
UNIVERSITY OF CALIFORNIA
Santa Barbara

Memory Management for Multi-Application
Managed Runtime Environments

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Sunil Soman

Committee in Charge:

Professor Chandra Krintz, Chair

Professor Tevfik Bultan

Professor Giovanni Vigna

June 2008

The Dissertation of
Sunil Soman is approved:

Professor Tevfik Bultan

Professor Giovanni Vigna

Professor Chandra Krintz, Committee Chairperson

May 2008

Memory Management for Multi-Application Managed Runtime Environments

Copyright © 2008

by

Sunil Soman

iii

Acknowledgements

Graduate school is a process with hurdles, milestones, disappointments and ela-

tion. I would like to thank everyone who has made this processless painful and

provided support, friendship, guidance and understandingover the years.

First, I would like to thank my advisor Chandra Krintz for always believing in me,

supporting me, and always being available when I needed help. One could not wish

for a better philosopher, guide and a friend. I thank Rich Wolski for being a mentor,

philosopher and a friend. Chandra and Rich, thanks for everything.

I am grateful for exceptional friends like Chris, Dan, Dmitrii and Graziano. I

would like to thank my mentor and collaborator Laurent Daynès at Sun Microsystems

for hosting me while I was an intern and providing hours of technical discussion,

support and guidance on a significant portion of work that is part of this dissertation.

I would also like to thank my colleagues in the RACE and Mayhem labs. They

made the process more bearable and often enjoyable.

Finally, I would like to thank the staff, faculty and fellow graduate students at

the Computer Science department at UC Santa Barbara who have made this journey

memorable and fruitful, despite the challenges.

iv

Curriculum Vitæ

Sunil Soman

Education

2008 Doctor of Philosophy in Computer Science, University of California,

Santa Barbara.

2007 Master of Science in Computer Science, University of California,

Santa Barbara.

2001 Bachelor of Engineering in Computer Engineering, University of

Pune, India.

Experience

2007 – 2008 Graduate Intern, Sun Microsystems Labs.

2005 – 2005 Graduate Intern, Sun Microsystems Labs.

2002 – 2007 Research Assistant, University of California, Santa Barbara.

2001 – 2002 Teaching Assistant, University of California, Santa Barbara.

v

Publications

Sunil Soman, Chandra Krintz, Laurent Daynès, MTM2: Scalable Memory Manage-
ment for Multi-Tasking Managed Runtime Environments, The 22nd European Con-
ference On Object-Oriented Programming (ECOOP), July 2008

Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski, Isla Vista Heap
Sizing: Using Feedback to Avoid Paging, The International Symposium on Code
Generation and Optimization (CGO), March 2007

Sunil Soman and Chandra Krintz, Application-Specific Garbage Collection, The El-
sevier Journal of Systems and Software, Volume 80, Issue 7, 2007

Lingli Zhang, Chandra Krintz, and Sunil Soman, Efficient Support of Fine-grained
Futures in Java, The 18th IASTED International Conference onParallel and Dis-
tributed Computing AND Systems (PDCS), November 2006

Sunil Soman and Chandra Krintz, Efficient and General On-Stack Replacement for
Aggressive Program Specialization, International Conference on Programming Lan-
guages and Compilers (PLC), June 2006

Sunil Soman, Laurent Daynès, and Chandra Krintz, Task-Aware Garbage Collection
in a Multi-Tasking Virtual Machine, In Proceedings of the Internation Symposium on
Memory Management (ISMM), June 2006

Sunil Soman, Chandra Krintz, and David F. Bacon, Dynamic Selection of Application-
Specific Garbage Collectors, In Proceedings of the Internation Symposium on Mem-
ory Management (ISMM), October 2004

Sunil Soman, Chandra Krintz, and Giovanni Vigna, Detecting Malicious Java Code
Using Virtual Machine Auditing, 12th USENIX Security Symposium, August 2003

vi

Abstract

Memory Management for Multi-Application Managed
Runtime Environments

Sunil Soman

Modern computing platforms are pervasive, networked, heterogeneous and in-

creasingly complex. These systems range from small hand-held devices such as cell

phones, to large servers that run back-end software. Portability, widespread use, and

security of program execution as well as support for a fast program development cy-

cle are key concerns of software developers and end users of these platforms. To

address these concerns, modern programming languages and their implementations

have emerged to facilitate high-level, object-oriented, and type-safe software devel-

opment that is portable and secure. Popular examples of these languages are Java and

the .NET languages. Programs written in these languages areencoded by a source

compiler into an architecture-independent format, and then executed on any platform

for which there is a virtual execution environment called a Managed Runtime Envi-

ronment (MRE). MREs provide dynamic compilation of programs to the underlying

native machine format, adaptive optimization, memory management, security verifi-

cation, and other runtime services for programs.

Automatic memory management, or Garbage Collection (GC), is an MRE service

that is key to facilitating programmer productivity, portability, and memory safety of

vii

programs written in Java and the .NET languages. GC relievesthe user from em-

ploying (and debugging) explicit deallocation of heap memory. However, since such

management and reclamation is provided by the MRE, it necessarily introduces over-

head. Much prior work has focused on mitigating the overheadof GC for MREs that

execute a single program at a time using a single operating system process. However,

today’s MRE platforms execute a wide variety of applicationswith diverse compu-

tational characteristics, resource requirements and object lifetimes. Moreover, state-

of-the-art MREs now are able to execute multiple applications using a single MRE

process, serially or concurrently. For widespread use of such systems, and arguably

for the success of such languages, we must advance GC technology to exploit the

multi-program execution model and to enable efficient automatic memory manage-

ment and program performance for the next-generation of portable software.

In this dissertation, we focus on memory management techniques for the next-

generation of multi-program MREs for Java and consider both serial (persistent) and

concurrent program execution models. In particular, we investigate, design, and en-

gineer two novel solutions for GC that facilitate high-performance program execu-

tion for these MREs: (i) Application-Specific Garbage Collection and (ii) Scalable

Memory Management for Multi-Tasking MREs. In the former, we customize and au-

tomatically specialize the GC in an MRE for a particular application and switch GCs

automatically within a single, persistent MRE as needed for each new application

viii

that the MRE executes. In the latter, we present a novel GC system for concurrent

execution of programs; this system isolates GC activities of individual tasks while

programs share a single heap. Our results show that we are able to achieve sig-

nificant performance gains over the state-of-the-art MRE systems for both research

and production-quality multi-program MRE systems in terms of throughput, response

time, and memory footprint.

ix

Contents

Acknowledgements iv

Curriculum Vitæ v

Abstract vii

List of Figures xii

1 Introduction 1
1.1 The Thesis Question. 7

1.1.1 Application-Specific Garbage Collection. 7
1.1.2 Scalable Memory Management for Multi-tasking Managed
Runtime Environments . 10
1.1.3 Contributions . 14

1.2 Outline . 16

2 Background 17
2.1 Garbage Collection for Managed Runtime Environments. 17
2.2 Multi-Tasking Managed Runtime Environments. 32

3 Application-Specific Garbage Collection 39
3.1 Support for Garbage Collection Switching. 43

3.1.1 Multiple Garbage Collectors in a Single JVM. 44
3.1.2 Multi-purpose Object Header. 57

3.2 Specialization Support for GC Switching. 59
3.3 Annotation-Based Garbage Collector Selection. 69
3.4 Automatic Garbage Collector Switching. 73
3.5 Evaluation . 75

x

3.5.1 Experimental Methodology. 76
3.5.2 Results. 77

3.6 Related Work . 94
3.7 Summary. 98

4 Scalable Memory Management for Multi-Tasking Managed RuntimeEn-
vironments 100
4.1 Application-Aware Memory Management for Multi-Tasking Man-
aged Runtime Environments. 102

4.1.1 Hybrid generational heap. 105
4.1.2 Per-application Old Generation Regions. 109
4.1.3 Application-Concurrent Scavenging. 117
4.1.4 Evaluation. 120

4.2 Discussion. 128
4.3 Scalable Hybrid Collection for Multi-Tasking Managed Runtime En-
vironments. 133

4.3.1 Hybrid Mark-Evacuate-Sweep Garbage Collector. 137
4.3.2 Evaluation. 146

4.4 Related Work . 164
4.4.1 Application-Aware Memory Management. 164
4.4.2 Scalable Hybrid Collection. 168

4.5 Summary. 172

5 Conclusion 175
5.1 Future Work . 179

Bibliography 182

xi

List of Figures

3.1 Performance using different GCs and heap sizes. The y-axis is total
time in seconds. For SPECjbb, we report 106/throughput to maintain visual
consistency. The x-axis is heap size relative to the minimumwith the GC
that can execute the program in smallest heap.. 40
3.2 Performance using different GCs and heap sizes. The y-axis is total
time in seconds.. 41
3.3 Overview of our GC switching system. The JVM consists of the
standard set of services as well asmultipleGCs (an allocator and collector)
as opposed to one per JVM image. The system employs the current GC
through a reference to it called the CurrentPlan. When a switchoccurs,
the system updates the CurrentPlan pointer (and performs a collection in
some cases). All future allocations and collections (if any) use the newly
selected GC.. 49
3.4 JikesRVM/JMTk class hierarchy: Original and switch-enabled. . . . 51
3.5 Virtual address space layout in the switching system (a)and a table
(b) that indicates when a GC is required on a switch (from the row GC to
the column GC) and its type: full (F), minor (M), or none (–).. 53
3.6 Examples of bit positions in status word in object header. 58
3.7 Shows how the VARMAP is maintained for a snippet of Java source
(its bytecode and high-level intermediate representation(HIR) is included).
We show the VARMAP entry for thecallme() call site that contains
the next bytecode index (25) after the call sitecallme and three local
variables with types (a: l8i, b: l15i, c: l17i). 65
3.8 Shows how the VARMAP is updated after copy propagation. Vari-
ableb: l15i is replaced witha: l8i 65
3.9 Additional inputs for SPECjbb2000 (in addition to input1in Fig-
ure 3.1). 70

xii

3.10 Additional input for SPECjbb2000 (in addition to input1in Figure 3.1).
. 71
3.11 Inputs that we considered to evaluate GC behavior across heap sizes,
the minimum heap size in which the program will run using our JVM, and
the GC selection decisions with which we annotate each program to enable
annotation-guided GC switching.. 72
3.12 Performance of our OSR-VARMAP Implementation in JikesRVM
Reference System. Figure shows the average execution time (excluding
compilation) performance improvement enabled across heapsizes by our
VARMAP implementation over using an extant implementation of OSR –
a variation on the OSR points in JikesRVM.. 79
3.13 Compilation overhead of our VARMAP implementation over the JikesRVM
reference system. Columns 2 and 3 are compilation times in milliseconds
and column 4 is the percent increase in compilation time. Thefinal two
columns show the compilation (collectable) and runtime space overhead,
respectively, introduced by our system.. 79
3.14 Overhead introduced by the garbage collection switching system when
it never switches, over the clean (reference) JikesRVM. Thepercentage
values are averaged over heap sizes. On average, the GC switching sys-
tem adds a 15% overhead over the clean JikesRVM,when no switching is
triggered, due to support for on-stack replacement.. 80
3.15 The overhead introduced by the VARMAP version of the GC Switch-
ing System over a clean system without GC switching functionality. By
reducing the overhead of the Orig-OSR implementation, we are able to cut
the base overhead of the GC switching system (the overhead imposed when
the systemdoes not switch) from 15% to 5%, i.e. the resulting version of
the system introduces 5% base overhead over the clean system. 81
3.16 Performance comparison between our switching system,GC Annot
(dashed line with + marks), and the unmodified reference system built with
five different GC systems. The figure shows two examples with switch
points. 83
3.17 Performance comparison between our switching system,GC Annot
(dashed line with + marks), and the unmodified reference system built with
five different GC systems. The figure shows an example with switch points. 84
3.18 Performance comparison between our switching system,GC Annot
(dashed line with + marks), and the unmodified reference system built with
five different GC systems. The figure shows two examples without switch
points. 85

xiii

3.19 Performance comparison between our switching system,GC Annot
(dashed line with + marks), and the unmodified reference system built with
five different GC systems. The figure shows an example withoutswitch
points. 86
3.20 Summarized performance differences between our annotation-guided
switching system and the reference system for small heap sizes (minimum
for an application to 3x the minimum). The table shows the percent degra-
dation over the best- and percent improvement over the worstperforming
GCs across small heap sizes (the time in milliseconds that this equates to
is shown in parenthesis). 87
3.21 Summarized performance differences between our annotation-guided
switching system and the reference system for medium to large heap sizes
(from 3x the minimum for an application to 8x the minimum). The ta-
ble shows the percent degradation over the best- and percentimprovement
over the worst performing GCs across medium to large heap sizes (the time
in milliseconds that this equates to is shown in parenthesis). 88
3.22 Percent degradation of our system over the widely used GMS collec-
tion. The negative values indicate that on average across heap sizes, our
system improves performance over GMS.. 90
3.23 Performance of automatic switching when memory resources are
suddenly constrained. Columns 2 and 3 show the time in secondsfor ex-
ecution for the clean (Base) system and our automatic switching system
(including all overheads). Column 4 shows the percent improvement en-
abled by our system. The right half of the table shows the OSR statistics:
number of OSRs, total OSR time in milliseconds, and the heap size fol-
lowing the memory reclamation by the system.. 94

4.1 Application independent flexible young generations. A generation
virtualizer maps applications to young generations. Each generation com-
prises one or more eden spaces, each of which consists of an integral num-
ber of contiguous chunks allocated from a pool. Eden spaces of an appli-
cation are linked together. Chunks can be added or removed dynamically.
. 108
4.2 Example of region management & tenured space reclamation at ap-
plication termination without a full GC. (A) Initial configuration. (B) Both
applications 1 & 2 have performed promotions and their respective full re-
gion list are now non-empty. (C) Application 1 terminates andits set of
full regions is added to the global free list. (D) Application 3 enters the
system and application 2 & 3 start using space allocated fromthe region
free list. 113

xiv

4.3 Example illustrating shrinking of old generation footprint upon ap-
plication termination. 114
4.4 Region adjustment at full GC.pa is the region to be adjusted.. . . . 116
4.5 Per-application safepointing;beginper applicationsafepointiniti-
ates a safepoint for a single application andendper applicationsafepoint
ends it and resumes mutators for that application.. 119
4.6 Throughput improvement enabled by independent young generations
& regions for short running applications (javac and javap) executing
concurrently with 3 GC-intensive applications:jess , jack andps . The
top graph is forjavac and the bottom forjavap . The first bar in each
set of bars shows a single instance of the short running program with the
GC intensive, long running program, and the second denotes 2instances
of the short program.. 121
4.7 Response time improvement enabled by independent young genera-
tions & regions for short running applications (javac and javap) exe-
cuting concurrently with 3 GC-intensive applications –jess , jack and
ps . The top graph is forjavac and the bottom forjavap . The first bar
in each set of bars shows a single instance of the short running program
with the GC intensive, long running program, and the second denotes 2
instances of the short program.. 122
4.8 Data for the Base MVM system (shared new generation). Columns
2 & 3 show the number of minor (scavenges) and major collections re-
spectively for a single instance of the benchmark in Column 1.The rest
of the columns show execution time (ET) in seconds & GC time (GCT) in
milliseconds for 1, 2, 3, 4 and 5 concurrent instances, respectively, of the
programs listed. Figures 4.9 and 4.11 show improvement relative to this
data. 123
4.9 Total end-to-end performance improvement enabled by mutator-concurrent
scavenging over the base MVM for homogeneous benchmark instances.
Bars indicate increasing number of applications (from 1 to 5). 125
4.10 Change in the number of GCs (minor and major) with mutator-concurrent
scavenging over the base MVM for 1 thru 5 instances of the samebench-
mark. 125
4.11 Total GC time improvement (minor + major) enabled by mutator-
concurrent scavenging over the base MVM. Bars indicate increasing num-
ber of homogeneous applications (from 1 to 5).. 126

xv

4.12 Performance of a state-of-the-art multi-tasking MRE (MVM) with
per-application young generation GC versus multiple instances of the Java
HotSpot virtual machine forconcurrentexecution of five community bench-
marks. No prior work has performed such an evaluation. Although per-
application young generation GC significantly improves performance over
prior state-of-the-art, for programs that involve significant old generation
GC activity, performance suffers due to the choice of an unsuitable old
generation GC algorithm.. 130
4.13 Marking, Evacuation and Sweeping of Old Regions. Each applica-
tion has a corresponding list of live areas. Marking traverses live objects
for an application and marks live objects in the mark bitmap.After mark-
ing, candidate regions for evacuation (or sweeping) are selected based on
the amount of live data and fragmentation. Regions selected for evacuation
are then evacuated, regions selected for sweeping are sweptand free areas
in these added to a per-application free list. Pointer adjustment for swept
regions is also performed during this pass, if necessary.. 143
4.14 Adjustment of old regions. Application 1 is being collected. We
build the region connectivity matrix for application 1 during the marking
phase. Region 2 has outgoing pointers to Region 3, therefore, Region 2
must be scanned if Region 3 is evacuated. However, Region 1 and 4do not
must be scanned.. 145
4.15 Benchmarks and workloads used in the empirical evaluation ofMTM
. 147
4.16 Total execution time (in seconds) and footprint (in MB) data for
MTM with application-aware memory management and hybrid old gener-
ation GC for concurrent homogeneous (multiple instances ofsame appli-
cation), and heterogeneous (multiple instances of different applications).
The benchmarks are described in Figure 4.15. All relative performance
improvement results for execution time as well footprint inthis section use
these values.. 148
4.17 Percentage improvement in execution time enabled byMTM (MVM
extended with per-application hybrid GC) with per-application hybrid GC
versus a prior implementation of MVM (cf. Section 4.1) when execut-
ing concurrent workloads that show significant old generation GC activity.
MTM enables better performance due to a more efficient old generation
GC and performance isolation.. 150

xvi

4.18 Old generation GC times (total) forMTM (MVM extended with
per-application hybrid GC) versus a prior implementation ofMVM de-
scribed in Section 4.1. GC times are presented in seconds along with
percentage improvement in GC time enabled byMTM . MTM ’s per-
application hybrid old generation GC outperforms mark-compact old gen-
eration GC used in the prior implementation.. 151
4.19 Percentage improvement in execution time enabled byMTM over
HSVM (default initial heap size = max heap size = 64MB) for homoge-
neous concurrent workloads (multiple instances of the sameapplication).
Benchmarks are described in Figure 4.15.. 154
4.20 Percentage improvement in execution time enabled byMTM versus
HSVM (default initial heap size = max heap size = 64MB) for heteroge-
neous concurrent workloads (multiple instances of different applications).
Benchmarks are described in Figure 4.15.. 154
4.21 Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = max heap size = 64MB) for homogeneous con-
current workloads (2, 5, and 10 instances of the same application). 155
4.22 Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = max heap size = 64MB) for heterogeneous con-
current workloads. 1 denotes 1 instance each of the mix of applications
that constitute a heterogeneous workload. 2 indicates 2 instances of each
application in the mix.. 156
4.23 Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = 32MB) for homogeneous concurrent workloads
(2, 5, and 10 instances of the same application).. 157
4.24 Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = 32MB), heterogeneous workloads, i.e., multiple
concurrent instances of different applications. 1 denotes1 instance each of
the mix of applications that constitute a heterogeneous workload. 2 indi-
cates 2 instances of each application in the mix.. 158
4.25 Percentage improvement in execution time enabled byMTM ver-
sus HSVM (default initial heap size = 32MB) homogeneous concurrent
workloads. Benchmarks are described in Figure 4.15.. 159
4.26 Percentage improvement in execution time enabled byMTM versus
HSVM (default initial heap size = 32MB) for heterogeneous concurrent
workloads (multiple instances of different applications). Benchmarks are
described in Figure 4.15.. 159

xvii

4.27 Percentage improvement in execution time enabled byMTM over
HSVM for 1 through 4 times the minimum heap size that each benchmark
needs to execute inMTM . 160
4.28 Footprint forMTM with hybrid GC (mix of mark-sweep and copy-
ing) versus mark-sweep (MS) only and copying GC (CP) only for aset of
homogeneous (instances of the same application) and heterogeneous (dif-
ferent applications) concurrent workloads. Hybrid GC achieves a footprint
that is lower than always choosing mark-sweep or always choosing copying. 162
4.29 Execution timeMTM with hybrid GC (mix of mark-sweep and
copying) versus mark-sweep (MS) only and copying GC (CP) onlyfor
the javac benchmark. 163

xviii

Chapter 1

Introduction

Computing platforms today are heterogeneous, pervasive andnetworked, and

range from small devices such as cell phones to large-scale server farms. These

systems are highly complex as well as diverse in their architectures, resource con-

straints, and capability. To provide a development infrastructure for modern systems

that facilitates programmer productivity across a wide range of systems, program-

ming language technology, such as that for Java and the Microsoft .Net framework,

has emerged to provide high-level, object-oriented, type-safe, secure, and portable

application development.

These language technologies implement a ”write once, run anywhere” program-

ming model in which the source program encoded in an architecture-independent

binary format is executed (after potentially being transferred over a network) on a ma-

chine with aManaged Runtime Environment (MRE). An MRE is an execution envi-

ronment that virtualizes the underlying hardware and resources for programs, verifies

1

Chapter 1. Introduction

that programs are well formed and type-safe, provides dynamic loading and library

support, and that implements a wide array of runtime services. Such services include

garbage collection, dynamic compilation and optimization, thread management, and

incremental program (class) loading. This execution modelprecludes the need for

programmers to have expert knowledge of the vast array of underlying architectures,

platform-specific resources, and complex program behavior, since a program, with-

out modification, can execute on any system for which there isan appropriate MRE.

MREs thus facilitate significant programmer productivity aswell as program porta-

bility and security. Examples of popular MREs include the Java Virtual Machine

(JVM) [71], and the Microsoft .NET common language runtime (CLR) [17].

Modern MREs typically execute a wide variety of programs, ranging from script-

ing languages, bytecode compilers, GUI programs to database applications and appli-

cation servers. These programs have diverse resource requirements (CPU, memory,

network, disk), differences in the number, size and lifetimes of dynamically allocated

objects, and different execution characteristics (differences in compiled code, single

or multi-threaded execution).

There also exist differences in the execution model for these applications. A

single-taskingMRE executes a single application in a given instance of the MRE, i.e.,

an operating system (OS) process is spawned for each application. Single-tasking

MREs rely on the underlying operating system (i.e. the process model) to isolate

2

Chapter 1. Introduction

programs from each other for security, as well as for resource management and ac-

counting.

With the widespread use of Internet computing, users execute multiple, diverse

applications on a single platform. Instantiating an MRE every time a new application

is deployed adds startup and execution time overhead. RecentMRE advances thus,

now provide support forpersistent execution[100, 4], which precludes the need to

terminate an MRE instance upon application termination. That is, the lifetime of the

MRE exceeds that of any single application. With this persistent model of execution,

there exist opportunities for the MRE system to learn from past execution and behav-

ior and to adapt the MRE services (and program behavior through compilation) over

time to extract high performance from applications.

Further, as desktop and hand-held platforms become more capable (faster mul-

ticore CPUs, larger memories, etc.), users that once executed a single program at

a time, now demand that these systemsmulti-task, i.e., seamlessly and simultane-

ously execute multiple applications (such as, instant messaging, calendar and email

clients, audio player, Internet browsers, office suite, etc.). Single-tasking persistent

MREs duplicate effort across MRE instances, MRE services, internal representations

of classes, code, etc., cannot be shared across programs. Such redundancy increases

startup time and memory consumption and degrades overall system performance and

scalability. Amultitasking, persistent, MREimplementation [29] enables sharing of

3

Chapter 1. Introduction

common and scarce resources between applications while maintaining portability,

mobility, and type-safety.

To achieve safe, flexible, portable, and efficient execution, MREs provide

• Dynamic class loading. The ability to load, link and unload library and appli-

cation classes atexecution time(runtime).

• Type-safe class file verification. To guarantee secure execution, type-safety is

checked when classes are loaded.

• Dynamic compilation, i.e., application and library code iscompiledon-the-fly

at execution time.

• Adaptive application optimization. Since code is dynamically compiled, the

execution time of an application includes the time requiredto compile applica-

tion and library methods. Adaptive optimization aims at expending most effort

on critical methods and code regions. Most time is spent on compiling “hot”, or

frequently executing code (more extensive and time consuming optimizations),

whereas “cold” or less frequently executing code is optimized less aggressively

or not optimized at all.

• Automatic memory management. To improve programmer productivity and

memory safety, MREs implement dynamic, automatic reclamation of explicit

heap allocated data, i.e., garbage collection (GC).

4

Chapter 1. Introduction

However, the services provided by an MREexecute at application execution timeand

necessarily impose overhead on the programs. This overheadis experienced by the

user as decreased program responsiveness and increased overall execution time.

A key MRE component that significantly impacts program performance is garbage

collection, i.e., automatic memory management. Heap memory used by applications

is not explicitly freed by programmers in source code. The garbage collection sys-

tem identifies and recycles unreachable heap objects automatically for the program.

Garbage collection, therefore, can be potentially disruptive since it consumes CPU

cycles that would otherwise be available to the application. Prior work has shown

that garbage collection can impose significant overhead on both application execu-

tion and response time [18, 1, 44].

Modern garbage collection techniques [79, 43, 14, 52, 16, 9]address the over-

head imposed by basic garbage collection systems [97]. However, modern applica-

tions have evolved to be very complex in terms of both their implementation and

their dynamic behavior, precluding any one MRE memory management approach to

provide high-performance for all applications (due to their different resource require-

ments and usage patterns). An MRE optimized to perform well for one type or class

of applications, may inhibit performance for other types ofapplications. Prior work

has noted that the application performance is significantlyimpacted by the choice of

the GC algorithm [5, 40]. State-of-the-art MREs provide support for multiple GC

5

Chapter 1. Introduction

algorithms, however, the GC algorithm must be specified by the user when the MRE

is instantiated, i.e., GC selection isnot dynamic. The MRE must be terminated and

restarted with an appropriate GC for a new application, which adds startup overhead

and which also means that commonly executed code must be recompiled.

Further, the lack of cooperation between applications running within the same

MRE (multi-tasking) and the resource contention between MREs(single-tasking) on

the same system can lead to additional performance degradation. For example, if

there are multiple applications executing on a single platform (e.g. through a web

browser, or by a user executing multiple programs)simultaneously, garbage collec-

tion strategies may interfere with each other impacting theentire system. Memory

management in state-of-the-art multi-tasking MREs inhibitapplication performance.

To facilitate sharing, multiple applications execute in the same address space [29].

Consequently, garbage collection triggered by any application degrades performance

for all other applications. In addition, resources freed byan application on termina-

tion cannot be readily reused by other applications withoutdisruptive GC activity.

Moreover, precise resource accounting and tracking is not possible. The performance

degradation due to GC is exacerbated as additional applications execute simultane-

ously, since scalability is severely inhibited.

6

Chapter 1. Introduction

1.1 The Thesis Question

The question we attempt to answer in this dissertation is thefollowing,

How can we achieve high-performance memory management in Managed Run-

time Environments that execute multiple applications?

We investigate the effect of the choice of garbage collection policies on the perfor-

mance of different applications executing serially (one after the other) in an MRE. We

demonstrate that anapplication-specificGC policy that is better suited to a particular

application enables significantly better performance for that application, compared to

selecting a single generic GC for all applications in a single-tasking persistent MRE

(henceforth, referred to as a single-tasking MRE).

We then consider the performance of multiple concurrent applications executing

in a single persistent MRE instance. This execution model raises several questions

about resource management and accounting, sharing, performance isolation between

applications, and footprint size, which we investigate in this dissertation. An next

overview the two foci of this dissertation.

1.1.1 Application-Specific Garbage Collection

Most MREs [59, 91] use general-purpose GC algorithms that attempt to enable

high-performance execution across all applications. However, prior research [5, 40,

7

Chapter 1. Introduction

101, 82], has shown that the efficacy of a memory management system (the alloca-

tor and the garbage collector) is dependent upon application behavior and available

resources. That is, no single collection system enables thebest performance for all

applications and all heap sizes. Our empirical experimentation confirms these find-

ings in a performance-oriented, server-based, Java virtual machine, JikesRVM [2]

from the IBM T.J. Watson Research Center. Over a wide-range of heap sizes and the

10 benchmarks studied, we found thateverycollector enabled the best performance

at least once;including a mark-sweep and non-generational copying collector, two

collectors that are commonly thought of as implementing obsolete technology. We

hypothesize that to achieve the best performance, the collection and allocation algo-

rithms used should be selected according to both application behavior and heap size.

Currently, such selection can only be done by the user and is very challenging to get

right given the performance range of different garbage collectors for different heap

sizes.

Existing execution environments enable application- and heap-specific garbage

collection, through the use of different configurations (via separate builds or command-

line options) of the execution environment. However, this methodology for GC selec-

tion, in addition to being challenging to get right, is not amenable to next-generation,

high-performance server systems in which a single execution environment executes

8

Chapter 1. Introduction

continuously (persistently) while multiple applicationsand code components are up-

loaded by users [56, 75, 10]

For persistent MREs, a single collector and allocator must beused for a wide

range of available heap sizes and applications, e.g., e-commerce, agent-based, dis-

tributed, collaborative, etc. As such, it may not be possible to achieve high-performance

in all cases and selection of thewrong GC system may result in significant perfor-

mance degradation. To address this limitation, we present the design, implementa-

tion, and evaluation of a dynamic GC switching system for JikesRVM. Our switching

system facilitates the use of the garbage collector and memory allocator that will

enable the best performance for the executing applicationand the underlying re-

source availability. The system we present is extensible and general; it can switch

between many different types of collectors, e.g., semi-space, mark-sweep, copying-

mark-sweep, and many variants of generational collection.

To evaluate our system, we have implemented two mechanisms:annotation-

guided GC selection, and automatic switching. For the former, we identify the best

performing GC for a range of heap sizes for each program, across inputs. We then

annotate the programs to identify the collection system to use for a range of available

resource levels. Upon dynamic loading of each application,the MRE uses the anno-

tation to switch to the appropriate GC given the current maximum available heap size.

To implement automatic switching, we employ a simple heuristic that uses maximum

9

Chapter 1. Introduction

heap size and a heap residency threshold to switch during program execution. The

second part of this dissertation focuses on memory management for multi-tasking

MREs.

1.1.2 Scalable Memory Management for Multi-tasking Managed

Runtime Environments

Multi-tasking MREs execute multiple, isolated applications in a single MRE in-

stance that is persistent. Co-locating programs in the same address space simplifies

the virtual machine implementation through sharing of the runtime representation of

programs and dynamically compiled code. Such sharing also avoids duplicated effort

across programs (e.g. loading, verification) and amortizesruntime costs, such as dy-

namic compilation, over multiple program instances. Priorwork on the MVM [27],

shows how a multitasking design reduces startup time and memory footprint, and

improves performance over a single-program MRE approach.

Multi-tasking MREs provide isolation and resource management for multi-application

workloads and provide application developers with a first-class representation of an

isolated program execution (e.g., theisolate in [57, 29] and theapplication domain

in .Net [63]). This representation provides the necessary functionality to launch and

control the life cycle of multiple, isolated execution units (programs).

10

Chapter 1. Introduction

MREs have access to high-level program information, can monitor time-varying

program behavior and underlying resource availability, and can dynamically optimize

programs as well as the runtime based on prior information. Therefore, they potential

for more intelligent scheduling and resource management ofprograms. Prior work

has shown that multi-tasking is more effective at enabling cross-program sharing of

dynamically loaded and compiled code, and at achieving smaller memory footprint

and faster startup times [28, 30] than traditional MREs that rely on process-based

isolation. Yet, little attention has been directed at theperformance of multi-tasking

MREs for simultaneous program execution, i.e., concurrent workloads, compared to

a more common scenario in which each program runs in its own process.

