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Abstract

Memory Management for Multi-Application Managed
Runtime Environments

Sunil Soman

Modern computing platforms are pervasive, networked, rbgeneous and in-
creasingly complex. These systems range from small halibdiegices such as cell
phones, to large servers that run back-end software. Ridgtavidespread use, and
security of program execution as well as support for a fasgjm development cy-
cle are key concerns of software developers and end useresd platforms. To
address these concerns, modern programming languagebe&nrtplementations
have emerged to facilitate high-level, object-oriented] &ype-safe software devel-
opment that is portable and secure. Popular examples & theguages are Java and
the .NET languages. Programs written in these languagesnaaed by a source
compiler into an architecture-independent format, and theecuted on any platform
for which there is a virtual execution environment called andged Runtime Envi-
ronment (MRE). MREs provide dynamic compilation of programshe underlying
native machine format, adaptive optimization, memory ngangent, security verifi-
cation, and other runtime services for programs.

Automatic memory management, or Garbage Collection (GCh MRE service

that is key to facilitating programmer productivity, pdsiisty, and memory safety of

Vil



programs written in Java and the .NET languages. GC relithesiser from em-
ploying (and debugging) explicit deallocation of heap megmeélowever, since such
management and reclamation is provided by the MRE, it neabsisdroduces over-
head. Much prior work has focused on mitigating the overted&@C for MRES that
execute a single program at a time using a single operatstgrsyprocess. However,
today’s MRE platforms execute a wide variety of applicatienth diverse compu-
tational characteristics, resource requirements ancolijetimes. Moreover, state-
of-the-art MREs now are able to execute multiple applicaiosing a single MRE
process, serially or concurrently. For widespread use cf systems, and arguably
for the success of such languages, we must advance GC teghrtol exploit the
multi-program execution model and to enable efficient aatticrmemory manage-
ment and program performance for the next-generation aépler software.

In this dissertation, we focus on memory management teaksidor the next-
generation of multi-program MREs for Java and consider betiak(persistent) and
concurrent program execution models. In particular, westigate, design, and en-
gineer two novel solutions for GC that facilitate high-gmerhance program execu-
tion for these MRESs: (i) Application-Specific Garbage Collectand (ii) Scalable
Memory Management for Multi-Tasking MRESs. In the former, wistomize and au-
tomatically specialize the GC in an MRE for a particular apgion and switch GCs

automatically within a single, persistent MRE as needed &mhenew application
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that the MRE executes. In the latter, we present a novel G@msy&ir concurrent
execution of programs; this system isolates GC activitfesdaividual tasks while

programs share a single heap. Our results show that we aget@lalchieve sig-
nificant performance gains over the state-of-the-art MREesys for both research
and production-quality multi-program MRE systems in terfithomughput, response

time, and memory footprint.
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Chapter 1

Introduction

Computing platforms today are heterogeneous, pervasivenatwiorked, and
range from small devices such as cell phones to large-sealersfarms. These
systems are highly complex as well as diverse in their agctutes, resource con-
straints, and capability. To provide a development infrattire for modern systems
that facilitates programmer productivity across a widegeanf systems, program-
ming language technology, such as that for Java and the Btiftrd\et framework,
has emerged to provide high-level, object-oriented, ty@ie, secure, and portable
application development.

These language technologies implement a "write once, rywla@re” program-
ming model in which the source program encoded in an ardhiteéndependent
binary format is executed (after potentially being transf@é over a network) on a ma-
chine with aManaged Runtime Environment (MRBn MRE is an execution envi-

ronment that virtualizes the underlying hardware and nessufor programs, verifies
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that programs are well formed and type-safe, provides dynarading and library
support, and that implements a wide array of runtime sesviSeich services include
garbage collection, dynamic compilation and optimizatibimead management, and
incremental program (class) loading. This execution m@detludes the need for
programmers to have expert knowledge of the vast array aénlyidg architectures,
platform-specific resources, and complex program behasioce a program, with-
out modification, can execute on any system for which theam iappropriate MRE.
MREs thus facilitate significant programmer productivityveel as program porta-
bility and security. Examples of popular MREs include theal®irtual Machine
(JVM) [71], and the Microsoft .NET common language runtir@e.R) [17].

Modern MREs typically execute a wide variety of programsgrag from script-
ing languages, bytecode compilers, GUI programs to datedggslications and appli-
cation servers. These programs have diverse resourceaegprits (CPU, memory,
network, disk), differences in the number, size and lifesnof dynamically allocated
objects, and different execution characteristics (d#fifiemes in compiled code, single
or multi-threaded execution).

There also exist differences in the execution model foredhagsplications. A
single-taskindIRE executes a single application in a given instance of the MRE
an operating system (OS) process is spawned for each dpplicaéSingle-tasking

MREs rely on the underlying operating system (i.e. the pr®cesdel) to isolate
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programs from each other for security, as well as for resouranagement and ac-
counting.

With the widespread use of Internet computing, users egetuiitiple, diverse
applications on a single platform. Instantiating an MRE gv¥&ne a new application
is deployed adds startup and execution time overhead. RbtiRBEtadvances thus,
now provide support fopersistent executiofL00, 4], which precludes the need to
terminate an MRE instance upon application termination.t i)ahe lifetime of the
MRE exceeds that of any single application. With this peesisinodel of execution,
there exist opportunities for the MRE system to learn front pascution and behav-
ior and to adapt the MRE services (and program behavior tihraogpilation) over
time to extract high performance from applications.

Further, as desktop and hand-held platforms become mosableaffaster mul-
ticore CPUs, larger memories, etc.), users that once exteutengle program at
a time, now demand that these systemnglti-task i.e., seamlessly and simultane-
ously execute multiple applications (such as, instant aggsg, calendar and email
clients, audio player, Internet browsers, office suite,)etSingle-tasking persistent
MREs duplicate effort across MRE instances, MRE servicesnateepresentations
of classes, code, etc., cannot be shared across prograstsreslundancy increases
startup time and memory consumption and degrades ovestdisyperformance and

scalability. Amultitasking, persistent, MRiEnplementation [29] enables sharing of



Chapter 1. Introduction

common and scarce resources between applications whiletairang portability,
mobility, and type-safety.

To achieve safe, flexible, portable, and efficient execyufi®RESs provide

Dynamic class loading. The ability to load, link and unlodmtdry and appli-

cation classes a&xecution timgruntime).

Type-safe class file verification. To guarantee secure ¢xecuype-safety is

checked when classes are loaded.

Dynamic compilation, i.e., application and library codeanpiledon-the-fly

at execution time.

Adaptive application optimization. Since code is dynartyceompiled, the

execution time of an application includes the time requicedompile applica-
tion and library methods. Adaptive optimization aims atenxging most effort
on critical methods and code regions. Most time is spent ampdang “hot”, or
frequently executing code (more extensive and time consgimptimizations),
whereas “cold” or less frequently executing code is optediless aggressively

or not optimized at all.

e Automatic memory management. To improve programmer piddiycand
memory safety, MREs implement dynamic, automatic reclammati explicit

heap allocated data, i.e., garbage collection (GC).
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However, the services provided by an MREecute at application execution tiraed
necessarily impose overhead on the programs. This oveibeagberienced by the
user as decreased program responsiveness and increasstiexeeution time.

A key MRE component that significantly impacts program pemi@nce is garbage
collection, i.e., automatic memory management. Heap menmed by applications
is not explicitly freed by programmers in source code. Thdgge collection sys-
tem identifies and recycles unreachable heap objects atitathafor the program.
Garbage collection, therefore, can be potentially disveptince it consumes CPU
cycles that would otherwise be available to the applicatiBrior work has shown
that garbage collection can impose significant overheadotim &pplication execu-
tion and response time [18, 1, 44].

Modern garbage collection techniques[79, 43, 14, 52, 1&défess the over-
head imposed by basic garbage collection systems [97]. Hmwmodern applica-
tions have evolved to be very complex in terms of both theplementation and
their dynamic behavior, precluding any one MRE memory mameg approach to
provide high-performance for all applications (due to thifferent resource require-
ments and usage patterns). An MRE optimized to perform welbh@ type or class
of applications, may inhibit performance for other typespplications. Prior work
has noted that the application performance is significantpacted by the choice of

the GC algorithm [5, 40]. State-of-the-art MREs provide supfor multiple GC
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algorithms, however, the GC algorithm must be specified byuer when the MRE
is instantiated, i.e., GC selectionnst dynamic The MRE must be terminated and
restarted with an appropriate GC for a new application, tvlaidds startup overhead
and which also means that commonly executed code must bepded.

Further, the lack of cooperation between applications inqiwithin the same
MRE (multi-tasking) and the resource contention between MEHEgle-tasking) on
the same system can lead to additional performance degraddtor example, if
there are multiple applications executing on a single ptaif(e.g. through a web
browser, or by a user executing multiple programsig)ultaneouslygarbage collec-
tion strategies may interfere with each other impactingethére system. Memory
management in state-of-the-art multi-tasking MRESs intabplication performance.
To facilitate sharing, multiple applications execute ie game address space [29].
Consequently, garbage collection triggered by any apphicategrades performance
for all other applications. In addition, resources freedahyapplication on termina-
tion cannot be readily reused by other applications witrdisituptive GC activity.
Moreover, precise resource accounting and tracking isosgiple. The performance
degradation due to GC is exacerbated as additional apphsagxecute simultane-

ously, since scalability is severely inhibited.



Chapter 1. Introduction

1.1 The Thesis Question

The question we attempt to answer in this dissertation i$alh@ving,

How can we achieve high-performance memory management imdédnRun-
time Environments that execute multiple applications?

We investigate the effect of the choice of garbage colleqtialicies on the perfor-
mance of different applications executing serially (orterahe other) in an MRE. We
demonstrate that application-specifi€éC policy that is better suited to a particular
application enables significantly better performanceHat application, compared to
selecting a single generic GC for all applications in a srglsking persistent MRE
(henceforth, referred to as a single-tasking MRE).

We then consider the performance of multiple concurrentiegpns executing
in a single persistent MRE instance. This execution modekgseveral questions
about resource management and accounting, sharing, parfice isolation between
applications, and footprint size, which we investigatehis tdissertation. An next

overview the two foci of this dissertation.

1.1.1 Application-Specific Garbage Collection

Most MREs [59, 91] use general-purpose GC algorithms thehwyit to enable

high-performance execution across all applications. Heweprior research [5, 40,
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101, 82], has shown that the efficacy of a memory managemstemy(the alloca-
tor and the garbage collector) is dependent upon applicémavior and available
resources. That is, no single collection system enablebdleperformance for all
applications and all heap sizes. Our empirical experimiemaonfirms these find-
ings in a performance-oriented, server-based, Java vimaahine, JikesRVM [2]
from the IBM T.J. Watson Research Center. Over a wide-rangeayf bzes and the
10 benchmarks studied, we found tleaerycollector enabled the best performance
at least onceincluding a mark-sweep and non-generational copying collector, two
collectors that are commonly thought of as implementingot#ie technology. We
hypothesize that to achieve the best performance, thectiolteand allocation algo-
rithms used should be selected according to both applicaedavior and heap size.
Currently, such selection can only be done by the user andyschallenging to get
right given the performance range of different garbageectdirs for different heap
sizes.

Existing execution environments enable application- aeaphspecific garbage
collection, through the use of different configurations(separate builds or command-
line options) of the execution environment. However, thetmodology for GC selec-
tion, in addition to being challenging to get right, is noteamable to next-generation,

high-performance server systems in which a single exet@nvironment executes
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continuously (persistently) while multiple applicatiossd code components are up-
loaded by users [56, 75, 10]

For persistent MREs, a single collector and allocator mustide=l for a wide
range of available heap sizes and applications, e.g., enesoe, agent-based, dis-
tributed, collaborative, etc. As such, it may not be possiblachieve high-performance
in all cases and selection of thwong GC system may result in significant perfor-
mance degradation. To address this limitation, we presentdésign, implementa-
tion, and evaluation of a dynamic GC switching system foeSiRVM. Our switching
system facilitates the use of the garbage collector and memdtocator that will
enable the best performance for the executing applicaimhthe underlying re-
source availability. The system we present is extensibteganeral; it can switch
between many different types of collectors, e.g., semespmark-sweep, copying-
mark-sweep, and many variants of generational collection.

