across all

227



Chapter 9. As-if-serial Side-effect Guarantee

conflict patterns for each implementation version and writeposition. For the SDBL-

Future version, we show the results for both the first iteration (SDBLFuture-1st) and

the second iteration (SDBLFuture-2nd) to demonstrate its learning ability. For the

other three versions, only the data for the second iterationis used since there is no

difference between the two iterations. The left graph contains the results for 1 proces-

sor, and the right graph is for 4 processors. The x-axes is theconflict write position

used, and the y-axes are the speedups over the serial execution.

First of all, from these results, we can see that coarse-grained lock limits the par-

allelism of the program. The speedup of this version of OO7 are all about1 for

both conflict write positions with 1 or 4 processors, which means this coarse-grained

lock implementation basically serializes the program. Of course, this implementa-

tion (lock at the module level) is kind of dumb and extreme, but it makes the point

that coarse-grained lock is easy to program, but might hurt performance due to its

limited parallelism. With more processors, the fine-grained lock version performs

much better than the coarse-grained one since it enables much more parallel execu-

tions. In terms of conflict patterns, both lock-based versions are not as sensitive as

the two future-based implementations, since there is no revocation, thus, no wasted

work in the lock versions. But with 4 processors, the positionof the shared write

does makes a difference on the performance of the fine-grained lock implementation

(average speedups are2.71 for early, and3.16 for late). This is because the later the
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conflicted write is, the later each thread has to synchronizewith other threads, and as

a result, the better parallelism of the execution is.

Second, we find that for the early conflict write pattern, our SDBLFuture system

performs much better than the Safe Future version. The average speedup achieved by

the Safe Future version with 4 processors is1.47 in this case, while the SDBLFuture is

able to achieve3.00 speedup, which is even better than the fine-grained lock version,

whose average speedup is2.71. This is due to the laziness of our SDBLFuture system:

a future is split only after the system has executed it for a while and predicts that it’s

beneficial to split it given its granularity and current system resource availability.

With the early conflict write pattern, this laziness helps prevent all conflicts in the

execution since the spawning happens after the shared writehas been done by the

current primordial context. The reason that the SDBLFuture version works better than

the fine-grained lock version in this case is that there is no synchronization overhead

in the SDBLFuture version provided its optimism nature in terms of data contention

(i.e., assume no contention initially, but revoke if contentions occur).

For the late conflict write pattern, the SDBLFuture version works similarly to the

Safe Future version for the first iteration, but it is able to reduce the penalty of revoca-

tions more effectively in the second iteration which cannotbe done by the Safe Future

implementation. Again, with more processors, this difference becomes smaller since

the performance penalty of wasted work is not big anymore with more computation
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resources available. The average speedups with 1 processoris 0.62 versus0.89 for

the Safe Future version and the SDBLFuture version respectively. While with 4 pro-

cessors, the results are1.48 versus1.52.

Finally, we find that with extra computation resources, bothfuture implementa-

tions, which even have significant revocation overhead, still achieves better perfor-

mance than the coarse-grained lock version. This is encouraging since the goal of

many automatic memory protection techniques, including Safe Futures, our SDBL-

Futures, and all transactional memory work, is to achieve both the easiness of using

coarse-grained locks to program, and the efficiency of fine-grained locks. Our results

show some promising potentials of these systems in this direction.

In summary, for applications with no dependency violations, our SDBLFuture

system introduces acceptable overhead for tracking shareddata accesses and for

maintaining meta data. In addition, the overhead of managing execution contexts

is negligible even for a large amount of futures. For applications do have shared data

contentions, our SDBLFuture system is able to achieve betterperformance than the

Safe Future system, sometime even better than the fine-grained lock version, thanks

to its laziness and the learning ability that are enabled by exploiting the rich, low level

information and the adaptation of the Java virtual machine.
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9.4 Related Work

Besides the SafeFuture system [153], which we have discussedin Section 9.1,

the techniques we use to preserve as-if-serial side-effectsemantics in our SDBLFu-

ture system are related to two closely related active areas that both exploit optimistic

concurrency: thread-level speculation (TLS) and transactional memory (TM).