Application diversity and widely varying resource requirements implies that ap-

plications may interfere with the execution of other applications within the same

MRE. A MVM GC implementation must address unique challenges not faced by

GC systems in single-tasking MREs to achieve scalable performance, such as,

• Each application that executes in the MRE instance must not interfere with

other programs, either functionally, or in terms of performance. In particular,

a GC triggered by any application should not impact the performance of other

applications.

11

Chapter 1. Introduction

• An application should have control over heap and GC system parameters, such

sizing or generational tenuring parameters.

• Heap resources reclaimed from applications should be made available to other

applications if required.

• Upon application termination, heap resources that the application has allocated

must be immediately reclaimable and available for use by other applications,

without the need for expensive GC operations. In addition, such reclamation

should not adversely affect other applications.

• Scalability should be guaranteed, i.e., when multiple concurrent applications

are executed, the memory management subsystem should scaleand not intro-

duce overhead that is proportional to the number of applications executing.

• When running applications concurrently, footprint must be restricted so that

a multi-tasking MRE does not consume more memory compared to multiple

instances of single-tasking MREs,while preserving the performance benefit

due to sharing.

We present an MRE memory management design that addresses these challenges

for the Sun Microsystems MVM [92] for Java. Key to our design is

12

Chapter 1. Introduction

• An organization of the heap that enables per-application performance isolation

for the memory management system

• Independent and per-application allocation and collection of objects

• A GC technique that provides high throughput and scalability for concurrent

application workloads,whileensuring that heap footprint is restricted.

• GC-free memory reclamation upon application termination.

The system we propose, is the Multi-Tasking Memory Manager (MTM), which

leverages two novel techniques – (i) Application-aware memory management, i.e.,

ensuring that heap management, garbage collection and re-allocation is cognizant

of the fact that multiple applications might execute concurrently in a single MRE

instance. Application-aware memory management provides heap memory isolation

for each application and enables any application to allocate and trigger GC inde-

pendently of other applications executing in the MRE instance. (ii) Scalable hybrid

GC that ensures that a low footprint in maintained for the MRE,while achieving

high throughput by providing a combination of two differentgarbage collection tech-

niques, mark-sweep collection and copying collection for longer-lived objects allo-

cated by the application. We implementMTM in the MVM (an extension of the

production-quality HotSpot MRE from Sun Microsystems) and compare our con-

tributions against the state-of-the-art in multi-taskingMRE technologies as well as

13

Chapter 1. Introduction

against a single-tasking HotSpot system, for a wide range ofcommunity benchmark

programs and multi-tasking scenarios.

1.1.3 Contributions

In summary, with this dissertation we contribute,

• An evaluation of the effect of different GC algorithms on application perfor-

mance using a single-tasking MRE.

• The design and implementation of a novel framework that enables the garbage

collector and allocator to be switched dynamically in a single-tasking MRE, at

runtime, i.e. while the MRE and the application are executing.

• A general-purpose on-stack replacement mechanism that extends prior work

by allowing the ability to perform on-stack replacement without the need to

insert special instructions and checks (guards) into the application code. Our

on-stack replacement mechanism allows code that has been specialized for a

specific GC to be de-specialized when a GC switch is performed(if necessary).

• Two techniques that employ our switching framework to dynamically switch

GCs – annotation-guided switching that uses program annotations, and adap-

tive switching that uses online heuristics based on the amount of time spent in

14

Chapter 1. Introduction

GC versus the amount of time spent executing application code, and the fre-

quency of GC.

• An empirical evaluation that shows the efficacy of GC switching for annotation-

guided and adaptive switching over manual selection of GC system.

• The design and implementation of a novel memory management system for

multi-tasking MREs, in particular, for the Sun Microsystem Labs’ state-of-

the-art Multi-tasking Virtual Machine. Our advances include a heap layout

that enables applications to allocate memory on demand in a shared address

space and track heap resources precisely, a synchronization mechanism that

enables an individual thread to be pauses for GC (instead of all threads), per-

application young generation GC that can execute concurrently with threads

of other applications, reclamation of heap space used by an application on its

termination without requiring GC.

• The design and implementation of a novel hybrid and adaptiveold-generation

GC technique for multi-tasking that combines two differentGC algorithms,

mark-sweep and copying GC, and uses online heuristics to apply either mark-

sweep or copying to different parts of an application. This technique enables

high performance for concurrent workloads that significantly exercise the old

generation as well as maintains good process footprint.

15

Chapter 1. Introduction

• An evaluation of a multi-tasking MRE that compares our techniques against

its single-tasking counterpart for concurrent workloads.Our results indicate

that with a carefully designed memory management system, multi-tasking can

perform to its potential and enable significantly better performance compared

to single-tasking.

1.2 Outline

The outline of the remainder of this dissertation is as follows. In Chapter 2, we

provide an overview of memory management techniques in modern Managed Run-

time Environments, followed by a discussion of prior work related to application-

specific garbage collection. We then describe multi-tasking MREs that are capable of

executing multiple applications in isolation in a single operating system instance.

In Chapter 3, we describe our work on application-specific garbage collection

for single-tasking MREs. We present evidence that shows thatgeneral-purpose GC

may not best suited for all applications and resource constraints. We then present our

application-specific GC framework that allows dynamic selection of and switching

between diverse GCs, and present two applications of the framework.

The second part of the dissertation 4 details scalable memory management for

multi-tasking MREs, including our extensions to a state-of-the-art MRE for application-

16

Chapter 1. Introduction

aware memory management and scalable, hybrid GC. In Chapter 5,we present our

conclusions and plans for future work.

17

Chapter 2

Background

In this chapter, we provide background on garbage collection in MREs. We dis-

cuss basic GC terminology, followed by commonly used GC techniques in MREs

to which we refer in the rest of this dissertation. We then provide background on

multi-tasking MREs, the foci of the second part of this dissertation (Chapter 4).

2.1 Garbage Collection for Managed Runtime Envi-

ronments

In this section we will define garbage collection terms and examine commonly

used collection techniques to which we refer in the remainder of this dissertation.

18

Chapter 2. Background

Garbage

Garbage is defined as data allocated dynamically by a programthat is no longer

reachable.

Mutator

In garbage collection terminology, an application thread is called the mutator,

since it mutates or modifies objects.

Garbage Collector

The termgarbage collectorsignifies an automatic memoryreclamationmecha-

nism, but the data structures for memory management are shared by the reclamation

mechanism and theallocator [69]. The choice of the allocation algorithm is gener-

ally tied to choice of the reclamation mechanism. The allocator and the collector can,

therefore, be implicitly considered to be two components ofa garbage collector.

Garbage Collection Cycle

A garbage reclamation algorithm consists two phases –garbage detection, in

which live objects are distinguished from garbage, andgarbage reclamation, in which

the space occupied by garbage is freed for use by the application program (themuta-

tor). Detection and reclamation constitute a garbage collection cycle.

19

Chapter 2. Background

Root Set

To detect live objects, aroot setof references is used. This consists of an ap-

plication’s static variables, any local (stack-allocated) variables, and general-purpose

registers. All objects that are directly or transitivelyreachablefrom the root set are

assumed to be live and cannot reclaimed. Objects that are unreachable are considered

to be garbage, and therefore can be recycled.Reachabilityis a more conservative

approach than one used in, say, an optimizing compiler, which considers variables to

be dead if they areunusedafter a certain point in the program.

Object Header

Modern object oriented languages are dynamically typed andobjects typically

have meta-data space to hold type information. MREs typically make use of a single,

two- or three-word object header. The header usually contains an object’s identity

hash code (a unique identifier) and GC status information, the format of which is

MRE dependent. In addition, it also contains a reference to the object’s class type,

which is typically implemented as an object itself. All objects of a certain type refer

to the class object.

20

Chapter 2. Background

Compiler Support for Garbage Collection

Modern programming languages for virtual machine applications are strongly

typed, which means that the compiler fully supports runtimetype identification. Con-

sequently, it is possible to accurately identify object references without any need for

a conservative approach. A conservative garbage collectoris used in languages that

have do not provide strong typing, e.g. C and C++. A conservative garbage collector

does not know the location of all object references inside anobject; such a collec-

tor must beconservativein its identification of object references, i.e., anything that

lookslike a pointer, may be one. On the other hand, garbage collectors designed for

modern MREs have full knowledge about an object’s type and itsinternal reference

fields, and are therefore, fullytype accurate.

Interpreters and compilers differ over when garbage collection can be initiated.

GC can be initiated at any point during program execution in case of interpreters,

calledGC-anytime. However, all modern execution environments employ an opti-

mizing compiler, usually with multiple optimization levels. In such a case, garbage

collection can generally only be initiated at certain defined points during execution,

calledsafe-pointcollection. This allows the optimizing compiler to use complex op-

timizations between safe points, as long as it maintains information that is necessary

to locate pointer values at safe points. This information isgenerated during compi-

21

Chapter 2. Background

lation and is maintained in a per-method data structure called thegarbage collection

map(GC map). We will next discuss commonly used garbage collection algorithms.

Mark-Sweep Collection

Mark-sweep GC consists of two phases.

• Mark phase. Objects that are directly or transitively reachable from the root set

are marked live. Marking can be done by setting a bit in the object header or in

a global bitmap data structure.

• Sweep phase. In this phase, objects that are not marked in themark phase are

swept or reclaimed for use by the mutator. Freed objects are linked into a free-

list maintained by the heap allocator. Allocating from a free-list, however, is

more expensive than allocating from a contiguous memory region.

The mark-sweep technique is able to reclaim garbage cycles,and it imposes no over-

head during object manipulation, however, some amount of work is required at object

creation time, to initialize the object header (if the mark bit is stored in the header).

Mark-sweep GC, however, has some drawbacks.

• Fragmentation. Since reclamation is done in place, in time,free areas are in-

terspersed with live objects, leading to a fragmented heap.Object allocation

might fail even though the total amount of free space is sufficient to honor

22

Chapter 2. Background

the allocation request. Various techniques are used to mitigate this problem,

e.g., maintaining free lists with different block sizes called segregated lists, and

buddy lists in which blocks from adjacent lists are coalesced [98].

• Collection cost. The collection cost of mark-sweep collection is proportional to

the size of the heap. While reclaiming objects during the sweep phase, garbage

as well as live objects are visited. This cost can be mitigated by using a bitmap.

Typically, a bit in the bitmap corresponds to a fixed number ofbytes in the

heap. The cost of traversing the bitmap is less than that of scanning the heap.

• Poor Locality of Reference. Since objects are allocated and freed in place,

freshly created objects may be spatially closer to older objects, leading to poor

locality of reference if objects are accessed in allocationorder.

Mark-Compact Collection

To handle fragmentation, poor locality, and expensive allocation associated with

mark-sweep collection, mark-compact collection was invented [25]. In mark-compact

collection, the initial marking phase is similar to the marking phase of mark-sweep

collection, however, the reclamation phase attempts to compact live data into one

contiguous region of the heap. This solves the fragmentation problem. As a result of

compacting live data, free space exists as a contiguous region. Consequently, allo-

23

Chapter 2. Background

cation is inexpensive as it involves only a pointer increment into the contiguous free

space, which is also known asbump pointerallocation. Locality is also improved,

since objects of a similar age are clustered together in space.

The simplest compacting reclamation can be thought of as asliding compaction

that “slides” live objects into spaces left behind by dead objects. However, the actual

process of compaction can be quite expensive, and requires multiple passes: one pass

to identify the new locations for the live objects, another to compute new locations

for live objects, and a third pass to adjust references to objects that have moved.

Copying Garbage Collection

Compaction is an inherent part of copying garbage collection, in which all live

data is copied to one part of the heap, so that it is contiguously laid out. The rest

of the heap is then considered to be free, and can be used by theallocator for future

allocations. Copying collection is often considered to beimplicit, or scavenging,

since garbage is not explicitly identified and reclaimed.

The heap is usually divided into two equal parts orsemispaces: the from space

and theto space. All allocation is from the from space, which is the considered to be

the “current” semispace. The to space is always empty while the application executes.

During a collection, live data is copied from the from space to the to space. The from

space now contains only garbage and can be reclaimed. This isdone by swapping the

24

Chapter 2. Background

roles of the two spaces (usually by merely updating references to the from space and

the to space). Thus, at the end of the collection cycle, the tospace is empty and live

data has been contiguously arranged in the from space.

Cheney’s traversal algorithm [23] is the most popular methodfor identifying live

data. As mentioned before, theroot set for a garbage collection consists of static

variables, stack variables, and register references. The objects in this set are first

added to a queue, which is then scanned in a breadth-first manner to identify objects

that are reachable from the root set. These objects are in turn added to the queue,

in order to identify heap objects reachable from them, and this recursive process

continues until all live objects have been traced. Every object that is identified as live

is copied to the to space, and aforwarding bit, is set in the object’s header. Along

with the forwarding bit, a forwarding pointer is also stored, which indicates the new

location of the object. The forwarding pointer enables updates to all pointers that

refer to the object. The use of the forwarding bit avoids duplicate copying of live

objects and guarantees termination.

Copying collection has several advantages. Similar to the mark-compact tech-

nique, it employs fast bump-pointer allocation, which can be implemented as a sim-

ple increment into the free space (usually, along with a boundary check, to decide

whether a garbage collection should be initiated). Fragmentation is non-existent

since the algorithm is inherently compacting. Locality, however, may not always

25

Chapter 2. Background

be improved – Cheney’s breadth-first traversal may not preserve locality of reference.

Depth-first traversal has been used in some recent implementations [89].

Unlike mark-sweep and its variation, the mark-compact algorithm, the amount of

work during copying garbage collection is proportional to the amount of live data, and

not to the size of the heap. In addition, unlike mark-compactcollection, a single pass

over the live data is sufficient. Mutator overhead is similarto mark-sweep collection,

since during object creation, the forwarding pointer and the forwarding bit have to be

initialized.

The biggest disadvantage of semispace copying collection is that the heap area

available to an application is only half of the entire heap space. An application’s

memory requirement is doubled compared to mark-sweep or mark-compact collec-

tion. Another major disadvantage is that the process of reclamation is quite slow,

given the need to copy every single live object. However, since the bump pointer

allocation is a feature of copying collection, this algorithm performs quite well when

garbage collection cycles are infrequent.

Generational Garbage Collection

As noted previously, mark-sweep collection needs to scan the entire heap space,

a process that can be quite expensive. Mark-compact collection performs a number

of passes over the entire heap, and if the amount of live data is high, performance

26

Chapter 2. Background

suffers. Copying collection also has high overhead, particularly if the amount of live

data is proportional to the size of a semispace.

Dynamically allocated objects have been shown to follow theweak generational

hypothesis[70, 94] that states that most dynamically allocated objects (between 80

to 90%) have very short lifetimes, and only a small percentage of objects live much

longer. Generational garbage collection exploits this property. Objects that have been

recently created (also calledyoungobjects), are segregated into anursery(young

object) area. As objects age in the heap (usually indicated by their survival after one

or more garbage collection cycles), they are promoted (copied) to another area of the

heap, called themature space. The promoted objects are calledold or matureobjects.

The basic idea behind this approach is that the garbage collector should not have

to process (either mark, or copy) objects that are going to survive well into the appli-

cation’s lifetime. Effort can be concentrated on collecting young objects, which will

die sooner. The process of collecting the nursery area is called aminor collection.

The mature space should also be examined once in a while to check whether older

objects have become garbage. This is called amajor collection, and is done less fre-

quently. New objects are allocated only from the nursery. Any collection algorithm

could be used to collect the nursery and the mature space, butpromotions always

copylive data from the nursery.

27

Chapter 2. Background

The generational technique leads to reduced garbage collection overhead, since

excessive processing of live data is eliminated. This comesat a price – to perform

minor collections without collecting the mature space, some bookkeeping is required.

It is necessary to keep track of references from the mature space to the nursery, oth-

erwise objects in the nursery that are referenced by objectsin the mature space will

be incorrectly reclaimed as garbage. This is done by means ofawrite barrier, which

is a conditional or an unconditional check inserted into thecompiled code in order to

track pointer stores. The objects in the mature space that reference nursery objects

must be remembered and included in the root set of objects forminor collection.

References from old to young objects must be remembered, so that a minor col-

lection may occur independently of a major collection. Old objects that reference

young objects are included in the root set for minor collection. Write barriers are

used to keep track of pointer stores.

There are different write barrier techniques that differ mainly in the granularity of

information stored. Hosking et al [50] compared these threetechniques in a virtual

machine with a Smalltalk interpreter. The three mechanismsthey considered are:

remembered sets, card marking, andpage protection.

Remembered sets are the most accurate of the three, since theyrecord the actual

old object (or the slot containing the object) that references a young object. Hosking

et al implemented remembered sets using two alternative implementations. A hash

28

Chapter 2. Background

table is the most standard way of storing remembered set entries, however, insertion

overhead might be considerable. Consequently, they introduced the concept of a

sequential store buffer(SSB), which consists of pages arranged contiguously and

bounded by a limit or guard page. This allows the use of a simple pointer increment-

and-store operation to remember entries. An attempt to store into the SSB past its

limit is trapped by an operating system trap, which can be handled by the runtime.

Another scheme for remembering cross-generational storesis card marking, in

which the heap is divided into multiple cards, with every card represented by a unique

entry in acard table. The source card that contains the old object is marked, in-

stead of remembering the object itself. Thus the level of granularity is much coarser.

This implies that the pointer store check can be performed quickly, but at the cost of

garbage collection time overhead, since the entire card hasto be scanned to locate

all references to nursery objects. The card marking scheme as originally introduced

by Wilson [99] made use of abit per card. The authors used abyteper card, which

makes the process of checking and marking more efficient, since the smallest unit of

memory access on most architectures is a byte,

Hoelzle [45] noted that the pointer store check in Wilson’s basic card marking

scheme [99] is quite slow, since a bit vector must be read frommemory, updated, and

then written back. Chambers et al [21] tried to improve on thisby using a byte per

card, instead of a single bit. On most architectures, marking a byte is much faster than

29

Chapter 2. Background

marking a bit – on a SPARC, this process can be performed in 3 instructions. Sun

Microsystems’ HotSpot VM [91] uses byte marking when updating the card table on

mutations.

Hoelzle, attempted to further reduce the pointer store check overhead, by reducing

the three-instruction write barrier to a two-instruction write barrier. This is signifi-

cant, since he also demonstrated that pointer store checks constitute about half of the

performance overhead associated with card marking (the other half is the time taken

to scan the card table during minor garbage collection).

Hoelzle used a relaxed card marking scheme that uses an approximation dur-

ing the card marking process, at the cost of some additional overhead during minor

garbage collection. According to this scheme, a card containing an old-to-young ref-

erence is not remembered precisely, but rather, an entry in the card table corresponds

to more than one card. This approximation saves one instruction per pointer store,

compared to Chambers et al’s accurate card marking. However,the extra scanning

overhead due to this approximation might be too large for large objects and arrays.

For such objects, Hoelzle used accurate card marking. The overhead due to store

checks is determined by running benchmark programs with an instruction-level sim-

ulator, which models the exact hardware behavior, including cache behavior.

Blackburn et al divided the pointer store check into two parts– a fast pathwhich

performs the check to determine whether the reference is from an old to a young

30

Chapter 2. Background

object, and aslow path, which actually inserts the object (or its slot) into the SSB.

The fast paths for the two cases, viz., remembering the old object or remembering the

slot, are different. For the former (remembering the object), the old object’s header

word is checked for the presence of anOBJECTBARRIERbit. If the bit has not been

set, the slow path is taken, which will set the bit as part of the process of remembering

the object. TheOBJECTBARRIERbit is cleared for every object when it is first

created. Since, new objects are only allocated from the young space, correctness is

ensured. For the case in which theslotcontaining the object is to be remembered, the

fast path is implemented using a technique by Stefanovic et al [87]. The young object

space is located in high memory and the old object space is in lower memory, with

both spaces aligned on a boundary (2k). Consequently, a simple bit-mask-and-shift

can be used instead of anand operation. This technique is used in the Jikes Research

Virtual Machine [13] that we use for implementing the techniques in the first part of

this dissertation.

With a fully inlined write barrier fast, as well as slow pathsare inlined at the

site of the pointer store. A partially inlined check inlinesonly the fast path, and

an out-of-line check makes use of a direct functional call without any inlining. The

authors measured the compilation time for the three implementations by fully compil-

ing their benchmark programs using the JikesRVM’s optimizing compiler [19]. They

also measured application performance without considering compilation time. The

31

Chapter 2. Background

compilation measurements show that full inlining incurs a heavy compilation time

penalty (up to 25% worse compared to partial inlining, and 38% worse compared

to the out-of-line check). The out-of-line check and store has the least compilation

time overhead. The authors then showed that the slow path is rarely taken for their

set of benchmark programs (0.15 to 3%). This implies that thefully inlined write

barrier will not improve application performance by a noticeable amount. In fact, the

authors reported that full inlining actuallydegradesapplication performance. This is

probably due to poor locality and register allocator performance, as a consequence of

excess code generated at pointer store sites. The out-of-line write barrier performs

worse, since an out-of-line function has to be invoked for every pointer store. Partial

inlining enables the best application performance. The authors also showed that the

partially inlined slot barrier (in which the remembered setholds slots that contain the

old object) performs better than the partially inlined object barrier (the remembered

set holds the actual old objects). This is probably due to thefact that for the object

barrier, the collector must scan the stored old object for pointers from the mature

space to the nursery. The slot barrier remembers more pointers and a scan of the old

object is not necessary.

We next discuss prior work on multi-tasking MREs, which the second part of this

dissertation focuses on.

32

Chapter 2. Background

2.2 Multi-Tasking Managed Runtime Environments

Modern type-safe programming languages rely on an execution environment that

can provide protection, security through isolation between applications, secure com-

munication and resource management and accounting.

Typically, application safety, isolation, communication, resource accounting and

management are provided at the operating system (OS) level.Each application exe-

cutes in its own MRE instance, i.e., an OS process is spawned per application.

However, launching a separate MRE instance for each application is wasteful,

since each MRE instance has a non-trivial base memory footprint even when no ap-

plication is executing[7]. In addition, initiating a new MRE instance incurs a startup

delay.

This execution model duplicates effort across MRE instances, since it prohibits

sharing of MRE services and internal data structures across programs. Such redun-

dancy increases startup time and memory consumption and degrades overall system

performance and scalability.

Consequently, multi-tasking MREs have been proposed that execute multiple ap-

plications in the same MRE instance (i.e., in the same OS process). A multitasking

implementation of an MRE can provide better memory usage and faster startup while

maintaining portability, mobility, and type-safety.

33

Chapter 2. Background

The multi-tasking MRE we focus on in the second part of this dissertation is Sun

Microsystem Labs’ Multi-tasking Virtual Machine (MVM) [29]. MVM is a JVM

implementation that co-locates execution of multiple programs in a single operating

system process. Each program execution is carried out as atask. Tasks are used to

implementisolates, which are execution containers for arbitrary programs formally

defined by the Application Isolation API (Java SpecificationRequest 121) [57] (sim-

ilar to AppDomains in Microsoft’s CLR [63]). Co-locating programs in the same

address space simplifies the virtual machine implementation and enables sharing of

the runtime representation of programs and dynamically compiled code. Such shar-

ing avoids duplicated effort across programs (e.g. loading, verification) and amortizes

runtime costs, such as dynamic compilation, over multiple program instances.

Isolates provide a program with the illusion of a stand-alone JVM. Programs have

the same behavior as if they were running on a private JVM. Each isolate has its own

primordial loader and hierarchy of class loaders. No sharing of objects can take place

between isolates, and the JVM safeguards against inter-isolate interference.

Each task in MVM is associated with a unique task identifier. Atask identifier

is an index into tables used in MVM to mediate access to data structures that must

be replicated on a per-task basis, such as, the task specific part of the runtime repre-

sentation of a class. All threads running in the context of a given task, are associated

34

Chapter 2. Background

with the identifier of that task as well as other relevant task-specific information. We

next describe the MVM features that are pertinent to memory management.

Class Sharing

MVM substantially reduces the footprint of programs by implementing a form of

sharing of the runtime representation of classes calledtask re-entrance[32]. Task

re-entrance is supported only for classes defined by class loaders, whose behavior is

fully controlled by the MVM. This includes theprimordial andsystemloader of each

isolate.

The primordial loader is a special class loader that bootstraps class loading. It is

used to load thebaseclasses that are intimately associated with a JVM implementa-

tion and are essential to its functioning (such as classes ofthe java. * packages).

The system loader is the loader that defines the main class of aprogram. It typically

obtains class files from the local file system at a fixed location specified at program

start-up.

The system loader serves class loading requests by first delegating them to the

primordial loader, and only defines classes that the primordial loader does not define.

This behavior is predictable since for a given class path, a class loaded by a primordial

or a system loader of any task is always built from the same class file. Further,

35

Chapter 2. Background

symbolic references from classes defined by a primordial or asystem loader always

resolve identically across tasks.

This allows for a simplified form of sharing where only the task-dependent parts

of the runtime representation of a class, such as static variables, class initialization

state, protection domain, instance ofjava.lang.Class etc., must be replicated

per loader. All other class information, in particular those derived from resolved

symbolic links, such as field offsets, virtual table indexes, static method addresses,

etc., can be shared across loaders, further increasing the amount of sharing. Access

to the task-private part of the representation of a class shared across multiple tasks is

mediated via a table indexed by a task identifier (task id). Sharing is not supported for

classes defined by program-defined loaders. Instead of a table of task-private class

representations, the class representation includes a single task-private representation.

Both the interpreter and code produced by the dynamic compiler are aware of this

organization and access the task-dependent class information using the task identifier

of the current thread.

An extensive description of how MVM implements sharing of the runtime repre-

sentation of classes, including bytecode and code producedby the dynamic compiler,

is described in [27].

36

Chapter 2. Background

Garbage Collection in MVM

The MVM derives from the HotSpotTM Java virtual machine [77]. The current

prototype of the MVM [92] retains the heap layout of the original HotSpot JVM and

introduces minor changes. Heap management follows a generational strategy based

on three generations – permanent, tenured, and young. The permanent generation is

a special generation used for allocating objects that constitute the runtime representa-

tion of classes and string literals. In the MVM, the permanent generation also includes

task tables associated with the runtime representation of task-reentrant classes. Note,

however, that we do not allocate the task-private representation of a task re-entrant

class, which holds static variables etc., in the permanent generation but, rather, in

the tenured generation. The rationale for this is that in theMVM, the lifetime of the

sharable part of the runtime representation of a class is much longer. The sharable

part’s lifetime may range from the lifetimes of a few tasks tothe lifetime of the virtual

machine itself, unlike the task-private part, which lasts no longer than the duration of

the task. The task-private part of the runtime representation of classes is allocated

directly in the tenured generation. This avoids clutteringthe young generation with

objects known to be long lived.

Program threads allocate from the young generation. As in the original imple-

mentation of the HotSpot JVM, the young generation is divided into an allocation

37

Chapter 2. Background

space (theeden), and a mature space1, which consists of a pair of equally sized

semi-spaces (afromandto space). Garbage collection of the young generation uses a

copying scavenger that evacuates live objects from theedenandfromspaces to theto

space according to a design similar to that in [93]. Mature objects that have survived

several scavenge cycles are promoted to the old generation.Objects from the young

generation are never promoted to the permanent generation.

The eden space is used for the vast majority of allocations. Objects that do not fit

in the young generation are allocated directly in the tenured generation. To increase

per-thread locality and to avoid the cost of atomic instructions in allocation code,

the system allocates a thread local allocation buffer (TLAB)from the eden space

for threads of tasks. Write barriers for tracking cross-generation pointers follow a

card-marking scheme.

The HotSpot JVM supports several algorithms for the tenuredgeneration, but

MVM currently only supports mark and compact. Both minor and major collections

require bringing all threads to a safepoint in order to proceed. In the case of MVM,

all threads of all tasks must be at a safepoint.

The changes introduced by MVM to garbage collection are related to reclaiming

space used by terminated tasks. MVM maintains a list of terminated tasks that is

purged on a garbage collection. During collection, the listof terminated tasks is

1Should not be confused with the old generation

38

Chapter 2. Background

used to scan task tables of the runtime representation of classes, and other task tables

referring to heap objects, to zero-out the entries corresponding to terminated tasks,

so that no objects of the terminated task are reachable from any live root. This clean

up is performed at garbage collection time rather than at task termination, since (i)

the heap space used by terminated task cannot be reclaimed without performing a full

GC, and (ii) postponing clean up until GC enables the system tofactor out the cost

of clearing dead references from entries of task tables corresponding to terminated

tasks.

The text of chapter 2 is in part a reprint of the material as it appears in the pro-

ceedings of the International Symposium on Memory Management (ISMM 2006).

39

Chapter 3

Application-Specific Garbage
Collection

The next generation of high performance server systems mustprovide continuous

availability and high performance to gain widespread use and acceptance. These sys-

tems run a single virtual machine (VM) image persistently, and applications and code

components can be uploaded and executed as needed by customers (for customiza-

tion, collaboration, distributed execution, etc.).

Given this model of a single persistent VM, and existing JVM technology, a sin-

gle, general-purpose collector and allocation policy mustbe used for all applications.

However, many researchers have shown that there is no singlecombination of a col-

lector and an allocator that enables the best performance for all applications, on all

hardware, and given all resource constraints [5, 40, 101].

We therefore investigate whether the choice of the garbage collection policy in

MREs should beapplication-specific. To this end, we first present experimental re-

40

Chapter 3. Application-Specific Garbage Collection

1 2 3 4 5 6 7 8

Heap Size Relative to Min

110

160

210

260

310

360

410

10
^6

/T
hr

ou
gh

pu
t

SPECjbb2000 SS
MS
GMS
GSS
CMS

1 2 3 4 5 6 7 8

Heap Size Relative to Min

0

1

2

3

4

5

6

7

8

E
xe

cu
tio

n
T

im
e

(s
ec

)

Voronoi SS
MS
GMS
GSS
CMS

Figure 3.1: Performance using different GCs and heap sizes. The y-axis istotal time
in seconds. For SPECjbb, we report 106/throughput to maintain visual consistency.
The x-axis is heap size relative to the minimum with the GC that can execute the
program in smallest heap.

sults for benchmark execution time using a wide-range of heap sizes, in Figures 3.1

and 3.2. This set of experiments confirms similar findings of others [5, 40, 101] that

indicate that no single GC system enables the best performance for all applications,

on all hardware, and given all resource constraints.

41

Chapter 3. Application-Specific Garbage Collection

1 2 3 4 5 6 7 8

Heap Size Relative to Min

15

20

25

30

35

40

E
xe

cu
tio

n
T

im
e

(s
ec

)

db SS
MS
GMS
GSS
CMS

Figure 3.2: Performance using different GCs and heap sizes. The y-axis istotal time
in seconds.

The graphs show execution time over heap sizes with different garbage collectors

for a few standard benchmarks – SPECjbb [84], Voronoi from theJOlden benchmark

suite [20], and db from the SpecJVM98 suite [84]. We employ the widely used Jikes

Research Virtual Machine (JikesRVM) [2] for our experimentation and prototype sys-

tem. The x-axis is heap size relative to the minimum heap sizethat the application

requires for complete execution across all GC systems. For SPECjbb, the y-axis is

the inverse of the throughput reported by the benchmark; we report 106/throughput

to maintain visual consistency with the execution time dataof the other benchmarks.