To evaluate our system, we have implemented two mechanismsotation-
guided GC selection, and automatic switching. For the formve identify the best
performing GC for a range of heap sizes for each programsadnputs. We then
annotate the programs to identify the collection systenswfar a range of available
resource levels. Upon dynamic loading of each applicatttn MRE uses the anno-
tation to switch to the appropriate GC given the current mmaxn available heap size.

To implement automatic switching, we employ a simple heigrthat uses maximum
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heap size and a heap residency threshold to switch durirgygaroexecution. The
second part of this dissertation focuses on memory manageimemulti-tasking

MREs.

1.1.2 Scalable Memory Management for Multi-tasking Managed

Runtime Environments

Multi-tasking MREs execute multiple, isolated applicagan a single MRE in-
stance that is persistent. Co-locating programs in the sathess space simplifies
the virtual machine implementation through sharing of Un&ime representation of
programs and dynamically compiled code. Such sharing asidsduplicated effort
across programs (e.g. loading, verification) and amortize8me costs, such as dy-
namic compilation, over multiple program instances. Pwork on the MVM [27],
shows how a multitasking design reduces startup time andamefootprint, and
improves performance over a single-program MRE approach.

Multi-tasking MRESs provide isolation and resource managsrite multi-application
workloads and provide application developers with a fitass representation of an
isolated program execution (e.g., tiselatein [57, 29] and theapplication domain
in .Net[63]). This representation provides the necessary funatity to launch and

control the life cycle of multiple, isolated execution unfprograms).

10
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MREs have access to high-level program information, can taohime-varying
program behavior and underlying resource availabilitg, @n dynamically optimize
programs as well as the runtime based on prior informatitver&fore, they potential
for more intelligent scheduling and resource managemeptagrams. Prior work
has shown that multi-tasking is more effective at enablirggs-program sharing of
dynamically loaded and compiled code, and at achievinglsmaemory footprint
and faster startup times [28, 30] than traditional MREs tlelit on process-based
isolation. Yet, little attention has been directed at pleeformance of multi-tasking
MREs for simultaneous program executiae., concurrent workloads, compared to
a more common scenario in which each program runs in its oaeess.

Application diversity and widely varying resource requanents implies that ap-
plications may interfere with the execution of other apgiicns within the same
MRE. A MVM GC implementation must address unique challengatsfaced by

GC systems in single-tasking MRESs to achieve scalable pedoce, such as,

e Each application that executes in the MRE instance must netféme with
other programs, either functionally, or in terms of perfamoe. In particular,
a GC triggered by any application should not impact the perémce of other

applications.

11
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e An application should have control over heap and GC systeanpeters, such

sizing or generational tenuring parameters.

e Heap resources reclaimed from applications should be madialble to other

applications if required.

e Upon application termination, heap resources that theegimn has allocated
must be immediately reclaimable and available for use bgragéipplications,
without the need for expensive GC operations. In additioghgeclamation

should not adversely affect other applications.

e Scalability should be guaranteed, i.e., when multiple corent applications
are executed, the memory management subsystem shouldasdah®t intro-

duce overhead that is proportional to the number of appdicatexecuting.

e When running applications concurrently, footprint must bstricted so that
a multi-tasking MRE does not consume more memory comparedutbphe
instances of single-tasking MREwhile preserving the performance benefit

due to sharing

We present an MRE memory management design that addressesHtatlenges

for the Sun Microsystems MVM [92] for Java. Key to our design i

12
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e An organization of the heap that enables per-applicatiofopaance isolation

for the memory management system

¢ Independent and per-application allocation and colleabioobjects

e A GC technique that provides high throughput and scalghitit concurrent

application workloadsyhile ensuring that heap footprint is restricted.

o GC-free memory reclamation upon application termination.

The system we propose, is the Multi-Tasking Memory Managé&r'(\/), which
leverages two novel techniques — (i) Application-aware mgnmanagement, i.e.,
ensuring that heap management, garbage collection aniibcatgon is cognizant
of the fact that multiple applications might execute conently in a single MRE
instance. Application-aware memory management proviéap imemory isolation
for each application and enables any application to aloeaid trigger GC inde-
pendently of other applications executing in the MRE instar(@) Scalable hybrid
GC that ensures that a low footprint in maintained for the MRAile achieving
high throughput by providing a combination of two differgrairbage collection tech-
niques, mark-sweep collection and copying collection @oger-lived objects allo-
cated by the application. We implemehf7 Min the MVM (an extension of the
production-quality HotSpot MRE from Sun Microsystems) armdnpare our con-

tributions against the state-of-the-art in multi-taskM&E technologies as well as

13
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against a single-tasking HotSpot system, for a wide rang@wimunity benchmark

programs and multi-tasking scenarios.

1.1.3 Contributions

In summary, with this dissertation we contribute,

e An evaluation of the effect of different GC algorithms on kpgtion perfor-

mance using a single-tasking MRE.

e The design and implementation of a novel framework that lesethe garbage
collector and allocator to be switched dynamically in a Brigsking MRE, at

runtime, i.e. while the MRE and the application are executing

e A general-purpose on-stack replacement mechanism them@stprior work
by allowing the ability to perform on-stack replacementheiit the need to
insert special instructions and checks (guards) into tipdiGgdion code. Our
on-stack replacement mechanism allows code that has beerakped for a

specific GC to be de-specialized when a GC switch is perfolihadcessary).

e Two techniques that employ our switching framework to dyitatty switch
GCs — annotation-guided switching that uses program anoogatand adap-

tive switching that uses online heuristics based on the atwfttime spent in

14
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GC versus the amount of time spent executing applicatiomr,cadd the fre-

guency of GC.

e An empirical evaluation that shows the efficacy of GC switghfior annotation-

guided and adaptive switching over manual selection of Gsiesy.

e The design and implementation of a novel memory managenysigra for
multi-tasking MREs, in particular, for the Sun Microsysterabs’ state-of-
the-art Multi-tasking Virtual Machine. Our advances ird#ua heap layout
that enables applications to allocate memory on demand iraged address
space and track heap resources precisely, a synchromzagchanism that
enables an individual thread to be pauses for GC (insteadl thiraads), per-
application young generation GC that can execute condilyreith threads
of other applications, reclamation of heap space used byaplication on its

termination without requiring GC.

e The design and implementation of a novel hybrid and adapliyeyeneration
GC technique for multi-tasking that combines two differ&€ algorithms,
mark-sweep and copying GC, and uses online heuristics ty &ttpler mark-
sweep or copying to different parts of an application. Thishhique enables
high performance for concurrent workloads that signifigaexercise the old

generation as well as maintains good process footprint.

15
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e An evaluation of a multi-tasking MRE that compares our teghas against
its single-tasking counterpart for concurrent workloa@ur results indicate
that with a carefully designed memory management systertti-tasking can
perform to its potential and enable significantly bettef@enance compared

to single-tasking.

1.2 Outline

The outline of the remainder of this dissertation is as fe#io In Chapter 2, we
provide an overview of memory management techniques in mod@naged Run-
time Environments, followed by a discussion of prior workated to application-
specific garbage collection. We then describe multi-tagkIiiREs that are capable of
executing multiple applications in isolation in a singleeggting system instance.

In Chapter 3, we describe our work on application-specifibage collection
for single-tasking MREs. We present evidence that showsgiagral-purpose GC
may not best suited for all applications and resource caims. We then present our
application-specific GC framework that allows dynamic séts of and switching
between diverse GCs, and present two applications of thesfremik.

The second part of the dissertation 4 details scalable memanagement for

multi-tasking MRES, including our extensions to a statehaf-art MRE for application-
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aware memory management and scalable, hybrid GC. In Chaptex present our

conclusions and plans for future work.

17



Chapter 2

Background

In this chapter, we provide background on garbage collec¢tidMREs. We dis-
cuss basic GC terminology, followed by commonly used GCngples in MREs
to which we refer in the rest of this dissertation. We thenvgte background on

multi-tasking MREs, the foci of the second part of this ditstgon (Chapter 4).

2.1 Garbage Collection for Managed Runtime Envi-

ronments

In this section we will define garbage collection terms andnexe commonly

used collection techniques to which we refer in the remainfléhis dissertation.

18
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Garbage

Garbage is defined as data allocated dynamically by a protirams no longer

reachable.

Mutator

In garbage collection terminology, an application threadalled the mutator,

since it mutates or modifies objects.

Garbage Collector

The termgarbage collectorsignifies an automatic memorgclamationmecha-
nism, but the data structures for memory management aredgbgrthe reclamation
mechanism and thallocator [69]. The choice of the allocation algorithm is gener-
ally tied to choice of the reclamation mechanism. The atlmcand the collector can,

therefore, be implicitly considered to be two componenta garbage collector.

Garbage Collection Cycle

A garbage reclamation algorithm consists two phasemrbage detectionin
which live objects are distinguished from garbage, gaidbage reclamationin which
the space occupied by garbage is freed for use by the apphgaiogram (thenuta-

tor). Detection and reclamation constitute a garbage codleaycle.
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Root Set

To detect live objects, ot setof references is used. This consists of an ap-
plication’s static variables, any local (stack-allocateariables, and general-purpose
registers. All objects that are directly or transitivedachablefrom the root set are
assumed to be live and cannot reclaimed. Objects that aeacimable are considered
to be garbage, and therefore can be recycledachabilityis a more conservative
approach than one used in, say, an optimizing compiler, wtaonsiders variables to

be dead if they aranusedafter a certain point in the program.

Object Header

Modern object oriented languages are dynamically typedajects typically
have meta-data space to hold type information. MREs typica#ike use of a single,
two- or three-word object header. The header usually cositan object’s identity
hash code (a unigue identifier) and GC status informatiom,fohmat of which is
MRE dependent. In addition, it also contains a referencedmtiject’s class type,
which is typically implemented as an object itself. All obig of a certain type refer

to the class object.

20
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Compiler Support for Garbage Collection

Modern programming languages for virtual machine appbcat are strongly
typed, which means that the compiler fully supports runtiype identification. Con-
sequently, it is possible to accurately identify objecerefices without any need for
a conservative approach. A conservative garbage collectmsed in languages that
have do not provide strong typing, e.g. C and C++. A consemaiarbage collector
does not know the location of all object references insidelgact; such a collec-
tor must beconservativen its identification of object references, i.e., anythihgit
lookslike a pointer, may be one. On the other hand, garbage cotkedesigned for
modern MREs have full knowledge about an object’s type anmiesnal reference
fields, and are therefore, fultype accurate

Interpreters and compilers differ over when garbage cleacan be initiated.
GC can be initiated at any point during program executionagecof interpreters,
called GC-anytime However, all modern execution environments employ an-opti
mizing compiler, usually with multiple optimization lewel In such a case, garbage
collection can generally only be initiated at certain dedipeints during execution,
calledsafe-pointcollection. This allows the optimizing compiler to use cdaxpop-
timizations between safe points, as long as it maintairmnétion that is necessary

to locate pointer values at safe points. This informatiogaeerated during compi-

21



Chapter 2. Background

lation and is maintained in a per-method data structureddlegarbage collection

map(GC map). We will next discuss commonly used garbage cadlecigorithms.

Mark-Sweep Collection

Mark-sweep GC consists of two phases.

e Mark phase. Objects that are directly or transitively redudd from the root set
are marked live. Marking can be done by setting a bit in thectti)eader or in

a global bitmap data structure.

e Sweep phase. In this phase, objects that are not marked mahephase are
swept or reclaimed for use by the mutator. Freed objectdraced into a free-
list maintained by the heap allocator. Allocating from aefiest, however, is

more expensive than allocating from a contiguous memornpneg

The mark-sweep technique is able to reclaim garbage cyamelsit imposes no over-
head during object manipulation, however, some amount of v8aequired at object
creation time, to initialize the object header (if the maitkid stored in the header).

Mark-sweep GC, however, has some drawbacks.

e Fragmentation. Since reclamation is done in place, in tines, areas are in-
terspersed with live objects, leading to a fragmented hé&gect allocation

might fail even though the total amount of free space is gafficto honor
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the allocation request. Various techniques are used tgabdithis problem,
e.g., maintaining free lists with different block sizesledlsegregated lists, and

buddy lists in which blocks from adjacent lists are coald{8&].

e Collection cost. The collection cost of mark-sweep coltatis proportional to
the size of the heap. While reclaiming objects during the svpdwase, garbage
as well as live objects are visited. This cost can be mitadjateusing a bitmap.
Typically, a bit in the bitmap corresponds to a fixed numbebytes in the

heap. The cost of traversing the bitmap is less than thataofreng the heap.

e Poor Locality of Reference. Since objects are allocated amedfin place,
freshly created objects may be spatially closer to oldeeabj leading to poor

locality of reference if objects are accessed in allocabiater.