Thread-level speculation (TLS) is a technique that attempts to automatically ex-

tract parallelism from sequential programs. It optimistically execute chunks of code

in the sequential program in parallel threads although it isuncertain whether those

code areas are actually independent. The system tracks memory access to detect any

inter-thread data dependency violations according to the serial execution ordering. In

case that any dependency violation does occur, the offending thread is squashed, and

all side-effects of the offending thread is discarded. TLS techniques complement the

traditional parallel compiler techniques and help to exploit extra parallelism from the

applications whose data dependency information cannot be analyzed statically. There

has been a rich body of research on TLS, which are either implemented completely in

hardware (e.g. [134, 147, 146, 61, 138]), or completely in software (e.g. [124, 60, 91,

33, 119]), or hybrid(e.g. [137, 62, 118, 34]). Most of the work on TLS has targeted

at the loop-level parallelism (e.g. [147, 34, 43, 30, 60, 124, 33]). Others exploit the
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speculative parallelism at the method-level parallelism (e.g. [29, 152, 116, 31, 105]),

even at basic block level (e.g. [150]).

SDBLFutures share many common aspects with TLS techniques, but with one

big difference: the SDLFuture system relies on programmersto identify the poten-

tial parallelization points using the “@future” annotations, while one of the main

tasks of TLS systems is to automatically identify parallelization candidates via static

analysis (e.g. [43, 31]) or profile informations (e.g. [30, 105, 111, 156]). The co-

operative model between programmers and the system of SDBLFutures significantly

simplifies the compiler and runtime implementation since programmers usually have

better knowledge of the program structure and semantics. However, those future

annotations are only hints to the system, and we still need tocarefully select prof-

itable spawning points that are able to amortize parallelization overhead, and that

have less probability of dependency violations. Currently,we have exploited some

profile-based techniques to refine the parallelization candidates, such as the sampling

based adaptive and lazy future scheduling mechanism and therevocation history-

based learning strategies. In future work, we could apply the static analysis and

profile-based techniques that have been exploited in the TLSworks to make wiser

scheduling decisions.

Transactional memory (TM) is an optimistic synchronization technique that was

proposed as an alternative to lock-based synchronization.With the transactional
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memory programming model, programmers enclose code section that should be ex-

ecuted atomically in a transaction, and the system guarantees the atomicy and se-

rializability of transaction executions and at same time attempts to achieve as high

concurrency as possible. The TM model is much simpler to use and helps address

many problems of lock-based synchronization, such as dead-lock, priority inversion,

non-composability, etc. It has been an active research arearecently. Similar to TLS,

these works can be categorized to hardware-based (e.g. [72,63, 6, 114]), software-

based (e.g. [131, 71, 64, 46, 66, 2, 110]), or hybrid (e.g. [122, 98, 37, 129, 23, 132]).

There are two main differences between SDBLFutures and TM techniques. First,

TM techniques target at the synchronization problem, whichis orthogonal to the par-

allelization problem. The TM techniques usually assume that concurrent execution

has been introduced to the program via some parallelizationmodel, such as threads.

In contrast, our SDBLFuture is a parallel language constructwhich introduces par-

allelism to serial programs. To guarantee the as-if-serialside-effect semantics, our

system maps the whole concurrent tasks (futures and continuations) as transactions,

which is more aggressive than most of current TM work that only maps critical sec-

tions to transactions. Secondly, there is no ordering constraint in general TM sys-

tem, while our SDBLFuture system enforces the as-if-serial ordering among all tasks.

Nevertheless, SDBLFutures can be seen as one application of TM model with serial

ordering constraints. Therefore, as part of future work, our system could exploit many
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techniques that attempt to reduce the overhead of TM systems, especially those run-

time optimizations [66, 2] and adaptation among various implementation alternatives

[128, 108, 109].