Lower values are better for all graphs.

The top-most graph in the figure shows that for SPECjbb, the semispace (SS) col-

lector performs best for all heap sizes larger than 4 times the minimum, and the

generational/mark-sweep hybrid (GMS) performs best for small heap sizes. The

42

Chapter 3. Application-Specific Garbage Collection

middle graph, for Voronoi shows that for heap sizes larger than 4 times the min-

imum, semispace (SS) performs best. For heap sizes between 2and 4 times the

minimum, mark-sweep (MS) performs best. Moreover, for small heap sizes GMS

performs best. The bottom-most graph shows the performanceof db: SS and GSS

(a generational/semispace hybrid) perform best for large heap sizes, while CMS (a

non-generational semispace copying/mark-sweep hybrid),and MS perform best for

small heap sizes. The collectors will be described in detailshortly. These results sup-

port the findings of others [5, 40, 101], that no single collection system enables the

best performance across benchmarks. Further, no single system performs bestacross

heap sizes for a single benchmark/input pair. We refer to any point at which the best

performing GC changes as aswitch point.

To exploit this execution behavior that is specific to both the application and un-

derlying resource availability, we extended JikesRVM, to enable dynamic switch-

ing between GCs. The goal of our work is to enable application-specific garbage

collection, to improve performance of applications for which there exist GC switch

points, and to do so without imposing significant overhead. Such a system will en-

able users to extract the best performance from their applications with such an MRE.

Moreover, an MRE with GC switching functionality will be ableto adapt to enable

high-performance for future and emerging applications with little or no change to the

MRE.

43

Chapter 3. Application-Specific Garbage Collection

3.1 Support for Garbage Collection Switching

In this section, we describe various technical issues involved in enabling support

for switching between garbage collectors at execution time.

Key to switching between collectors is efficient use of the available virtual address

space between GCs. Different GC algorithms expect differentheap layouts, such as

a mark-sweep space, nursery, or a large object space. Virtual address space is limited

and controls the maximum size of the heap. Hence, to make the best use of total

available space, the virtual space must be divided carefully between different heap

layouts.

In addition to virtual address space considerations, we need to support diverse

object header information needed by copying and mark-sweepcollectors. Copying

and mark-sweep use the object header for different purposes, and support for both

techniques involves enabling the use of state information used by both.

Another key concern isspecialization. For performance, code is specialized for

the current garbage collector. For instance, inlining of allocation sites, and the pres-

ence of write barriers based on whether or not the current garbage collector is genera-

tional. Since the garbage collector may change at runtime, assumptions made during

compilation for specialization may change as well. Consequently, we must be able

to invalidate (recompile) specialized methods, and in addition, replace specialized

44

Chapter 3. Application-Specific Garbage Collection

code that isexecutingat the time of the switch. We shall describe mechanisms for

invalidation in Section 3.2.

We discuss each of the above issues in detail below.

3.1.1 Multiple Garbage Collectors in a Single JVM

JikesRVM [2] is an open-source virtual machine for Java thatemploys dynamic

and adaptive optimization with the goal of enabling high performance in server sys-

tems. JikesRVM compiles Java bytecode programs at the method-level at runtime

(just-in-time), to x86 (or Power PC) code. JikesRVM supportsextensive runtime

services – garbage collection, thread scheduling, synchronization, etc. In addition,

JikesRVM implements adaptive or mixed-mode optimization by performing on-line

instrumentation and profile collection, and then uses the profile data to evaluate when

program characteristics have changed enough to warrant method-level re-optimization.

The current version of the JikesRVM optimizing compiler applies three levels of op-

timization (0, 1 and 2). Level 0 optimizations include localpropagation (of constants,

types, copies), arithmetic simplification, and check elimination (of nulls, casts, array

bounds). Moreover, as part of level 0 optimizations, write barriers are inlined into

methods if the GC is generational. Level 1 optimizations include all of the level 0

optimizations as well as common sub expression elimination, redundant load elimi-

nation, global propagation, scalar replacement, and method inlining (including calls

45

Chapter 3. Application-Specific Garbage Collection

to the memory allocation routines). Level 2 includes SSA based optimizations in

addition to level 1 optimizations.

JikesRVM (version 2.2.0+) uses the Java Memory Management Toolkit

(JMTk) [12] that enables garbage collection and allocationalgorithms to be written

and “plugged” into JikesRVM. The framework offers a high-level, uniform interface

to JikesRVM that is implemented by all memory management routines. A GC is a

combination of an allocation policy and a collection technique (this corresponds to a

Plan in JMTk terminology). The JMTk provides the functionality that allows users to

implement their own GC (without having to write one from scratch) and to perform an

empirical comparison with other existing collectors and allocators. For this purpose,

it provides users with utility routines for common GC operations, such as, copying,

marking and sweeping objects. When a user builds a configuration of JikesRVM, she

is able to select a particular GC for incorporation into the JikesRVM image.

The five GCs that we consider in this work are Semispace copying(SS), a Gener-

ational/Semispace Hybrid (GSS), a Generational/Mark-sweep Hybrid (GMS), a non-

generational Semispace/ Mark-sweep Hybrid (CMS), and Mark-sweep (MS). These

systems use stop-the-world collection and hence, require that all mutators be paused

when garbage collection is in progress. Semispace copying and mark-sweep are stan-

dard non-generational collectors [61, 12] with a single space for most mutator alloca-

tion (large objects are allocated in a separate space). Allocation in the semispace con-

46

Chapter 3. Application-Specific Garbage Collection

figuration is through a pointer increment (bump pointer), while that in mark-sweep

involves a segregated free list. The free list is divided into several size classes and

objects are allocated from the appropriate size class usinga first-fit algorithm. Non-

generational collectors collect the entire heap on every collection. Bump pointer

allocation is believed to be much faster than free list allocation, since it is a much

simpler operation.

The generational collectors, GSS and GMS, make use of well-known genera-

tional garbage collection techniques [3, 95]. Young objects are allocated in an Appel-

style [3] variable-sized nursery space usingbump pointer(pointer increment) alloca-

tion from a contiguous block of memory. The boundary betweenthe nursery and the

mature space is dynamic. Initially, the nursery occupies half the heap, and the mature

space is empty. As live data from the nursery is promoted to the mature space on a

minor collection, the size of the nursery shrinks. After a major (full heap) collection,

the mature space contains live old data, and the nursery occupies half of the remain-

ing space. Upon a minor collection, the nursery is collected, and the survivors are

copied (promoted) to the mature space. Promotion isen masse, i.e., all survivors are

copied to the mature space without first being moved to an intermediate space [91].

The mature space is collected by performing a full heap collection. This process is

referred to as amajor collection. Since minor collections are performed separately

from major collections, pointers from mature space objectsto nursery objects must

47

Chapter 3. Application-Specific Garbage Collection

be identified to keep the corresponding nursery objects live. A write barrier is em-

ployed for this purpose. A write barrier is a series of instructions that is used to keep

track of such mature space objects.

The main difference between GSS and GMS is the way in which themature space

is collected. GSS employs copying collection for this purpose, while GMS makes use

of mark-sweep collection.

During a minor collection, nursery objects can be copied to the mature space in

the GSS collector by a simple bump pointer allocation. However, allocation from the

mature space in GMS is performed using a sequential, first-fit, free-list. GMS mature

space collection is a two-phase process that consists of a mark phase in which live

objects are marked, and a sweep phase in which unmarked spaceis returned to the

free-list.

Generational GC performs well when the number of minor collections is large,

since a minor collection is much faster than a full heap GC. However, when memory

is plentiful, and GC is not required, non-generational collection may perform com-

petitively. In fact, under these conditions, in several cases, semispace collection may

commonly outperform other GCs due to cache locality benefits,and low fragmenta-

tion enabled by bump pointer allocation [61].

48

Chapter 3. Application-Specific Garbage Collection

CMS1 is similar to a traditional semispace collector (SS) in thatit is non-generational

and is divided into two memory regions. However, CMS is a hybrid approach in

which the first section is managed via bump pointer allocation and copy collection

and the second section is managed via Mark-sweep collection(and uses free-list allo-

cation as described above). CMS does not use write barriers. As a result, CMS is only

able to identify references from the mark-sweep space to thesemispace by tracing the

objects in the former. Consequently, when a CMS collection occurs, the entire heap

is collected – using copy collection for the first section then mark-sweep collection

for the second section. CMS is more space efficient compared toa copying collector

since it does not require a copy reserve. It is supposed to achieve good performance

when the number of objects promoted is low.

JVM system classes and large objects are handled specially in JikesRVM/

JMTk system. There is a separate immortal space that holds the JikesRVM system

classes. Allocation in the immortal space is via the bump pointer technique and this

space is never collected. In addition, objects of size 16KB and greater are considered

as “large objects”. The large object space is managed using mark-sweep collection.

Collectors that employ a mark-sweep space, allocate large objects from the mature

space (since these collectors already employ mark-sweep collection), while copying

collectors employ a separate large object space.

1This is a stop-the-world collector and should not be confused with the Concurrent Mark-Sweep
collector in Sun’s HotSpot VM [91].

49

Chapter 3. Application-Specific Garbage Collection��� ���� ��	
���
� �������	� ��	����	
�����������	� ������
���	��� �����������
����� �����!
���	������ �� ����
�� "�
���#���
� ���������
� $�
	%
� $�
	&
� $�
	'(((�����	�
�)*+,,-./012.3
Figure 3.3: Overview of our GC switching system. The JVM consists of the standard
set of services as well asmultipleGCs (an allocator and collector) as opposed to one
per JVM image. The system employs the current GC through a reference to it called
the CurrentPlan. When a switch occurs, the system updates the CurrentPlan pointer
(and performs a collection in some cases). All future allocations and collections (if
any) use the newly selected GC.

Figure 3.3 shows the design of our GC switching system. Each MRE image

contains multiple GCs in addition to a set of standard services, such as the class

loader, compilers, optimization system, and thread scheduler. Each GC consists of an

implementation of an allocator and a collector.

The system switches to a new GC when doing so will improve performance. The

system considers program annotations (if available), application behavior, and re-

source availability to decide when to switch dynamically, and to which GC it should

switch. The GC currently in use is referred to by a CurrentPlanpointer. The com-

piler and runtime use this pointer to identify and employ thecurrently available GC.

When a switch occurs, the system updates CurrentPlan to point to the new GC and

50

Chapter 3. Application-Specific Garbage Collection

performs allocation and collection (if needed) using the newly selected allocation and

collection algorithms.

Each GC in JikesRVM/JMTk is implemented as aPlan. The plan identifies the

type of allocator and collector that is built into the image and consists of a set of

classes that implement the appropriate algorithms for collection (semispace, genera-

tional, etc.) and allocation (free-list, bump pointer, etc.).

We extended JikesRVM/JMTk system to implement each of JikesRVM GCs within

a single JikesRVM image. We show the original and new JikesRVM/

JMTk class hierarchy in Figure 3.4. We implemented these classes so that much of the

code base is reused across collection systems. The size of the MRE image built with

our extensions is 44.2MB (with the boot image compiled usingthe optimizing com-

piler at level 1), compared to an average size of 42.6MB for the reference JikesRVM

images (ranging from 37.2MB for SS to 49.4MB for MS) – our extensions do not

significantly increase code size. Interestingly, the reference JikesRVM image when

built with MS, is larger than an image built with our modifications. We believe that

the reason for this is that inlining of allocation sites for mark sweep increases code

size significantly. Note that we do not inline allocation sites for boot image code in

case of our switching system.

To support multiple GCs, we require address ranges for all possible virtual mem-

ory resources to be reserved. Our goal is to enable maximum overlap of virtual ad-

51

Chapter 3. Application-Specific Garbage Collection

StopTheWorld

 Plan

 SS_Plan MS_Plan GenerationalCopyMS_Plan

 GenMS_Plan GenCopy_Plan

StopTheWorld

VM_Processor

 Plan
{SS_Plan,MS_Plan,...}

(Selected at build time)

VM_Processor

(Plan currentPlan;)

Figure 3.4: JikesRVM/JMTk class hierarchy: Original and switch-enabled.

dress spaces to reduce the overhead of switching. Our address space layout is shown

in Figure 3.5(a). Each address range is lazily mapped to physical memory (as it

is used by the executing program), in 1 Megabyte chunks. There are three shared

spaces that we inherit from the default JikesRVM implementation: the immortal (un-

collected), GC Data Structure area (uncollected), and large object (>16KB) space.

The GC that is currently in use employs a subset of other spaces as appropriate.

Switching Between GCs

Switching between GCs requires that all mutators be suspended to preserve con-

sistency of the virtual address space. Since the JikesRVM collectors are stop-the-

world, JikesRVM already implements the necessary functionality to pause and re-

sume mutator threads. We extended this mechanism to implement switching.

During a GC switch operation, we stop each executing mutatorthread as if a

garbage collection were taking place. A full heap GC, however, may not be necessary

for all switches. To enable this, we carefully designed the layout of our heap spaces

52

Chapter 3. Application-Specific Garbage Collection

(Figure 3.5(a)) in such a way as to reduce the overhead of collection, i.e., to avoid

a full garbage collection for as many different switches as possible. For example, a

switch from SS to GSS only requires that future allocations by the application use the

GSS nursery area since SS and GSS share two half-spaces. Therefore, we only need

to perform general bookkeeping to update theCurrentPlanto implement the switch.

Figure 3.5(b) indicates whether a GC is required, for a switch from the row GC

to the column GC, and if it is, the type of GC required, e.g., full (F), minor (M), or

none (N). We use the notation XX→YY to indicate a switch from collection system

XX to collection system YY. The entries in the table show the type of GC that is

required for row→column. Note that we need to perform a garbage collection when

switching from MS in only two cases (while switching to SS andGSS, the latter being

a collector that is very often not the best choice, hence is not a frequent scenario).

Moreover, MS commonly works well for very small heap sizes. We therefore use MS

as our initial, default collector. As our system discovers when to switch to a more

appropriate collection system, the cost of the switch itself is likely to be low.

We next describe the operations required for each type of switch. Whenever we

perform a copy from one virtual memory resource to another, we use the allocation

routine of the GC to which we are switching.

53

Chapter 3. Application-Specific Garbage Collection

Immortal

GC Data Structures

Large Object

Space

High Semispace

Low Semispace

Mark−Sweep

Nursery

LO
W

E
R

H
IG

H
E
R

GC Requirements Upon Switch

N:None, F:Full, M:Minor

Switch from Row to Column

SS CMS GMS GSS MS

SS – F F – F

CMS F – F F F

GMS F – – F M

GSS M F F – F

MS F – – F –

(a) (b)

Figure 3.5: Virtual address space layout in the switching system (a) anda table (b)
that indicates when a GC is required on a switch (from the row GC to the column
GC) and its type: full (F), minor (M), or none (–).

Switches That Do Not Require Collection. As mentioned above, SS→GSS, MS→CMS,

MS→GMS, and CMS→GMS do not require a collection since their virtual semis-

paces are shared.

Switches That Require Minor Collection. When we switch from a generational

to a similar non-generational collector, e.g., GMS→MS and GSS→SS, we need only

perform a minor collection. That is, in addition to updatingtheCurrentPlan, we must

collect the nursery space and copy the remaining live objects into the (shared) mature

space.

Switches That Require Full Collection. The remaining switch combinations require

a full garbage collection. We perform each switch as follows:

54

Chapter 3. Application-Specific Garbage Collection

• SS/GSS→GMS/CMS/MS. To switch between these collection systems, we

perform a semispace collection (or a major collection for GSS). However, in-

stead of copying survivors to the empty semispace, we copy them to the mark-

sweep space of the target systems. When switching from GSS, wedo the same;

however, we must also copy the objects in the GSS mature spaceto the mark-

sweep space.

Collectors that use semispaces (SS and GSS), require a copy reserve area, and

consequently, do not perform well under memory pressure. Inaddition, if the

ratio of live objects to dead is high, copying collectors involve expensive copy-

ing of live objects. Under such conditions, it would be beneficial to switch to a

non-copying GC.

• GMS/MS→SS/GSS. To perform this switch, we perform a major collection

and copy survivors from the nursery and live objects from themature space to

the semispace. If we are switching from a non-generational MS system to SS

or GSS, we mark live objects in the mark-sweep space and we forward them

to the semispace resource. Since we must move objects duringMS collection,

we must maintain multiple states per object. We do this usingan efficient,

multi-purpose, object header described in Section 3.1.2.

55

Chapter 3. Application-Specific Garbage Collection

If memory is plentiful, copying collectors can provide goodperformance since

they employ fast, bump-pointer allocation. Also, certain applications might

fragment the heap excessively, requiring compaction, which is inherently pro-

vided by copying collectors. Copying collection, is also supposed to provide

better data cache locality, since objects are laid out in allocation order.

• CMS→Any GC. Since there are no write barriers implemented for CMS, the

heap spaces in this hybrid collector cannot be collected separately. Without

write barriers to identify references from the mark-sweep space to the semis-

pace, we may incorrectly collect live objects if we collect the semispace alone,

i.e., those that are referenced by mark-sweep objects but not reachable from the

root set. When we switch from CMS to any other GC, we must perform afull

collection to ensure that we consider all live objects.

CMS is a compromise between generational, and non-generational collection.

It does not incur the penalty of a write-barrier during mutation, yet provides

segregation of old objects from young. However, CMS does not provide incre-

mental behavior, i.e. the ability to collect only a part of the heap (usually, the

one with most likelihood of dead objects), independently ofother parts, that

generational collectors achieve.

56

Chapter 3. Application-Specific Garbage Collection

Although the switching process is specific to the old and the new GCs, we provide

an extensible framework that facilitates easy implementation of switching from any

GC to any other, existing or future that is supported by JikesRVM JMTk. Moreover,

unlike prior work, our system is able to switch dynamically between GCs that use

very different allocation and collection strategies.

When a switch completes, we suspend the collector threads andresume the mu-

tators, as is done during the post-processing of a normal collection. In addition, we

unmapany memory regions that are no longer in use.

A limitation of the switching mechanisms described above isthat we may not be

able to perform certain kinds of switches when memory is highly constrained. For

example, while switching from MS (or GMS, CMS) to SS (or GSS), we need to map

the virtual address space corresponding to the SStospace, on demand. However,

we cannot unmap the MS address space until all live objects have been copied to

the SS tospace. Consequently, our system requires more mapped memory than the

reference system,while performing the switch in these cases. In practice however,

switching from MS to SS or GSS when memory is constrained would be a poor

choice (we provide further explanation of why this is the case in Section 3.3). A

similar problem exists for switching from SS (or GSS) to a MS (or GMS, CMS)

system. Note, however, that in these cases, we can unmap memory from the SS

57

Chapter 3. Application-Specific Garbage Collection

tospace before we copy objects to the MS space, since the SS tospace will not be

used subsequently.

3.1.2 Multi-purpose Object Header

As mentioned in the previous section, to switch from a GC thatuses a mark-

sweep space (GMS, CMS, and MS) to a GC that uses a contiguous semispace (GSS,

SS), we must maintain state for the mark-sweep process as well as for each object’s

forwarded location that is used by copying collection. Typically, garbage collectors

store this state in the header of each object. In JikesRVM, the garbage collectors each

use a single 4-byte entry in the object header, called thestatus word.

The mark-sweep collector requires two bits in the status word: themark bit to

mark live objects and thesmall object bitto indicate that the object is a small object.

The use of thesmall object bitenables efficient size-specific free-list allocation. Since

the system aligns memory allocation requests on a 4-byte boundary, the lowest two

bits in an object’s address are always 0. Hence, themark bitand thesmall object bit

can be encoded as the lowest two bits in the status word.

Semispace collectors also require header space to record the state of the copy

process and the address to which the object is copied. A semispace collector marks

an object asbeing forwardedwhile it is being copied. Once it is copied, the object

is marked asforwardedand a forwarding pointer to the location to which the object

58

Chapter 3. Application-Specific Garbage Collection

1 101

state: FORWARDED

1 1

state: BEING FORWARDED

01FORWARDING POINTER

UNUSEDUNUSED

SMALL OBJECT|MARKEDstate:SMALL OBJECTstate:

Copying

Mark Sweep

FORWARDING POINTER

Figure 3.6: Examples of bit positions in status word in object header

was copied, is stored in the initial 30 bits of the header. Thebeing forwardedstate is

necessary to ensure synchronization between multiple collector threads. These two

states are stored in the two least significant bits of the status word.

The two least significant bits in an object status word implement different states

depending on the collector. For example, as shown in Figure 3.6, if JikesRVM is

built using a mark-sweep GC, the value0x2 in the two least significant bits of the

status word of an object indicates that the object is small and unmarked. However, if

instead, the semispace collector is used, this state indicates that the object has been

forwarded to the to-space during a collection. Similarly, if both bits are set, the status

word indicates that the object is a small object and has been marked as live by a

mark-sweep collector; the same state indicates to a semispace collector thread that

the object is currently being forwarded by another thread.

Upon a switch from a collector that uses a mark-sweep space toone that uses

a semispace, we must forward marked objects to the semispace. Consequently, our

switching system must supportall four distinct states, in addition to space for a for-

warding pointer. To account for the two additional bits required and to avoid using an

59

Chapter 3. Application-Specific Garbage Collection

additional 4-byte header entry, we use bit-stealing (also used in prior GC systems [8])

in which we “steal” the two least significant bits from another address value that is

byte-aligned.

The object header in JikesRVM also stores a pointer to a Type Information Block

(TIB) data structure, which provides access to the internal class representation and

the virtual method table of the object. We use the two least significant bits from the

TIB pointer to store the additional states,being forwardedandforwarded, during the

copying process. This implementation requires that we modify VM accesses to the

TIB so that these bits are ignored. We found that this does notintroduce significant

overhead.

3.2 Specialization Support for GC Switching

A näıve switching implementation would involve two primary sources of over-

head: write barriers are not needed by all collectors, and the loss of inlining opportu-

nities due to dynamically changing allocation routines. Since our system can switch

to a generational collector at any time, we would need to insert write barriers for

every pointer field assignment in every method – these instructions would execute

even when the collector in use is non-generational. Moreover, if the GC does not

change over the lifetime of the program, we can inline calls to the allocation routine.

60

Chapter 3. Application-Specific Garbage Collection

However, in our system, the allocation routine may change, precluding our ability to

inline.

To avoid a loss in performance due to these two issues, wespecialize the code

for the underlying GC aggressively and speculatively. Thatis, we inline allocation

routines and insert write barriers only if the underlying GCis a generational collector.

For these specializations, we consider only optimized code. JikesRVM, like many

other commonly used JVMs [91, 24, 77], employs adaptive optimization in which it

only optimizes code that it identifies as hot, using efficient, online sampling of the ex-

ecuting program. JikesRVM optimizing compiler applies three levels of optimization

(0, 1, and 2) depending on how “hot” a method is. Level 0 optimizations include local

propagation (of constants, types, copies), arithmetic simplification, and check elimi-

nation (of nulls, casts, array bounds). In addition, this level includes the inlining of

write barriers into methods if the GC is generational. Level1 optimizations include all

level 0 optimizations as well as common sub expression elimination, redundant load

elimination, global propagation, scalar replacement, andmethod inlining (including

calls to allocation routines). Level 2 optimizations include all of level 1 optimization

plus SSA-based transformations.

All unoptimized methods are compiled by JikesRVM using a fast compiler that

applies no optimization. We modified this compiler to insertwrite barriers into all

methods regardless of the underlying collector. Since JikesRVM itself is written in

61

Chapter 3. Application-Specific Garbage Collection

Java, all MRE methods are compiled into a boot image – we modified this process as

well to insert write barriers and to avoid inlining allocation routines into boot image

methods. To enable speculative specialization, we modifiedlevel 0 of the optimizer

so that it checked the CurrentPlan to determine whether to insert write barriers. We

also modified level 1 (and above) to inline the allocation routines of the CurrentPlan

collector. We made these changes in the runtime compiler (asopposed to the boot

image compiler),

For annotation-guided GC selection, our system switches GCsimmediately prior

to the start of program execution. Therefore, no methods have been optimized. More-

over, once the program begins, the system does not perform switching again. Thus,

our specialization for write barriers and allocation routines is always correct in this

case.

However, for automatic switching, the system can (and does)switch at any time.

We therefore require a mechanism to “undo” the specializations when a switch oc-

curs. We need only undo specializations that will cause incorrect execution. There

are two such cases. First, the prior GC was not generational,the new GC is gen-

erational, and there is a field update in an optimized method.The new GC, there-

fore, requires a write-barrier for correctness. Second, there is an allocation site

in an optimized method and the optimization level used by thecompiler was 1 or

higher. Consequently, the existing inlined allocation sequence is no longer valid

62

Chapter 3. Application-Specific Garbage Collection

and must be invalidated. For future invocations of these methods, we use method

invalidation [48] to undo the specialization. For methods that are currently exe-

cuting, i.e., those that are on the runtime stack, we requireon-stack-replacement

(OSR) [48, 22, 47, 38, 77, 91, 88, 46] of the method.

To enable OSR, the compiler must track the program execution state of the method

at a particular program point in native code. The execution state consists of values

for bytecode-level local variables, stack variables, and the current program counter.

The execution state is a map that provides the OSR system withruntime values at the

bytecode-level (source-level) so that the system can recompile and restart the method

using another version. Existing OSR implementations insert a special (pseudo-) in-

struction, called an OSR point, to enable state collection.

OSR for replacement of executing optimized methods (as is needed for spe-

cialized methods in the GC switching system) is more complexthan for unopti-

mized methods since compiler optimization can eliminate variables, combine mul-

tiple variables into one, and add variables (temporaries).This makes the ability to

map bytecode-level variables correctly very challenging.All extant approaches to

OSR avoid optimization across OSR points to avoid adding complexity to the com-

pilation system. This, however, as we will later show, can significantly degrade code

quality (and thus performance) if OSR support is to be enabled at a significant number

of program points.

63

Chapter 3. Application-Specific Garbage Collection

A Novel OSR Implementation

There are two reasons why extant approaches to OSR can degrade performance.

First, all method variables (locals as well as stack) are considered live at an OSR

point; by doing so, the compiler artificially extends the live ranges of variables and

significantly limits the applicability of optimizations such as dead code elimination,

load/store elimination, alias analysis, and copy/constant propagation. Second, OSR

points are “pinned” in the code to ensure that variable definitions are not moved

around the OSR points; this precludes optimization and codemotion across OSR

points.

These prior implementations do not negatively impact performance (as a result of

poor code quality) significantly when there are only a small number of OSR points.

However, our switching system requires an OSR point at everypoint in the code at

which a switch can occur; these are the points at which a GC canoccur, i.e., gc-safe

points. GC-safe points in JikesRVM include implicit yield points (method prologues,

method epilogues, and loop back-edges), call sites, exception throws, and explicit

yieldpoints.

Since our GC switching system requires a very large number ofOSR points,

many along the critical path of the program, existing OSR implementations can

severely degrade the performance of our GC switching system. We therefore ex-

tended JikesRVM OSR implementation with a novel extension that is more amenable

64

Chapter 3. Application-Specific Garbage Collection

to optimization. In particular, we automatically track compiler optimizations in a spe-

cialized data structure to hold state information, called avariable map (VARMAP).

A VARMAP is a per-method list of bytecode variables (primitives as well as ref-

erence types) that are live at each gc-safe point. This list is independent of the code

and does not impact the liveness information of the program point, nor does it re-

strict code motion optimizations. To ensure that we maintain accurate information in

the VARMAP, we update it incrementally as compiler optimizations are performed.

The VARMAP is somewhat similar in form to the data structure described in [36],

which was used to track pointer updates in the presence of compiler optimizations,

for garbage collection support in Modula-3. However, unlike prior work, we track

all stack, local, and temporary variables online, across a wide range of compiler

optimizations automatically and transparently, during just-in-time compilation and

dynamic optimization of Java programs.

Figure 3.7 shows an example of a VARMAP entry for a snippet of Java source.

We include the equivalent Java bytecode and JikesRVM high-level intermediate rep-

resentation (HIR) of the code. Below the code, we show the VARMAPentry for the

callme() call site. which contains the next bytecode index (25) afterthe call site

callme and three typed local variables (a: l8i, b: l15i, c: l17i).

To update the VARMAP entries, we defined the following system methods:

65

Chapter 3. Application-Specific Garbage Collection

..

15: int_move l15i(int) = l8i(int)

18: int_shl l17i(int) = l15i(int), 2

20: call static “callme() V”

25: int_add l19i(int) = l8i(int),

l15i(int)

..

..

14: iload_1

15: istore_2

16: iload_2

17: iconst_4

18: imul

19: istore_3

20: invokestatic #3 //callme()V

23: iload_1

24: iload_2

25: iadd

26: istore_4

..

..

int c,d;

b = a;

c = b * 4;

callme();

d = a + b;

..

VARMAP entryByte CodeSource

Intermediate Code (HIR)

25@main (..LLL,..),.., l18i(int),
l15i(int), l17i(int), ..

bcindex: 25, L: local var, a: l8i,
b: l15i, c: l17i

Figure 3.7: Shows how the VARMAP is maintained for a snippet of Java source(its
bytecode and high-level intermediate representation (HIR)is included). We show the
VARMAP entry for thecallme() call site that contains the next bytecode index
(25) after the call sitecallme and three local variables with types (a: l8i, b:
l15i, c: l17i).

25@main (..LLL,..),.., l18i(int),
l8i(int) , l17i(int), ..

25@main (..LLL,..),.., l18i(int),
l15i(int), l17i(int), ..

VARMAP
entry

After optimizationBefore optimization

..

15: int_move l15i(int)=l8i(int)

18: int_shl l17i(int)= l8i(int) , 2

20: call static “callme() V”

25: int_add l19i(int) = l8i(int),

l8i(int)

..

..

15: int_move l15i(int)=l8i(int)

18: int_shl l17i(int)=l15i(int), 2

20: call static “callme() V”

25: int_add l19i(int)= l8i(int),

l15i(int)

..

Intermediate
Code (HIR)

transferVarForOsr(l15i, l8i)

Figure 3.8: Shows how the VARMAP is updated after copy propagation. Variable
b: l15i is replaced witha: l8i .

66

Chapter 3. Application-Specific Garbage Collection

• transferVarForOsr(var1, var2): Record thatvar2 will be used in place of

var1 from here on in the code (e.g., as a result of copy propagation)

• removeVariableForOsr (var): Record thatvar is no longer live/valid in the

code. Note that, even though a variable may not be live, we must still remember

its relative order among the set of method variables.

• replaceVarWithExpression(var, vars[], operators[]): Record that variablevar

has been replaced by an expression that is derivable from theset of variables

vars andoperators .

Our OSR-enabled compilation system handles all extant JikesRVM optimiza-

tions at all optimization levels. Each time a variable is updated by the compiler,

the update occurs through a wrapper function that automatically invokes the neces-

sary VARMAP functions. This enables us to easily extend the compilation system

with new optimizations that automatically update the VARMAPappropriately. For

example, for copy and constant propagation and CSE (common sub-expression elim-

ination), when a use of a variable is replaced by another variable (or constant), the

wrapper function performs the replacement in the VARMAP record by invoking the

transferVarForOsr function as shown in Figure 3.8 for an update that results

from copy propagation.

67

Chapter 3. Application-Specific Garbage Collection

We also update the VARMAP during live variable analysis. We record variables

that are no longer live at each potential OSR point, and record the relative position

of each in the map. We set every variable that live-analysis discovers as dead, to a

void type in the VARMAP. We identify local and stack variables by their relative

positions in the Java bytecode. Maintaining the relative positions of variables in

the VARMAP allows us to restore a variable’s runtime value to the correct variable

location.