Mark-Compact Collection

To handle fragmentation, poor locality, and expensivecaliion associated with
mark-sweep collection, mark-compact collection was itedifi25]. In mark-compact
collection, the initial marking phase is similar to the magkphase of mark-sweep
collection, however, the reclamation phase attempts topeainlive data into one
contiguous region of the heap. This solves the fragmemgtioblem. As a result of

compacting live data, free space exists as a contiguousrre@@onsequently, allo-
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cation is inexpensive as it involves only a pointer incretmeto the contiguous free
space, which is also known &simp pointerallocation. Locality is also improved,
since objects of a similar age are clustered together inespac

The simplest compacting reclamation can be thought of @ilglsag compaction
that “slides” live objects into spaces left behind by deagtcts. However, the actual
process of compaction can be quite expensive, and requukipl® passes: one pass
to identify the new locations for the live objects, anothecompute new locations

for live objects, and a third pass to adjust references teatbjhat have moved.

Copying Garbage Collection

Compaction is an inherent part of copying garbage colleciionvhich all live
data is copied to one part of the heap, so that it is contigydagl out. The rest
of the heap is then considered to be free, and can be used bildbator for future
allocations. Copying collection is often considered toifoglicit, or scavenging,
since garbage is not explicitly identified and reclaimed.

The heap is usually divided into two equal partssemispacesthe from space
and theto space All allocation is from the from space, which is the consgtkto be
the “current” semispace. The to space is always empty wind@pplication executes.
During a collection, live data is copied from the from spazée to space. The from

space now contains only garbage and can be reclaimed. Tdosésby swapping the
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roles of the two spaces (usually by merely updating refezena the from space and
the to space). Thus, at the end of the collection cycle, tlspaae is empty and live
data has been contiguously arranged in the from space.

Cheney'’s traversal algorithm [23] is the most popular metiooddentifying live
data. As mentioned before, theot setfor a garbage collection consists of static
variables, stack variables, and register references. blexts in this set are first
added to a queue, which is then scanned in a breadth-firstanémidentify objects
that are reachable from the root set. These objects arennatisted to the queue,
in order to identify heap objects reachable from them, amsl rdcursive process
continues until all live objects have been traced. Evergcithat is identified as live
is copied to the to space, and@warding bit is set in the object’s header. Along
with the forwarding bit, a forwarding pointer is also storedich indicates the new
location of the object. The forwarding pointer enables wgsldo all pointers that
refer to the object. The use of the forwarding bit avoids ahapé copying of live
objects and guarantees termination.

Copying collection has several advantages. Similar to th&k+o@ampact tech-
nique, it employs fast bump-pointer allocation, which canrmplemented as a sim-
ple increment into the free space (usually, along with a bawncheck, to decide
whether a garbage collection should be initiated). Fradatem is non-existent

since the algorithm is inherently compacting. Localitywewer, may not always
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be improved — Cheney'’s breadth-first traversal may not pvedecality of reference.
Depth-first traversal has been used in some recent implextiemg [89].

Unlike mark-sweep and its variation, the mark-compactlgm, the amount of
work during copying garbage collection is proportionalkte amount of live data, and
not to the size of the heap. In addition, unlike mark-compatiection, a single pass
over the live data is sufficient. Mutator overhead is simitamark-sweep collection,
since during object creation, the forwarding pointer aredftirwarding bit have to be
initialized.

The biggest disadvantage of semispace copying collecsidhat the heap area
available to an application is only half of the entire heapcgp An application’s
memory requirement is doubled compared to mark-sweep dk-o@npact collec-
tion. Another major disadvantage is that the process oaineation is quite slow,
given the need to copy every single live object. Howevergesithe bump pointer
allocation is a feature of copying collection, this algonit performs quite well when

garbage collection cycles are infrequent.

Generational Garbage Collection

As noted previously, mark-sweep collection needs to scaretiire heap space,
a process that can be quite expensive. Mark-compact dolhegerforms a number

of passes over the entire heap, and if the amount of live datégh, performance
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suffers. Copying collection also has high overhead, pddrtuif the amount of live
data is proportional to the size of a semispace.

Dynamically allocated objects have been shown to followtieak generational
hypothesig70, 94] that states that most dynamically allocated obj¢lsetween 80
to 90%) have very short lifetimes, and only a small percemtafgobjects live much
longer. Generational garbage collection exploits thigprty. Objects that have been
recently created (also callgungobjects), are segregated intonarsery (young
object) area. As objects age in the heap (usually indicagetidir survival after one
or more garbage collection cycles), they are promoted éthfo another area of the
heap, called thenature spaceThe promoted objects are calleldl or matureobjects.

The basic idea behind this approach is that the garbagectailighould not have
to process (either mark, or copy) objects that are goingnasiwell into the appli-
cation’s lifetime. Effort can be concentrated on collegtyjoung objects, which will
die sooner. The process of collecting the nursery area liesdcaiminor collection
The mature space should also be examined once in a while tk etieether older
objects have become garbage. This is callewsgor collection and is done less fre-
guently. New objects are allocated only from the nurseryy gallection algorithm
could be used to collect the nursery and the mature spacerbuototions always

copylive data from the nursery.
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The generational technique leads to reduced garbage wotlemverhead, since
excessive processing of live data is eliminated. This coatesprice — to perform
minor collections without collecting the mature space, stmmokkeeping is required.
It is necessary to keep track of references from the matwreesio the nursery, oth-
erwise objects in the nursery that are referenced by obijed¢tse mature space will
be incorrectly reclaimed as garbage. This is done by meaasvdte barrier, which
is a conditional or an unconditional check inserted intodbmpiled code in order to
track pointer stores. The objects in the mature space tFereree nursery objects
must be remembered and included in the root set of objectsifwor collection.

References from old to young objects must be rememberedasa thinor col-
lection may occur independently of a major collection. Obgeats that reference
young objects are included in the root set for minor coltatti Write barriers are
used to keep track of pointer stores.

There are different write barrier techniques that diffeintain the granularity of
information stored. Hosking et al [50] compared these tleebniques in a virtual
machine with a Smalltalk interpreter. The three mechanidmag considered are:
remembered setesard marking andpage protection

Remembered sets are the most accurate of the three, sincetioegt the actual
old object (or the slot containing the object) that refessna young object. Hosking

et al implemented remembered sets using two alternativéeimmgntations. A hash
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table is the most standard way of storing remembered seegnfiowever, insertion
overhead might be considerable. Consequently, they intextithe concept of a
sequential store buffefSSB), which consists of pages arranged contiguously and
bounded by a limit or guard page. This allows the use of a @mpinter increment-
and-store operation to remember entries. An attempt t@ stwo the SSB past its
limit is trapped by an operating system trap, which can belleahby the runtime.

Another scheme for remembering cross-generational steresrd marking, in
which the heap is divided into multiple cards, with everydoaapresented by a unique
entry in acard table The source card that contains the old object is marked, in-
stead of remembering the object itself. Thus the level ohglarity is much coarser.
This implies that the pointer store check can be performeéckty but at the cost of
garbage collection time overhead, since the entire carddhe scanned to locate
all references to nursery objects. The card marking schenogiginally introduced
by Wilson [99] made use of kit per card. The authors usedgteper card, which
makes the process of checking and marking more efficierdggthre smallest unit of
memory access on most architectures is a byte,

Hoelzle [45] noted that the pointer store check in Wilsoresib card marking
scheme [99] is quite slow, since a bit vector must be read frmmory, updated, and
then written back. Chambers et al [21] tried to improve on Hyisising a byte per

card, instead of a single bit. On most architectures, mgr&ibyte is much faster than

29



Chapter 2. Background

marking a bit — on a SPARC, this process can be performed in gigtgins. Sun
Microsystems’ HotSpot VM [91] uses byte marking when upatathe card table on
mutations.

Hoelzle, attempted to further reduce the pointer storelcheerhead, by reducing
the three-instruction write barrier to a two-instructionite barrier. This is signifi-
cant, since he also demonstrated that pointer store cheaoksittite about half of the
performance overhead associated with card marking (thex b#if is the time taken
to scan the card table during minor garbage collection).

Hoelzle used a relaxed card marking scheme that uses anxapptimn dur-
ing the card marking process, at the cost of some additiorexhead during minor
garbage collection. According to this scheme, a card comgian old-to-young ref-
erence is not remembered precisely, but rather, an entheindrd table corresponds
to more than one card. This approximation saves one ingiruper pointer store,
compared to Chambers et al’'s accurate card marking. Howtheeextra scanning
overhead due to this approximation might be too large faydasbjects and arrays.
For such objects, Hoelzle used accurate card marking. Thehead due to store
checks is determined by running benchmark programs withstruction-level sim-
ulator, which models the exact hardware behavior, inclgdeche behavior.

Blackburn et al divided the pointer store check into two paréfast pathwhich

performs the check to determine whether the reference s &n old to a young
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object, and aslow path which actually inserts the object (or its slot) into the SSB.
The fast paths for the two cases, viz., remembering the gtbbr remembering the
slot, are different. For the former (remembering the objegbe old object’'s header
word is checked for the presence of@BJECTBARRIERit. If the bit has not been
set, the slow path is taken, which will set the bit as part efffocess of remembering
the object. TheOBJECTBARRIERDIt is cleared for every object when it is first
created. Since, new objects are only allocated from the y@pace, correctness is
ensured. For the case in which tslet containing the object is to be remembered, the
fast path is implemented using a technique by Stefanovid@7h The young object
space is located in high memory and the old object space maarlmemory, with
both spaces aligned on a boundar§)(2Consequently, a simple bit-mask-and-shift
can be used instead of and operation. This technique is used in the Jikes Research
Virtual Machine [13] that we use for implementing the tecjues in the first part of
this dissertation.

With a fully inlined write barrier fast, as well as slow patase inlined at the
site of the pointer store. A partially inlined check inlinesly the fast path, and
an out-of-line check makes use of a direct functional cathaiit any inlining. The
authors measured the compilation time for the three impigati®ns by fully compil-
ing their benchmark programs using the JikesRVM'’s optingziompiler [19]. They

also measured application performance without consigesompilation time. The
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compilation measurements show that full inlining incurseavy compilation time
penalty (up to 25% worse compared to partial inlining, ané38orse compared
to the out-of-line check). The out-of-line check and stoas the least compilation
time overhead. The authors then showed that the slow pasra/rtaken for their
set of benchmark programs (0.15 to 3%). This implies thatfalig inlined write
barrier will not improve application performance by a netible amount. In fact, the
authors reported that full inlining actualtiegradesapplication performance. This is
probably due to poor locality and register allocator parfance, as a consequence of
excess code generated at pointer store sites. The outeofsiite barrier performs
worse, since an out-of-line function has to be invoked farg\pointer store. Partial
inlining enables the best application performance. Thaastalso showed that the
partially inlined slot barrier (in which the remembered iselfds slots that contain the
old object) performs better than the partially inlined abjearrier (the remembered
set holds the actual old objects). This is probably due tddbethat for the object
barrier, the collector must scan the stored old object fonteos from the mature
space to the nursery. The slot barrier remembers more peiatel a scan of the old
object is not necessary.

We next discuss prior work on multi-tasking MREs, which thecssel part of this

dissertation focuses on.
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2.2 Multi-Tasking Managed Runtime Environments

Modern type-safe programming languages rely on an exacatigironment that
can provide protection, security through isolation betwapplications, secure com-
munication and resource management and accounting.

Typically, application safety, isolation, communicatiosasource accounting and
management are provided at the operating system (OS) [Eaeh application exe-
cutes in its own MRE instance, i.e., an OS process is spawIrezppécation.

However, launching a separate MRE instance for each appica wasteful,
since each MRE instance has a non-trivial base memory foogren when no ap-
plication is executing7]. In addition, initiating a new MRE instance incurs a start
delay.

This execution model duplicates effort across MRE instansiese it prohibits
sharing of MRE services and internal data structures acmeggams. Such redun-
dancy increases startup time and memory consumption amddisyoverall system
performance and scalability.