9.5 Summary

In summary, our SDBLFuture system inherits many programmer productivity and

performance advantages from the DBLFuture system. SDBLFuture builds upon and

extends extant work on safe future implementation, yet provides support for nested

futures, improved efficiency, and a simpler implementation. By employing the rich,

low-level information available in the Java virtual machine, and the JVM’s ability

to learn about and modify program behavior dynamically, we are able to construct

a simple system that dynamically adapt the performance of a wide range of applica-

tion and computation patterns. These features enables a straightforward and efficient

programming model for parallel computing in Java that simplifies programmer effort

significantly and advances the current state of the art in JVM-based parallelization.
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Conclusion

Providing an easy way to program applications for a diversity of computing de-

vices for average developers is a real challenge in the era ofpervasive computing.

Specialized in their own application areas, computing devices differ in terms of capa-

bility and resource availability. A fair amount of expert knowledge is required to write

programs on different devices to achieve efficiency. Java, as a universal programming

language for a large spectrum of devices, is portable, versatile and easy to program.

However, its potential to reconcile the differences among devices and to provide a

uniform, efficient and powerful programming method by implanting device specific

knowledge in its runtime system has not been exploited to itsmaximal extent. More

specifically, the real power of Java resides in its runtime execution environment, i.e.

the Java virtual machine (JVM). The JVM has accurate runtimeinformation of both

program execution and system resources, can access to dynamic runtime services and

low level runtime constructs and is able to make adaptive decision based on the run-
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time information and apply control over the runtime services. It is this adaptability

that enables this thesis work.

10.1 Contribution

In general, this thesis work contributes to the goal of providing easy and efficient

Java programming for diverse devices by applying JVM’s adaptation to the problem

of automatic management of system resource and capability in efficiency. By en-

abling this management in JVM runtime system and simplifying it in programming

interface, programmers do not have to make explicit effortsand thus can be more fo-

cused on the application logic. By utilizing the JVM runtime services and constructs,

the system resources and capabilities can be managed in a more efficient way, which

is not achievable at application level.

In particular, our work focuses on two problems: managing code memory on

resource constrained devices, and providing easy and efficient programming interface

for exploiting the parallel capability of multi-core systems.

Just-in-time (JIT) compiler enables high performance of JVMs. However, on

resource constrained devices, e.g. smart phones, personaldigital assistants (PDAs),

etc., JIT-based JVMs have limited presence. One of the main reasons is that compiled

native code occupies a large amount of memory. By analysis, wefind that there is
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a great potential to remove “dead code” from the code memory and thus reduce the

memory footprint of JIT compilers. However, it is not feasible to unload “dead code”

at application level by programmers. We build an adaptive code unloading system

based on modern JVMs’ runtime services that completely automating the process of

code memory management. By monitoring the system resource availability in real

time and making unloading decision according to a cost-benefit model, we are able

to greatly reduce code memory size for a set of Java benchmarks. We also achieve

better performance for most of these benchmarks due to reduced garbage collection

overhead. This part of our work makes it more promising to apply JIT compilation

technology to mobile devices to achieve faster execution speed of Java programs.

At the high end, multi-core processors have made their way into not only just

high performance servers, but also daily-used desktops. The more and more widely

available massive hardware parallelism demands an easy andefficient programming

support to extract maximal performance from the hardware. One potential candidate

is Java future. Future as a language construct aims to make parallel programming easy

to do. However, the current future implementation in Java isnot only cumbersome,

but also inefficient. It is mostly because it is built at the library level and lacks runtime

support. Programmers have to manually create and schedule parallel future tasks

using their inaccurate hunches. We build an adaptive systemto support better future

programming in the following four aspects:
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• A lazy future support that creates and schedule future automatically accord-

ing to the computation granularity and the available hardware parallelism. We

achieve optimal performance for a set of benchmarks that is comparable to

hand-tuned alternatives with much less programmer effort.

• A directive-based future programming interface. With thislanguage support,

programmers can identify parallelism in their programs by simple annotations.

It also has the performance benefit due to the reduced future object creation.

• As-if-serial exception handling support. This makes it easy to migrate serial

programs to parallel environment. Programmers can simply develop and reason

serially and switch to parallel version without worrying about changing the

exception handling behavior. The empirical results show that we introduce

negligible overhead.