During register allocation, we update the VARMAP with the actual register and

spill locations for the variables, so that they can be restored from these locations dur-

ing on-stack replacement. The VARMAP contains symbolic registers corresponding

to each variable. We update symbolic registers with a physical register or a stack

location upon allocation by querying the map maintained by the register allocator

for every symbolic register that has been allocated to a physical register. We record

spilled variables via the spill location that the allocatorencodes as a field in the sym-

bolic register object.

When the compilation of a method completes, we encode the VARMAP of the

method using the compact encoding implemented for OSR points in the original sys-

tem [38]. The encoded map contains an entry for each potential OSR point. Each

entry consists of theregister map , which is a bit map that indicates which phys-

ical registers contain references (which a copying garbagecollector may update). In

68

Chapter 3. Application-Specific Garbage Collection

addition, the map contains the current program counter (bytecode index), and a list of

pairs(local variable, location) (each pair encoded as two integers), for

every inlined method (in case of an inlined call sequence). The encoded map remains

in the system throughout the lifetime of the program and all other data structures re-

quired for OSR-aware compilation (including the original VARMAP) are reclaimed

during GC.

Triggering On-Stack Replacement

During execution, following a GC switch, we trigger OSR lazily as is done in

Self for debugging optimized code [47]. We tag a specializedmethod at compile

time, and read this tag during GC switch to identify the method as specialized. We

modify the return address of the specialized method’s callee so that it will jump to a

special utility method that performs OSR for the specialized method. By triggering

OSR lazily, we eliminate the need for runtime checks in the application code.

The utility method extracts the execution state from the stack frame of the special-

ized method, and sets up the new stack frame. To preserve register values contained

in registers for the execution of specialized methods, the helper saves all registers

(volatiles and non-volatiles) into its stack frame. Since the helper is not directly

called from the specialized code, we must “fake” a call to thehelper. This involves

setting the return address of the helper to point to the current instruction pointer in the

69

Chapter 3. Application-Specific Garbage Collection

specialized code upon entry to the helper. This process alsorequires that we update

the stack pointer for the helper appropriately.

In the next section, we describe two uses of the framework forgarbage collection

switching –annotation-guided switching, andautomatic switching.

3.3 Annotation-Based Garbage Collector Selection

By implementing the functionality to switch between collection systems while

JikesRVM is executing, we can now select the “best performing” collection system

for each application that executes using our system. To thisend, we implemented

Annotation-guided GC System Selection. In particular, we use a class file annotation

to identify per-application garbage collectors that should be employed by our GC

Switching system. We compactly encode the annotation in a class file that contains a

main(...)V method using a technique that we developed in prior work [66].

To identify the GC that we recommend as an annotation, we analyzed application

performance offline using the different JikesRVM GCs. We considered a number of

different heap sizes and program inputs. We list the inputs in Figure 3.11 and refer

to them as Input and Cross. We extracted, for each heap size, the best performing

GC across inputs. In addition, for benchmarks for which there were multiple best

70

Chapter 3. Application-Specific Garbage Collection

2 4 6 8

Heap Size Relative to Min

100

150

200

250
10

^6
/T

hr
ou

gh
pu

t

SPECjbb2000/input2 SS
MS
GMS
GC
CMS

2 4 6 8

Heap Size Relative to Min

100

150

200

250

10
^6

/T
hr

ou
gh

pu
t

SPECjbb2000/input3 SS
MS
GMS
GC
CMS

Figure 3.9: Additional inputs for SPECjbb2000 (in addition to input1 in Figure 3.1).

performing GCs for different heap sizes, we also identified theswitch pointsfor each

program, i.e., the heap sizes at which the best performing GCchanges.

71

Chapter 3. Application-Specific Garbage Collection

2 4 6 8

Heap Size Relative to Min

100

150

200

250

300
10

^6
/T

hr
ou

gh
pu

t
SPECjbb2000/input4 SS

MS
GMS
GC
CMS

Figure 3.10: Additional input for SPECjbb2000 (in addition to input1 in Figure 3.1).

For all benchmarks that we studied, the per-GC performance was very similar

across inputs. Only one benchmark exhibited differences inthe best performing GC

across inputs (JavaGrande). All other benchmarks showed nochange in the choice

of the GC across the inputs that we used. To investigate this further, we looked at

several inputs for the SPECjbb benchmark, which is an exampleof a GC-intensive

server program. For 4 different inputs for SPECjbb, we found that GMS enables

best performance for small or medium heaps, while SS works best for large heaps

(see Figures 3.9 and 3.10). Thisinput independenceappears to be very different

from other types of profiles, such as, method invocation counts, field accesses, etc.,

in which cross-input behavior can vary widely [65, 66]. Therefore, we believe that

72

Chapter 3. Application-Specific Garbage Collection

Min Annot GC Selector

Heap Switch

Benchmark Input/Cross (MB) GC(s) Ratio

compress 100/10 21 SS —

jess 100/10 9 GMS —

db 100/10 15 CMS/SS 1.73

javac 100/10 30 GMS —

mtrt 100/10 16 GMS —

jack 100/10 18 GMS —

JavaGrande AllSizeA/SizeB 15 GMS/SS 3.00

MST 1050 nodes/640 78 MS/CMS 1.47

SPECjbb2000 1 warehouse/2 40 GMS/SS 3.00

Voronoi 65000 pts/20000 34 MS/SS 4.26

Figure 3.11: Inputs that we considered to evaluate GC behavior across heap sizes,
the minimum heap size in which the program will run using our JVM, and the GC
selection decisions with which we annotate each program to enable annotation-guided
GC switching.

it is less likely that we will negatively impact performancefor inputs that we have

not profiled. To select the GC to provide as an annotation for JavaGrande, we iden-

tified the GC that imposed the smallest percent degradation over the best performing

collector across inputs at a range of heap sizes.

The values that we annotate are shown in the final two columns of Figure 3.11.

For each benchmark, we specify the GC that performs best. If there is more than one

best performing GC for different heap sizes, i.e., there is aswitch point, we annotate

each of the GCs and the switch point.

73

Chapter 3. Application-Specific Garbage Collection

We found that for all of the benchmarks studied, if there was aswitch point, there

was only a single switch point and that the switch point heap size was very similar

relative to the minimum heap size for each input. As such, we specify the switch

point as theratio of switch point heap size and the minimum heap size.

At program load time, the JVM computes the ratio,current max heap size

min heap size
, and com-

pares this value with the annotated ratio. If the computed ratio is less, the JVM

switches to the first GC, or to the second GC, otherwise. This requires that we also

annotate the minimum heap size for the program and input. By doing so, we reduce

the amount of offline profiling required by users of our systemsince, given the min-

imum heap size for an input, we can compute the switch point using the ratio from

any input. We found that the switch point ratio holds across inputs for all of the

benchmarks that we studied. Five of the eleven programs haveswitch points.

3.4 Automatic Garbage Collector Switching

In addition to annotation-guided GC, we investigated a mechanism to guide switch-

ing decisions automatically, when resources are suddenly constrained. In this sce-

nario, the operating system (OS) reclaims virtual memory from our JVM for alloca-

tion and use by another process. Such a scenario is common to server systems that

execute many competing tasks concurrently.

74

Chapter 3. Application-Specific Garbage Collection

The scenario that we investigated was one in which the program executes using a

sufficiently large heap size, e.g., 200MB. During execution the OS reclaims memory

and thereby reduces memory that is available for the heap in use by the executing

program. In some cases, this may cause an OutOfMemory error when there is not

sufficient virtual memory for the program to make progress.

Our switching system has an advantage in these cases since itcan switch to a GC

that makes more efficient use of the heap when resources are constrained, e.g., a non-

copying system vs. a copying collector. We can switch to sucha GC and allow the

program to make progress and to avoid termination via the OutOfMemory error. In

addition, by switching to a system that performs better under restricted resources, we

can reduce the number of garbage collections that are performed, which may improve

performance.

We employ a set of heuristics to determine when to switch. TheGC switching sys-

tem monitors the time spent in GC versus the time spent in the application threads.

When thisGC loadexceeds 1 for an extended period of time, the system switchesto

a GC that is more appropriate when resources are constrained. In addition, we also

switch GCs when we find that garbage collections are being triggered too frequently,

measured as the duration for which the application threads execute between succes-

sive garbage collections. We initially use semispace copying collection (SS) when

the program starts (as opposed to MS for the annotation-driven case). SS is the best

75

Chapter 3. Application-Specific Garbage Collection

performing collector across the programs that we studied – when the heap size is large

(>200MB). When the switch occurs, the system employs Generational/Mark-Sweep

(GMS); GMS performs best when resources are constrained. GMS has more avail-

able mature space (since it is mark-sweep collected) compared to other generational

collectors. GMS performs no copying for the mature space andthus, when the GCs

are frequent, less overhead is imposed on the program, unlike a copying collector.

We evaluate these heuristics and scenarios in our evaluation section. Though this

set of heuristics is simple, we show that the GC switching functionality can achieve

significant performance benefits (as well as avoid OutOfMemory errors). We plan to

investigate other opportunities for automatic GC switching, e.g., to improve locality

given changes in program phase behavior, as part of future work.

3.5 Evaluation

To empirically evaluate the effectiveness of switching between garbage collectors

dynamically, we performed a series of experiments using oursystem and a number

of benchmark programs. We first describe these benchmarks and our experimental

methodology with which we generated the results.

76

Chapter 3. Application-Specific Garbage Collection

3.5.1 Experimental Methodology

We gathered our results using a dedicated 2.4GHz x86-based Xeon machine (with

hyperthreading enabled) running Debian Linux v2.4.18. We implemented our switch-

ing framework within JikesRVM version 2.2.0 with IBM jlibraries (Java libraries) R-

2002-11-21-19-57-19. We employ a pseudo-adaptive JikesRVM configuration [79]

in which we capture the methods that JikesRVM identifies as hot in an offline, pro-

filed run. We then optimize those methods when they are first invoked to avoid the

JikesRVM learning time [65], to reduce the non-determinisminherent in the adap-

tive configuration, and to enable the repeatability of our results. The boot image is

compiled using the optimizing compiler (level 1).

We measured the impact of switching on application performance separately from

compilation overhead. To enable the former, we executed thebenchmarks through a

harness program. The harness repeatedly executes the programs; the first run includes

program compilation and later runs do not since all methods have been compiled fol-

lowing the initial invocation. We report results as the average of the wall clock time of

the final 5 of 10 runs through the harness. We experimented with a range of programs

from various benchmark suites, e.g., SpecJVM98 and SPECjbb [84], JOlden [20],

and JavaGrande [58] – we omit mpegaudio from the SpecJVM suite, since it exhibits

very little allocation behavior and does not exercise memory extensively.

77

Chapter 3. Application-Specific Garbage Collection

3.5.2 Results

We next present the empirical evaluation of our system. We first evaluate the

impact of our new, VARMAP-based OSR implementation when we donot switch.

We then evaluate the performance of annotation-guided and automatic GC switching.

VARMAP-Based OSR Performance

We first present results that compare our VARMAP-based OSR implementation

to a variation of a commonly used, extant approach to OSR. To implement the latter,

we employed the original OSR implementation in JikesRVM. This implementation

uses special, unconditional, OSR point instructions to allow OSR at a particular point

in the execution. This implementation is used for deferred compilation and method

promotion in the original system [38]. We insert OSR points at each gc-safe point (all

points at which a GC switch can occur) in each optimized method. An OSR point is a

special thread yield point that will trigger on-stack replacement, unconditionally, for

the current method. We remove these instructions immediately prior to code genera-

tion (after all optimizations) to avoid their execution, since doing so will trigger OSR

. By doing so, we are able to measure the impact of OSR on code quality alone.

Figure 3.12 shows the results from this comparison. The y-axis is the percent

reduction in execution time enabled by OSR over OSR points (when OSR points are

inserted at every gc-safe point during compilation as described above). The Average

78

Chapter 3. Application-Specific Garbage Collection

bar shows the average across all benchmarks, and Average Spec98 shows the average

for only the SpecJVM benchmarks. We gathered results for 25 different heap sizes

from the minimum in which the application would run to 8x the minimum at periodic

intervals. We report the average over these heap sizes for each benchmark.

Our VARMAP implementation improves overall application execution time by

9% on average across all benchmarks, and by over 10% on average across the SpecJVM

benchmarks. jess and mtrt show the most benefit, with improvements of 31% and

20% respectively. For these benchmarks, the original system increases register pres-

sure by extending live ranges of variables. This results in alarge number of variable

spills to memory. Since we maintain the VARMAP separately from the compiled

code, we ensure that live ranges are dictated by the code itself.

Figure 3.13 details the space and compilation overhead of our OSR implementa-

tion. Columns 2 and 3 show the compilation time for the clean (reference) JikesRVM

system without OSR points and the VARMAP implementation, respectively. Column

4 shows the percentage degradation in compilation time imposed by our VARMAP

implementation. Columns 5 and 6 show the space overhead introduced by the VARMAP

implementation during compile time (collectable) and runtime (persistent), respec-

tively. On average, our system increases compile time by approximately 26% and

adds 132KB of collectable overhead and and 30KB of constant space overhead.

79

Chapter 3. Application-Specific Garbage Collection

4564657475
8485949554
:;<=>?@@ AB CD:E CDFD: C?@@ <G>G HIJK?>L<?G?>M;>;N;LOF?>DP?OF?>DP?I=?:QRSTUVTWXYTZ[VX\

]W\Ŵ_TV[X\]Ẁ
\aT

Figure 3.12: Performance of our OSR-VARMAP Implementation in JikesRVM Ref-
erence System. Figure shows the average execution time (excluding compilation)
performance improvement enabled across heap sizes by our VARMAP implementa-
tion over using an extant implementation of OSR – a variationon the OSR points in
JikesRVM.

 Compilation Time (msecs) Space Added (KB)
Benchmark Clean VARMAP Pct. Degrad. Compile Time Runtime

compress 68 79 16.18 14.52 3.16
db 91 117 28.57 24.57 5.26
jack 445 543 22.02 139.67 30.00
javac 1962 2540 29.46 629.94 136.98
jess 504 656 30.16 136.80 29.20
mtrt 595 746 25.38 154.38 33.50
SPECjbb 3515 4431 26.06 42.73 34.14
JavaGrande 2400 2800 17.00 104.86 21.12
MST 50 66 32.00 17.03 3.73
Voronoi 96 129 34.38 62.06 13.49

Avg. 973 1211 26.12 132.66 31.06
Avg. Spec98 611 780 25.29 183.31 39.68

Figure 3.13: Compilation overhead of our VARMAP implementation over the
JikesRVM reference system. Columns 2 and 3 are compilation times in milliseconds
and column 4 is the percent increase in compilation time. Thefinal two columns show
the compilation (collectable) and runtime space overhead,respectively, introduced by
our system.

80

Chapter 3. Application-Specific Garbage Collection

Benchmark Pct. Degradation
No switching vs. Clean

compress 8.98
jess 29.78
db 3.12
javac 12.87
mpegaudio 24.04
mtrt 25.33
jack 6.83

Average 15.85

Figure 3.14: Overhead introduced by the garbage collection switching system when
it never switches, over the clean (reference) JikesRVM. Thepercentage values are
averaged over heap sizes. On average, the GC switching system adds a 15% overhead
over the clean JikesRVM,when no switching is triggered, due to support for on-stack
replacement.

We next present results that show the overhead of our VARMAP implementation

in our GC switching system when itnever switchescompared to the clean or refer-

ence JikesRVM. This is to enable us to evaluate the effectiveness of our VARMAP

in reducing the base overhead of the switching system, introduced due to loss of op-

timization opportunities. The switching system adds an overhead of around 15% on

average across applications, when switching is never triggered (see Figure 3.14).

Figure 3.15 shows these results. The numbers show the percentage degradation

introduced by the GC switching with the VARMAP implementation (without switch-

ing) over the reference JikesRVM image across all measured heap sizes (minimum

for each application to large). Average is the average percentage degradation across

all benchmarks (5%), and Average Spec98 is the average percent degradation for only

the Spec98 benchmarks (<5%). javac has a higher overhead (11%) than other bench-

81

Chapter 3. Application-Specific Garbage Collection

Pct. Degredation
Benchmark Over Clean

compress 3.71 (285ms)
db 3.09 (662ms)
jack 5.88 (269ms)
javac 11.31 (898ms)
jess 3.06 (104ms)
mtrt 0.62 (81ms)
SPECjbb 3.99 (5908ms)
JavaGrande 3.01 (1944ms)
MST 9.99 (237ms)
Voronoi 5.42 (245ms)

Average 5.01 (1063ms)
Average Spec98 4.62 (383ms)

Figure 3.15: The overhead introduced by the VARMAP version of the GC Switching
System over a clean system without GC switching functionality. By reducing the
overhead of the Orig-OSR implementation, we are able to cut the base overhead of
the GC switching system (the overhead imposed when the system does not switch)
from 15% to 5%, i.e. the resulting version of the system introduces 5% base overhead
over the clean system.

marks due to a larger space (and hence GC) overhead required tostore the VARMAP

information (see Figure 3.13).

Annotation-Guided GC Selection

To investigate the effectiveness of our GC switching system, we implemented and

evaluated annotation-guided and automatic GC selection. In this section, we present

results for the former. As we described in Section 3.3, we selected the best performing

GC for a range of heap sizes by profiling multiple inputs offline (we list the inputs in

82

Chapter 3. Application-Specific Garbage Collection

Figure 3.11). The GCs and switch points that we annotate and use are shown in the

same table. For brevity, we present results only for the large input.

Our system uses the annotation to switch GCs immediately prior to invocation of

the benchmark (at program load time). Our performance numbers include the cost

of this switch. Moreover, wespecializethe code for the underlying GC. Our system

compiles hot methods with the appropriate allocation routine inlined. In addition,

we insert write barriers into all unoptimized (baseline compiled) methods; however,

write barriers are inserted into optimized (“hot”) methodsfor generational collection

systems. Since our system switches to the annotated GC before the benchmark begins

executing, no invalidation or on-stack replacement is required for annotation-guided

switching.

As we discussed in Section 3.3, half of the benchmarks that exhibit a switch

point. Given such benchmarks and our system’s ability to switch between GCs given

the maximum available heap size, our system has the potential to enable significant

performance improvements since no single collector is the best performing across

heap sizes for these programs even for thesameinput.

Figures 3.16, 3.17, 3.18 and 3.19 present performance graphs for representative

benchmarks for a range of different heap sizes (x-axis – values are relative to the

minimum heap size of the program). The y-axis is program execution time in seconds.

For SPECjbb, the y-axis is the inverse of the throughput multiplied by106; we report

83

Chapter 3. Application-Specific Garbage Collection

1 2 3 4 5 6 7 8

Heap Size Relative to Min

110

160

210

260

310

360

410

10
^6

/T
hr

ou
gh

pu
t

SPECjbb2000
SS
MS
GMS
GSS
CMS
GC Annot

1 2 3 4 5 6 7 8

Heap Size Relative to Min

0

1

2

3

4

5

6

7

8

E
xe

cu
tio

n
T

im
e

(s
ec

)

Voronoi SS
MS
GMS
GSS
CMS
GC Annot

Figure 3.16: Performance comparison between our switching system, GC Annot
(dashed line with + marks), and the unmodified reference system built with five dif-
ferent GC systems. The figure shows two examples with switch points.

this metric to maintain visual consistency with the execution time data, i.e., lower

numbers are better. The y-axis value ranges vary across benchmarks.

Each graph contains six curves, one for each of the JikesRVM garbage collec-

tors. These curves represent the performance of the standard JikesRVM garbage

84

Chapter 3. Application-Specific Garbage Collection

1 2 3 4 5 6 7 8

Heap Size Relative to Min

15

20

25

30

35

40

45

50

E
xe

cu
tio

n
T

im
e

(s
ec

)

db SS
MS
GMS
GSS
CMS
GC Annot

Figure 3.17: Performance comparison between our switching system, GC Annot
(dashed line with + marks), and the unmodified reference system built with five dif-
ferent GC systems. The figure shows an example with switch points.

collectors in the “clean”, unmodified, system, in addition to our GC annotation sys-

tem. The GCs that we evaluate include Semispace (SS), a Generational/Semispace

Hybrid (GSS), a Generational/Mark-sweep Hybrid (GMS), a non-generational Sem-

ispace/Mark-sweep Hybrid (CMS), and Mark-sweep (MS). TheGC Annotcurve

(dashed line with + markers, red if in color) shows the performance of our GC switch-

ing system using annotation-guided selection.

The first set of graphs shows three representative benchmarks that have switch

points (those that exhibit a change in best performing GC). Our system is able to

track the best performing GC for both small and large heap sizes. For example, for

db, our system tracks CMS for small heaps and SS for large heaps. As such, for a

85

Chapter 3. Application-Specific Garbage Collection

1 2 3 4 5 6 7 8

Heap Size Relative to Min

5

6

7

8

9

10

E
xe

cu
tio

n
T

im
e

(s
ec

)

compress SS
MS
GMS
GSS
CMS
GC Annot

1 2 3 4 5 6 7 8

Heap Size Relative to Min

5.5

7.5

9.5

11.5

13.5

15.5

17.5

19.5

E
xe

cu
tio

n
T

im
e

(s
ec

)

javac SS
MS
GMS
GSS
CMS
GC Annot

Figure 3.18: Performance comparison between our switching system, GC Annot
(dashed line with + marks), and the unmodified reference system built with five dif-
ferent GC systems. The figure shows two examples without switch points.

single program and inputbut different resource availability levels, we can improve

performance over usingany single collectorfor these programs.

The second set shows three representative benchmarks without switch points. For

these benchmarks, our system tracks the best performing collector. Notice that the

86

Chapter 3. Application-Specific Garbage Collection

1 2 3 4 5 6 7 8

Heap Size Relative to Min

2

7

12

17

22

27

32

E
xe

cu
tio

n
T

im
e

(s
ec

)

jess SS
MS
GMS
GSS
CMS
GC Annot

Figure 3.19: Performance comparison between our switching system, GC Annot
(dashed line with + marks), and the unmodified reference system built with five dif-
ferent GC systems. The figure shows an example without switchpoints.

best performing collector differs across programs, e.g., SS performs best for compress

and GMS performs best for the others. Since our system uses annotation to guide GC

selection and switch dynamically to the best performing GC for each program, it is

able to improve performance across benchmarks over any single GC. This becomes

more evident when we evaluate this data across benchmarks.

Figure 3.20 and 3.21 summarize our results across benchmarks and heap sizes.

Figure 3.20 represents averages for small heaps (minimum for an application to 3x

the minimum), and Figure 3.21 represents averages for medium to large heap sizes

(from 3x the minimum for an application to 8x the minimum heapsize). We present

the average difference between our GC switching system and the best performing GC

87

Chapter 3. Application-Specific Garbage Collection

Average Difference Between Best & Worst GC Systems

GCAnnot

Small Heaps (upto 3x)

Degradation Improvement

Benchmark over Best over Worst

compress 6.65% (484ms) 2.85% (236ms)

jess 4.29% (132ms) 75.01% (10357ms)

db 3.54% (674ms) 8.48% (2108ms)

javac 6.55% (469ms) 27.55% (3626ms)

mtrt 1.31% (81ms) 47.02% (6024ms)

jack 3.34% (156ms) 40.92% (3722ms)

JavaGrande 4.77% (3088ms) 19.11% (17807ms)

SPECjbb 2.59% (3864*106/tput) 32.42% (106493*106/tput)

MST 3.83% (28ms) 56.80% (1244ms)

Voronoi 8.83% (164ms) 32.13% (1264ms)

Average 4.57% 34.23%

Figure 3.20: Summarized performance differences between our annotation-guided
switching system and the reference system for small heap sizes (minimum for an
application to 3x the minimum). The table shows the percent degradation over the
best- and percent improvement over the worst performing GCs across small heap
sizes (the time in milliseconds that this equates to is shownin parenthesis).

at each heap size (column 2) and between our system and the worst performing GC at

each heap size (column 3). In parentheses, we show the average absolute difference

in milliseconds; for SPECjbb the value in parenthesis is the difference in inverse of

the throughput. The table shows that our system improves performance by 34% over

selection of the “wrong”, i.e., worst performing collector, for small heaps, and by

88

Chapter 3. Application-Specific Garbage Collection

Average Difference Between Best & Worst GC Systems

GCAnnot

Large Heaps (3x – 8x)

Degradation Improvement

Benchmark over Best over Worst

compress 6.52% (432ms) 3.50% (258ms)

jess 2.04% (60ms) 44.11% (2378ms)

db 2.58% (469ms) 22.83% (5420ms)

javac 4.83% (314ms) 13.40% (1052ms)

mtrt 5.37% (320ms) 27.07% (2364ms)

jack 3.48% (152ms) 14.26% (756ms)

JavaGrande 3.68% (2275ms) 14.93% (11204ms)

SPECjbb 1.77% (2258*106/tput) 16.13% (24936*106/tput)

MST 4.38% (32ms) 27.38% (318ms)

Voronoi 7.87% (96ms) 30.09% (602ms)

Average 4.25% 21.37%

Figure 3.21: Summarized performance differences between our annotation-guided
switching system and the reference system for medium to large heap sizes (from 3x
the minimum for an application to 8x the minimum). The table shows the percent
degradation over the best- and percent improvement over theworst performing GCs
across medium to large heap sizes (the time in milliseconds that this equates to is
shown in parenthesis).

21% for medium to large heaps. In addition, the data shows theaverage performance

degradation over optimal selection. This degradation is due to the implementation

differences in our system that make it flexible, e.g., write barrier execution in unop-

timized code, boot image optimization, switch time (from MS, the default system,

89

Chapter 3. Application-Specific Garbage Collection

to the annotated system), etc. On average, our system imposes a 4% overhead over

optimal GC selection.

Note that the data in these tables does not compare our systemagainst a single

JikesRVM GC; instead, we are comparing our system against thebest- and worst

performing GC at every heap size. For example, for large heap sizes for the SPECjbb

benchmark, the SS system performs best. For small heap sizes, GMS performs best.

In this case, to compute percent degradation, we take the difference between execu-

tion times enabled by our system and the SS system for large heap sizes, and our

system and the GMS system for small heap sizes.

We also collected the same results for when we omit Mark-Sweep (MS) collec-

tion. MS works well for small heaps but is thought to implement obsolete technology.

On average across benchmarks and heap sizes, our system imposes 3% overhead over

the best performing GC at each point. In addition, our systemreduces the overhead of

selecting the worst performing collector by 21 – 34% (depending on the heap size).

Interestingly, when MS is not available in the system, the average degradationde-

creases. This is due to the fact that MS is the best performing collector in a number

of cases in which small and medium sized heaps are used.

Figure 3.22 presents the percent degradation overalways using the Generational/Mark-

Sweep Hybrid (GMS). GMS is thought to be the best performing, JikesRVM GC –

it is the default collector in JikesRVM version that we extended. However, our data

90

Chapter 3. Application-Specific Garbage Collection

GC Annot: Average

Degradation Over

Benchmark Generational Mark-Sweep

compress -0.37% (-28ms)

jess 2.82% (85ms)

db -14.17% (-3122ms)

javac 5.19% (373ms)

mtrt 2.32% (78ms)

jack 3.22% (147ms)

JavaGrande -0.19% (-87ms)

SPECjbb 0.95% (1.72*106/tput)

MST -44.66% (-827ms)

Voronoi -11.88% (-241ms)

Average -5.68%

Figure 3.22: Percent degradation of our system over the widely used GMS col-
lection. The negative values indicate that on average across heap sizes, our system
improves performance over GMS.

shows that it does not work well for all programs for all heap sizes. Our system

enables a 6% improvement (a negative degradation) over always using GMS across

benchmarks and heap sizes. This improvement varies across inputs: 14% and 12%

for db and Voronoi, to almost 45% for MST. Note, however, thatMST is a very short

running program – small differences in execution time (800ms) translate into very

large percent differences. The improvement in db translates to a benefit of over 3

seconds.

91

Chapter 3. Application-Specific Garbage Collection

Overall, these results indicate that our framework is able to achieve performance

that is similar to the best performing collector (in terms ofboth execution perfor-

mance and compilation overhead) by making use of the annotations to guide dynamic

switching between GCs. Moreover, when there is a switch pointfor programs, our

system can enable the best performance on average over any single GC for that pro-

gram. For cases in which there is no crossover between optimal collectors, our sys-

tem maintains performance similar to that of the reference system. However, since

the optimal GC varies across benchmarks, our system is able to perform better than

any single GC across benchmarks.

Automatic Switching

We next evaluate the effectiveness of automatically switching between GCs using

online program behavior and simple heuristics. Automatic switching requires the use

of method invalidation and OSR to maintain correctness given the use of aggressive

specializations: including/avoiding write barriers and inlining allocation routines –

for the currently available, underlying GC. Our system employs our new version of

OSR to enable both high performance and correctness.

The automatic switching scenario that we investigate addresses what happens

when there is suddenly a loss of memory availability, i.e., the OS reclaims memory

from the JVM for use by another, high-priority, application. In such a case, automatic

92

Chapter 3. Application-Specific Garbage Collection

switching can avoid OutOfMemory errors (or prevent excessive paging) by switching

to a GC that works well when resources are constrained. We investigated the case in

which memory was reduced to a point that the program can stillmake progress. For

such cases, by switching to a more appropriate GC, we can reduce the overhead of

garbage collection and improve performance.

We consider the situation in which after program startup, the OS reclaims memory

such that the resulting heap size is twice the size of the reserved space (live data)

following a garbage collection. We start with a maximum heapsize of 200MB. We

trigger heap resizing when the program steady state begins –which we approximate

by 100 thread switches (we use 500 for SPECjbb since it is a longer running program).

The switching system decides to switch when the GC load (defined in section 3.4)

remains high for multiple GC cycles (we use three in the results). In addition, the

system also switches when it observes that GCs are being triggered too frequently,

measured as the duration for which application threads execute between successive

garbage collections (we choose 300ms as the minimum application duration observed

over 3 GC cycles).

We present the performance of this scenario in Figure 3.23. Columns 2 and 3

show the time in seconds for execution for the clean (Base) system and our automatic

switching system (including all overheads). Column 4 shows the percent improve-

ment enabled by our system. On average, our GC switching system can improve the

93

Chapter 3. Application-Specific Garbage Collection

performance of the program given dynamically changing resource conditions by over

21%. For the SpecJVM98 benchmarks, we improve performance by 29% on average.

Interestingly, for some benchmarks, we found that Generational Mark-Sweep (GMS)

incurs more garbage collections compared to always executing the application with

Semispace. Yet, switching to GMS benefits the application since the total GC time

is less compared to Semispace, since on average, a single GMScollection runs for a

very short duration (as low as 9 milliseconds) compared to a typical Semispace col-

lection (150 to 200 milliseconds). compress and MST do not allocate enough for a

switch to be triggered. The right half of the table shows the OSR statistics. Column 5

is the number of OSRs, column 6 is the total OSR time in milliseconds, and column

7 is the heap size following the system memory reclamation.