Consequently, multi-tasking MREs have been proposed thatiexenultiple ap-
plications in the same MRE instance (i.e., in the same OS ps)cé& multitasking
implementation of an MRE can provide better memory usageastéif startup while

maintaining portability, mobility, and type-safety.
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The multi-tasking MRE we focus on in the second part of thiseligtion is Sun
Microsystem Labs’ Multi-tasking Virtual Machine (MVM) [39 MVM is a JVM
implementation that co-locates execution of multiple paogs in a single operating
system process. Each program execution is carried outaskaTasks are used to
implementisolates, which are execution containers for arbitrary progrannsédly
defined by the Application Isolation API (Java Specificatequest 121) [57] (sim-
ilar to AppDomains in Microsoft's CLR [63]). Co-locating pragms in the same
address space simplifies the virtual machine implememtatiw enables sharing of
the runtime representation of programs and dynamicallypile@h code. Such shar-
ing avoids duplicated effort across programs (e.g. loadiedfication) and amortizes
runtime costs, such as dynamic compilation, over multipéeymam instances.

Isolates provide a program with the illusion of a stand-ald¥M. Programs have
the same behavior as if they were running on a private JVMhksadate has its own
primordial loader and hierarchy of class loaders. No slgasirobjects can take place
between isolates, and the JVM safeguards against intettésioterference.

Each task in MVM is associated with a unique task identifietagk identifier
is an index into tables used in MVM to mediate access to dat@tstes that must
be replicated on a per-task basis, such as, the task speaifiofghe runtime repre-

sentation of a class. All threads running in the context ovargtask, are associated

34



Chapter 2. Background

with the identifier of that task as well as other relevant tsig&cific information. We

next describe the MVM features that are pertinent to memagagement.

Class Sharing

MVM substantially reduces the footprint of programs by igmpkenting a form of
sharing of the runtime representation of classes calel re-entrancg32]. Task
re-entrance is supported only for classes defined by clasiets, whose behavior is
fully controlled by the MVM. This includes therimordial andsystemoader of each
isolate.

The primordial loader is a special class loader that baistclass loading. It is
used to load théaseclasses that are intimately associated with a JVM impleaient
tion and are essential to its functioning (such as classéisegava. * packages).
The system loader is the loader that defines the main clasproiggam. It typically
obtains class files from the local file system at a fixed locasipecified at program
start-up.

The system loader serves class loading requests by firgalelg them to the
primordial loader, and only defines classes that the primbl@hder does not define.
This behavior is predictable since for a given class pattassdoaded by a primordial

or a system loader of any task is always built from the samssclde. Further,
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symbolic references from classes defined by a primordialsyséem loader always
resolve identically across tasks.

This allows for a simplified form of sharing where only thektaependent parts
of the runtime representation of a class, such as statiablasg, class initialization
state, protection domain, instanceja¥a.lang.Class etc., must be replicated
per loader. All other class information, in particular teaderived from resolved
symbolic links, such as field offsets, virtual table indexs&atic method addresses,
etc., can be shared across loaders, further increasingrtberd of sharing. Access
to the task-private part of the representation of a classeshacross multiple tasks is
mediated via a table indexed by a task identifier (task idaridly is not supported for
classes defined by program-defined loaders. Instead of & ¢élvdsk-private class
representations, the class representation includes ke $ask-private representation.
Both the interpreter and code produced by the dynamic comaite aware of this
organization and access the task-dependent class informasting the task identifier
of the current thread.

An extensive description of how MVM implements sharing o tiintime repre-
sentation of classes, including bytecode and code produc#dte dynamic compiler,

is described in [27].
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Garbage Collection in MVM

The MVM derives from the HotSpbt! Java virtual machine [77]. The current
prototype of the MVM [92] retains the heap layout of the anaiHotSpot JVM and
introduces minor changes. Heap management follows a geraabstrategy based
on three generations — permanent, tenured, and young. Th@pent generation is
a special generation used for allocating objects that datesthe runtime representa-
tion of classes and string literals. In the MVM, the permdmgEmeration also includes
task tables associated with the runtime representaticasifieentrant classes. Note,
however, that we do not allocate the task-private reprasientof a task re-entrant
class, which holds static variables etc., in the permaneneation but, rather, in
the tenured generation. The rationale for this is that inMMM, the lifetime of the
sharable part of the runtime representation of a class is\rarger. The sharable
part’s lifetime may range from the lifetimes of a few task#te lifetime of the virtual
machine itself, unlike the task-private part, which lagsidanger than the duration of
the task. The task-private part of the runtime represemtaif classes is allocated
directly in the tenured generation. This avoids cluttertimg young generation with
objects known to be long lived.

Program threads allocate from the young generation. Asarptiginal imple-

mentation of the HotSpot JVM, the young generation is dididgo an allocation
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space (theeder), and a mature spaj,‘e which consists of a pair of equally sized
semi-spaces (@om andto space). Garbage collection of the young generation uses a
copying scavenger that evacuates live objects fronetiemandfrom spaces to tho
space according to a design similar to that in [93]. Matuiectbs that have survived
several scavenge cycles are promoted to the old gener&igects from the young
generation are never promoted to the permanent generation.

The eden space is used for the vast majority of allocatiobgedds that do not fit
in the young generation are allocated directly in the tethgeneration. To increase
per-thread locality and to avoid the cost of atomic insinr in allocation code,
the system allocates a thread local allocation buffer (TLABn the eden space
for threads of tasks. Write barriers for tracking cross-gathen pointers follow a
card-marking scheme.

The HotSpot JVM supports several algorithms for the tenwederation, but
MVM currently only supports mark and compact. Both minor arejancollections
require bringing all threads to a safepoint in order to peacen the case of MVM,
all threads of all tasks must be at a safepoint.

The changes introduced by MVM to garbage collection argedlto reclaiming
space used by terminated tasks. MVM maintains a list of tested tasks that is

purged on a garbage collection. During collection, the disterminated tasks is

IShould not be confused with the old generation
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used to scan task tables of the runtime representation sdedaand other task tables
referring to heap objects, to zero-out the entries cormedipg to terminated tasks,
so that no objects of the terminated task are reachable fnyrfivee root. This clean
up is performed at garbage collection time rather than &t texsnination, since (i)
the heap space used by terminated task cannot be reclairtrexityperforming a full
GC, and (ii) postponing clean up until GC enables the systefadior out the cost
of clearing dead references from entries of task tablesspanding to terminated

tasks.

The text of chapter|2 is in part a reprint of the material apfiears in the pro-

ceedings of the International Symposium on Memory Managei@8MM 2006).
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Application-Specific Garbage
Collection

The next generation of high performance server systemspnongitle continuous
availability and high performance to gain widespread uskaateptance. These sys-
tems run a single virtual machine (VM) image persistenthg applications and code
components can be uploaded and executed as needed by ass{oneustomiza-
tion, collaboration, distributed execution, etc.).

Given this model of a single persistent VM, and existing J\édhnology, a sin-
gle, general-purpose collector and allocation policy ninestised for all applications.
However, many researchers have shown that there is no siagibination of a col-
lector and an allocator that enables the best performamcalfapplications, on all
hardware, and given all resource constraints [5, 40, 101].

We therefore investigate whether the choice of the garbatiection policy in

MREs should beapplication-specific To this end, we first present experimental re-
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Figure 3.1: Performance using different GCs and heap sizes. The y-axitigime
in seconds. For SPECjbb, we reporfAbroughput to maintain visual consistency.
The x-axis is heap size relative to the minimum with the GQ ttezm execute the

program in smallest heap.

sults for benchmark execution time using a wide-range oplsézes, in Figures 3.1

and 3.2. This set of experiments confirms similar findingstbéws [5, 40, 101] that

indicate that no single GC system enables the best perfaarfan all applications,

on all hardware, and given all resource constraints.
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Figure 3.2: Performance using different GCs and heap sizes. The y-axiwidime
in seconds.

The graphs show execution time over heap sizes with difteyarbage collectors
for a few standard benchmarks — SPECjbh [84], Voronoi fromJtBlelen benchmark
suite [20], and db from the SpecJVM98 suite [84]. We empl@ylidely used Jikes
Research Virtual Machine (JikesRVM) [2] for our experiméiataand prototype sys-
tem. The x-axis is heap size relative to the minimum heaptbiaethe application
requires for complete execution across all GC systems. P&Cibb, the y-axis is
the inverse of the throughput reported by the benchmark;epert 16/throughput
to maintain visual consistency with the execution time dadtde other benchmarks.
Lower values are better for all graphs.

The top-most graph in the figure shows that for SPECjbb, théspame (SS) col-
lector performs best for all heap sizes larger than 4 timesntmimum, and the

generational/mark-sweep hybrid (GMS) performs best foalsimeap sizes. The
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middle graph, for Voronoi shows that for heap sizes larganthl times the min-
imum, semispace (SS) performs best. For heap sizes betwaed 2 times the
minimum, mark-sweep (MS) performs best. Moreover, for $mhebp sizes GMS
performs best. The bottom-most graph shows the performaidb: SS and GSS
(a generational/semispace hybrid) perform best for lasgplsizes, while CMS (a
non-generational semispace copying/mark-sweep hylam),MS perform best for
small heap sizes. The collectors will be described in detaltly. These results sup-
port the findings of others [5, 40, 101], that no single cdi@tsystem enables the
best performance across benchmarks. Further, no singensyerforms besicross
heap sizes for a single benchmark/input p&i\fe refer to any point at which the best
performing GC changes aswitch point

To exploit this execution behavior that is specific to both épplication and un-
derlying resource availability, we extended JikesRVM, tatde dynamic switch-
ing between GCs. The goal of our work is to enable applicatipecific garbage
collection, to improve performance of applications for @rhthere exist GC switch
points, and to do so without imposing significant overheaagchSa system will en-
able users to extract the best performance from their agipics with such an MRE.
Moreover, an MRE with GC switching functionality will be abie adapt to enable
high-performance for future and emerging application$itle or no change to the

MRE.
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3.1 Support for Garbage Collection Switching

In this section, we describe various technical issues wagin enabling support
for switching between garbage collectors at execution.time

Key to switching between collectors is efficient use of thailable virtual address
space between GCs. Different GC algorithms expect diffdieap layouts, such as
a mark-sweep space, nursery, or a large object space. Nddeess space is limited
and controls the maximum size of the heap. Hence, to makedbieuse of total
available space, the virtual space must be divided cayeligtween different heap
layouts.

In addition to virtual address space considerations, wel neeupport diverse
object header information needed by copying and mark-swebgctors. Copying
and mark-sweep use the object header for different purpaesessupport for both
techniques involves enabling the use of state informatssduy both.

Another key concern ispecialization For performance, code is specialized for
the current garbage collector. For instance, inlining cation sites, and the pres-
ence of write barriers based on whether or not the currebiggrcollector is genera-
tional. Since the garbage collector may change at runtissjraptions made during
compilation for specialization may change as well. Consetijenve must be able

to invalidate (recompile) specialized methods, and in t@aidi replace specialized
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code that isexecutingat the time of the switch. We shall describe mechanisms for
invalidation in Section 3.2.

We discuss each of the above issues in detail below.

3.1.1 Multiple Garbage Collectors in a Single JVM

JikesRVM [2] is an open-source virtual machine for Java émploys dynamic
and adaptive optimization with the goal of enabling highfpenance in server sys-
tems. JikesRVM compiles Java bytecode programs at the whd¢hel at runtime
(just-in-time), to x86 (or Power PC) code. JikesRVM suppe@stgensive runtime
services — garbage collection, thread scheduling, synctation, etc. In addition,
JikesRVM implements adaptive or mixed-mode optimizatigrpbrforming on-line
instrumentation and profile collection, and then uses tbélprdata to evaluate when
program characteristics have changed enough to warrahtihégvel re-optimization.
The current version of the JikesRVM optimizing compiler kggpthree levels of op-
timization (0, 1 and 2). Level O optimizations include lopabpagation (of constants,
types, copies), arithmetic simplification, and check efiation (of nulls, casts, array
bounds). Moreover, as part of level O optimizations, wrigeriers are inlined into
methods if the GC is generational. Level 1 optimizationgude all of the level O
optimizations as well as common sub expression eliminatietundant load elimi-

nation, global propagation, scalar replacement, and ndatiiming (including calls
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to the memory allocation routines). Level 2 includes SSAebagptimizations in
addition to level 1 optimizations.

JikesRVM (version 2.2.0+) uses the Java Memory Managenaikit
(JMTK) [12] that enables garbage collection and allocasitgorithms to be written
and “plugged” into JikesRVM. The framework offers a highde uniform interface
to JikesRVM that is implemented by all memory managementines. A GC is a
combination of an allocation policy and a collection tecfus (this corresponds to a
Planin JMTk terminology). The JMTK provides the functionalityat allows users to
implement their own GC (without having to write one from $chg and to perform an
empirical comparison with other existing collectors andadtors. For this purpose,
it provides users with utility routines for common GC operas, such as, copying,
marking and sweeping objects. When a user builds a configaratiJikesRVM, she
is able to select a particular GC for incorporation into tlkesSRVM image.