• As-if-serial side effect guarantee. This enables “safe” futures. Programmers

thus do not need to worry about access to shared objects amongparallel future

tasks. It is also easy to switch from serial program since theserial access or-

der of shared objects maintains. Our support of “safe” futures enables nested

futures, simplifies implementations and improves performance.
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In summary, our safe, directive-based, lazy future (SDBLFuture) implementation en-

ables easy and efficient parallel programming for devices with massive parallelism

capability, which may accelerate the adoption of multi-core technology.

10.2 Future Work

This thesis work is our attempt to achieve the ultimate goal of enabling easy and

efficient programming for diverse devices. It is far from complete. We believe it

can be improved in many aspects. In particular, there are still many interesting open

research problems associated with the SDBLFuture system.

First, our online future scheduling system takes both program and system behav-

ior to make profitable spawning decisions. Currently, we haveexploited the estimated

execution time and revocation history of contexts collected via low overhead online

profiling techniques to guide this decision. We plan to explore more static and dy-

namic program information to refine this decision model. Forexample, we could

perform static analysis and dynamic profiling to estimate the memory accessing pat-

terns of contexts, and use that to avoid spawning potentially conflicting contexts.

Second, there are various implementation alternatives fortracking shared data ac-

cesses, detecting conflicts, and managing execution contexts. We want to evaluate

these alternative to achieve better performance. For example, there are two important
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methods to maintain speculative updates to shared data: write-buffering and undo-

logging. With write-buffering, an execution context keepsa private copy of every

shared data it has modified, and makes them visible to other contexts only after suc-

cessfully committing. Undo-logging instead writes the data directly to the shared

memory, but keeps logs for undoing its side-effects in case of revocation. It has

been shown in the transactional memory (TM) community that undo-logging is more

efficient in most situations [128]. However, given the totalordering constraint of ex-

ecution contexts in our SDBLFuture system, it is unclear which is better. We want to

make a contrast study as our future work.

Third, our current implementation associates execution contexts with the whole

future and continuation computation, which might result invery long contexts. As

we have demonstrated in our discussion on local commit and global commit, the

granularity of contexts has a great impact on overall performance, because larger

contexts lead to more wasted computation in case of revocations. Fortunately, the

as-if-serial semantics does not require us to map contexts at the boundaries of future

and context computation, although that is the simplest and most nature mapping.

One optimization we could explore is to slice the contexts dynamically to reduce the

computation size so that when conflict happens, we can revokein finer granularity and

save more “innocent” work. However, slicing means creatingmore context and thus
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larger overhead in maintaining them. We want to apply our adaptive infrastructure to

achieve the balance and eventually better performance.

Our as-if-serial methodology provides great programmer productivity benefit,

however, it also limits the potential parallelism due the strong total ordering con-

straint. It would be interesting to investigate how much parallelism is sacrificed in

order to preserve the as-if-serial semantics, including exception handling behavior

and side effects. Based on this study, we want to provide another kind of annotation,

say “@ufuture”, to allow programmers informing the system to relax the ordering

constraint to improve better performance.

In addition, complete software-level implementation of SDBLFutures suffers the

hight overhead of managing shared data accessing. If a hardware transactional mem-

ory or thread-level speculation system is available (say the TCC system from Stan-

ford [63]), it would be very interesting to investigate a hybrid system, where the

language level future semantics is mapping to the low overhead hardware support

to improve performance, while the software (virtual machine) system provides more

flexible policy control and adaptation.

Moreover, we want to use our SDBLFutures to develop a wide range of real appli-

cations, such as web servers, game engines, to study the usability and limitations of

the future programming model, and to gain insights on a better parallel programming
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model that is easier to use and able to provide the runtime system greater flexibility

to improve performance.

Beyond our two foci, namely code management and easy and efficient futures, in

this thesis work, we believe the adaptive infrastructure inJVM that we build is appli-

cable in a broader area. Specifically, we want to explore the possibility of managing

energy consumption adaptively in JVM. This is interesting since power has become

a critical issue not just for battery powered low end devices, but also for high end

servers and desktops (e.g. the global warming problem).

Finally, given our experiences in supporting adaptive services to solve program-

ming problems, we want to study a better virtual machine design. For example, we

want to provide modular programming interfaces to facilitate easy exploitation of the

JVM’s adaptation for other language designs, especially the easy and efficient parallel

programming models.
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