In summary, automatic GC switching has the potential for enabling the appli-

cation to make progress and avoid OutOfMemory errors if resources become con-

strained during program execution. In addition, it improves performance under such

conditions by switching to a GC that imposes less GC overhead. Should memory

availability be restored, our system can switch to a collector that performs well for

large heap sizes, e.g., SS. Given the ability to dynamicallyand efficiently switch

between competing collection systems, we now have the ability to consider other

mechanisms (e.g., program phase and data locality behavior) for deciding when to

94

Chapter 3. Application-Specific Garbage Collection

Benchmark Base Autoswitch Pct. Impr. # OSRs OSR Time (ms) Heapsize (MB)

compress 7.65 7.65 0.00 -- -- 60
jess 7.23 3.89 46.20 10 28.46 28
db 31.29 23.16 25.98 1 1.39 24
javac 11.73 10.72 8.61 10 22.45 47
mtrt 24.77 9.11 63.22 2 58.35 24
jack 7.53 5.36 28.82 4 6.50 32
SPECjbb 175.10 158.70 9.71 0 0.00 100
JavaGrande 102.09 76.80 24.76 1 1.58 24
MST 0.94 0.94 0.00 -- -- 100
Voronoi 4.37 3.94 9.15 2 3.00 60

Average 37.27 30.03 21.65 4 15.22 50
Average Spec98 15.03 9.98 28.81 5 23.43 36

Figure 3.23: Performance of automatic switching when memory resources are sud-
denly constrained. Columns 2 and 3 show the time in seconds forexecution for the
clean (Base) system and our automatic switching system (including all overheads).
Column 4 shows the percent improvement enabled by our system.The right half of
the table shows the OSR statistics: number of OSRs, total OSR time in milliseconds,
and the heap size following the memory reclamation by the system.

switch and to which GC we should switch to. We plan to investigate such techniques

in future work.

3.6 Related Work

Two areas of related work show that performance due to the GC employed varies

across applications and that switching collectors dynamically can be effective. In [67,

78], the authors show that performance can be improved by combining variants of the

same collector in a single system, e.g., mark-and-sweep andmark-and-compact. and

semispace and slide-compact In [81], the authors show that coupling compaction with

a semispace collector can be effective. No extant system, toour knowledge, provides

95

Chapter 3. Application-Specific Garbage Collection

a general, easily extensible framework that enables dynamic switching between a

number of completely unrelated collectors.

Other related work shows empirically that performance enabled by garbage col-

lection is application-dependent. For example, Fitzgerald and Tarditi [40] performed

a detailed study comparing the relative performance of applications using several

variants of generational and non-generational semispace copying collectors (the vari-

ations had to do with the write barrier implementations). They showed that over

a collection of 20 benchmarks, each collector variant sometimes provided the best

performance. On the basis of these measurements they arguedfor profile-directed se-

lection of GCs. However, they did not consider variations in input, required different

prebuilt binaries for each collector, and only examined semispace copying collectors.

Other studies have identified similar opportunities [5, 101, 82]. IBM’s Persistent

Reusable JVM [55] attempts to split the heap into multiple parts grouped by their

expected lifetimes, employs heap-specific GC models and heap-expansion to avoid

GCs. It supports command-line GC policies to allow the user tochoose between

optimizing throughput or average pause time. BEA’s WeblogicJRockit VM [11]

employs an adaptive GC system that performs dynamic heap resizing. It also auto-

matically chooses the collection policy to optimize for either minimum pause time or

maximum throughput, choosing between concurrent and parallel GC, or generational

and single-spaced GC, based on the application developer’s choice. BEA’s white-

96

Chapter 3. Application-Specific Garbage Collection

paper [11], however, describes the system at a very high level and provides few details

or performance data. We were unable to compare our system against the JRockit, due

to its proprietary nature. To our knowledge, no extant research has defined and evalu-

ated a general framework for switching between very diverseGC systems, such as the

one that we describe. In addition, our automatic switching heuristic, albeit simple,

requires no user intervention and achieves considerable performance improvement.

On-stack replacement (OSR) was initially conceived of by theresearchers and en-

gineers of the Self-91 system [22]. The system employed OSR to defer compilation

of uncommon code until its initial execution, to increase optimization opportunities,

and to reduce compiled code space and compilation overhead.The authors in [47]

extended OSR to enable dynamic de-optimization of optimized code to facilitate de-

bugging; [47] describes the complete OSR implementation inSelf. Our OSR tech-

nique is similar to this one since optimized code is replacedand OSR occurslazily as

control is transferred back to executing methods (via return instructions). However,

in this prior work, de-optimization can occur (and hence debugging can commence)

only at two points in a method: method prologue and loop back-edges. As such, state

extraction is needed only at these points. Our system must extract state at these points

as well as all call sites (which include allocation sites) toenable OSR to occur at any

point in a method at which control is transferred to another executing thread.

97

Chapter 3. Application-Specific Garbage Collection

In Self-93 [48], the Self group used OSR to improve executionperformance

within an adaptively optimizing runtime system. The systemrecompiled hotspots and

used OSR to enable optimized execution of currently executing unoptimized meth-

ods; this process is also calledmethod promotion. State extraction for method pro-

motion is somewhat trivial since the method being replaced is unoptimized and all

variable values can be easily identified.

To enable deferred compilation, the Self system inserts unconditional calls that

invoke the OSR process at points that guard paths to uncompiled code. We refer to

these calls as OsrPoints. Recently, Fink et.al. [39] presented the implementation and

empirical evaluation of unconditional OSR in the Jikes Research Virtual Machine

from IBM T.J. Watson Research Center. The unconditional OSR instruction, i.e.,

OSRPoint, implementation is based on the Self implementation and is similar to other

deferred compilation systems [88]. Fink et al use the systemto implement profile-

guided deferred compilation and method promotion.

We extend this prior JikesRVM OSR implementation in this work. OsrPoints are

a restricted and simpler (in terms of their implementation)version of the general-

purpose OSR that we describe herein. These prior approachesrequire that the com-

piler insert explicit, “pinned”, instructions at the pointat which invalidation and OSR

mustoccur. Since our goal is to use OSR to correct for specialization assumptions in-

validated byexternal eventssuch as class loading, a change in the implementation of

98

Chapter 3. Application-Specific Garbage Collection

MRE services, or a user event, we cannot use unconditional OsrPoints – since we do

not know when such events will occur. Instead, we extend the JikesRVM OSR system

to enable state collection atanypoint at which assumptionsmightbe invalidated.

3.7 Summary

Managed runtime environments (MREs) are ubiquitous and provide safe and

portable mechanisms for the execution of type safe code. MREstypically run di-

verse type of applications ranging from scripting engines to databases and applica-

tion servers. Dynamic memory management, i.e. garbage collection (GC) is a key

component of MREs. Garbage collection plays an increasinglyimportant role in next

generation Internet computing and server software technologies.

The performance of collection systems is largely dependentupon application ex-

ecution behavior and resource availability. In addition, the overhead introduced by

selection of the “wrong” GC can be significant. To overcome these limitations, we

have developed a framework that can automatically switch between GCs without hav-

ing to restart and possibly rebuild the execution environment, as is required by extant

systems. Our system can switch between collection strategieswhile the program is

executing.

99

Chapter 3. Application-Specific Garbage Collection

We present specialization techniques that enable the system to be very low over-

head and to achieve significant performance improvements over traditional, non-

switching, virtual execution environments. We describe a novel implementation of

on-stack replacement (OSR) that can enable efficient replacement of executing code

at any point in the program at which a GC (and thus a GC switch) can occur.

We also present two techniques that exploit the efficient GC switching function-

ality. In particular, we describe and present the effectiveness of annotation-guided

(based on offline profiling) and automatic (based on online profiling) switching. We

empirically evaluate our system using a wide range of heap sizes, benchmarks, and

scenarios.

The text of chapter 3 is in part a reprint of the material as it appears in The Elsevier

Journal of Systems and Software (JSS), Volume 80, Issue 7 (2007). The dissertation

author was the primary researcher and author and the co-authors listed directed and

supervised the research that forms the basis for these this chapter.

100

Chapter 4

Scalable Memory Management for
Multi-Tasking Managed Runtime
Environments

The second part of this dissertation focuses on memory management for multi-

tasking persistent MREs. MREs commonly execute a single program with a single

MRE instance, and rely on the underlying operating system to isolate programs from

each other for security, as well as for resource management and accounting.

Unfortunately program isolation at the granularity of the virtual machine can sig-

nificantly restrict the performance of MREs that execute multiple, independent, pro-

grams concurrently. This execution model duplicates effort across MRE instances,

since it prohibits sharing of MRE services and internal representations, memory,

code, etc., across programs. Such redundancy increases startup time and memory

consumption and degrades overall system performance and scalability.

101

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

A multitasking implementation of an MRE can address these problems while

maintaining portability, mobility, and type-safety. We focus a state-of-the-art im-

plementation of a multi-tasking MRE, Sun Microsystem Labs’ Multi-tasking Virtual

Machine (MVM) [29] that executes multiple programs within asingle operating sys-

tem process. Co-locating programs in the same address space simplifies the virtual

machine implementation through sharing of the runtime representation of programs

and dynamically compiled code. Such sharing also avoids duplicated effort across

programs (e.g. loading, verification) and amortizes runtime costs, such as dynamic

compilation, over multiple program instances. Prior work on the MVM [27], shows

how a multitasking design reduces startup time and memory footprint, and improves

performance over a single-program MRE approach.

However, prior work on multi-tasking MREs does not address the performance of

concurrent workloads, i.e., multiple applications executing simultaneously. Multi-

tasking MREs are designed to run multiple applications simultaneously, and no prior

work has shown conclusively that multi-tasking can outperform single-tasking, while

maintaining similar memory footprint for concurrent application execution. In addi-

tion, the design of the state-of-the-art MVM MRE suffers fromseveral drawbacks,

such as lack of performance isolation in the memory management subsystem and im-

precise tracking of heap resources. Garbage collection triggered by any application

pauses all applications. Further, a multi-tasking MRE is designed to have a lifetime

102

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

that is longer than any single application. The MVM suffers from the inability to free

a terminated application’s resources without having to pause and garbage collect all

applications executing in the MRE.

We present theMulti-Tasking Memory Manager(MTM) which combines multi-

tasking memory management techniques to provide performance isolation, per-application,

scalable generational garbage collection, GC-free reclamation of terminated appli-

cations’ resources, per-application control of memory subsystem parameters, while

constraining memory footprint. We have prototyped MTM in Sun Labs’ state-of-the-

art Multi-tasking Virtual Machine (MVM). We show that MTM enables multi-tasking

to outperform single-tasking MREs and that multi-tasking isa viable approach for ex-

ecuting concurrent applications. We describe our approachin detail below.

4.1 Application-Aware Memory Management for Multi-

Tasking Managed Runtime Environments

The current MVM system [92] implements a simple memory management system

in which a single heap and management policy is shared acrossall applications. Such

sharing does not isolate applications from interfering with one another (in terms of

performance), and restricts the scalability of the system.Moreover, there is no per-

application control over GC parameters or reclamation of heap resources upon appli-

103

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

cation termination without requiring an expensive, full heap GC. Extant multi-tasking

approaches (e.g. [26]), that do not employ MRE support, impose similar restrictions.

An alternative approach is to assign a separate heap space (and possibly different

GC policies) to each application. Using such an approach complicates the memory

management system, restricts the opportunistic use of reserved idle memory by other

applications, and can limit the number of concurrent applications that the system can

support.

We present a design that addresses these challenges for Sun Microsystems’ MVM [92].

Key to our design is an organization of the heap that enables (i) per-application perfor-

mance isolation for the memory management system, (ii) independent allocation and

collection of young objects, and (iii) GC-free memory reclamation upon application

termination.

The design follows a hybrid approach that divides the heap into application-

private and shared sections, so that we confine a majority of GC activity to application-

private sections. This hybrid organization of the heap works particularly well with

generational GC algorithms that divide the heap into multiple generations. Genera-

tional GCs segregate objects by age and concentrate their GC efforts on the youngest

generations (i.e., the generations holding the youngest objects) by exploiting the weak

generational hypothesis [94], which states that most objects die young.

104

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

In our implementation, the heap consists of multipleindependent young genera-

tions (one per running application), and a single old generation that all applications

share. When an application enters the system, it is given a private young generation

that the system sizes according to parameters specified by the application. An ap-

plication allocates primarily from its young generation. When this area is full, the

system performs aminor collection for that application. During a minor collection,

the GC system moves (promotes) mature live objects to the shared old generation.

The shared old generation efficiently tracks the regions that each application con-

sumes usingold generation regions. An application uses its old generation regions

both for object promotion during minor collections and for direct (pre-tenuring) al-

location of objects. Per-application old generation regions provide numerous advan-

tages – they cluster objects of the same application together in the shared old gen-

eration, they ease accounting of space consumed by applications in the shared gen-

eration, they enable immediate reclamation of old generation space without garbage

collection upon application termination, and they help limit the amount of old gener-

ation space that the system must scan to identify roots during minor collection. In ad-

dition, by combining per-application young generations with old generation regions,

we eliminate interference between mutators and collectorsof different applications.

As a result, our system is able to perform minor collection for an application, concur-

rently with the execution of mutators of other applications.

105

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Although simple, the approach of sharing a generational heap between dynami-

cally varying numbers of independent applications presents several problems. First

is the absence ofperformance isolationwith respect to garbage collection. That is,

garbage collection affects all applications at once, and has a cost proportional to the

live objects of all applications. A second problem is the inability to immediately re-

claim the heap space consumed by an application, upon its termination. Resource

reclamation requires a full garbage collection, which affects all applications. Both

problems adversely impact scalability and response time.

The following section presents a generational garbage collection system that at-

tempts to better address the requirements of MVM with a combination of three fea-

tures – per-application independent young generations, per-application old generation

regions, and application-concurrent scavenging.

4.1.1 Hybrid generational heap

The first element of the design builds on [27], by providing each application

with a private young generation, while sharing a single old generation between all

applications. This hybrid approach attempts a compromise between sharing the heap

between all applications and giving each application an independent heap. There are

several reasons for this choice.

106

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

First, the young generation is typically much smaller than the old generation.

Thus, having one per application young generation and sharing the tenured space

makes better use of heap resources, by avoiding committing too much memory per

application, and unnecessarily limiting the degree of multi-tasking. Old generation

space is allocated to an application on demand, either during minor collection, or

when pre-tenuring objects.

Second, the vast majority of allocations and most garbage collections occur over

the young generation. Thus, an independent young generation shields an application

from most heap-related interference, especially varying allocation rate, tenuring deci-

sions, and interleaving of objects from different applications. Also, minor collection

pauses are proportional to the live set of objects of a given application, as opposed to

all applications.

Third, key parameters for generational garbage collection, such as young gen-

eration size, age-based tenuring policy, etc., can be controlled on a per-application

basis. This enables users to specify an appropriate application-specific set of tuning

parameters for each application.

Figure 4.1 depicts our layout for per-application young generations. A table,

called the young generation virtualizer, maps the application identifier to the cor-

responding young generation. Each young generation has thesame layout as in the

original HotSpot JVM, with the notable exception that a young generation may con-

107

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

sist of several discontinuous regions of memory. Specifically, space for young gener-

ations is allocated from a pool of fixed-sized chunks, the size of which is parameter-

izable and set at 2MB by default. On startup, an application is allocated an integral

number of chunks corresponding to the size of the young generation requested (or

the default if none is specified). The chunk manager attemptsto allocate contiguous

chunks when possible, otherwise, it assigns additional edens to the young generation,

one per region of contiguous chunks allocated from the pool (similarly to the surplus

memory in [27]). The pool manager may re-arrange the chunks allocated to a young

generation to reduce the fragmentation of its eden. Such re-arrangement takes place

as necessary following minor collection, when all the live objects of the eden space

have been evacuated. This organization also allows us to dynamically change the size

of a young generation at runtime.

The to and from spaces are typically much smaller than the eden space. For

simplicity, the current prototype limits their size to thatof a single chunk.

As in the original HotSpot JVM, threads are assigned one or more thread local

allocation buffers (TLABs) so that they can allocate objectswithout synchronization

with other threads. The TLAB of a thread is allocated from theeden of the young

generation of the thread’s application.

Per application young generations provide some degree of performance isolation

– the copying cost of scavenging is proportional to the number of live objects of the

108

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

generation
virtualizer

chunk
table

eden spaces

0

1

2

n

tasks

Figure 4.1: Application independent flexible young generations. A generation vir-
tualizer maps applications to young generations. Each generation comprises one or
more eden spaces, each of which consists of an integral number of contiguous chunks
allocated from a pool. Eden spaces of an application are linked together. Chunks can
be added or removed dynamically.

application that triggered the scavenge; further, only mature objects of that applica-

tion are promoted to the shared old generation.

However, per application young generations alone are insufficient for complete

performance isolation. All applications must still be stopped at a safepoint in order

for the scavenger to have a consistent view of the old generation. In particular, consis-

tency of the remembered set of references to young generations must be guaranteed,

in order to precisely locate references from the old generation, to the young genera-

tion being scavenged. Note, however, that applications arestopped at the safepoint

only for the duration of the scavenge of the live objects of a single application, which

improves over a design that shares a single young generationbetween applications.

Another concern is that per application young generations do not enable immedi-

ate reclamation of all heap space consumed by a terminated application. The young

109

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

generation can only be reclaimed when there are no longer anyreferences to it from

the old generation. Otherwise, it may lead to situations where an obsolete pointer

from the old generation may be mistaken for a valid pointer ifthe reclaimed space

has been re-allocated for the young generation of another application. For this reason,

young generation space can only be freed once all such references have been cleared.

This can be done opportunistically at any scavenge, while scanning the remembered

set. In addition, space consumed by a terminated application in the old generation

can only be reclaimed upon a full collection of the old generation.

To address the problems listed above, we complement per application young gen-

erations with old generation regions. Regions allow instantaneous, collection-less,

reclamation of all heap space (i.e., both young and old) consumed by a terminated

application. Regions also help to simplify synchronizationissues towards efficient

support for application-concurrent scavenging.

4.1.2 Per-application Old Generation Regions

Immediate, collection-less reclaiming of the heap space used by a terminated ap-

plication can be obtained by precisely tracking old generation regions in which ob-

jects allocated by each application reside. With this knowledge, young generation

collection can ignore all regions of the old generation thatdo not contain objects of

the application being scavenged, since these are not required to determine roots for

110

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

collection. Since no regions of old generation that may contain obsolete references

to young generations of terminated applications will be scanned, young generations

of terminated applications can be re-used immediately, without GC.

The old generation space used by a terminated application can be re-used im-

mediately without any collection as well. The only references to regions used by

a terminated application originate from the tables used to mediate access from the

shared part of the runtime representation of classes storedin the permanent genera-

tion, to their application-private parts located in the oldgeneration. Thus, the regions

corresponding to a terminated application can be immediately re-used, if the GC ig-

nores entries of the tables corresponding to terminated applications. This, however,

prevents re-use of the identifiers of terminated applications. These identifiers will

eventually must be reclaimed by cleaning corresponding entries in the global appli-

cation table. The cleaning of these entries can be done opportunistically on the next

GC that requires scanning the application table, or by a separate background thread.

Note that cleaning itself does not require any synchronization with applications.

Precisely identifying which regions of the shared old generation hold objects of a

terminated application is key to the collection-less reclamation of the heap space used

by the terminated application as described above. Trackingindividual objects would

likely be prohibitively expensive. Instead, we propose per-application old generation

regions ,i.e., a contiguous region of the old generation assigned to a application. Old

111

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

generation regions are primarily used during scavenging ofthe young generation of

an application when promoting young objects to the old generation. They are also

used for the occasional direct allocation of objects in the old generation, either be-

cause the object does not fit in the young generation, or as a result of a pre-tenuring

decision. For example, as described previously, the application-private representa-

tion of a class is always pre-tenured. The size of a region canbe application-specific

and adjusted dynamically. It is generally chosen to satisfyseveral scavenges (promo-

tions). Allocation in a region involves increasing a cursorto the first free byte in the

region (bump-pointer). When mutator threads allocate in a region, synchronization

between threads is required, since the region of an application is shared between all

threads of the application.

Figure 4.2 illustrates old generation region management. Each application is as-

sociated with a current region and a list of full regions. An initial region is allocated

to an application at startup, prior to the first allocation bythe application. When a

region is full (typically during a scavenge), its address isrecorded in the application’s

list of full regions, and a new one is provided to the application.

If an object does not fit in an old generation region, space is allocated directly from

the old generation, either from a previously freed region, or from the free space at the

end of the old generation (beyond the last region). In both cases, the object is recorded

as a full region in a list corresponding to the application performing allocation. The

112

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

list of full regions, thus, precisely tracks regions of the old generation used by an

application.

When an application completes, its application identifier isadded to a list of ap-

plications whose application table entries can be freed andre-used. The application’s

current region and full regions are added to a global list of free regions, and become

immediately available for re-use by other applications. Young generation chunks of

the application are returned to the global pool, and are immediately available for re-

use by the young generations of other applications (see Section 4.1.1).

Adjacent free regionsPare coalesced in a single region. Free regions at the end of

the old generation are removed from the list and the pointer to top of the old genera-

tion is updated accordingly, as illustrated in Figure 4.3. Apart from limiting the space

overhead of tracking regions, coalescing can increase the size of contiguous free re-

gion areas, consequently limiting fragmentation and further reducing the frequency

of full GC.

regions have several interesting properties. First, they improve isolation between

applications, since most allocation in the shared old generation is performed from a

region that is private to one application, eliminating a point of interference between

applications. Second, they efficiently keep track of the oldgeneration space used by

applications. Tracking is relatively inexpensive and onlyinvolves adding a region to

a list of full regions when a region is full, or when an object larger than the current

113

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

old generation

task 1 task 2

free PABsper-task PABs

allocation top

A

B

C

D

task 3

Figure 4.2: Example of region management & tenured space reclamation atapplica-
tion termination without a full GC. (A) Initial configuration. (B) Both applications
1 & 2 have performed promotions and their respective full region list are now non-
empty. (C) Application 1 terminates and its set of full regions is added to the global
free list. (D) Application 3 enters the system and application 2 & 3 start using space
allocated from the region free list.

region capacity is allocated. This precise tracking enables collection-less reclamation

of both young and old generations space used by terminated applications. Further,

it optimizes the identification of references from the old generation to a particular

young generation (as will be described later). Last, it enables precise accounting of

space consumed by applications.

Maintaining regions Across Major GCs

Reclamation and reuse of regions mitigates full heap GC, but isnot a replacement

for it. The old generation may fill up eventually, requiring collection. A sliding

114

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

A

task 1 task 2

old generation

free PABs

B

task 1

old generation

free PABs

allocation top

allocation top

Figure 4.3: Example illustrating shrinking of old generation footprint upon applica-
tion termination.

mark-compact collector is used for the old generation. The collector may reclaim

garbage in regions and compact live objects inside regions,thus invalidating their

original boundaries. Consequently, old generation collections may require adjustment

to regions boundaries. The following describes how this adjustment is performed

(Figure 4.4).

The old generation mark-compact GC is a standard 4 phase compacting collec-

tor [74] involving the following phases.

• Mark live objects.

• Compute new addresses for live objects.

• Scan objects and adjust references to point to the new locations.

• Relocate (copy) objects to their new locations.

115

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Adjustment of region boundaries can be performed between the second and third

phases. During the second phase (computing new addresses),the GC stores the new

address for a live object that will be relocated, in the object header. To compute new

boundaries for a particular region, we locate the address ofthe first live object in the

region. If no live object is found, this region can be droppedfrom the corresponding

application’s list. If a live object is found, we read its newaddress from the header,

which now becomes the new start of the region. To adjust the end of a region, we note

that the first live object beyond the end of the region would bemoved to a location

right after the new end of the region. The new end of the regionis therefore the new

location of the first live object past the current end.

Note that locating the first live object from either the startor end of a region can

be expensive. However, we make use of an optimization that the existing garbage

collector itself uses to quickly skip over dead objects. During the second phase of

mark-compaction, the GC records the address of the next liveobject in the header

of the first dead object in a group of contiguous dead objects.In the best case, the

current boundary of an old generation region is the first deadword in a group of dead

objects. However, this may not always be the case, hence, we may need to iterate

over successive dead objects until we find the next live (GC marked) object. To avoid

excessive scanning, it may be necessary to limit the number of dead objects scanned,

and discard the region entirely if this number is over a threshold. In practice, we

116

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

adjust_promotion_area(PromotionArea pa) {
pa.start = adjust(pa.start);
pa.end = adjust(pa.end);
if(pa.start == pa.end) pa = NULL;

}
Word* adjust(Word* q) {

if(q < first_dead) //GC maintains address of
return; //first dead object found in

//phase 2 of mark-compact
new_q = NULL;
while(q < end) { //end here is the end of old gen bef ore GC

new_q = forwaring_word(q);
if(is_gc_marked(q)) {

return new_q; //forwarding word is new location
} else {

if(new_q != NULL) {
//fast case in determining next live object
//q happens to be the first dead object of a
//clump of dead objects: next live object is new_q
q = new_q;
} else {
//q happens to be in the middle of a clump of dead
//objects. Iterate till we find the next live objec t.
q = q + size(q);
}

}
}
//we reached the end without finding the new locati on for q
if(q > new_top) //new_top is the end of the last live

return new_top; //object after GC
return NULL;

}

Figure 4.4: Region adjustment at full GC.pa is the region to be adjusted.

find that this overhead is not excessive. Note that discarding regions does not affect

correctness.

Optimizing Scavenging

Scavenging uses a card table [21, 50, 45] to identify references from the shared old

generation to per-application young generations, in orderto identify reachable young

objects. In the presence of a large number of dirty cards belonging to different appli-

cations, scanning the entire set of dirty cards at each scavenge might prove expensive.

The existing card table implementation does not associate cards with applications and

hence, every scavenge requires scanning all dirty cards. Having mutators record ap-

117

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

plication information in cards would add an additional costto the write barrier, thus

negating an important advantage of using a card table. In addition, extra space per

card would be needed to record a application identifier, or a list of application identi-

fiers.

Our scheme of tracking per-application old generation usage via regions can be

readily used to scan dirty cards of only the application initiating young generation

collection. This substantially reduces the number of cardsbeing scanned. During

card table scanning, we only iterate over the dirty cards that correspond to the list of

regions for the application that initiates GC.

4.1.3 Application-Concurrent Scavenging

By combining independent young generations and old generation regions, we im-

plement a mechanism that enables mutator activity and minorcollections to be per-

formed concurrently. We refer to this mechanism asmutator-concurrent scavenging.

Mutator-concurrent scavenging requires maintaining consistency while scanning

of the old generation during promotion. In order to maintaina consistent view of the

old generation, changes to the old generation during directallocation must not affect

old generation objects accessed during scavenging. This requires that both object

allocation and initialization of the object be done atomically in order for the collector

to only trace objects with valid class information. Guaranteeing the atomic behavior

118

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

of these two operations cannot be done efficiently with non-blocking synchronization

(in contrast to allocation alone which can be implemented with a single compare-

and-swap operation, i.e.cas). Other synchronization mechanisms would impose a

prohibitive overhead on allocation.

regions provide a synchronization-free solution since we need only to scan application-

private regions during scavenging. Other applications maydirectly allocate in their

own private regions without affecting minor collection.

Key to mutator-concurrent scavenging is a modified synchronization mechanism

that only pauses threads that belong to the application thattriggers collection (thetrig-

ger henceforth), during scavenging. This process first obtainsa globalThreadslock

so that no new threads can be started, or existing threads terminated while the run-

time is negotiating a safepoint. We then count the number of threads belonging to the

trigger that are running, and iterate until this number reaches zero.

In the MVM, threads periodically poll (access) a constant reserved address that

does not belong to the application heap. This address lies ona protected page and

accessing this page results in an exception. The exception handler is responsible

for blocking threads for a safepoint operation. We make polling application-aware

by making threads access an application-private polling page. When a non-global

safepoint is initiated, we set only the polling page for threads belonging to the trigger

119

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

begin_per_task_safepoint {

Threads_lock->lock(); //no threads should terminate or start

Safepoint_lock->lock(); //only 1 safepoint at a time

∀ t ∈ Threads

if wants_safepoint(t) { //t belongs to initiator

++running;

protect(t.polling_page);

}

while(running > 0) {
∀ t ∈ Threads

if wants_safepoint(t) {
//wait until t is waiting on
//Scavenge_lock
if(!is_running(t))

--running;

}

//safepoint reached

Safepoint_lock->unlock();

Threads_lock->unlock();

}

end_per_task_safepoint {

Threads_lock->lock(); //no threads should terminate or start

Safepoint_lock->lock(); //only 1 safepoint at a time

∀ t ∈ Threads

if wants_safepoint(t) { //t belongs to initiator

unprotect(t.polling_page);

t->restart();

}

Scavenge_lock->notify_all(); //wake up all threads waiting

// on the Scavenge_lock

Safepoint_lock->unlock();

Threads_lock->unlock();

}

Figure 4.5: Per-application safepointing;beginper applicationsafepointinitiates
a safepoint for a single application andendper applicationsafepointends it and
resumes mutators for that application.

to an address that corresponds to a protected page. An exception will be triggered for

these threads when they poll for a safepoint.

The exception handler causes threads to wait on aScavengelock, which will only

be released when scavenging is complete. Note that only threads belonging to the

trigger will wait on theScavengelock. When all such threads are paused, the number

of threads running drops to zero, and GC commences. Threads belonging to other

120

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

applications may continue to allocate, however, they may not perform a GC while

the current GC is in progress. Releasing a safepoint is the reverse of this process.

The private polling page for blocked threads is set to an address belonging to an

unprotected page, and theScavengelock is released. This process is illustrated in

Figure 4.5.

4.1.4 Evaluation

To evaluate our extensions to MVM memory management, we performed a num-

ber of empirical experiments. We gathered our results usinga dedicated dual 1.5GHz

UltraSPARC system, running Sun Solaris 10. The MVM implementation that we

extended in this work is based on Hotspot 1.5. We present results for a number of

SpecJVM98 [85] and Dacapo [31] benchmarks.

To evaluate the performance of our system, we first present throughput and re-

sponse time for short running applications, when executingconcurrently with a GC-

intensive program. We then consider throughput as well as the overall performance

of concurrent, homogeneous applications. Finally, we analyze the impact of our tech-

niques on the number of GCs that the system performs as well as the time spent in

GC.

In the first set of results (Figures 4.6 and 4.7), we show the throughput and re-

sponse time improvement enabled by independent young generations and regions

121

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0

5

10

15

20

25

30

jess jack ps Average

Long running program

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t (
%

)

1
2# short program instances

0

2

4

6

8

10

12

14

16

18

jess jack ps Average

Long running program

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t (
%

)

1
2# short program instances

Figure 4.6: Throughput improvement enabled by independent young generations &
regions for short running applications (javac and javap) executing concurrently
with 3 GC-intensive applications:jess , jack andps . The top graph is forjavac
and the bottom forjavap . The first bar in each set of bars shows a single instance
of the short running program with the GC intensive, long running program, and the
second denotes 2 instances of the short program.

over a system with a shared young generation. In this set of experiments we execute

multiple serial instances of a short running application, concurrently with a single

instance of a GC-intensive application in a fixed time interval. The goal is to measure

the number of serial instances of the short running application that can be executed

with the shared young generation system, versus the number of instances of the same

application executed with an implementation that includesindependent young gener-

ations and regions. We also report response time (average application time) for the

122

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0

5

10

15

20

25

jess jack ps Average

Long running program

Re
sp

on
se

 ti
m

e
im

pr
ov

em
en

t (
%

)

1
2# short program instances

0

2

4

6

8

10

12

14

16

jess jack ps Average

Long running program

Re
sp

on
se

 ti
m

e
im

pr
ov

em
en

t (
%

)

1
2# short program instances

Figure 4.7: Response time improvement enabled by independent young generations
& regions for short running applications (javac andjavap) executing concurrently
with 3 GC-intensive applications –jess , jack andps . The top graph is forjavac
and the bottom forjavap . The first bar in each set of bars shows a single instance
of the short running program with the GC intensive, long running program, and the
second denotes 2 instances of the short program.

short running application. The goal of these experiments isto show the throughput

increase (measured as the extra number of serial instances of the small application

we can execute), and the response time improvement, of our system versus the shared

young generation system. The short applications we consider arejavac & javap

with small command-line inputs (which we can provide on request), and the GC-

intensive applications arejess , jack andps .