The five GCs that we consider in this work are Semispace coff$8g a Gener-
ational/Semispace Hybrid (GSS), a Generational/Markepndybrid (GMS), a non-
generational Semispace/ Mark-sweep Hybrid (CMS), and Margep (MS). These
systems use stop-the-world collection and hence, reduarteall mutators be paused
when garbage collection is in progress. Semispace copyitgerk-sweep are stan-
dard non-generational collectors [61, 12] with a singlecgdfar most mutator alloca-

tion (large objects are allocated in a separate space)caltmn in the semispace con-

46



Chapter 3. Application-Specific Garbage Collection

figuration is through a pointer increment (bump pointer)jlgvthat in mark-sweep
involves a segregated free list. The free list is divided isgveral size classes and
objects are allocated from the appropriate size class w@sfirgt-fit algorithm. Non-
generational collectors collect the entire heap on evellecmn. Bump pointer
allocation is believed to be much faster than free list atmn, since it is a much
simpler operation.

The generational collectors, GSS and GMS, make use of welvk genera-
tional garbage collection techniques [3, 95]. Young olsj@ce allocated in an Appel-
style [3] variable-sized nursery space usimgnp pointerpointer increment) alloca-
tion from a contiguous block of memory. The boundary betwidemursery and the
mature space is dynamic. Initially, the nursery occupidistha heap, and the mature
space is empty. As live data from the nursery is promotedéarihture space on a
minor collection, the size of the nursery shrinks. After gan&ull heap) collection,
the mature space contains live old data, and the nursenpmschalf of the remain-
ing space. Upon a minor collection, the nursery is collectedl the survivors are
copied (promoted) to the mature space. Promoti@nisnassg.e., all survivors are
copied to the mature space without first being moved to amnrgdiate space [91].
The mature space is collected by performing a full heap ctiie. This process is
referred to as anajor collection Since minor collections are performed separately

from major collections, pointers from mature space objeztsursery objects must
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be identified to keep the corresponding nursery objects Kvevrite barrier is em-
ployed for this purpose. A write barrier is a series of instians that is used to keep
track of such mature space objects.

The main difference between GSS and GMS is the way in whichntitere space
is collected. GSS employs copying collection for this pwgavhile GMS makes use
of mark-sweep collection.

During a minor collection, nursery objects can be copiecheorhature space in
the GSS collector by a simple bump pointer allocation. H@veallocation from the
mature space in GMS is performed using a sequential, firgtd#-list. GMS mature
space collection is a two-phase process that consists oflaphase in which live
objects are marked, and a sweep phase in which unmarked ispatarned to the
free-list.

Generational GC performs well when the number of minor ctitbas is large,
since a minor collection is much faster than a full heap GC. él@y, when memory
is plentiful, and GC is not required, non-generationalexibn may perform com-
petitively. In fact, under these conditions, in severaksasemispace collection may
commonly outperform other GCs due to cache locality beneditd,low fragmenta-

tion enabled by bump pointer allocation [61].
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CMS1is similar to a traditional semispace collector (SS) in thiathon-generational
and is divided into two memory regions. However, CMS is a hylapproach in
which the first section is managed via bump pointer allocaind copy collection
and the second section is managed via Mark-sweep collg@mmhuses free-list allo-
cation as described above). CMS does not use write barrisra.résult, CMS is only
able to identify references from the mark-sweep space teghespace by tracing the
objects in the former. Consequently, when a CMS collectionus;che entire heap
is collected — using copy collection for the first sectionntimeark-sweep collection
for the second section. CMS is more space efficient comparaaopying collector
since it does not require a copy reserve. It is supposed ieachood performance
when the number of objects promoted is low.

JVM system classes and large objects are handled spedcialigasRVM/

JMTk system. There is a separate immortal space that hoéd3ikesRVM system
classes. Allocation in the immortal space is via the bumpteoitechnique and this
space is never collected. In addition, objects of size 16K@greater are considered
as “large objects”. The large object space is managed usarg-sweep collection.
Collectors that employ a mark-sweep space, allocate larpeetshfrom the mature
space (since these collectors already employ mark-swdkgzioon), while copying

collectors employ a separate large object space.

1This is a stop-the-world collector and should not be cordusih the Concurrent Mark-Sweep
collector in Sun’s HotSpot VM [91].
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JVM with Dynamic
GC Switching Functionality
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Figure 3.3: Overview of our GC switching system. The JVM consists of tla@dard

set of services as well asultiple GCs (an allocator and collector) as opposed to one
per JVM image. The system employs the current GC througheaeete to it called
the CurrentPlan. When a switch occurs, the system updates then@Rian pointer
(and performs a collection in some cases). All future aliocs and collections (if
any) use the newly selected GC.

Figure 3.3 shows the design of our GC switching system. EaBtENmage
contains multiple GCs in addition to a set of standard sesyiseich as the class
loader, compilers, optimization system, and thread sdeedtach GC consists of an
implementation of an allocator and a collector.

The system switches to a new GC when doing so will improveoperénce. The
system considers program annotations (if available),iegjdn behavior, and re-
source availability to decide when to switch dynamicallyd & which GC it should
switch. The GC currently in use is referred to by a CurrentPlainter. The com-
piler and runtime use this pointer to identify and employ¢beently available GC.

When a switch occurs, the system updates CurrentPlan to poihetnew GC and
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performs allocation and collection (if needed) using thelgselected allocation and
collection algorithms.

Each GC in JikesRVM/IMTKk is implemented a®kan. The plan identifies the
type of allocator and collector that is built into the imagelaonsists of a set of
classes that implement the appropriate algorithms foecttin (semispace, genera-
tional, etc.) and allocation (free-list, bump pointer,.etc

We extended JikesRVM/IMTk system to implement each of RK&4sGCs within
a single JikesRVM image. We show the original and new JikddRV
JMTKk class hierarchy in Figure 3.4. We implemented thessselsso that much of the
code base is reused across collection systems. The size BRIE image built with
our extensions is 44.2MB (with the boot image compiled usihegoptimizing com-
piler at level 1), compared to an average size of 42.6MB ferr#ference JikesRVM
images (ranging from 37.2MB for SS to 49.4MB for MS) — our exsiens do not
significantly increase code size. Interestingly, the ezfee JikesRVM image when
built with MS, is larger than an image built with our modifiats. We believe that
the reason for this is that inlining of allocation sites foank sweep increases code
size significantly. Note that we do not inline allocatioresifor boot image code in
case of our switching system.

To support multiple GCs, we require address ranges for afliblesvirtual mem-

ory resources to be reserved. Our goal is to enable maximamagvof virtual ad-

51



Chapter 3. Application-Specific Garbage Collection
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Figure 3.4: JikesRVM/IMTk class hierarchy: Original and switch-ermabl

dress spaces to reduce the overhead of switching. Our adgvase layout is shown
in Figure 3.5(a). Each address range is lazily mapped toigdlysiemory (as it
is used by the executing program), in 1 Megabyte chunks. eTheg three shared
spaces that we inherit from the default JikesRVM implemigona the immortal (un-
collected), GC Data Structure area (uncollected), ancelalgect ¢-16KB) space.

The GC that is currently in use employs a subset of other sgacappropriate.

Switching Between GCs

Switching between GCs requires that all mutators be suspieidareserve con-
sistency of the virtual address space. Since the JikesRMMators are stop-the-
world, JikesRVM already implements the necessary funatipnto pause and re-
sume mutator threads. We extended this mechanism to imptesnéching.

During a GC switch operation, we stop each executing mutii@ad as if a
garbage collection were taking place. A full heap GC, howawary not be necessary

for all switches. To enable this, we carefully designed #yout of our heap spaces
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(Figure 3.5(a)) in such a way as to reduce the overhead ddatah, i.e., to avoid
a full garbage collection for as many different switches assfble. For example, a
switch from SS to GSS only requires that future allocationthle application use the
GSS nursery area since SS and GSS share two half-spacesforegwe only need
to perform general bookkeeping to update therentPlanto implement the switch.

Figure 3.5(b) indicates whether a GC is required, for a $witom the row GC
to the column GC, and if it is, the type of GC required, e.g/, (&), minor (M), or
none (N). We use the notation XXYY to indicate a switch from collection system
XX to collection system YY. The entries in the table show thpet of GC that is
required for row—column. Note that we need to perform a garbage collectiomwhe
switching from MS in only two cases (while switching to SS &S, the latter being
a collector that is very often not the best choice, hence isarfeequent scenario).
Moreover, MS commonly works well for very small heap size® terefore use MS
as our initial, default collector. As our system discoverlsew to switch to a more
appropriate collection system, the cost of the switchfiisdikely to be low.

We next describe the operations required for each type dtbwWhenever we
perform a copy from one virtual memory resource to anotheruge the allocation

routine of the GC to which we are switching.
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GC Requirements Upon Switch

Nursery N:None, F:Full, M:Minor
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- Space
5 GMs || F | - - F | wm
o GC Data Structures
Immortal GSS M F F _ E
MS F - _ = _
(a) (b)

Figure 3.5: Virtual address space layout in the switching system (a)aatable (b)
that indicates when a GC is required on a switch (from the r@wt&the column
GC) and its type: full (F), minor (M), or none (-).

Switches That Do Not Require Collection As mentioned above, SSGSS, MS-CMS,
MS—GMS, and CMS-GMS do not require a collection since their virtual semis-
paces are shared.

Switches That Require Minor Collection. When we switch from a generational
to a similar non-generational collector, e.g., GMBIS and GSS-SS, we need only
perform a minor collection. That is, in addition to updatthg CurrentPlan we must
collect the nursery space and copy the remaining live objatd the (shared) mature
space.

Switches That Require Full Collection The remaining switch combinations require

a full garbage collection. We perform each switch as follows
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e SS/GSS-GMS/CMS/MS. To switch between these collection systems, we
perform a semispace collection (or a major collection foiSE$owever, in-
stead of copying survivors to the empty semispace, we cagy tio the mark-
sweep space of the target systems. When switching from GS&; e same;
however, we must also copy the objects in the GSS mature $pdlce mark-

sweep space.

Collectors that use semispaces (SS and GSS), require a G@yearea, and
consequently, do not perform well under memory pressuraddition, if the
ratio of live objects to dead is high, copying collectorsalwe expensive copy-
ing of live objects. Under such conditions, it would be beriafito switch to a

non-copying GC.

e GMS/MS—SS/GSS To perform this switch, we perform a major collection
and copy survivors from the nursery and live objects fromnttagure space to
the semispace. If we are switching from a non-generatiorfalsystem to SS
or GSS, we mark live objects in the mark-sweep space and weafdrthem
to the semispace resource. Since we must move objects ddBngpllection,
we must maintain multiple states per object. We do this usingefficient,

multi-purpose, object header described in Section 3.1.2.
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If memory is plentiful, copying collectors can provide ggoetformance since
they employ fast, bump-pointer allocation. Also, certapplecations might
fragment the heap excessively, requiring compaction, vtsiénherently pro-
vided by copying collectors. Copying collection, is also poged to provide

better data cache locality, since objects are laid out otation order.

¢ CMS—Any GC. Since there are no write barriers implemented for CMS, the
heap spaces in this hybrid collector cannot be collectedraggly. Without
write barriers to identify references from the mark-swepace to the semis-
pace, we may incorrectly collect live objects if we colldw semispace alone,
i.e., those that are referenced by mark-sweep objects butéachable from the
root set. When we switch from CMS to any other GC, we must perfofull a

collection to ensure that we consider all live objects.

CMS is a compromise between generational, and non-geneahtollection.
It does not incur the penalty of a write-barrier during miatat yet provides
segregation of old objects from young. However, CMS does ratige incre-
mental behavior, i.e. the ability to collect only a part oé ttreap (usually, the
one with most likelihood of dead objects), independentlytifer parts, that

generational collectors achieve.
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Although the switching process is specific to the old and #vwe @Cs, we provide
an extensible framework that facilitates easy implementatf switching from any
GC to any other, existing or future that is supported by Jé&d JMTk. Moreover,
unlike prior work, our system is able to switch dynamicalgtween GCs that use
very different allocation and collection strategies.

When a switch completes, we suspend the collector threadeeandhe the mu-
tators, as is done during the post-processing of a normedatmn. In addition, we
unmapany memory regions that are no longer in use.

A limitation of the switching mechanisms described abovibat we may not be
able to perform certain kinds of switches when memory is lyiglonstrained. For
example, while switching from MS (or GMS, CMS) to SS (or GSS,veed to map
the virtual address space corresponding to thedSface on demand. However,
we cannot unmap the MS address space until all live objeats haen copied to
the SS tospace. Consequently, our system requires more chapgeory than the
reference systenwhile performing the switch in these cases. In practice however,
switching from MS to SS or GSS when memory is constrained evdng a poor
choice (we provide further explanation of why this is theecas Section 3.3). A
similar problem exists for switching from SS (or GSS) to a M8 GMS, CMS)

system. Note, however, that in these cases, we can unmap mé&mm the SS
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tospace before we copy objects to the MS space, since thesp&ce will not be

used subsequently.

3.1.2 Multi-purpose Object Header

As mentioned in the previous section, to switch from a GC tls#s a mark-
sweep space (GMS, CMS, and MS) to a GC that uses a contiguoispsem (GSS,
SS), we must maintain state for the mark-sweep process assvigr each object’s
forwarded location that is used by copying collection. Tgtly, garbage collectors
store this state in the header of each object. In JikesRVé/igénbage collectors each
use a single 4-byte entry in the object header, calledthieis word

The mark-sweep collector requires two bits in the statusdwdine mark bitto
mark live objects and themall object bitto indicate that the object is a small object.
The use of themall object bienables efficient size-specific free-list allocation. 8inc
the system aligns memory allocation requests on a 4-bytadsoy, the lowest two
bits in an object’s address are always 0. Hencenthek bitand thesmall object bit
can be encoded as the lowest two bits in the status word.

Semispace collectors also require header space to recerstate of the copy
process and the address to which the object is copied. A pan@scollector marks
an object adeing forwardedwhile it is being copied. Once it is copied, the object

is marked agorwardedand a forwarding pointer to the location to which the object
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Mark Sweep

\ UNUSED [1[0] | UNUSED [1]1]

state: SMALL OBJECT state: SMALL OBJECT|MARKED
Copying

| FORWARDING POINTERL[O| |[FORWARDING POINTER1[1 ]

state: FORWARDED state: BEING FORWARDED

Figure 3.6: Examples of bit positions in status word in object header

was copied, is stored in the initial 30 bits of the header. Béag forwardedstate is
necessary to ensure synchronization between multipleatoll threads. These two
states are stored in the two least significant bits of theistabrd.

The two least significant bits in an object status word im@etdifferent states
depending on the collector. For example, as shown in FiguBeiBJikesRVM is
built using a mark-sweep GC, the valOg2 in the two least significant bits of the
status word of an object indicates that the object is smalllanmarked. However, if
instead, the semispace collector is used, this state iregdithat the object has been
forwarded to the to-space during a collection. Similafliadath bits are set, the status
word indicates that the object is a small object and has besmked as live by a
mark-sweep collector; the same state indicates to a seoaispalector thread that
the object is currently being forwarded by another thread.

Upon a switch from a collector that uses a mark-sweep spaocedahat uses
a semispace, we must forward marked objects to the semisQamesequently, our
switching system must suppal four distinct statesin addition to space for a for-

warding pointer. To account for the two additional bits regd and to avoid using an
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additional 4-byte header entry, we use bit-stealing (assalun prior GC systems [8])
in which we “steal” the two least significant bits from anatlaeldress value that is
byte-aligned.

The object header in JikesRVM also stores a pointer to a Tiyfeerhation Block
(TIB) data structure, which provides access to the interlascrepresentation and
the virtual method table of the object. We use the two leggtiicant bits from the
TIB pointer to store the additional statésing forwardedandforwarded during the
copying process. This implementation requires that we fgddil accesses to the
TIB so that these bits are ignored. We found that this doesmimduce significant

overhead.

3.2 Specialization Support for GC Switching

A naive switching implementation would involve two primary soes of over-
head: write barriers are not needed by all collectors, aado$s of inlining opportu-
nities due to dynamically changing allocation routinesic8iour system can switch
to a generational collector at any time, we would need torinsete barriers for
every pointer field assignment in every method — these icstns would execute
even when the collector in use is non-generational. Monmeakvéhe GC does not

change over the lifetime of the program, we can inline callthe allocation routine.
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However, in our system, the allocation routine may changeglpding our ability to
inline.

To avoid a loss in performance due to these two issuesspeeialize the code
for the underlying GC aggressively and speculatively. Tibatve inline allocation
routines and insert write barriers only if the underlying 8@ generational collector.

For these specializations, we consider only optimized cdtesRVM, like many
other commonly used JVMs [91, 24, 77], employs adaptivenaigition in which it
only optimizes code that it identifies as hot, using efficientine sampling of the ex-
ecuting program. JikesRVM optimizing compiler appliesthtevels of optimization
(0, 1, and 2) depending on how “hot” a method is. Level O optations include local
propagation (of constants, types, copies), arithmetigBbifitation, and check elimi-
nation (of nulls, casts, array bounds). In addition, thi®lencludes the inlining of
write barriers into methods if the GC is generational. Laveptimizations include all
level 0 optimizations as well as common sub expression eétion, redundant load
elimination, global propagation, scalar replacement, method inlining (including
calls to allocation routines). Level 2 optimizations irsduall of level 1 optimization
plus SSA-based transformations.

All unoptimized methods are compiled by JikesRVM using d &snpiler that
applies no optimization. We modified this compiler to inserite barriers into all

methods regardless of the underlying collector. SincesHk/ itself is written in

61



Chapter 3. Application-Specific Garbage Collection

Java, all MRE methods are compiled into a boot image — we mddifis process as
well to insert write barriers and to avoid inlining alloaatiroutines into boot image
methods. To enable speculative specialization, we modiiesl 0 of the optimizer
so that it checked the CurrentPlan to determine whether artimgite barriers. We
also modified level 1 (and above) to inline the allocatiortirees of the CurrentPlan
collector. We made these changes in the runtime compileogpssed to the boot
image compiler),

For annotation-guided GC selection, our system switchesi@@&diately prior
to the start of program execution. Therefore, no methods haen optimized. More-
over, once the program begins, the system does not perfoitthgévg again. Thus,
our specialization for write barriers and allocation raes is always correct in this
case.

However, for automatic switching, the system can (and dewgh at any time.
We therefore require a mechanism to “undo” the speciabmatwhen a switch oc-
curs. We need only undo specializations that will causerhecd execution. There
are two such cases. First, the prior GC was not generatitdmalnew GC is gen-
erational, and there is a field update in an optimized methidee new GC, there-
fore, requires a write-barrier for correctness. Secondreths an allocation site
in an optimized method and the optimization level used bycbmpiler was 1 or

higher. Consequently, the existing inlined allocation ssepe is no longer valid
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and must be invalidated. For future invocations of thesehods, we use method
invalidation [48] to undo the specialization. For methoHattare currently exe-
cuting, i.e., those that are on the runtime stack, we requirstack-replacement
(OSR) [48, 22, 47, 38, 77, 91, 88, 46] of the method.

To enable OSR, the compiler must track the program executibe sf the method
at a particular program point in native code. The executtatesconsists of values
for bytecode-level local variables, stack variables, dreddurrent program counter.
The execution state is a map that provides the OSR systemumitime values at the
bytecode-level (source-level) so that the system can rpitemmnd restart the method
using another version. Existing OSR implementations trsepecial (pseudo-) in-
struction, called an OSR point, to enable state collection.

OSR for replacement of executing optimized methods (as éxlew for spe-
cialized methods in the GC switching system) is more compten for unopti-
mized methods since compiler optimization can eliminateatdes, combine mul-
tiple variables into one, and add variables (temporarigd$)s makes the ability to
map bytecode-level variables correctly very challengidgl. extant approaches to
OSR avoid optimization across OSR points to avoid addingptexity to the com-
pilation system. This, however, as we will later show, camgicantly degrade code
guality (and thus performance) if OSR support is to be ermbdl@ significant number

of program points.
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A Novel OSR Implementation

There are two reasons why extant approaches to OSR can dqmgedrmance.
First, all method variables (locals as well as stack) aresiclamed live at an OSR
point; by doing so, the compiler artificially extends theelikanges of variables and
significantly limits the applicability of optimizations sl as dead code elimination,
load/store elimination, alias analysis, and copy/corigtampagation. Second, OSR
points are “pinned” in the code to ensure that variable défims are not moved
around the OSR points; this precludes optimization and eodgon across OSR
points.

These prior implementations do not negatively impact parémce (as a result of
poor code quality) significantly when there are only a smathber of OSR points.
However, our switching system requires an OSR point at epeinyt in the code at
which a switch can occur; these are the points at which a G@cau, i.e., gc-safe
points. GC-safe points in JikesRVM include implicit yieldipts (method prologues,
method epilogues, and loop back-edges), call sites, arcefitrows, and explicit
yieldpoints.

Since our GC switching system requires a very large numbé&d®R points,
many along the critical path of the program, existing OSR lemgntations can
severely degrade the performance of our GC switching systéfa therefore ex-

tended JikesRVM OSR implementation with a novel extendianis more amenable
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to optimization. In particular, we automatically track qgoifer optimizations in a spe-
cialized data structure to hold state information, called@able map (VARMAP).

A VARMAP is a per-method list of bytecode variables (primésvas well as ref-
erence types) that are live at each gc-safe point. Thisslisidependent of the code
and does not impact the liveness information of the programtpnor does it re-
strict code motion optimizations. To ensure that we mamaaicurate information in
the VARMAP, we update it incrementally as compiler optimiaas are performed.
The VARMAP is somewhat similar in form to the data structursatibed in [36],
which was used to track pointer updates in the presence opitemoptimizations,
for garbage collection support in Modula-3. However, ualgior work, we track
all stack, local, and temporary variables online, acrosside wange of compiler
optimizations automatically and transparently, duringtjun-time compilation and
dynamic optimization of Java programs.

Figure 3.7 shows an example of a VARMAP entry for a snippet s Jmurce.
We include the equivalent Java bytecode and JikesRVM lagétintermediate rep-
resentation (HIR) of the code. Below the code, we show the VARMARY for the
callme()  call site. which contains the next bytecode index (25) dftercall site
callme and three typed local variables:( 18i, b: 115i, c: I17i ).

To update the VARMAP entries, we defined the following systeethads:
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int c,d; 14:iload_1 15: int_move I15i(int) = I8i(int)
b=a; 15: istore_2 18: int_shl 117i(int) = I15i(int), 2
c=b*4 16: iload_2 20: call static “callme() V"
callme(); 17:iconst_4 25: int_add 119i(int) = I8i(int),
d=a+b; 18: imul 115i(int)
19: istore_3
20: invokestatic #3 //callme()V
23: iload_1 Intermediate Code (HIR)
24: iload_2
25 iadd 25@main (..LLL,..),.., 118i(int),
26: istore_4 115i(int), 117i(int), ..
bcindex: 25, L: local var, a: 18i,
b: 115i, c: 117i
Source Byte Code VARMAP entry

Figure 3.7: Shows how the VARMAP is maintained for a snippet of Java so(itse
bytecode and high-level intermediate representation (kRicluded). We show the
VARMAP entry for thecallme()  call site that contains the next bytecode index
(25) after the call siteallme and three local variables with types ( 18i, b:

I15i, c:

7 ).