123

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Bmark
Minor Major ET GCT ET GCT ET GCT ET GCT ET GCT

(s) (ms) (s) (ms) (s) (ms) (s) (ms) (s) (ms)
jess 146 2 4.59 302 6.17 608 9.58 1001 12.65 1346 16.60 1893
raytrace 76 2 2.82 257 3.76 533 5.74 765 7.25 900 8.98 1157
db 38 2 18.53 255 21.85 638 33.25 1000 43.89 1809 57.16 4164
mpeg 1 1 8.73 50 8.89 95 13.44 149 18.17 190 22.46 272
jack 99 8 4.16 649 5.39 939 7.64 1690 9.38 1706 14.17 2322
ps 217 0 26.67 118 43.96 477 57.67 817 74.59 1272 90.84 1878
jython 142 0 14.32 222 24.75 1408 32.73 2246 42.31 2785 51.22 3446

GCs
Number of tasks

1 2 3 4 5

Figure 4.8: Data for the Base MVM system (shared new generation). Columns 2
& 3 show the number of minor (scavenges) and major collections respectively for
a single instance of the benchmark in Column 1. The rest of the columns show
execution time (ET) in seconds & GC time (GCT) in millisecondsfor 1, 2, 3, 4 and 5
concurrent instances, respectively, of the programs listed. Figures 4.9 and 4.11 show
improvement relative to this data.

The results show that in all cases, we enable a significant throughput increase and

a response time improvement over a shared young generation system. Forjavap ,

on average, throughput improvement seems to increase with two concurrent short

applications, over a single instance of that application. This is due to the fact that

javap is very short running and does not exercise GC, and, two instances can be

optimally scheduled on our two processor system. Forjavac , throughput gains

remain almost the same with two concurrent instances since it does perform stop-the-

world GC. Figure 4.7 shows similar trends for the response time. Response time for

javac is improved by over 15%, while,javap shows a 8% to 12% improvement.

In summary, the impact on the execution of a short running program that concur-

rently executes with another program that shows significantly heap usage, is visibly

reduced. This is an effect of performance isolation provided by per-application young

generations and fast tenured generation reclamation provided by regions.

124

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

We next evaluate the overall performance of our mutator-concurrent scavenging

system for a concurrent workload. Figure 4.8 shows data for the original MVM,

which is configured with a shared new generation (we henceforth refer to this con-

figuration as thebase). This includes the number of minor and major GCs, total

execution time and GC time for up to 5 concurrent homogeneousinstances of the

benchmarks.

Figure 4.9 shows the percent improvement in the end-to-end performance enabled

by mutator-concurrent scavenging over the base MVM. The mutator-concurrent scav-

enging configuration includes the old generation regions implementation. The bars

represent homogeneous concurrent applications, with one to five applications (left to

right bars).

Mutator-concurrent scavenging enables a 10-12% performance improvement for

this configuration, across benchmarks on average.jess and jack show the most

improvement (over 20% in many cases), since they involve significantly more GC

activity compared to other benchmarks.raytrace also shows similar behavior.

This is apparent from the data in Figure 4.8.

In the base system all applications must pause for a minor collection triggered

by any application, hence applications that cause more GC activity scale poorly. Al-

thoughps causes a large number of scavenges, the improvement is less pronounced

as a percentage of the total execution time due to the fact that the program is long run-

125

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

-10

-5

0

5

10

15

20

25

30

jes
s

ra
yt

ra
ce db

m
peg jac

k ps

jyt
hon

Ave
ra

ge

Benchmark

To
ta

l E
xe

cu
tio

n
Ti

m
e

im
pr

ov
em

en
t (

%
)

Figure 4.9: Total end-to-end performance improvement enabled by mutator-
concurrent scavenging over the base MVM for homogeneous benchmark instances.
Bars indicate increasing number of applications (from 1 to 5).

Bmark
Minor Major Minor Major Minor Major Minor Major Minor Major

jess 9 -2 18 -3 26 -4 34 -4 42 -4
raytrace 5 -1 9 -2 76 -1 95 -2 155 -1
db 2 -1 25 0 57 -1 105 -1 136 -4
mpeg 0 0 0 0 0 0 0 0 0 0
jack 6 -9 11 -9 16 -15 80 -11 26 -11
ps 14 0 25 -1 36 -1 48 -1 58 -2
jython 8 -1 16 -11 23 -15 31 -15 38 -16

Change in # GCs
1 2 3 4 5

Figure 4.10: Change in the number of GCs (minor and major) with mutator-
concurrent scavenging over the base MVM for 1 thru 5 instances of the same
benchmark.

ning (over a minute). We believe thatmpegdoes not make significant use of the heap

and thus, does not reap the benefits from young generation isolation or concurrent

allocation techniques. In fact, performance is slightly degraded for this benchmark

due to an increase in GC time (explained below).

We next investigate the impact of our techniques on GC activity. Figure 4.10

shows the change in the number of scavenges and full GCs over the base MVM, for

126

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

-120

-100

-80

-60

-40

-20

0

20

40

60

80

jes
s

ra
yt

ra
ce db

m
peg jac

k ps

jyt
hon

Ave
ra

ge

Benchmark

G
C

 T
im

e
im

pr
ov

em
en

t (
%

)

Figure 4.11: Total GC time improvement (minor + major) enabled by mutator-
concurrent scavenging over the base MVM. Bars indicate increasing number of ho-
mogeneous applications (from 1 to 5).

one to five concurrent homogeneous applications, for each benchmark. We observe

that with mutator-concurrent scavenging, the number of scavenges slightly increases

in a majority of the programs. The reason for this is that in the base system, a scav-

enge copies live objects from the entire young generation. Consequently, at the end

of the scavenge, the young generation is empty. However, with mutator-concurrent

scavenging, promotion is isolated and only the trigger’s objects will be promoted. At

the end of the scavenge, only one of the young generations will be empty, while the

rest may yet trigger a GC since they are allocating independently. However, we per-

form less work during any single scavenge. Note thatmpeg shows no change in the

number of GCs.

127

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Figure 4.11 shows the percentage change (improvement) in GCtime for our im-

plementation versus the base MVM. These figures show a reduction in full GCs with

independent scavenging, and a consequent reduction in total GC time, ranging from

9% to 19%. Since, the mutator-concurrent scavenging configuration also includes

regions, as applications terminate, other applications start using the terminated appli-

cations’ freed regions, thus leading to full GC avoidance. Full GCs are much more

expensive than scavenges, hence, reduction in full GCs results in a sizeable reduction

in overall GC time. Cases in which we are unable to avoid full GCs, do not show an

improvement in GC time. In fact, time spent per garbage collection in our system is

higher than the base MVM, leading to a performance degradation when the number

of GCs is not reduced. This is due to the extra time spent in iterating over a discontin-

uous set of regions in old generation. This is especially visible in the case ofmpeg,

db , andps . Note, however, that GC time is not an indication of overall concurrent

system performance.

To summarize, in the base system, every concurrent application will pause on ev-

ery GC, and therefore experience degraded performance whichindependent scaveng-

ing significantly improves upon. Yet mutator-concurrent scavenging does not impact

total GC time adversely although more scavenges are performed than with a shared

new generation. Coupled with reclamation of promotion areas, mutator-concurrent

128

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

scavenging reduces the number of full GCs, which are generally more expensive than

scavenges, resulting in an improvement in total GC time in most cases.

4.2 Discussion

Application-aware GC is thus able to achieve significant performance improve-

ment for concurrent applications, as well as system throughput and scalability when

most GC activity is confined to the young generation.

However, old generation collection is performed across alltasks. When applica-

tions that make significant use of the old generation triggeran old generation GC,

this causes all applications to pause and a global mark-compact GC cycle to execute.

Old generation GC across all old generation regions is proportional to the size of the

entire old generation. Further, the old generation objectstend to be longer lived. If

old generation GC activity constitutes a significant portion of the workload’s execu-

tion time, performance may suffer. Further, collecting oldgeneration regions that are

non contiguous (by design) is challenging – sliding mark-compact GC assumes that

the heap memory being collected is contiguous.

In the next section, we motivate the need for and present an old generation GC

that combines two different and diverse GC algorithms to achieve high performance,

129

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

while maintaining a low footprint for concurrent workloadsthat make significant use

of the old generation.

Figure 4.12 shows the results from a set of experiments that we have conducted

to compare MVM [28, 83], with the per-application young generation GC extensions

from Section 4.1, with the single-tasking JVM (the Sun Microsystems HotSpot vir-

tual machine version 1.5.0) from which the MVM is derived. The programs are a

subset of the benchmarks that we use for our evaluation (thatwe describe in detail

in Section 4.3.2) that exhibit significant garbage collection (GC) activity for the old

generation (the longer-lived region). The figure shows thatthe MVM significantly

degrades execution performance for concurrent workloads (2, 5, and 10 concurrent

program instances in this graph), despite the significant opportunity for sharing (i.e.

multiple versions of the same program are executing concurrently).

The MVM prototype that we use in this study (cf. Section 4.1) achieves per-

formance isolation for the young generation across applications, reclamation of an

application’s heap memory upon task termination without having to perform GC,

per-application accounting of heap usage, and per-application control of heap size

settings. However, the extensions described in Section 4.1still lack complete GC

performance isolation, resulting in poor performance versus MVM’s single-tasking

counterpart for concurrent workloads that fully exercise the memory management

system. The key impediment to scalability is the lack of fullsystem GC isolation

130

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

-80

-60

-40

-20

0

20

40

db
ja
va
c

an
tlr fo

p

lu
in
de
x

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

2 5 10

Number of homogenous instances

per benchmark

Figure 4.12: Performance of a state-of-the-art multi-tasking MRE (MVM) with per-
application young generation GC versus multiple instancesof the Java HotSpot vir-
tual machine forconcurrentexecution of five community benchmarks. No prior work
has performed such an evaluation. Although per-application young generation GC
significantly improves performance over prior state-of-the-art, for programs that in-
volve significant old generation GC activity, performance suffers due to the choice of
an unsuitable old generation GC algorithm.

and an unsuitable old generation GC – sliding mark-compact GC that performs com-

paction over the entire old generation.

To address these issues, we propose a novelhybrid GC technique for the old gen-

eration that leverages the synchronization mechanism developed earlier (Section 4.1).

Our hybrid GC combines two well-known GC algorithms – mark-sweep GC and

copying GC in order to achieve high performance, yet, a low memory footprint.

This hybrid GC (i) maintains the constraint that all live objects within a region be-

long to the same application (which is key to GC isolation andthe accuracy of track-

ing per-application heap usage), (ii) ensures that the aggregate footprint of the multi-

tasking MRE is small for concurrent workloads, and (iii) enables space reclaimed

131

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

through opportunistic evacuation of objects from sparselypopulated regions of one

program to be made available to other programs. To achieve these goals,MTM per-

forms full collection of a single program’s heap in isolation with co-located concur-

rent programs by combining fast, space-efficient, mark-sweep collection for regions

with little fragmentation, with copying collection for regions with significant garbage

and fragmentation.

We have integrated hybrid GC with the MVM prototype described in Section 4.1,

and have used it to compare the execution of multiple programs executed using a sin-

gle multi-tasking MRE versus using multiple concurrent instances of single-tasking

MREs (one per program). Two metrics are particularly interesting with respect to the

scalability of the two approaches: the overall footprint when executing multiple pro-

grams, and the execution times of programs. We demonstrate that with application-

aware memory management and hybrid GC, on average,MTM achieves better over-

all execution times and footprint versus its single-tasking counterpart, for concurrent

workloads using a number of community benchmarks. Moreover, MTM is able to do

so while maintaining the other benefits of running with a multi-tasking MRE.MTM

outperforms the HotSpot single-tasking MRE by up to 14% on average for concur-

rent instances of the same program (homogeneous), and by up to 16% on average

for workloads with a mix of programs (heterogeneous).MTM achieves up to 41%

reduction in footprint on average for homogeneous workloads, and by up to 33% on

132

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

average for heterogeneous workloads over the single-tasking MRE. Finally, we show

thatMTM outperforms an extant state-of-the-art multi-tasking MRE by 10% to 22%

for concurrent workloads.

In summary, in this section, we describe,

• the first study that compares multi-instance JVM execution versus multi-tasking

execution for concurrent program execution;

• a complete memory management system that provides full GC performance

isolation for multi-tasking MREs;

• the design and implementation of a hybrid, multi-tasking aware GC that com-

bines GC approaches that are well understood, i.e., mark-sweep and copying, to

balance GC performance and memory footprint. Hybrid GC re-uses reclaimed

space across multiple isolated program executions; this design achieves footprint-

aware memory management that facilitates runtime efficiency for concurrent

workloads;

• an empirical evaluation that shows that multi-tasking MREs when equipped

with appropriate mechanisms for GC performance isolation,compare favorably

to single-tasking MREs with respect to footprint and programexecution time

for concurrent workloads. This result further strengthensthe case for multi-

tasking MREs.

133

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

4.3 Scalable Hybrid Collection for Multi-Tasking Man-

aged Runtime Environments

MTM ’s synchronization mechanism allows application threads to be paused on

a per-application basis. We leverage this mechanism to design and implement and

per-application, old generation GC that is a hybrid of mark-sweep GC and copying

GC.

As before,MTM follows the generational design [94] and each application is

provided with a private two-generation heap. As with prior versions of MVM, a third

generation, called the permanent generation, is shared across applications. The per-

manent generation is used to allocate long-lived meta-data, such as the runtime repre-

sentation of classes (including method byte codes, constant pools, etc.), symbols and

interned strings, and data structures of the MRE itself, all of which may be transpar-

ently shared across programs. The meta-data stored in the permanent generation may

survive the execution of many programs, and is rarely collected.

The permanent generation is a single contiguous area. Memory for the young

and old generations of applications originates from two pools of fixed-size regions

managed byMTM . Each pool uses its own region size. The two pools and the

shared permanent generation are contiguous in virtual space, such that old regions

are in between the young regions pool and the permanent generation.

134

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

As before, memory for the young generation of a program is allocated at pro-

gram startup, by provisioning a region from the young generation pool. Memory for

a program’s old generation is allocated on demand, on a per-region basis, from an

old region pool. Thus, old and young generations are both made of one or more re-

gions, which are possibly disjoint in virtual space. Regionsare made of an integral

number of operating system virtual pages and aligned to pageboundaries to enable

on-demand allocation / deallocation of the physical pages allocated to regions by the

operating system1. Backing storage for the virtual pages of a region is allocated only

upon allocation of the region to a program. Conversely, when aregion is returned to

the pool, the backing storage for its virtual memory pages isfreed immediately.

A region can only contain objects allocated by the same program, i.e., a re-

gion is always private to a program. This constraint facilitates both tracking of pro-

gram memory usage and instantaneous, GC-less, reclamation of space upon program-

termination [83]. It also helps performance isolation since GC only needs to synchro-

nize with the threads of a single application (instead of allapplications).

Tracking of cross-generation references uses a card-marking scheme [21, 50, 45,

13]. Old regions are card-aligned and consist of an integralnumber of cards, so

that young generation collection of an application only needs to scan the dirty cards

that correspond to the old regions allocated to the application. These are maintained

1E.g., usingmap/unmap system calls on the SolarisTM OS.

135

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

in a per-application list ordered by increasing virtual address. Each application is

also associated with acurrentold region, which identifies the region used to allocate

tenured space for the applications. Tenured space is allocated primarily during young

generation collection, when promoting young objects, and occasionally, directly by

mutator threads of the application to allocate space for large objects.

MTM initiates a young generation collection for an applicationwhen the applica-

tion’s young generation is full, and an old generation collection when the application

reaches its maximum heap size limit, or when allocation of a region from the pool of

old region fails. Minor collection for an application is performed concurrently with

respect to other applications using mechanisms described previously [83].

Collection of the old generation of an application’s heap space follows ahybrid

approach that combines fast, space-efficient, mark-sweep for regions of the old gen-

eration with little fragmentation or garbage, with a copying collection for regions of

the old generation with either significant fragmentation orwith a significant amount

of garbage. Old generation collection is on a per-application basis, i.e., only the old

generation of the application that triggers GC is collected.

We also exploit MVM’s representation of classes to organizethe permanent gen-

eration in a way to limit tracing, during young and old generation collection, to ob-

jects of the application that initiated the collection (henceforth called theGC initia-

tor). The MVM separates the application-dependent part of the runtime represen-

136

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

tation of classes from the rest of the class representation.When a class is sharable

across applications, atask tableis interposed between the class representation and

its application-dependent part, the latter being allocated in the old generation of the

corresponding application. The task table for a class has anentry for every applica-

tion executing in the MRE, and each application is assigned, upon startup, a unique

number (the task identifier) that is used to index these tables. The entry of a task

table holds a reference to the object that holds the application-dependent part of the

class when the application associated with that entry loadsthe class, or a null pointer

otherwise [28]. Classes whose representation cannot be shared across programs (e.g.,

classes defined by program-defined class loaders) refer directly to the application-

dependent part. All data structures that directly reference application-dependent data

are clustered in a specific area of the permanent generation,which is the only area that

must be traced during collection of younger generations. When an application does

not use program-defined class loaders, tracing is limited toa single entry in every task

table (the entry assigned to the GC trigger).

Other data-structures that reference application-dependent data (e.g., JNI Han-

dles) are organized either in a per-application pool or in tables with one entry per

application, similar to the task table. We exploit this toscan only those pools or table

entries associated with the GC initiator. Further, only stacks of threads of the GC

initiator are scanned for roots.

137

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

We describeMTM ’s hybrid garbage collector in detail in the next section.

4.3.1 Hybrid Mark-Evacuate-Sweep Garbage Collector

Our experiments with prototypes of MVM suggest that efficient GC is key to

making the concurrent execution of multiple programs usingmulti-tasking a viable

alternative to running the same programs using one instanceof a single-task MRE

per application.

MTM ’s old generation design is constrained by the need to ensurethat an old

region contains only objects from the same application, forperformance isolation, as

well as for efficient and accurate tracking of heap resources. This implies that dead

space within an old region allocated to an application cannot be reused by another

application. This can potentially lead to significant fragmentation and substantially

increase footprint for multi-tasking. Copying GC is effective at mitigating fragmen-

tation, but at the cost of excessive copying of live objects,and the necessity of a copy

reserve area. In place compaction requires multiple passesover the heap (although

recent work has significantly optimized compaction [64]). Mark-sweep, however, is

fast, and involves a single pass over live data, but may result in poor space utiliza-

tion [61].

MTM combines two relatively simple and well-understood techniques: mark-

sweep and copying. We use copying to evacuate live objects from only those regions

138

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

that are fragmented or are sparsely populated, and mark-sweep for the remaining

regions. The goal is to maintain a low footprint, but withoutthe overhead of copying

of all live objects and a copy reserve for every GC. Space reclaimed via sweeping can

only be used by the GC initiator, since the free space may be co-located with live data

in the same region. Evacuated regions, on the other hand, canbe returned to the old

region pool where the backing storage for their virtual pages is freed until the regions

are re-assigned to an application.

Candidate regions for evacuation are selected based on the amount of fragmenta-

tion the GCis likely to causein the region. Before the collection begins,MTM sus-

pends all the threads of the GC initiator at a GCsafepoint. The threads are restarted

when GC completes.

The collection itself is performed in four phases: marking,selecting candidate re-

gions for evacuation, evacuation (copying), and sweeping and adjustment of regions

(performed in the same pass). The first two phases gather information (liveness, con-

nectivity, occupancy, and estimated fragmentation) necessary for the last two phases.

Evacuation and adjustment are optional, and occurs only if the second phase selects

regions for evacuation.

Figure 4.13 illustrates with an example the main phases ofMTM ’s hybrid col-

lection. The following sub-sections detail each of the fourphases.

139

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Marking Phase

The marking phase begins a collection and produces two data structures as output:

a mark bitmapthat records live objects of the GC initiator; and aconnectivity matrix

that records connectivity information between old generation regions. Together, these

are used to determine regions to evacuate, sweep and adjust.

Storage for the mark bitmap and the connectivity matrix is allocated for the du-

ration of the hybrid GC cycle. The mark bitmap has one bit for every word of heap

memory. Marking starts with the roots of live objects for theGC initiator: the stacks

of the application’s threads; the entry corresponding to the GC initiator in each task

table for the runtime representation of shared classes in the permanent generation, and

entries in global tables maintained by the multi-tasking MRE(such as JNI handles).

Marking then traverses the object graph from these roots. Because isolation is

strictly enforced between applications through application-private regions, the mark-

ing phase will never access an object allocated by another application nor traverse a

region allocated to another application.

The connectivity matrix is updated when a yet unmarked object is traversed. The

matrix is encoded as a two-dimension boolean array, so that an entry(i, j) set totrue

indicates that there existsat leastone reference from regioni to regionj. The matrix

is initially zero-filled.

140

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Testing whether each reference crosses a region boundary can be expensive. We

have observed that inter region object references in the oldgeneration are clustered,

and that the distance between the referencing (source) object and the object being

referenced (destination) in an old region is often small. Therefore, given an old region

size that is large enough, the source and destination objects are likely to reside in the

same region. If region size is a power of two, and regions are aligned, testing whether

two addresses are in the same region can be inexpensively performed as follows2:

to == * from;

if (to ∧ from) >> LOG REGIONSIZE) != 0 {

// Not in the same region.

update connectivity matrix(to,from);

}

When the test fails, a slow path is taken in order to update the connectivity matrix.

The choice of an appropriate region size contributes to confine clusters of connected

objects to a single region, which has two benefits: reducing the overhead of tracking

inter-region connectivity (i.e., the fast path will be taken more often); and limiting

the number of regions that must be inspected for potential pointer adjustment after

2This test for cross-region object references is similar to the test in the write barrier of the Beltway
framework [15] except that, in our case, the test is performed at marking-time.

141

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

regions are evacuated. We have empirically identified an oldregion size of 256KB

that works well.

In summary, tracking of connectivity information helps to reduce the amount of

live data that must be scanned during pointer adjustment if any region is evacuated.

Selecting Regions for Evacuation

The decision to evacuate a region attempts to balance the cost of evacuation (copy-

ing and pointer adjustment) and heap fragmentation (consequently, footprint). To

maintain a low cost for evacuation we evacuate sparsely populated regions, while to

maintain a low footprint, we evacuate regions with fragmentation.

That is, our evacuation policy evacuates a region unconditionally if the ratio of the

live to dead space (live ratio) is less than a certain minimum live ratio (MinLiveRatio).

The region is also evacuated if it is estimated to be fragmented. This is done by com-

paring the average size of each contiguous fragment of dead space to a threshold

(MinFragmentSize). That is, givenL, the amount of live data in the region,F ,

the number of contiguous areas of dead objects in the region,andR the size of the

region, a region is selected for evacuation if:

(L/R) < MinLiveRatio∨((L/R) < K∧(F > 1)∧((R−L)/F) < MinFragmentSize)

We empirically choseMinLiveRatio to be 0.25, i.e., a region is always evacu-

ated if it contains over 75% of garbage. When the pool of old regions is closed to

142

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

exhaustion, this parameter is increased up to 0.9 to aggressively evacuate all but the

almost full regions.K is the occupancy threshold and chosen to be 0.9, i.e., we look

for fragmentation in regions that are at least 90% full.MinFragmentSize is set to

50 bytes by default.

In order to realize this policy,MTM needs to determine the ratio of live to dead

data and the number of contiguous fragments of dead space in each region. This is

done following the completion of the marking phase, by scanning the mark bitmap.

For each region belonging to the GC initiator,MTM walks over the region’s objects,

using the mark bitmap to determine their liveness and the objects’ header to obtain

their size. In addition, in this pass, adjacent dead objectsare coalesced into a single

dead area to reduce scanning time for future passes.

Evacuation, Sweeping and Adjustment of Old Regions

Live objects in regions selected for evacuation are relocated to new regions allo-

cated from the old regions pool. Evacuation traverses the region being evacuated for

live objects using the mark bitmap. Live objects are copied to the new region, and a

forwarding pointer is installed in the header of the (old) copied object. Forwarding

pointers are necessary for pointer adjustment. This, however, prevents the evacuated

regions from being freed before adjustment is complete.

143

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

live lists app 1 app 2 old region pool

Before Marking

After Marking

evacuate sweep

Evacuation & Sweeping

0... 0101... 1.01

app1 free
regions

mark bitmap

old region pool

old region pool

Figure 4.13: Marking, Evacuation and Sweeping of Old Regions. Each application
has a corresponding list of live areas. Marking traverses live objects for an appli-
cation and marks live objects in the mark bitmap. After marking, candidate regions
for evacuation (or sweeping) are selected based on the amount of live data and frag-
mentation. Regions selected for evacuation are then evacuated, regions selected for
sweeping are swept and free areas in these added to a per-application free list. Pointer
adjustment for swept regions is also performed during this pass, if necessary.

New regions used to store evacuated objects are added to the set of regions that

need adjustment, i.e., we assume that the a region is likely to contain objects that

point to other objects in the same region.

Once evacuation is complete, sweeping and adjustment of pointers can be per-

formed in the same pass. For each region that was not evacuated, the mark bitmap

144

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

corresponding to the region is used to build lists of live andfree areas within the

region. The connectivity matrix is also checked to determine if the region contains

objects that reference objects in evacuated regions. If so,the live objects in the region

are scanned to adjust references. Finally, the free and livelists of areas are combined

into a list of live old generation areas used by the application. The live list is used

to account for the old generation usage of the application, as well as during young

generation collection to limit the amount of work that is done during card scanning,

i.e., we only need to scan dirty cards that correspond to the application’s list of old

generation regions. The application’s free list that was constructed during sweeping

can only be used to satisfy allocation requests for that application.

If any region is evacuated, in addition to adjustment of someold regions, we

also need to adjust objects in the young generation of the application, the permanent

generation, and outside the heap (globals) that reference objects in the evacuated

region(s).

The young generation is typically small (the default is 2MB) and can therefore be

scanned in its entirety without significant overhead. However, performing an object

graph traversal beginning from the roots to identify globals and permanent generation

pointers that must be adjusted can be prohibitively expensive. Instead, we keep track

of the locations of these pointers during the marking phase,and update them during

145

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

live lists app 1 app 2

src dst
2 3

app1 region connectivity

1 2 3

Figure 4.14: Adjustment of old regions. Application 1 is being collected. We build
the region connectivity matrix for application 1 during themarking phase. Region 2
has outgoing pointers to Region 3, therefore, Region 2 must be scanned if Region 3
is evacuated. However, Region 1 and 4 do not must be scanned.

pointer adjustment. The space overhead required to keep track of these locations is

small, and is reported as part of the total footprint ofMTM in Section 3.5.

Once all regions have been adjusted, the evacuated regions are returned to the pool

of free regions, and backing physical memory correspondingto their virtual address

pages is unmapped, i.e., freed regions do not consume physical memory and can be

later re-mapped and used as part of the old generations foranyapplication.

Objects larger than a single region are treated specially. They are assigned an

integral number of contiguous old regions large enough to hold the object.MTM

notes whether a region is part of a single large object regionand whether that ob-

ject contains no references (scalars only). This information is used to reclaim space

when these large objects die (e.g., by returning their regions immediately to the pool,

without waiting for adjustment).

146

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

4.3.2 Evaluation

The design ofMTM was motivated partly by the poor behavior of extant ap-

proaches to multi-tasking for concurrent application workloads.

In this section, we report our assessment of how well a multi-tasking MRE using

MTM fares with concurrent workloads. We first compare the performance of MVM

with per-application young generation GC (the extensions described in Section 4.1)

to MVM modified to integrate hybrid old generation GC as well.We then compare

MTM to a single-tasking MRE. We use the JavaTM HotSpot virtual machine, ver-

sion 1.5.0-03 [91], a production quality, high-performance virtual machine from Sun

Microsystems (which we will refer to as HSVM from now on).MTM derives its im-

plementation from HSVM and shares a significant amount of code, which facilitates

a fair comparison.MTM differs only in its memory management sub-systems and

modification to the runtime to achieve GC performance isolation. All other mecha-

nisms to support multi-tasking and sharing of the runtime representation of classes,

byte code and compiled code (see [28, 29] for detailed descriptions) as well as other

virtual machine implementation aspects inherited from HSVM are identical.

The main metrics of interest for our comparison are execution time and the ag-

gregate memory footprint necessary to run concurrent workloads. We begin with a

description of our experimental setup, including hardware, benchmark, and method-

ology.

147

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Benchmark

compress SpecJVM98 compression utility (input 100)

jess SpecJVM98 expert system shell benchmark:

 Computes solutions to rule based puzzles (input 100)

db SpecJVM98 database access program (input 100)

javac SpecJVM98 Java to bytecode compiler (input 100)

mtrt SpecJVM98 multi-threaded ray tracing implementation (input 100)

jack SpecJVM98 Java parser generator based on the Purdue Compiler

antlr Dacapo antlr: Parses grammar files and generates a parser

 and lexical analyzer for each (default input)

fop Dacapo fop: XSL-FO to PDF parser/converter (default input)

luindex Dacapo luindex: uses lucene to index the works of Shakespeare

 and the King James Bible (default input)

ps Dacapo ps: Postscript interpreter (default input)

opengrok Open source code browser and cross reference tool

 (input: Source files in HSVM "memory" subdirectory, 118 files)

jruby Ruby interpreter written in Java

 (uses small scripts as input: beer song, fibonacci numbers,

 number parsing, thread test)

groovy Groovy interpreter written in Java

 (input: unsigns, i.e., strips MANIFESTs) for a number of jar

 files from Apache ant)

antlr-mixed mixed workload consisting of antlr, fop and opengrok

luindex-mixed mixed workload consisting of luindex, fop and ps

javac-mixed mixed workload consisting of javac, jess, mtrt and jack

scripts-mixed mixed workload consisting of groovy and jruby

Description

Figure 4.15: Benchmarks and workloads used in the empirical evaluation ofMTM

Experimental Methodology

We ran our experiments on a dedicated dual CPU 1.5GHz UltraSPARC IIIi sys-

tem, with 2GB physical memory, 32KB instruction and 64KB data cache running the

SolarisTM Operating System version 10. Figure 4.15 describes the benchmarks and

workloads we used for our experiments.

Programs used in our concurrent workloads are selected fromcommunity pro-

grams from the SpecJVM98 [85] and Dacapo [31] benchmark suites3, as well as two

commonly used open-source scripting applications,jruby [62] andgroovy [41],

and an open-source source code browser and cross reference tool calledopengrok [76].

3We used version 2006-10-MR2 version of the Dacapo benchmarks, andps from Dacapo version
beta-05022004.

148

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Exec time Footprint Exec time Footprint Exec time Footprint

Bmark (sec) (MB) (sec) (MB) (sec) (MB)

compress 10.96 139.44 27.60 351.16 56.41 650.80

jess 4.93 19.82 12.33 33.18 24.54 55.12

db 20.84 35.95 52.50 74.05 105.10 141.00

javac 10.40 49.51 26.78 109.85 53.97 261.03

mtrt 3.39 20.46 8.47 62.27 16.24 114.26

jack 4.21 30.84 10.75 59.53 20.89 104.78

antlr 9.17 67.51 20.95 114.23 39.86 219.61

fop 6.00 51.84 14.31 87.45 28.53 148.49

luindex 40.08 76.68 89.45 173.35 169.42 333.43

ps 27.18 16.63 68.37 23.91 136.80 37.02

opengrok 10.44 101.50 25.40 230.85 51.35 429.77

groovy 10.15 138.06 21.54 366.63 50.92 544.25

jruby 2.58 34.80 5.66 49.67 10.67 73.47

Average 12.33 60.23 29.55 133.55 58.82 239.46

Number of instances

102 5

Exec time Footprint Exec time Footprint

Bmark (sec) (MB) (sec) (MB)

antlr-mixed 12.64 79.52 24.43 148.06

luindex-mixed 34.44 77.04 42.47 132.76

javac-mixed 13.28 31.97 23.58 63.57

scripts-mixed 8.28 68.68 11.30 118.95

Average 17.16 64.30 25.45 115.84

1 2

Number of instances

Figure 4.16: Total execution time (in seconds) and footprint (in MB) data for MTM
with application-aware memory management and hybrid old generation GC for con-
current homogeneous (multiple instances of same application), and heterogeneous
(multiple instances of different applications). The benchmarks are described in Fig-
ure 4.15. All relative performance improvement results forexecution time as well
footprint in this section use these values.

We excludempegaudiofrom SpecJVM98 (as is commonly done) since it does not ex-

ercise the GC.

We experimented with two types of workloads:homogeneousandheterogeneous.

A homogeneous workload consists of multiple concurrent instances of the same pro-

gram. For instance, “10 instances ofjavac ” implies that 10 instances of this pro-

gram are launched simultaneously. A heterogeneous workload consists of concurrent

instances of different programs.

We refer to the heterogeneous workload asmixed in Figure 4.15. We present

results for 1 and 2 instances each of an application in a heterogeneous workload. For

149

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

example, 2 instances each forantlr-mixed implies that we launch 2 instances

each ofantlr , fop andopengrok simultaneously, i.e., 6 concurrent instances.

We report total execution time by reporting the time elapsedsince the applica-

tions in a workload were launched and until the last application completes. We use

a harness that executes each application as anisolate [57] using reflection and we

report total elapsed time usingSystem.nanoTime() . To measure footprint, we

use the UNIXpmap utility, which we execute as an external process in a tight loop

and report the maximum of the total RSS (resident segment size) value reported by

executingpmap -x on the MRE process. Footprint and execution times are reported

using independent runs. In case of single-tasking, we sum the RSS values returned

by pmap for each individual MRE process (since to execute concurrentworkloads,

we must launch a single-tasking MRE process for each application).

We perform all HSVM experiments using theclientcompiler and the default serial

GC (sliding mark-compact) used for client configuration (i.e., using the-client

-XX:+UseSerialGC command line flags). HSVM andMTM both use copying

GC for collecting the young generation. For all results, we present the average of 5

executions.

MTM with Per-Application Hybrid GC Versus MVM

We first present performance results for the improvement enabled by MTM

with per-application hybrid GC versus the prior MVM versionthat provides per-

150

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0

10

20

30

40

50

60

db
ja
va
c

an
tlr fo

p

lu
in
de
x

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

2 5 10

Number of homogenous instances

per benchmark

Figure 4.17: Percentage improvement in execution time enabled byMTM (MVM
extended with per-application hybrid GC) with per-application hybrid GC versus a
prior implementation of MVM (cf. Section 4.1) when executing concurrent work-
loads that show significant old generation GC activity.MTM enables better perfor-
mance due to a more efficient old generation GC and performance isolation.

application young generation GC, but a mark-compact old generation GC that collects

the entire old generation heap (i.e., for all applications)(cf. Section 4.1). As seen ear-

lier, this prior version provides performance isolation for the young generation, yet

performs poorly for concurrent workloads relative to executing the same concurrent

workload with multiple instances of HSVM (cf. Figure 4.12) for applications that

show significant old generation usage.

Figure 4.17 shows the performance improvement enabled byMTM over this

MVM. The results indicate thatMTM outperforms MVM by 10%, 15%, and 22%

on average when running 2, 5, and 10 concurrent instances, respectively. For this

experiment, we only present results for applications that show significant old gener-

ation GC activity. This performance improvement is possible due to the hybrid old

151

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

MVM MTM
2
% imp MVM MTM

2
% imp MVM MTM

2
% imp

Bmark (sec) (sec) (sec) (sec) (sec) (sec)

db 0.57 0.28 51.95 2.92 0.70 76.05 5.47 1.38 74.81

javac 3.24 2.51 22.47 8.95 3.48 61.06 40.10 7.93 80.23

antlr 2.44 0.48 80.17 4.11 1.29 68.69 6.23 1.39 77.75

fop 1.18 0.67 42.96 2.29 1.11 51.58 4.98 2.54 49.00

luindex 4.27 1.51 64.73 8.36 2.86 65.82 14.35 8.24 42.60

Average 2.34 1.09 52.46 5.32 1.89 64.64 14.22 4.29 64.88

2 5 10

Number of instances

Figure 4.18: Old generation GC times (total) forMTM (MVM extended with per-
application hybrid GC) versus a prior implementation of MVM described in Sec-
tion 4.1. GC times are presented in seconds along with percentage improvement in
GC time enabled byMTM . MTM ’s per-application hybrid old generation GC
outperforms mark-compact old generation GC used in the prior implementation.

generation GC inMTM that enables performance isolation, as well as improved old

generation GC performance.

Figure 4.18 shows the old generation GC times forMTM versus the prior version

of MVM. MTM ’s hybrid GC significantly improves GC performance. The prior

MVM version uses a stop-the-world mark-compact GC for the old generation that

performs three passes over the entire old generation (for all applications), with cost

proportional to the size of the heap. With more concurrent instances, the cost of old

generation GC increases.

In addition,MTM never pauses tasks to perform GC and all allocation and col-

lection for any application is isolated with respect to other applications.MTM scales

better overall due to performance isolation as the number ofinstances is increased,

as seen in Figure 4.17. The impact of performance isolation is especially evident

in the case ofjavac . For instance, when 10 concurrent instances ofjavac exe-

152

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

cute, the total old generation GC time with full heap mark-compact GC is about 40

seconds. The cost of old generation GC is higher since mark-compact GC needs to

scan a larger heap. Further, sinceall applications are paused during old generation

GC, performance forjavac is significantly degraded. In the case ofdb and luindex,

GC time does not dominate total execution time, and consequently, the improvement

enabled byMTM ’s hybrid GC is less significant.

MTM with Per-Application Hybrid GC Versus HSVM

We next compare the execution time and footprint ofMTM with per-application

hybrid GC to HSVM. HSVM allows users to specify an initial heap size (32MB by

default) and a maximum heap size (64MB by default) when launching an application.

The initial heap size controls the heap limit, the point at which a full GC is triggered.

The initial heap size grows (or shrinks) after a full GC, if required. For results in

Figures 4.19, 4.20, 4.21, and 4.22, we set the initial heap size for HSVM equal to

the maximum heap size. With this setting, HSVM performs lessfrequent GC and

achieves better overall performance (total execution time), compared to when the

initial heap size is at the default value. This setting allows single-tasking to perform

at its best potential since the application heap is not restricted. We also present results

for the other case, i.e., when the initial heap size for HSVM is not set to the maximum

initially (the default behavior), thereby allowing HSVM toachieve a smaller footprint

(Figures 4.25, 4.26, 4.23 and 4.24).MTM does not restrict the initial heap size, or

153

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

use a “soft limit” for applications, yetwe always ensure that we never exceed the

maximum heap size setting for an application(which is set to the HSVM default

maximum heap size of 64MB in order to ensure a fair comparison).

Figure 4.19 shows percentage improvement in total execution time when homo-

geneous workloads are executed withMTM versus the HSVM virtual machine, i.e.,

concurrent instances of the same application. We present results for 2, 5 and 10 con-

current instances for each application. Multi-tasking allows sharing of compiled code

and classes between applications resulting in reduced overall execution time.MTM

enables an improvement of 11%, 13% and 14% for 2, 5 and 10 concurrent applica-

tions on average for homogeneous workloads.MTM allows complete application

isolation and space reclaimed by evacuating old generationregions for an applica-

tion to be reused by other applications. Scripting and parsing applications such as

antlr andjruby are commonly used on desktop systems and particularly show a

significant benefit due to sharing of compiled code.

For some applications, such ascompress , javac andps multi-tasking does

not outperform single-tasking. Forcompress in particular, multi-tasking perfor-

mance lags single tasking due to the fact that it allocate large objects (byte arrays)

in the old generation which leads to fragmentation and worseGC performance in a

shared old generation address space, and also due to the overhead due to a level of in-

direction to access static variables [28]. However,MTM attempts to mitigate the ad-

154

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

-5

5

15

25

35

45

55

co
m
pr
es
s

je
ss db

ja
va
c
m
trt ja

ck
an
tlr fo

p

lu
in
de
x ps

op
en
gr
ok

gr
oo
vy

jru
by

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e 2 5 10

Number of instances
per benchmark

Figure 4.19: Percentage improvement in execution time enabled byMTM over
HSVM (default initial heap size = max heap size = 64MB) for homogeneous con-
current workloads (multiple instances of the same application). Benchmarks are de-
scribed in Figure 4.15.

0

5

10

15

20

25

30

an
tlr
-m
ix
ed

lu
in
de
x-
m
ix
ed

ja
va
c-
m
ix
ed

sc
rip
ts
-m
ix
ed

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

1 2

Number of instances

per benchmark

Figure 4.20: Percentage improvement in execution time enabled byMTM versus
HSVM (default initial heap size = max heap size = 64MB) for heterogeneous con-
current workloads (multiple instances of different applications). Benchmarks are de-
scribed in Figure 4.15.

verse impact of fragmentation and achieves a significant benefit for these worst-case

applications over the state-of-the-art multi-tasking MRE implementation, as shown

earlier (cf. Figure 4.17), while achieving performance that is close to the perfor-

155

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0 0.5 1 1.5 2

compress

jess

db

javac

mtrt

jack

antlr

fop

luindex

ps

opengrok

groovy

jruby

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

2 5 10
Number of

instances

per benchmark

Figure 4.21: Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = max heap size = 64MB) for homogeneous concurrent
workloads (2, 5, and 10 instances of the same application).

mance of these applications with single-tasking (within 3%). On average,MTM

significantly outperforms single-tasking.

Figure 4.20 shows the percentage improvement in total execution time for het-

erogeneous workloads, i.e., concurrent instances of different applications for 1 in-

stances of each application, and 2 instances of each application for every hetero-

geneous workload (see Figure 4.15). For example,antlr-mixedwith two instances

indicates that 2 instances each of antlr, fop, opengrok are executed concurrently (6

concurrent applications). On average,MTM improves performance by up to 16%,

with improvements ranging from 3% to 25% in individual cases. As seen earlier,

scripting workloads in particular perform very well with multi-tasking.

156

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0 0.5 1 1.5 2

antlr-mixed

luindex-mixed

javac-mixed

scripts-mixed

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

1 2
Number of

instances

per benchmark

Figure 4.22: Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = max heap size = 64MB) for heterogeneous concurrent
workloads. 1 denotes 1 instance each of the mix of applications that constitute a
heterogeneous workload. 2 indicates 2 instances of each application in the mix.

Figures 4.21 and 4.22 compare the total process footprint for MTM versus HSVM

for the same set of applications as in the previous figures. Each bar represents the ra-

tio of the footprint forMTM versus HSVM. The value 1 indicates thatMTM and

HSVM have identical footprint for a given workload. Values less than 1 indicate that

MTM has a lower footprint.

MTM shows a better footprint compared to HSVM and on average,MTM

achieves 34% to 41% reduction in footprint for homogeneous workloads, and 31% to

33% benefit for heterogeneous workloads. These savings are possible due to sharing

of classes and compiled code in a multi-tasking MRE.

However,compress shows worse footprint (around 50% or 1.5x). The worse

footprint for compress can be attributed to large scalar objects (objects that do not

157

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

10

0 0.5 1 1.5 2

compress

jess

db

javac

mtrt

jack

antlr

fop

luindex

ps

opengrok

groovy

jruby

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

10Number of

instances

per benchmark

Figure 4.23: Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = 32MB) for homogeneous concurrent workloads (2, 5, and
10 instances of the same application).

hold references, such as byte arrays). As noted earlier,compress allocates a signif-

icant number of large byte arrays, which are directly allocated in the old generation.

Since our old generation is non-contiguous, and since we allocate large scalar objects

in a separate region, which we can safely skip during pointeradjustment, allocation

of very large (> minimum region size, which is 256KB by default), byte arraysleads

to excess fragmentation. A new region must be allocated for each such large byte

array, and this region must be aligned to the region boundaryfor correctness. How-

ever, the number and size of these is unknown at runtime, without a priori profiling.

Therefore, we cannot pre-allocate a suitable sized region.As part of future work, we

plan to address the allocation of large objects, by providing a per-application large ob-

ject region that is sized differently and collected separately from the old generation.

158

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0 0.5 1 1.5 2

antlr-mixed

luindex-mixed

javac-mixed

scripts-mixed

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

2Number of

instances

per benchmark

Figure 4.24: Percentage improvement in footprint enabled byMTM versus HSVM
(default initial heap size = 32MB), heterogeneous workloads, i.e., multiple concur-
rent instances of different applications. 1 denotes 1 instance each of the mix of ap-
plications that constitute a heterogeneous workload. 2 indicates 2 instances of each
application in the mix.

Note thatcompress is a numerical computation benchmark and does not represent

typical MRE workloads.

Figures 4.23 and 4.24 compare the process footprint forMTM versus HSVM,

when the initial heap size for HSVM is restricted and increased gradually. In this

configuration, HSVM gradually increases the heap (if required), starting from an ini-

tial default (32MB), in order to achieve smaller footprint. As expected, HSVM runs

in a much smaller heap and consequently, the process footprint is lower. On average,

MTM shows a footprint improvement of 6% to 14% for homogeneous workloads,

and 12% to around 15% for heterogeneous workloads. Note thatthese values are

smaller compared to the earlier configuration of HSVM, i.e. when the initial heap

size for HSVM is not restricted. However, if we look at the execution time forMTM

159

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

-5

5

15

25

35

45

55

co
m
pr
es
s

je
ss db

ja
va
c
m
trt ja

ck
an
tlr fo

p

lu
in
de
x ps

op
en
gr
ok

gr
oo
vy

jru
by

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

10
Number of instances
per benchmark

Figure 4.25: Percentage improvement in execution time enabled byMTM ver-
sus HSVM (default initial heap size = 32MB) homogeneous concurrent workloads.
Benchmarks are described in Figure 4.15.

0

5

10

15

20

25

30

35

an
tlr
-m
ix
ed

lu
in
de
x-
m
ix
ed

ja
va
c-
m
ix
ed

sc
rip
ts
-m
ix
ed

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

2
Number of instances

per benchmark

Figure 4.26: Percentage improvement in execution time enabled byMTM ver-
sus HSVM (default initial heap size = 32MB) for heterogeneousconcurrent work-
loads (multiple instances of different applications). Benchmarks are described in
Figure 4.15.

versus HSVM (Figures 4.25 and 4.26) when the initial heap size for HSVM is re-

stricted,MTM outperforms HSVM by agreater marginthan when we do not re-

strict the initial heap size for HSVM. On average,MTM shows an improvement of

15% to over 17% for homogeneous workloads, and 19% to 21% for heterogeneous

workloads.

160

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

0

5

10

15

20

25

30

35

40

45

d
b

ja
va
c

an
tl
r

fo
p

lu
in
d
ex

A
ve
ra
g
e

Benchmark

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

1x 2x 3x 4xHeapsize relative to minimum

Figure 4.27: Percentage improvement in execution time enabled byMTM over
HSVM for 1 through 4 times the minimum heap size that each benchmark needs to
execute inMTM .

In summary, by controlling heap growth the single-tasking HSVM virtual ma-

chine can achieve a better footprint when the heap is not restricted, however,MTM

shows a comparable or better footprint on average across concurrent workloads that

we looked at. Further,MTM outperforms HSVM by a larger margin, since there is a

reduction in performance for the single-tasking MRE due to more frequent GC. There

exists a tradeoff between execution time and footprint by choosing the threshold at

which GC is triggered. We believe that manually having to select an appropriate per-

application heap size in a context of a multi-tasking MRE is counter-productive. On

average,MTM significantly outperforms HSVM and has a better footprint without

having to manually select an appropriate initial per-application heap size.

We next examine the performance ofMTM versus HSVM as the heapsize is

varied from the minimum that an application requires to execute in MTM , to 4

161

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

times the minimum for that application (Figure 4.27). We only consider benchmarks

that show significant old generation GC activity. The minimum heap size selected is

45MB for luindex and 22MB for the rest. Across heap sizes,MTM outperforms

HSVM by 18 – 19% on average.

However, HSVM is able to execute programs in a smaller heap compared to

MTM (i.e., < 45MB for luindex and< 22MB for other benchmarks). HSVM

uses in-place sliding compacting GC, which is more space efficient thanMTM ’s

hybrid GC for small heaps. This is due to the fact that evacuation, although it is

partial and selective, requires a copy reserve for the duration of the GC to copy live

objects. For highly memory constrained scenarios, HSVM’s GC may be a more suit-

able choice compared to evacuation. We are investigating mechanisms to perform

in-place compaction across disjoint regions as part of future work.

Sensitivity Analysis

In the next set of results, we examine howMTM with selective evacuation (copy-

ing) and mark-sweep compares to only mark-sweep and only copying. Our hybrid

GC can operate as a mark-sweep only GC (by setting theMinLiveRatio threshold

described in Section 4.3 to0), or as a copying only GC (by setting theMinLiveRatio

threshold to1, i.e., 100%).

In particular, in Figure 4.28 we present total process footprint for MTM with

hybrid GC versusMTM with mark-sweep only, andMTM with copying only, for

162

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

MTM
2
MTM

2
MTM

2
MTM

2
MTM

2
MTM

2

MTM
2
MS CP MS CP MTM

2
MS CP MS CP MTM

2
MS CP MS CP

Bmark (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB)

javac 49.5 127.7 65.4 61.2 24.3 109.9 297.5 117.7 63.1 6.6 261.0 602.1 261.7 56.6 0.3

luindex 76.7 128.4 83.5 40.3 8.2 173.4 302.9 182.0 42.8 4.7 333.4 589.5 351.9 43.4 5.2

vs vs vs

% imp % imp % imp

Number of instances

2 5 10

MTM
2
MTM

2
MTM

2
MTM

2

MTM
2
MS CP MS CP MTM

2
MS CP MS CP

Bmark (KB) (KB) (KB) (KB) (KB) (KB)

antlr-mixed 79.5 86.1 80.6 7.6 1.3 148.1 156.6 148.2 5.5 0.1

javac-mixed 32.0 51.9 41.6 38.4 23.2 63.6 91.3 87.5 30.4 27.4

scripts-mixed 68.7 94.8 104.5 27.5 34.3 119.0 127.0 140.3 6.4 15.2

1 2

Number of instances

vs vs

% imp % imp

Figure 4.28: Footprint forMTM with hybrid GC (mix of mark-sweep and copying)
versus mark-sweep (MS) only and copying GC (CP) only for a set of homogeneous
(instances of the same application) and heterogeneous (different applications) concur-
rent workloads. Hybrid GC achieves a footprint that is lowerthan always choosing
mark-sweep or always choosing copying.

a subset of benchmark programs. We only present results for benchmarks that show

significant change in footprint compared to either mark-sweep or copying (> 5%).

For all other benchmarks, we did not find a significant change in the footprint (how-

ever,MTM with hybrid GC never shows a worse footprint compared to either mark-

sweep or copying).

For javac , luindex , javac-mixed andscripts-mixed , hybrid GC has

a much smaller footprint compared to mark-sweep. We believethis is due to fragmen-

tation due to using mark-sweep only without any compaction.For javac-mixed

andscripts-mixed , copying has a higher footprint, since always copying all live

data requires a larger copy reserve space during GC. While performing evacuation,

163

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

MTM
2
MTM

2
MTM

2
MTM

2
MTM

2
MTM

2

MTM
2

MS CP MS CP MTM
2
MS CP MS CP MTM

2
MS CP MS CP

Bmark (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

javac 10.40 10.82 10.57 3.9 1.6 26.78 28.14 27.29 4.8 1.9 53.97 56.48 55.25 4.4 2.3

% imp % imp % imp

vs vs vs

Number of instances

2 5 10

Figure 4.29: Execution timeMTM with hybrid GC (mix of mark-sweep and
copying) versus mark-sweep (MS) only and copying GC (CP) onlyfor the javac
benchmark.

the old as well as the new (copied to) regions must be occupied(mapped) for the

duration of the GC cycle.

We next examine the effect of using hybrid GC, mark-sweep only, and copying

only, on execution time forjavac , which shows a significant difference in perfor-

mance (Figure 4.29). Using mark-sweep only results in excess fragmentation. Frag-

mentation has an interesting effect on execution time forjavac – an increase in

young generation GC time by 8% on average (or 0.51 sec, 0.66 sec and 1.17 sec for

2, 5 and 10 instances respectively) due to an increase in cardscanning time, since

more cards must be scanned. Using copying alone results in excess copying and ad-

justment, and consequently, performance suffers due to an increase in old generation

GC time by around 6% (or 0.07 sec, 0.16 sec and 0.70 sec for 2, 5 and 10 instances

respectively).

For other benchmarks, we did not encounter a significant change in execution

time (however, in all cases, hybrid GC never performs worse than using mark-sweep

or copying alone).

164

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

To summarize, hybrid GC achieves a lower footprint in many cases for bench-

marks that show significant old generation GC activity, while maintaining perfor-

mance that is on par or better than using mark-sweep or copying alone.

4.4 Related Work

The techniques that we present herein build upon a body of related work in

garbage collection and multi-tasking MRE research. We first discuss prior work that

is related to our task-aware scavenging mechanism, followed by related work for hy-

brid collection.

4.4.1 Application-Aware Memory Management

Prior work includes per-task young generations and implements reclamation of

young generations. It describes temporary dynamic extension of the young generation

space. It does not, however, provide reclamation of per-task old generation areas

without triggering a full GC. This is especially important for non-trivial tasks that

utilize the old generation. More importantly, we provide the ability to collect per-

task young generations without pausing all tasks, which leads to better scalability. In

addition, the prior work requires scanning of dirty cards belonging to all tasks during

scavenging. This makes scavenge dependent on the number of tasks, which inhibits

165

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

scalability. Our old generation regions provide precise tracking of regions of the old

generation on a per-task basis, and the number of concurrenttasks. This allows us to

only scan cards belonging to the GC trigger task.

Detlefs et al’s garbage-first GC [34] splits the heap into regions, which can be

independently collected to satisfy a soft pause-time limit. The authors employ bidi-

rectional remembered sets between regions to allow any set of regions to be collected

independently of the others. They use GCLABs, which are threadprivate allocation

buffers that they use during GC time. Since their collectionpolicy is concurrent,

threads compete to perform an object copy. Since we assign regions on a per-task

basis, in the common case, there is only one per-task thread performing promotion,

without the need for synchronization.

Prior work on thread-specific heaps [37, 86] focuses on improving performance

for an application by enabling garbage collection on a per-thread basis, to minimize

synchronization between application threads. Although, this helps achieve perfor-

mance isolation, our work is different in that there is no sharing of objects between

tasks in MVM. Consequently, we can achieve better isolation since we do not need

to track references between young generations. Thread-specific heap techniques can

be combined with our scheme to provide further performance isolation. However,

performance isolation constitutes only a part of our work. Asignificant goal is also to

166

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

accurately identify heap usage, and readily reclaim heap space upon task termination,

without requiring collection, minor or major.

Other researchers have presented complementary schemes for reducing old to

young generation scanning time during minor collection, which may be combined

with our per-task card table scanning mechanism. Azagury etal present a scheme

for combining card marking with remembered sets [6, 49] in the train collector [51].

They maintain a per-card remembered set that is updated during card scanning, so

that the card does not have to be scanned repeatedly unless itis modified. Another

complementary approach for reducing scanning time, is to use a 2-level card table,

with coarse and fine grain cards [33]. This is especially lucrative for large heaps,

since regions of the heap that do not include old to young generation pointers can be

logged as a few coarser level cards and quickly skipped.

Dimpsey et al [35] discuss compaction avoidance that leverages two key con-

cepts [60] – address ordered allocation, and wilderness preservation. These tech-

niques minimize heap fragmentation, and consequently, thefrequency of compaction.

Since our allocation scheme is a bump pointer, we automatically ensure address or-

dered allocation. Our scheme does not require free lists to be maintained and rebuilt

by a mark phase. In addition, the part of the old generation beyond the end of the

last region acts as a wilderness region. We perform large object allocations from this

region directly (instead of regions), thereby reducing fragmentation.

167

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

J-Kernel [96] employs protection domains (called tasks) atthe language level

at compile-time to isolate applications and to assign access rights and ownership to

applications. J-Kernel consists of an extension to the JavaLanguage Specification

(JLS), a bytecode to bytecode compiler and a set of librariesthat provide domain,

rights, sharing and resource management mechanisms. Communication between

tasks is via capabilities. Objects are shared by passing a pointer to a capability object

through a “local RMI (remote method invocation” call. The capability object contains

a direct reference to the shared object, and thus access to the shared object is through

a level of indirection, and can therefore be revoked. This enables full reclamation of

a task’s objects when a task terminates. However, GC activity is not isolated to a task

– a GC for any task will pause all tasks.

Luna [42] is an extension to J-Kernel that enables inter-task communication via

special types. Arbitrary sharing between tasks is possible, yet safe termination is

guaranteed. Special types are used for inter-task communication through object ref-

erences, which undergo extra indirection at execution time. When a task terminates,

remote references are invalidated and reclamation of the terminated task’s objects is

possible.

The KaffeOS [7] provides isolation and resource managementfor untrusted Java

applications. The primary aim is to provide protection and isolate applications from

each other, and to control resources on a per-application basis. The MVM concept of

168

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

an isolate is a much lighter-weight abstraction than a KaffeOS process, hence more

efficient, albeit with fewer features. The garbage collector in the KaffeOS is non-

generational and conservative. Consequently, there is no provision to handle correct-

ness and efficiency on a per-process basis in the presence of modern GC techniques,

such as pre-tenuring, or thread-local allocation areas. Our work employs a state-of-

the-art generational collector with each task using its ownseparate young generation,

but with the old generation shared across tasks to enable better scalability. In addition,

we enable optimizations, such as fast reclamation of old generation areas upon task

termination, regions and efficient card table scanning, in order to optimize throughput

for modern multi-application environments.

Lastly, reclaiming heap resources on application termination does not require

marking and tracing [72, 97] to identify per-task mature objects. By tracking pro-

motion areas, we can readily reclaim all per-task dead mature objects upon task ter-

mination.

4.4.2 Scalable Hybrid Collection

To our knowledge, no prior work conclusively demonstrates that multi-tasking

has the ability to outperform a single-tasking MRE in terms ofexecution time, as

well as overall footprint for concurrent workloads (multiple applications executing

169

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

simultaneously). MVM is the most well known, state-of-the-art implementation of a

multi-tasking MRE.

Prior work on MVM reports substantial improvement for startup, footprint and

execution time compare to a corresponding single-tasking JVM [28, 29]. However,

execution times were measured for serial execution of programs, and footprint of

concurrently running programs were obtained when applications were quiescent, and

do not reflect the footprint of programs when they are actually running concurrently

and are exercising the memory management system.

Sun Microsystems’ CLDC HotSpot Implementation, aimed at small hand-held

devices, supports multi-tasking in a way that is similar to MVM, but uses a single

heap shared by all tasks [90], with no provision for GC performance isolation.

Singularity [54] is a research operating system from Microsoft Research that uses

type safety at the language level in order to attempt to achieve a dependable OS. Ap-

plications, extensions, services, device drivers and the kernel are written using safe

languages. Only parts of the kernel employ unsafe code. The abstraction used to

provide isolation between applications is the software isolation process (SIP), which

consists of a runtime, libraries, application code and data. SIPs are isolated from

each other at the language level by not allowing the same object to be accessed by

multiple SIPs. Ownership of objects can be transferred using bidirectional commu-

nication channels. Application code is statically compiled when a SIP is composed.

170

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

Each SIP can execute its own, possible different garbage collector. System code is

collected using concurrent mark-sweep. However, we were unable to find results that

demonstrate performance of the memory management system inSingularity.

Our hybrid GC bears some similitude to incremental copying GCs that divide the

heap into equally sized regions that can be evacuated independently of others. In

our case, heap space partitioning is primarily motivated bythe need to allocate pri-

vate tenured space to isolated applications on demand. Likeour hybrid GC, Garbage

First [34] only evacuates regions that can be reclaimed withlittle copying. Informa-

tion regarding the amount of live data in regions is providedby a concurrent marker

(as opposed to a synchronous marking phase in our case). Bidirectional remem-

bered sets between regions are maintained by mutators (withhelp from the concur-

rent marker) to allow any set of regions to be collected independently of the others. In

the case of our hybrid GC, this property is achieved by gathering cross-regions con-

nectivity information during marking. The Mature Object Space (MOS) collector of

Hudson and Moss [53] is another region-based incremental copying GC. It uses uni-

directional remembered sets, which requires regions to be evacuated in order. MOS

cannot therefore pick an arbitrary region to evacuate basedon cost-related criteria

(e.g., amount of live data). Both Garbage First and MOS are evacuation-only GC.

Lang and Dupont [68] describe a hybrid mark-sweep and copy similar to ours.

The heap is divided into equal size segments. During GC, a single segment is com-

171

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

pacted, while others are swept. Like our hybrid mark-sweep-evacuate GC, the collec-

tor is primarily mark-sweep. The cost of compaction is bounded since a single seg-

ment is collected. However, the segment compacted at each GCis chosen arbitrarily.

By contrast, we use copying opportunistically, only to evacuate sparsely populated

regions or highly fragmented one. We may thus evacuate several regions during a

single GC, or none if the regions are densely populated with little fragmentation.

MC2 [80] and its predecessor, Mark-Copy [79] describe an incremental copying

GC that uses a marking phase to precisely annotate equal sizeregions of the old

generation of the heap with the amount of live data in them, like our GC, and then

build uni-directional remembered set to update pointers toevacuated objects.MC2

builds precise remembered sets, whereas we build an imprecise connectivity matrix

that only records regions that references other regions.MC2 aims at achieving good

throughput and low pause times for memory constrained devices.

Beltway [15] provides incremental and generational GC by partitioning the heap

into beltsand collecting a single belt during GC. Garbage cycles largerthan a belt

cannot be reclaimed by collecting a single belt. However, Beltway has a provision

for performing full GC by providing a separate belt with a single region and collect-

ing this when it occupies half the heap space. Our per-application GC is complete

and reclaims all garbage for that application. We, therefore, do not require precise

remembered sets between regions or need mechanisms to ensure completeness.

172

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

McGachey et al [73] present a scheme that uses a generationalGC with a reduced

copy reserve, with the ability to dynamically switch to a compacting GC if necessary.

Page unmapping as well as compaction has been used to reduce application mem-

ory footprint in prior work, such as the Compressor [64]. However, Compressor is a

concurrent, parallel compacting GC that achieves low pausetimes. Our goal is dif-

ferent: to provide a relative simple, per-application GC that achieves good footprint

and overall performance for desktop or small client applications, while allowing other

applications to execute concurrently, without interference.