Intermediate | -- .-

Code (HIR) | 15: int_move I15i(int)=I8i(int) 15: int_move I115i(int)=I8i(int)
18: int_shl 117i(int)=115i(int), 2 18: int_shl 117i(int)= 18i(int)
20: call static “callme() V” 20: call static “callme() V"
25: int_add 119i(int)= I8i(int), 25: int_add 119i(int) = I8i(int),

115i(int) 18i(int)
VARMAP 25@main (..LLL,..),.., I118i(int), 25@main (..LLL,..),.., I118i(int),
entry 115i(int), 117i(int), .. Ii;i(int) | 117i(int), ..
transferVarForOsr(115i,18i)
Before optimization After optimization

Figure 3.8: Shows how the VARMAP is updated after copy propagation. eia
b: [15i

is replaced witha:  18i
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o transferVarForOsr(varl, var2) Record thatvar2 will be used in place of

varl from here on in the code (e.g., as a result of copy propagation

e removeVariableForOsr (var)Record thatvar is no longer live/valid in the
code. Note that, even though a variable may not be live, we stillsemember

its relative order among the set of method variables.

o replaceVarWithExpression(var, vars[], operators[JRecord that variablear
has been replaced by an expression that is derivable frorsethef variables

vars andoperato rs

Our OSR-enabled compilation system handles all extant R\ optimiza-
tions at all optimization levels. Each time a variable is aed by the compiler,
the update occurs through a wrapper function that autoaibtimvokes the neces-
sary VARMAP functions. This enables us to easily extend thamtation system
with new optimizations that automatically update the VARMAppropriately. For
example, for copy and constant propagation and CSE (comnimaexquession elim-
ination), when a use of a variable is replaced by anotheabbi(or constant), the
wrapper function performs the replacement in the VARMAP rdday invoking the
transferVarForOsr function as shown in Figure 3.8 for an update that results

from copy propagation.
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We also update the VARMAP during live variable analysis. Weord variables
that are no longer live at each potential OSR point, and tetiee relative position
of each in the map. We set every variable that live-analysisogers as dead, to a
void type inthe VARMAP. We identify local and stack variables by thelative
positions in the Java bytecode. Maintaining the relativeitpms of variables in
the VARMAP allows us to restore a variable’s runtime valuehe torrect variable
location.

During register allocation, we update the VARMAP with theuattregister and
spill locations for the variables, so that they can be restdrom these locations dur-
ing on-stack replacement. The VARMAP contains symbolicstegs corresponding
to each variable. We update symbolic registers with a plysegister or a stack
location upon allocation by querying the map maintained H®y riegister allocator
for every symbolic register that has been allocated to aipalysegister. We record
spilled variables via the spill location that the allocatacodes as a field in the sym-
bolic register object.

When the compilation of a method completes, we encode the VARMAthe
method using the compact encoding implemented for OSR gwirthe original sys-
tem [38]. The encoded map contains an entry for each potéd8& point. Each
entry consists of theegister map , which is a bit map that indicates which phys-

ical registers contain references (which a copying garlcafjector may update). In
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addition, the map contains the current program counteeflogte index), and a list of
pairs(local variable, location) (each pair encoded as two integers), for
every inlined method (in case of an inlined call sequenckg dhcoded map remains
in the system throughout the lifetime of the program and thiéodata structures re-
quired for OSR-aware compilation (including the original RIIAP) are reclaimed

during GC.

Triggering On-Stack Replacement

During execution, following a GC switch, we trigger OSR lgzas is done in
Self for debugging optimized code [47]. We tag a specializeathod at compile
time, and read this tag during GC switch to identify the mdths specialized. We
modify the return address of the specialized method’s eatethat it will jump to a
special utility method that performs OSR for the speciaigmeethod. By triggering
OSR lazily, we eliminate the need for runtime checks in thaiaegation code.

The utility method extracts the execution state from theksteame of the special-
ized method, and sets up the new stack frame. To presensaegalues contained
in registers for the execution of specialized methods, #lpdr saves all registers
(volatiles and non-volatiles) into its stack frame. Sinhe helper is not directly
called from the specialized code, we must “fake” a call totlieper. This involves

setting the return address of the helper to point to the ntimstruction pointer in the
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specialized code upon entry to the helper. This processatpores that we update
the stack pointer for the helper appropriately.
In the next section, we describe two uses of the frameworgddoage collection

switching —annotation-guided switchingindautomatic switching

3.3 Annotation-Based Garbage Collector Selection

By implementing the functionality to switch between collentsystems while
JikesRVM is executing, we can now select the “best perfoghaollection system
for each application that executes using our system. Toethds we implemented
Annotation-guided GC System Selectibmparticular, we use a class file annotation
to identify per-application garbage collectors that sdoogé employed by our GC
Switching system. We compactly encode the annotation iassdile that contains a
main(...)V method using a technique that we developed in prior work.[66]

To identify the GC that we recommend as an annotation, weyaedlapplication
performance offline using the different JikesRVM GCs. We aered a number of
different heap sizes and program inputs. We list the inputSigure 3.11 and refer
to them as Input and Cross. We extracted, for each heap sad&dest performing

GC across inputs. In addition, for benchmarks for whichéhsere multiple best
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Figure 3.9: Additional inputs for SPECjbb2000 (in addition to inputl iigé&re 3.1).

performing GCs for different heap sizes, we also identifieksthitch pointfor each

program, i.e., the heap sizes at which the best performingl@@ges.
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Figure 3.10: Additional input for SPECjbb2000 (in addition to inputl irgkire 3.1).

For all benchmarks that we studied, the per-GC performare® wery similar
across inputs. Only one benchmark exhibited differenceisdrbest performing GC
across inputs (JavaGrande). All other benchmarks showethage in the choice
of the GC across the inputs that we used. To investigate tinibdr, we looked at
several inputs for the SPECjbb benchmark, which is an exaofpgeGC-intensive
server program. For 4 different inputs for SPECjbb, we foumat GMS enables
best performance for small or medium heaps, while SS works foe large heaps
(see Figures 3.9 and 3.10). Thigput independencappears to be very different
from other types of profiles, such as, method invocation txueld accesses, etc.,

in which cross-input behavior can vary widely [65, 66]. Téfere, we believe that
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Min Annot GC Selector

Heap Switch

Benchmark Input/Cross (MB) | GC(s) Ratio
compress 100/10 21 SS —
jess 100/10 9 GMS —
db 100/10 15 CMS/SS | 1.73
javac 100/10 30 GMS —
mtrt 100/10 16 GMS —
jack 100/10 18 GMS —
JavaGrande AllSizeA/SizeB | 15 GMS/SS | 3.00
MST 1050 nodes/640| 78 MS/CMS | 1.47
SPECjbb2000|| 1 warehouse/2 | 40 GMS/SS | 3.00
\oronoi 65000 pts/20000 34 MS/SS 4.26

Figure 3.11: Inputs that we considered to evaluate GC behavior acrogs siees,
the minimum heap size in which the program will run using ovkMJ and the GC
selection decisions with which we annotate each programable annotation-guided
GC switching.

it is less likely that we will negatively impact performanfag inputs that we have
not profiled. To select the GC to provide as an annotationdeaGrande, we iden-
tified the GC that imposed the smallest percent degradatientbe best performing
collector across inputs at a range of heap sizes.

The values that we annotate are shown in the final two colurhfggare 3.11.
For each benchmark, we specify the GC that performs besteilétis more than one
best performing GC for different heap sizes, i.e., thereswitch poinf we annotate

each of the GCs and the switch point.
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We found that for all of the benchmarks studied, if there wawitch point, there
was only a single switch point and that the switch point heap was very similar
relative to the minimum heap size for each input. As such, pexi$y the switch
point as theatio of switch point heap size and the minimum heap size.

At program load time, the JVM computes the rafigreri-maz-heap-size " gnq com-

min_heap_size

pares this value with the annotated ratio. If the computéid ia less, the JVM
switches to the first GC, or to the second GC, otherwise. Thisiresjthat we also
annotate the minimum heap size for the program and input. Bygdsn, we reduce
the amount of offline profiling required by users of our systnte, given the min-
imum heap size for an input, we can compute the switch poinguse ratio from
any input. We found that the switch point ratio holds acragsuts for all of the

benchmarks that we studied. Five of the eleven programssvaieh points.

3.4 Automatic Garbage Collector Switching

In addition to annotation-guided GC, we investigated a meishato guide switch-
ing decisions automatically, when resources are suddemigtained. In this sce-
nario, the operating system (OS) reclaims virtual memamynfour JVM for alloca-
tion and use by another process. Such a scenario is commenvir systems that

execute many competing tasks concurrently.
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The scenario that we investigated was one in which the pnogreecutes using a
sufficiently large heap size, e.g., 200MB. During executl®S reclaims memory
and thereby reduces memory that is available for the heagenby the executing
program. In some cases, this may cause an OutOfMemory etren there is not
sufficient virtual memory for the program to make progress.

Our switching system has an advantage in these cases stacestvitch to a GC
that makes more efficient use of the heap when resourcesrst#a@oed, e.g., a non-
copying system vs. a copying collector. We can switch to su@C and allow the
program to make progress and to avoid termination via th©@dgemory error. In
addition, by switching to a system that performs better unelgricted resources, we
can reduce the number of garbage collections that are pagthrwhich may improve
performance.

We employ a set of heuristics to determine when to switch.G@eswitching sys-
tem monitors the time spent in GC versus the time spent in ppécation threads.
When thisGC loadexceeds 1 for an extended period of time, the system switohes
a GC that is more appropriate when resources are constraimedidition, we also
switch GCs when we find that garbage collections are beingergg too frequently,
measured as the duration for which the application threaesute between succes-
sive garbage collections. We initially use semispace acagpygollection (SS) when

the program starts (as opposed to MS for the annotatiomiligase). SS is the best
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performing collector across the programs that we studietefrvihe heap size is large
(>200MB). When the switch occurs, the system employs Genegdtidark-Sweep
(GMS); GMS performs best when resources are constrainedS G&$ more avail-
able mature space (since it is mark-sweep collected) cadgarother generational
collectors. GMS performs no copying for the mature spacethns, when the GCs
are frequent, less overhead is imposed on the program eumidopying collector.
We evaluate these heuristics and scenarios in our evatusgiction. Though this
set of heuristics is simple, we show that the GC switchingfiemality can achieve
significant performance benefits (as well as avoid OutOfMgmeorors). We plan to
investigate other opportunities for automatic GC switghi@.g., to improve locality

given changes in program phase behavior, as part of futurke. wo

3.5 Evaluation

To empirically evaluate the effectiveness of switchingisstn garbage collectors
dynamically, we performed a series of experiments usingsgatem and a number
of benchmark programs. We first describe these benchmatkswanexperimental

methodology with which we generated the results.
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3.5.1 Experimental Methodology

We gathered our results using a dedicated 2.4GHz x86-baseaad dachine (with
hyperthreading enabled) running Debian Linux v2.4.18. iWelemented our switch-
ing framework within JikesRVM version 2.2.0 with IBM jlibreas (Java libraries) R-
2002-11-21-19-57-19. We employ a pseudo-adaptive JikbsBRo¥hfiguration [79]
in which we capture the methods that JikesRVM identifies asrhan offline, pro-
filed run. We then optimize those methods when they are fivstkkied to avoid the
JikesRVM learning time [65], to reduce the non-determinisirerent in the adap-
tive configuration, and to enable the repeatability of osuhs. The boot image is
compiled using the optimizing compiler (level 1).

We measured the impact of switching on application perfolceaseparately from
compilation overhead. To enable the former, we executedeénehmarks through a
harness program. The harness repeatedly executes thamghe first run includes
program compilation and later runs do not since all methede lheen compiled fol-
lowing the initial invocation. We report results as the age of the wall clock time of
the final 5 of 10 runs through the harness. We experimentddavinge of programs
from various benchmark suites, e.g., SpecJVM98 and SPEGj JOlden [20],
and JavaGrande [58] — we omit mpegaudio from the SpecJVM,siitce it exhibits

very little allocation behavior and does not exercise mgneatensively.
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3.5.2 Results

We next present the empirical evaluation of our system. V¢ évaluate the
impact of our new, VARMAP-based OSR implementation when wendbswitch.

We then evaluate the performance of annotation-guided atotreatic GC switching.

VARMAP-Based OSR Performance

We first present results that compare our VARMAP-based OSHRemgntation
to a variation of a commonly used, extant approach to OSR. pteiment the latter,
we employed the original OSR implementation in JikesRVMisTimplementation
uses special, unconditional, OSR point instructions malDSR at a particular point
in the execution. This implementation is used for defermreahgilation and method
promotion in the original system [38]. We insert OSR poiritsach gc-safe point (all
points at which a GC switch can occur) in each optimized neetdm OSR pointis a
special thread yield point that will trigger on-stack req@ment, unconditionally, for
the current method. We remove these instructions immeddipt®r to code genera-
tion (after all optimizations) to avoid their executiomae doing so will trigger OSR
. By doing so, we are able to measure the impact of OSR on codiycplane.

Figure 3.12 shows the results from this comparison. Theiy-axthe percent
reduction in execution time enabled by OSR over OSR pointe(WOSR points are

inserted at every gc-safe point during compilation as diesdrabove). The Average
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bar shows the average across all benchmarks, and Average&gw®ws the average
for only the SpecJVM benchmarks. We gathered results forifé&reint heap sizes
from the minimum in which the application would run to 8x theabmum at periodic
intervals. We report the average over these heap sizesdbrmachmark.