4.5 Summary

Multi-tasking has been proposed as a means to enable sharingof code and classes

between applications in order to enable better startup performance, footprint and for

faster overall execution compared to single-tasking, i.e., executing each application in

a separate MRE process. While prior implementations of multi-tasking have demon-

strated the above for serial execution of programs, we show that the prior state-of-

the-art performs poorly for concurrent workloads. We attribute this to lack of per-

formance isolation due to a heap layout and GC that is not amenable to scaling. In

addition, prior work lacks precise resource accounting, the ability to manage mem-

173

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

ory subsystem setting (mainly heap size limits) on a per-application basis and GC-less

reclamation of an application’s resources on termination.

We present a series of generational memory management techniques to improve

the efficiency and scalability of a multi-tasking virtual machine (MVM) for the Java

programming language. Our techniques partition the young generation into per-task

regions that are isolated from other tasks, track old generation heap consumption

on a per-task basis, and facilitate concurrent mutation activity with garbage collec-

tion. These MVM extensions enable fine-grain control of application-specific heap

parameterization and accounting, immediate reclamation of heap areas upon task ter-

mination, concurrent allocation in the young generation, promotion of objects during

minor and major collection for only the task that triggers GC,and reduced scanning

overhead during GC.

Further, we describe a hybrid GC for old generation collection that achieves scal-

able performance and low footprint. Our hybrid GC combines mark-sweep with

copying collection in the same GC cycle along with fast adjustment for copied ob-

jects, to achieve good performance and a low footprint whileavoiding the overhead of

full copying GC. The hybrid GC uses marking to gather information (liveness, con-

nectivity, occupancy, and estimated fragmentation) necessary to determine regions of

the old generation to evacuate (if any) and to sweep and to identify which regions

must be scanned for pointer adjustment.

174

Chapter 4. Scalable Memory Management for Multi-Tasking Managed Runtime
Environments

We have integratedMTM with MVM, a multi-tasking implementation of the

JVM, and a compare it to a widely used, production-quality, single-tasking MRE for

concurrent application workloads. Our results show thatMTM enables significant

improvements in overall execution time, throughput as wellas footprint for concur-

rent workloads, compared to prior state-of-the-art single- as well as multi-tasking

MREs.

These results indicate that multi-tasking is a viable approach for executing con-

current applications and strengthens the case for multi-tasking MREs.

The text of chapter 4 is in part a reprint of the material as it appears in the pro-

ceedings of the International Symposium on Memory Management (ISMM 2006)

and in the proceedings of the European Conference on Object Oriented Program-

ming (ECOOP 2008). The dissertation author was the primary researcher and author

and the co-authors listed directed and supervised the research that forms the basis for

this chapter.

175

Chapter 5

Conclusion

The pervasive nature of heterogeneous networked computingplatforms has made

portability, security, and programmer productivity key concerns today. Today’s ap-

plications are programmed in type-safe, object-oriented languages that provide lan-

guage level features to enable productivity. Programs written in these high-level lan-

guages are translated into an intermediate architecture-neutral format and executed

in execution environments, known as Managed Runtime Environments (MREs), that

virtualize the underlying hardware architecture and resources for programs.

Modern MREs provide a number of runtime services that enable better productiv-

ity, security, and portability. Automatic memory management or garbage collection

(GC) is one such service. Today’s Internet programs do not useexplicit memory al-

location and de-allocation. Programmers rely on garbage collection to reclaim and

reuse memory freed by programs at execution time. Since MREs perform garbage

collection while the application is executing, they potentially imposes significant per-

176

Chapter 5. Conclusion

formance overhead. Much prior work has attempted to mitigate the overhead and

execution time impact of GC. However, users today execute a wide variety of differ-

ent applications, ranging from cell phone programs to larger desk-side programs, at a

time. Little attention by researchers has been directed at MREs that support different

multi-program execution models.

In this dissertation, we examine garbage collection for MREsthat execute mul-

tiple applications. We consider single-tasking persistent MREs that execute a single

application in a single MRE instance (operating system process), as well as multi-

tasking, persistent MREs that execute multiple applications concurrently in a single

MRE instance in an effort to share application code and data structures.

With this thesis work, we find that due to the diversity of application characteris-

tics and memory requirements, a single general-purpose GC algorithm does not en-

able the best performance for all applications and heap sizes. We propose that MREs

be able to dynamically select GC algorithms at execution time. Moreover, we design,

implement, and evaluate a GC switching framework that allows the GC algorithm to

be changed at execution time.

We demonstrate two uses of our dynamic GC swapping framework– annotation-

guided GC switching that selects the best performing GC for an application based on

user-supplied annotations that are determined based on a priori profiling and validated

across multiple inputs; and adaptive GC selection that attempts to achieve good per-

177

Chapter 5. Conclusion

formance using a heuristic that is based on the heap size for an application and heap

residency. We find that to achieve high performance, application code must be spe-

cialized based on the choice of the GC. Further, if the GC algorithm is changed at ex-

ecution time, this code must be de-specialized by the MRE. Existing de-optimization

approaches are inadequate since they do not provide a general-purpose mechanism

to de-optimize code that is being executed without inserting special instructions in

the application code as well as introducing register pressure for platforms with a lim-

ited number of registers. We, therefore, introduce a general-purpose de-optimization

mechanism that tracks compiler optimizations and that maintains state information

for de-optimization, that the MRE performs out-of-line withgenerated application

code.

We demonstrate that significant improvement in execution time is possible by

using a GC algorithm that is best suited to a particular application, the code of which

is specialized for the GC algorithms. We refer to such an approach asapplication-

specific GC.

We then investigate GC performance in multi-tasking MREs that execute multi-

ple concurrent applications in the same MRE instance. To enable sharing of applica-

tion code and data structures, multi-tasking MREs execute applications in the same

address space. We find that state-of-the-art multi-taskingMREs suffer from lack

of performance isolation between applications and lack precise resource account-

178

Chapter 5. Conclusion

ing. Further, these MREs must perform GC to reclaim memory that was used by

terminated applications. When executing concurrent applications, scalability of the

memory management subsystem is a key concern.

To address these limitations, we present theMulti-Tasking Memory Manager

(MTM) that enables performance isolation in a shared address space by providing

each application with the view that it alone is executing in the MRE instance. We

achieve this through on-demand allocation of heap memory regions, a synchroniza-

tion mechanism that allows only a single application to be paused for GC, and lever-

aging existing generational GC mechanisms. Further, to manage heap footprint, yet

enable high performance, we prototype a hybrid GC techniquethat combines two dif-

ferent GC algorithms – mark-sweep GC and copying GC, and makesa dynamic de-

cision about which technique to apply to a particular old generation region. Copying

GC mitigates fragmentation at the cost of requiring a copy reserve area and excessive

copying of live data. Mark-sweep GC is fast and suitable for old generation collection

since a majority of old generation objects are alive, however, it introduces fragmen-

tation if there are holes created by dead objects, which cannot accommodate future

allocations. The selection of the best garbage collection algorithm for performing

collection of a given old generation region is, thus,dynamic.

Our techniques enables a state-of-the-art MRE, the Sun Microsystem Labs’ Multi-

tasking Virtual Machine (MVM), to provide scalable performance as well as a small

179

Chapter 5. Conclusion

heap footprint for concurrent workloads. Our techniques also facilitate other im-

provements, such as GC-free reclamation of terminated applications’ resources and

selection of memory subsystem parameters on a per-application basis.

In summary, with this research and dissertation, we find thatit is possible to en-

able dynamic GC selection on a per-application basis for single-tasking MREs. Fur-

ther, we describe an effective implementation of scalable application-aware GC for

multi-tasking MREs, as well as dynamic and adaptive selection of two different GC

algorithms based on simple online heuristics (hybrid GC) to extract performance. We

show that it is possible to enable high performance memory management for the next

generation of multi-application environments and portable application technologies.

Our findings and the contributions that we make with this dissertation significantly

advance the state of the art of modern MRE systems. We next discuss potential di-

rections for future research.

5.1 Future Work

In our work on application-specific GC for single-tasking MREs, we have im-

plemented two simple heuristics to guide adaptive GC switching. Although these

heuristics perform well, as part of future work, we plan to investigate the use of ad-

ditional, hardware-level information, such as memory hierarchy and cache statistics.

180

Chapter 5. Conclusion

Most modern CPUs provide hardware performance monitors for performance profil-

ing. We plan to investigate the use of hardware monitors and dynamic profiling to

guide GC selection.

The GC algorithms we experimented with in the first part of thethesis are stop-

the-world, i.e., all mutators must be paused during GC. Stop-the-world GC is most

commonly used for small to medium sized devices. However, for large servers with

many cores, it may be beneficial to use parallel (multiple threads performing GC)

and/or concurrent GC (executing GC concurrently with the application that triggered

GC). As part of future work, we plan to investigate dynamic switching for GC algo-

rithms that are more suited to server systems.

Our work on scalable memory management for multi-tasking MREs shows that

it is possible to extract high performance from a state-of-the-art MRE; our tech-

niques enables multi-tasking to perform to its potential. Our old generation GC is

a hybrid mark-sweep-compact collector that reclaims discontinuous regions on a per-

application basis. We show that performing mark-compact collection over the entire

old generation is prohibitively expensive. Instead, we choose hybrid GC, which com-

bines mark-sweep GC for regions without much fragmentationand free space and

copying GC for fragmented and free regions. This achieves a good balance between

performance and footprint. However, copying GC requires a copy reserve area. If

memory is constrained and there exists significant fragmentation, copying/evacuation

181

Chapter 5. Conclusion

is unsuitable. In this case, we fall back to a full heap compacting collection. As part of

future work, we plan to investigate compacting collection over discontinuous regions

for memory constrained devices.

In a multi-tasking MRE, the GC acts as a service that is common to all applica-

tions, i.e., the GC is aware of all applications executing inthe MRE. If an application

is idle, yet using memory, it might be beneficial to perform a collection for that ap-

plication and reuse memory freed by it for other applications, even if the application

does not itself trigger a GC.

Today’s server (and many desktop) platforms support 64-bitaddress spaces. The

availability of a large address space raises interesting questions about the address

space layout for multi-tasking MREs. We can potentially provide each application

with a single contiguous address space, yet enable sharing through a carefully de-

signed address space layout. A per-application contiguousvirtual address space can

be mapped to discontinuous physical memory regions, enabling the GC to reclaim a

contiguous region of memory per application. MRE design and memory layout for

future massively multi-core platforms with a large amount of physical memory as

well as a large virtual address space is an interesting future work area.

182

Bibliography

[1] A. Aiken and D. Gay. Memory management with explicit regions. InConfer-
ence on Programming Language Design and Implementation, May 1998.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapẽno Virtual
Machine.IBM Systems Journal, 39(1):211–221, 2000.

[3] A. W. Appel. Simple generational garbage collection andfast allocation.Soft-
ware Practice and Experience, 19(2):171–183, 1989.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive Optimiza-
tion in the Jalapẽno JVM. InProceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), Oct. 2000.

[5] C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A comparative evalu-
ation of parallel garbage collectors. InFourteenth Annual Workshop on Lan-
guages and Compilers for Parallel Computing, Cumberland Falls, KT, Aug.
2001. Springer-Verlag.

[6] A. Azagury, E. K. Kolodner, E. Petrank, and Z. Yehudai. Combining Card
Marking with Remembered Sets: How to Save Scanning Time. InInterna-
tional Symposium on Memory Management (ISMM), Oct. 1998.

[7] G. Back and W. C. Hsieh. The KaffeOS Java Runtime System.ACM Trans.
on Programming Languages and Systems, 27(4):583–630, July 2005.

[8] D. F. Bacon, S. J. Fink, and D. Grove. Space- and time-efficient implementa-
tion of the Java object model. In B. Magnusson, editor,Proceedings of the Six-
teenth European Conference on Object-Oriented Programming, volume 2374

183

Bibliography

of Lecture Notes in Computer Science, pages 111–132, Ḿalaga, Spain, June
2002. Springer-Verlag.

[9] K. Barabash, Y. Ossia, and E. Petrank. Mostly Concurrent Garbage Collection
Revisited. InConference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), Oct. 2003.

[10] BEA Systems Inc. BEA’s Enterprise Platform. IDC white paper by M. Rosen
sponsered by BEA, 2002.http://www.bea.com/content/news_
events/white_papers/BEA_Beyond_Application_Server_
wp.pdf .

[11] BEA Systems Inc. BEA Weblogic JRockit: Java For the Enter-
prise, Dec 2003. http://www.bea.com/content/news_events/
white_papers/BEA_JRockit_wp.pdf .

[12] S. Blackburn, P. Cheng, and K. McKinley. A Garbage Collection Design
and Bakeoff in JMTk: An Efficient Extensible Java Memory Management
Toolkit. Technical Report TR-CS-03-02, Department of ComputerScience,
FEIT, ANU, Feb 2003. http://eprints.anu.edu.au/archive/
00001986/ .

[13] S. Blackburn and K. McKinley. In or Out? Putting Write Barriers in Their
Place. InInternational Symposium on Memory Management (ISMM), 2002.

[14] S. Blackburn, J. Moss, K. McKinley, and D. Stephanovic. Pretenuring for
Java. InConference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), Tampa, FL, Oct 2001.

[15] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss. Beltway:
Getting around garbage collection gridlock. InConference on Programming
Language Design and Implementation, June 2002.

[16] S. M. Blackburn and K. S. McKinley. Ulterior referene counting: Fast garbage
collection without a long wait. InOOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications, SIGPLAN Notices, Anaheim,
CA, Nov. 2003. Association for Computing Machinery.

[17] D. Box. Essential .NET, Volume I: The Common Language Runtime. Addison
Wesley Professional, Nov. 2002.

[18] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage collec-
tion and heap growth to reduce execution time of Java applications. InACM

184

http://www.bea.com/content/news_events/white_papers/BEA_Beyond_Application_Server_wp.pdf
http://www.bea.com/content/news_events/white_papers/BEA_Beyond_Application_Server_wp.pdf
http://www.bea.com/content/news_events/white_papers/BEA_Beyond_Application_Server_wp.pdf
http://www.bea.com/content/news_events/white_papers/BEA_JRockit_wp.pdf
http://www.bea.com/content/news_events/white_papers/BEA_JRockit_wp.pdf
http://eprints.anu.edu.au/archive/00001986/
http://eprints.anu.edu.au/archive/00001986/

Bibliography

Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA’01), Nov. 2001.

[19] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano, V. Shree-
dhar, H. Srinivasan, and J. Whaley. The Jalapeño Dynamic Optimizing Com-
piler for Java. InProceedings of the ACM Java Grande Conference, pages
129–141, June 1999.

[20] B. Cahoon and K. McKinley. Data Flow Analysis for SoftwarePrefetching
Linked Data Structures in Java Controller. InInternational Conference on
Parallel Architectures and Compilation Techniques (PACT), Sept. 2001.

[21] C. Chambers.The Design and Implementation of the SELF Compiler, an Op-
timizing Compiler for an Objected-Oriented Programming Language. PhD
thesis, Stanford University, Mar. 1992.

[22] C. Chambers and D. Ungar. Making Pure Object-Oriented Languages Prac-
tical. In Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 1–15, 1991.

[23] C. J. Cheney. A non-recursive list compacting algorithm.Communications of
the ACM, 13(11):677–8, Nov. 1970.

[24] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO:Java Under Dy-
namic Optimizations. InConference on Programming Language Design and
Implementation, pages 13–26, June 2000.

[25] J. Cohen and A. Nicolau. Comparison of compacting algorithms for garbage
collection. ACM Transactions on Programming Languages and Systems,
5(4):532–553, 1983.

[26] G. Czajkowski. Application Isolation in the JavaTM Virtual Machine. In
OOPSLA, pages 354–366, 2000.

[27] G. Czajkowski and L. Dayǹes. Multitasking without Compromise: A Virtual
Machine Evolution. InConference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Oct. 2001.

[28] G. Czajkowski and L. Dayǹes. Multitasking without Compromise: A Virtual
Machine Evolution. InConference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Oct. 2001.

185

Bibliography

[29] G. Czajkowski and L. Dayǹes. A Multi-User Virtual Machine. InUSENIX
2003 Annual Technical Conference, June 2003.

[30] G. Czajkowski, L. Dayǹes, and N. Nystrom. Code Sharing among Virtual Ma-
chines. InEuropean Conference on Object-Oriented Programming (ECOOP),
June 2002.

[31] The Dacapo Benchmark Suite, version beta050224.http://www-ali.
cs.umass.edu/DaCapo/gcbm.html .

[32] L. Dayǹes and G. Czajkowski. Sharing the Runtime Representation of Classes
Across Class Loaders. InEuropean Conference on Object-Oriented Program-
ming (ECOOP), July 2005.

[33] D. Detlefs, W. D. Clinger, and M. Jacob. Concurrent Remembered Set REfine-
ment in Generational Garbage Collection. InUSENIX Java Virtual Machine
Research and Technology Symposium (JVM’02), Aug. 2002.

[34] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-First Garbage Col-
lection. In International Symposium on Memory Management (ISMM), Oct.
2004.

[35] R. Dimpsey, R. Arora, and K. Kuiper. Java Server Performance: A
Case Study of Building Efficient, Scalable JVMs.IBM Systems Journal,
39(1), 2000.http://www.research.ibm.com/journal/sj/391/
dimpsey.html .

[36] A. Diwan, E. Moss, and R. Hudson. Compiler Support for Garbage Collection
in a Statically Typed Language. InConference on Programming Language
Design and Implementation (PLDI), June 1992.

[37] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank, and D. Shein-
wald. Thread-Local Heaps for Java. InInternational Symposium on Memory
Management (ISMM), June 2002.

[38] S. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive Re-
compilation with On-Stack Replacement. InInternational Symposium on Code
Generation and Optimization (CGO), Mar. 2003.

[39] S. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive Re-
compilation with On-Stack Replacement. InInternational Symposium on Code
Generation and Optimization (CGO), Mar. 2003.

186

http://www-ali.cs.umass.edu/DaCapo/gcbm.html
http://www-ali.cs.umass.edu/DaCapo/gcbm.html
http://www.research.ibm.com/journal/sj/391/dimpsey.html
http://www.research.ibm.com/journal/sj/391/dimpsey.html

Bibliography

[40] R. Fitzgerald and D. Tarditi. The case for profile-directed selection of garbage
collectors. InProceedings of the second international symposium on Memory
management, pages 111–120. ACM Press, 2000.

[41] Groovy: An agile dynamic language for the Java Platform. http://
groovy.codehaus.org/ .

[42] C. Hawblitzel and T. von Eicken. Luna: A Flexible Java Protection System. In
Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI), Dec. 2002.

[43] M. Hicks, L. Hornof, J. Moore, and S. Nettles. A study of large object spaces.
In R. Jones, editor,ISMM’98 Proceedings of the First International Sympo-
sium on Memory Management, volume 34(3) ofSIGPLAN Notices, Vancouver,
Oct. 1998. Association for Computing Machinery.

[44] M. Hicks, L. Hornof, J. Moore, and S. Nettles. A study of large object spaces.
In ISMM98, Mar. 1999.

[45] U. Hölzle. A Fast Write Barrier for Generational Garbage Collectors. In
OOPSLA/ECOOP ’93 Workshop on Garbage Collection in Object-Oriented
Systems, Oct. 1993.

[46] U. Hölzle. Optimizing Dynamically Dispatched Calls with Run-Time Type
Feedback. InConference on Programming Language Design and Implemen-
tation (PLDI), June 1994.

[47] U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized Code with
Dynamic Deoptimization. InConference on Programming Language Design
and Implementation (PLDI), June 1992.

[48] U. Hölzle and D. Ungar. A Third Generation Self Implementation:Recon-
ciling Responsiveness With Performance. InConference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Oct. 1994.

[49] A. L. Hosking and R. L. Hudson. Remembered Sets Can Also PlayCards.
In OOPSLA ’93 Workshop on Garbage Collection and Memory Management,
Sept. 1993.

[50] A. L. Hosking, J. E. B. Moss, and D. Stefanović. A Comparative Perfor-
mance Evaluation of Write Barrier Implementations. InConference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Oct. 1992.

187

http://groovy.codehaus.org/
http://groovy.codehaus.org/

Bibliography

[51] R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S. Munro. Garbage Col-
lecting The World: One Car At A Time. InConference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Oct. 1997.

[52] R. L. Hudson and J. E. B. Moss. Incremental garbage collection for mature ob-
jects. In Y. Bekkers and J. Cohen, editors,Proceedings of International Work-
shop on Memory Management, volume 637, pages 16–18, St Malo, France,
Sept. 1992. Springer-Verlag.

[53] R. L. Hudson and J. E. B. Moss. Incremental Garbage Collection for Mature
Objects. InInternational Workshop on Memory Management (IWMM), 1992.

[54] G. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fahndrich, C. Haw-
blitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber,
and B. D. Zill. An overview of the singularity project. Technical Report MSR-
TR-2005-135, Microsoft Research, Oct. 2005.

[55] IBM Corporation. Persistent Reusable JVM. Project home
page.http://www.haifa.il.ibm.com/projects/systems/rs/
persistent.html .

[56] IBM WebSphere. The WebSphere Software Platform. Product home page,
2004. http://www-3.ibm.com/software/info1/websphere/
index.jsp .

[57] Java Community Process. JSR-121: Application IsolationAPI Specification.
http://jcp.org/jsr/detail/121.jsp .

[58] Java Grande Forum.http://www.javagrande.org/ .

[59] IBM Jikes Research Virtual Machine (RVM).http://www-124.ibm.
com/developerworks/oss/jikesrvm .

[60] M. S. Johnstone. Non-Compacting Memory Allocation and Real-Time
Garbage Collection. PhD thesis, University of Texas at Austin, Dec. 1997.

[61] R. E. Jones and R. Lins.Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. Wiley and Sons, July 1996.

[62] JRuby: Java powered Ruby implementation.http://jruby.codehaus.
org/ .

188

http://www.haifa.il.ibm.com/projects/systems/rs/persistent.html
http://www.haifa.il.ibm.com/projects/systems/rs/persistent.html
http://www-3.ibm.com/software/info1/websphere/index.jsp
http://www-3.ibm.com/software/info1/websphere/index.jsp
http://jcp.org/jsr/detail/121.jsp
http://www.javagrande.org/
http://www-124.ibm.com/developerworks/oss/jikesrvm
http://www-124.ibm.com/developerworks/oss/jikesrvm
http://jruby.codehaus.org/
http://jruby.codehaus.org/

Bibliography

[63] A. Kennedy and D. Syme. Combining generics, pre-compilation and sharing
between software-based processes. InProceedings of the Second Workshop
on Semantics, Program Analysis and Computing Environments for Memory
Management (SPACE’01), Venice, Italy, Jan. 2004.

[64] H. Kermany and E. Petrank. The Compressor: concurrent, incremental, and
parallel compaction.Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, pages 354–363, 2006.

[65] C. Krintz. Coupling On-Line and Off-Line Profile Information to Improve
Program Performance. InInternational Symposium on Code Generation and
Optimization (CGO), Mar. 2003.

[66] C. Krintz and B. Calder. Using Annotation to Reduce Dynamic Optimization
Time. InConference on Programming Language Design and Implementation,
pages 156–167, June 2001.

[67] B. Lang and F. Dupont. Incremental incrementally compacting garbage collec-
tion. In Proc. of the SIGPLAN ’87 Symposium on Interpreters and Interpretive
Techniques, pages 253–263, St. Paul, Minnesota, 1987.

[68] B. Lang and F. Dupont. Incremental Incrementally Compacting Garbage Col-
lection. InSymposium on Interpreters and Interpretive Techniques, 1987.

[69] D. Lea. A memory allocator, 1997.http://gee.cs.oswego.edu/dl/
html/malloc.html .

[70] H. Lieberman and C. Hewitt. A Real-Time Garbage Collector based on the
Lifetimes of Objects.Communications of the ACM, 26(6):419–429, 1983.

[71] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-
Wesley, 1997.

[72] J. McCarthy. Recursive Functions of Symbolic Expressions and their Compu-
tation by Machine.Comm. of the ACM, 3:184–195, 1960.

[73] P. McGachey and A. L. Hosking. Reducing Generational CopyReserve Over-
head with Fallback Compaction. InInternational Symposium on Memory Man-
agement (ISMM), June 2006.

[74] F. L. Morris. A Time- and Space-Efficient Garbage Compaction Algorithm.
Communications of the ACM, 21(8), 1978.

189

http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html

Bibliography

[75] NonStop Server for Java Software. Project home page.http://nonstop.
compaq.com/view.asp?IO=NSJAVAPD01 .

[76] OpenSolaris Project: OpenGrok. http://opensolaris.org/os/
project/opengrok/ .

[77] M. Paleczny, C. Vick, and C. Click. The Java HotSpot(TM) Server Com-
piler. In USENIX Java Virtual Machine Research and Technology Symposium
(JVM’01), Apr. 2001.

[78] T. Printezis. Hot-swapping between a mark&sweep and a mark&compact
garbage collector in a generational environment. InUsenix Java Virtual Ma-
chine Research and Technology Symposium, Monterey, California, Apr. 2001.

[79] N. Sachindran, J. Eliot, and B. Moss. Mark-copy: Fast Copying GC with less
Space Overhead. InConference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Oct. 2003.

[80] N. Sachindran, J. E. B. Moss, and E. D. Berger.MC2: High-performance
Garbage Collection for Memory-constrained Environments. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), Oct. 2004.

[81] P. Sansom. Combining single-space and two-space compacting garbage col-
lectors. In R. Heldal, C. K. Holst, and P. Wadler, editors,Proceedings of the
1991 Glasgow Workshop on Functional Programming, Workshops in Comput-
ing, pages 312–323, Portree, Scotland, 1992. Springer-Verlag.

[82] F. Smith and G. Morrisett. Comparing mostly-copying andmark-sweep con-
servative collection. InProceedings of the first international symposium on
Memory management, pages 68–78. ACM Press, 1998.

[83] S. Soman, L. Dayǹes, and C. Krintz. Task-Aware Garbage Collection in a
Multi-Tasking Virtual Machine. InInternational Symposium on Memory Man-
agement (ISMM), June 2006.

[84] Standard Performance Evaluation Corporation (SpecJVM98 and SpecJBB
Benchmarks), 1998.http://www.spec.org/ .

[85] SpecJVM’98 Benchmarks.http://www.spec.org/osg/jvm98 .

[86] B. Steensgaard. Thread-Specific Heaps for Multi-Threaded Programs. InIn-
ternational Symposium on Memory Management (ISMM), Oct. 2000.

190

http://nonstop.compaq.com/view.asp?IO=NSJAVAPD01
http://nonstop.compaq.com/view.asp?IO=NSJAVAPD01
http://opensolaris.org/os/project/opengrok/
http://opensolaris.org/os/project/opengrok/
http://www.spec.org/
http://www.spec.org/osg/jvm98

Bibliography

[87] D. Stefanovíc, K. S. McKinley, and J. E. B. Moss. Age-based garbage col-
lection. InOOPSLA’99 ACM Conference on Object-Oriented Systems, Lan-
guages and Applications, volume 34(10) ofSIGPLAN Notices, pages 370–381,
Denver, CO, Oct. 1999. Association for Computing Machinery.

[88] T. Suganuma, T. Yasue, and T. Nakatani. A Region-Based Compilation Tech-
nique for a Java Just-In-Time Compiler. InConference on Programming Lan-
guage Design and Implementation (PLDI), June 2003.

[89] Sun Microsystems. The Java HotSpot Performance EngineArchite-
cure. Whitepaper. http://java.sun.com/products/hotspot/
whitepaper.html .

[90] Sun Microsystems Inc. CLDC HotspotTM Implementation Architecture
Guide. http://java.sun.com/javame/reference/docs/
cldc-hi-2.0-web/doc/architecture/html/MultiTasking.
html .

[91] Sun Microsystems Inc. The Java Hotspot Virtual MachineWhite
Paper. http://java.sun.com/products/hotspot/docs/
whitepaper/Java_HotSpot_WP_Final_4_30_01.html .

[92] Sun Microsystems Labs. Multitasking virtual machine.http://mvm.dev.
java.net .

[93] D. Ungar. Generation Scavenging: A Non-disruptive High Performance Stor-
age Reclamation Algorithm.SIGPLAN Notices, 19(5):157–167, 1984.

[94] D. Ungar. Generation Scavenging: A Non-disruptive High Performance Stor-
age Recalamation Algorithm. InSoftware Engineering Symposium on Practi-
cal Software Development Environments, Apr 1992.

[95] D. Ungar. Generation Scavenging: A Non-Disruptive High Performance Stor-
age Recalamation Algorithm. InSoftware Engineering Symposium on Practi-
cal Software Development Environments, pages 157–167, Apr. 1992.

[96] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Hawblitzel, D. Hu, and
D. Spoonhower. J-Kernel: A Capability-Based Operating System for Java.
Secure Internet Programming: Security Issues for Mobile and Distributed Ob-
jects, pages 369–393, 1999.

[97] P. R. Wilson. Uniprocessor Garbage Collection Techniques. InProceedings of
the International Workshop on Memory Management, Sept. 1992.

191

http://java.sun.com/products/hotspot/whitepaper.html
http://java.sun.com/products/hotspot/whitepaper.html
http://java.sun.com/javame/reference/docs/cldc-hi-2.0-web/doc/architecture/html/MultiTasking.html
http://java.sun.com/javame/reference/docs/cldc-hi-2.0-web/doc/architecture/html/MultiTasking.html
http://java.sun.com/javame/reference/docs/cldc-hi-2.0-web/doc/architecture/html/MultiTasking.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.html
http://mvm.dev.java.net
http://mvm.dev.java.net

Bibliography

[98] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. InProceeding of the International
Workshop on Memory Management, Kinross Scotland (UK), 1995.

[99] P. R. Wilson and T. G. Moher. A card-marking scheme for controlling intergen-
erational references in generation-based garbage collection on stock hardware.
SIGPLAN Notices, 24(5):87–92, 1989.

[100] L. Zhang and C. Krintz. Profile-driven Code Unloading forResource-
Constrained JVMs. InACM International Conference on the Principles and
Practice of Programming in Java, June 2004.

[101] B. Zorn. Comparing mark-and sweep and stop-and-copy garbage collection.
In Proceedings of the 1990 ACM conference on LISP and functionalprogram-
ming, pages 87–98. ACM Press, 1990.

192

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	Introduction
	The Thesis Question
	Application-Specific Garbage Collection
	Scalable Memory Management for Multi-tasking Managed Runtime Environments
	Contributions

	Outline

	Background
	Garbage Collection for Managed Runtime Environments
	Multi-Tasking Managed Runtime Environments

	Application-Specific Garbage Collection
	Support for Garbage Collection Switching
	Multiple Garbage Collectors in a Single JVM
	Multi-purpose Object Header

	Specialization Support for GC Switching
	Annotation-Based Garbage Collector Selection
	Automatic Garbage Collector Switching
	Evaluation
	Experimental Methodology
	Results

	Related Work
	Summary

	Scalable Memory Management for Multi-Tasking Managed Runtime Environments
	Application-Aware Memory Management for Multi-Tasking Managed Runtime Environments
	Hybrid generational heap
	Per-application Old Generation Regions
	Application-Concurrent Scavenging
	Evaluation

	Discussion
	Scalable Hybrid Collection for Multi-Tasking Managed Runtime Environments
	Hybrid Mark-Evacuate-Sweep Garbage Collector
	Evaluation

	Related Work
	Application-Aware Memory Management
	Scalable Hybrid Collection

	Summary

	Conclusion
	Future Work

	Bibliography