Our VARMAP implementation improves overall application engon time by
9% on average across all benchmarks, and by over 10% on avereass the SpecJVM
benchmarks. jess and mtrt show the most benefit, with impnews of 31% and
20% respectively. For these benchmarks, the original sysiereases register pres-
sure by extending live ranges of variables. This resultslarge number of variable
spills to memory. Since we maintain the VARMAP separatelyrfrthe compiled
code, we ensure that live ranges are dictated by the codfe itse

Figure 3.13 details the space and compilation overheadrdD&R implementa-
tion. Columns 2 and 3 show the compilation time for the cleafefence) JikesRVM
system without OSR points and the VARMAP implementationpeesively. Column
4 shows the percentage degradation in compilation time segdy our VARMAP
implementation. Columns 5 and 6 show the space overheadudea by the VARMAP
implementation during compile time (collectable) and et (persistent), respec-
tively. On average, our system increases compile time byoxppately 26% and

adds 132KB of collectable overhead and and 30KB of constmatesoverhead.
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Percent Reduction in Execution Time
-
w

Figure 3.12: Performance of our OSR-VARMAP Implementation in JikesRVM Ref-
erence System. Figure shows the average execution timiudexg compilation)
performance improvement enabled across heap sizes by deiM¥#® implementa-
tion over using an extant implementation of OSR — a variatiorthe OSR points in
JikesRVM.

Compilation Time (msecs) | Space Added (KB)
Benchmark Clean VARMAH Pct. Degrad. Compile Time Runtime
compress 6B 74 16.1B 1452 3|16
db 91 117 28.5/1 24.97 5.26
jack 444 54 22.0¢ 139.67 30.p0
javac 196 254( 29.4 629.p4 13698
jess 50. 650 30.1 136.80 29|20
mitrt 595 74 25.38 154.38 33.50
SPECjbb 351p 449 26.0p 4273 3414
JavaGrande 2490 28D0 17|00 104.86 21.12
MST 50| 64 32.0 17.038 3.13
Voronoi 94 12 34.39 62.06 13.49
Avg. 973 121 26.1¢ 132.66 31.p6
Avg. Spec98 61f1 79 25.29 183)31 39.68

Figure 3.13: Compilation overhead of our VARMAP implementation over the
JikesRVM reference system. Columns 2 and 3 are compilatioestin milliseconds
and column 4 is the percent increase in compilation time.fifllaétwo columns show
the compilation (collectable) and runtime space overhessghectively, introduced by
our system.
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Benchmark Pct. Degradation

No switching vs. Clean
compress 8.98
jess 29.78
db 3.17
javac 12.87
mpegaudio 24.04
mtrt 25.33
jack 6.83
Average 15.8b

Figure 3.14: Overhead introduced by the garbage collection switchistesy when
it never switches, over the clean (reference) JikesRVM. féreentage values are
averaged over heap sizes. On average, the GC switchingrsgslds a 15% overhead
over the clean JikesRVMyhen no switching is triggeredue to support for on-stack
replacement.

We next present results that show the overhead of our VARMARementation
in our GC switching system wheniiever switchesompared to the clean or refer-
ence JikesRVM. This is to enable us to evaluate the effentis®e of our VARMAP
in reducing the base overhead of the switching system,dotred due to loss of op-
timization opportunities. The switching system adds arrtosad of around 15% on
average across applications, when switching is nevereragy(see Figure 3.14).

Figure 3.15 shows these results. The numbers show the pageedegradation
introduced by the GC switching with the VARMAP implementatigvithout switch-
ing) over the reference JikesRVM image across all measuzag kizes (minimum
for each application to large). Average is the average p¢aige degradation across
all benchmarks (5%), and Average Spec98 is the averageneiegradation for only

the Spec98 benchmarks%%). javac has a higher overhead (11%) than other bench-
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Pct. Degredatiop
Benchmark Over Clean

compress 3.71 (285n1s)
db 3.09 (662myg)
jack 5.88 (269msg)
javac 11.31 (898ms§)
jess 3.06 (104ms)
mtrt 0.62 (81ms
SPECjbb 3.99 (5908mks)
JavaGrande 3.01 (1944ms)
MST 9.99 (237m9)
\oronoi 5.42 (245mg)
Average 5.01 (1063mE)
Average Spec9§ 4.62 (383ms)

Figure 3.15: The overhead introduced by the VARMAP version of the GC Swiigh
System over a clean system without GC switching functitynalBy reducing the
overhead of the Orig-OSR implementation, we are able tolhmibase overhead of
the GC switching system (the overhead imposed when themsydtes not switch
from 15% to 5%, i.e. the resulting version of the system ihiices 5% base overhead
over the clean system.

marks due to a larger space (and hence GC) overhead requstad¢dhe VARMAP

information (see Figure 3.13).

Annotation-Guided GC Selection

To investigate the effectiveness of our GC switching systeenmplemented and
evaluated annotation-guided and automatic GC selectiothig section, we present
results for the former. As we described in Section 3.3, wectet the best performing

GC for a range of heap sizes by profiling multiple inputs offlimve list the inputs in
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Figure 3.11). The GCs and switch points that we annotate amangsshown in the
same table. For brevity, we present results only for theslangut.

Our system uses the annotation to switch GCs immediately fariovocation of
the benchmark (at program load time). Our performance nusnbeludethe cost
of this switch. Moreover, wspecializethe code for the underlying GC. Our system
compiles hot methods with the appropriate allocation rauinlined. In addition,
we insert write barriers into all unoptimized (baseline pded) methods; however,
write barriers are inserted into optimized (“hot”) methddisgenerational collection
systems. Since our system switches to the annotated GCGlikobenchmark begins
executing, no invalidation or on-stack replacement is iregiufor annotation-guided
switching.

As we discussed in Section 3.3, half of the benchmarks thiaibi#xa switch
point. Given such benchmarks and our system'’s ability tachwhetween GCs given
the maximum available heap size, our system has the pdtemgaable significant
performance improvements since no single collector is & performing across
heap sizes for these programs even forgamenput.

Figures 3.16, 3.17, 3.18 and 3.19 present performance gfaphepresentative

benchmarks for a range of different heap sizes (x-axis —egaare relative to the
minimum heap size of the program). The y-axis is program@x@e time in seconds.

For SPECjbb, the y-axis is the inverse of the throughput miigtl by 10; we report
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Figure 3.16: Performance comparison between our switching system, GabtAn
(dashed line with + marks), and the unmodified referencessy&tuilt with five dif-
ferent GC systems. The figure shows two examples with swibafitg

this metric to maintain visual consistency with the exemutiime data, i.e., lower
numbers are better. The y-axis value ranges vary acros$ivamks.
Each graph contains six curves, one for each of the JikesR¥iMage collec-

tors. These curves represent the performance of the sthddaasRVM garbage
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Figure 3.17: Performance comparison between our switching system, GatAn
(dashed line with + marks), and the unmodified referencessy$ilt with five dif-
ferent GC systems. The figure shows an example with switahtgoi

collectors in the “clean”, unmodified, system, in additiorour GC annotation sys-
tem. The GCs that we evaluate include Semispace (SS), a Genatésemispace
Hybrid (GSS), a Generational/Mark-sweep Hybrid (GMS), a-generational Sem-
ispace/Mark-sweep Hybrid (CMS), and Mark-sweep (MS). 3@ Annotcurve
(dashed line with + markers, red if in color) shows the perfance of our GC switch-
ing system using annotation-guided selection.

The first set of graphs shows three representative bencknizak have switch
points (those that exhibit a change in best performing GCY. s&tem is able to
track the best performing GC for both small and large heagssiEor example, for

db, our system tracks CMS for small heaps and SS for large he®psuch, for a
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Execution Time (sec)

Execution Time (sec)

Figure 3.18: Performance comparison between our switching system, GabtAn
(dashed line with + marks), and the unmodified referencessy&tuilt with five dif-
ferent GC systems. The figure shows two examples withoutbwibints.

single program and inpubut different resource availability levels, we can improve

compress --#@-- S8

10 P -~ MS
--e-- GMS

9 ---- GSS
-+¢-- CMS

—-+— GC Annot

1 2 3 4 5 6 7 8
Heap Size Relative to Min

19.5-f javac -®-- SS

. 4 MS
17.54" --0-- GMS

3 --%-- GSS
155 - ---e-- CMS

; —+— GC Annot

1 2 3 4 5 6 7 8
Heap Size Relative to Min

performance over usingny single collectofor these programs.

The second set shows three representative benchmarksunsthiich points. For

these benchmarks, our system tracks the best performihectiml Notice that the
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Figure 3.19: Performance comparison between our switching system, GatAn
(dashed line with + marks), and the unmodified referencessy$ilt with five dif-
ferent GC systems. The figure shows an example without s\iatts.

best performing collector differs across programs, e § p&forms best for compress
and GMS performs best for the others. Since our system usesadion to guide GC
selection and switch dynamically to the best performing @Cefach program, it is
able to improve performance across benchmarks over anlesB1@. This becomes
more evident when we evaluate this data across benchmarks.

Figurel 3.20 and 3.21 summarize our results across benchraatkheap sizes.
Figurel 3.20 represents averages for small heaps (minimumnfapplication to 3x
the minimum), and Figure 3.21 represents averages for mettidarge heap sizes
(from 3x the minimum for an application to 8x the minimum heae). We present

the average difference between our GC switching systemhemnogst performing GC
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Average Difference Between Best & Worst GC Systems
GCAnnot
Small Heaps (upto 3x)
Degradation Improvement

Benchmark over Best over Worst
compress 6.65% (484ms) 2.85% (236ms)
jess 4.29% (132ms) 75.01% (10357ms)
db 3.54% (674ms) 8.48% (2108ms)
javac 6.55% (469ms) 27.55% (3626ms)
mtrt 1.31% (81ms) 47.02% (6024ms)
jack 3.34% (156ms) 40.92% (3722ms)
JavaGrande| 4.77% (3088ms) 19.11% (17807ms)
SPECjbb 2.59% (3864*16/tput) | 32.42% (106493*1%tput)
MST 3.83% (28ms) 56.80% (1244ms)
\oronoi 8.83% (164ms) 32.13% (1264ms)
Average 4.57% 34.23%

Figure 3.20: Summarized performance differences between our annotgti@ed

switching system and the reference system for small hea&s ¢minimum for an
application to 3x the minimum). The table shows the percegradation over the
best- and percent improvement over the worst performing Gi@ssa small heap
sizes (the time in milliseconds that this equates to is shavparenthesis).

at each heap size (column 2) and between our system and teepgoiorming GC at
each heap size (column 3). In parentheses, we show the avabaglute difference
in milliseconds; for SPECjbb the value in parenthesis is ifferénce in inverse of
the throughput. The table shows that our system improvdenpeance by 34% over

selection of the “wrong”, i.e., worst performing collectéor small heaps, and by
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Average Difference Between Best & Worst GC Systems

GCAnnot

Large Heaps (3x — 8x)

Degradation Improvement

Benchmark over Best over Worst
compress 6.52% (432ms) 3.50% (258ms)
jess 2.04% (60ms) 44.11% (2378ms)
db 2.58% (469ms) 22.83% (5420ms)
javac 4.83% (314ms) 13.40% (1052ms)
mtrt 5.37% (320ms) 27.07% (2364ms)
jack 3.48% (152ms) 14.26% (756ms)
JavaGrande| 3.68% (2275ms) 14.93% (11204ms)
SPECjbb 1.77% (2258*16/tput) | 16.13% (24936*10/tput)
MST 4.38% (32ms) 27.38% (318ms)
\oronoi 7.87% (96ms) 30.09% (602ms)
Average 4.25% 21.37%

Figure 3.21: Summarized performance differences between our annotgti@ed
switching system and the reference system for medium te laegp sizes (from 3x
the minimum for an application to 8x the minimum). The talid®ws the percent
degradation over the best- and percent improvement ovevdh&t performing GCs
across medium to large heap sizes (the time in milliseconalsthis equates to is
shown in parenthesis).

21% for medium to large heaps. In addition, the data showawbeege performance
degradation over optimal selection. This degradation & tduthe implementation
differences in our system that make it flexible, e.g., wrierier execution in unop-

timized code, boot image optimization, switch time (from Me default system,
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to the annotated system), etc. On average, our system ispo4% overhead over
optimal GC selection.

Note that the data in these tables does not compare our sgsfaimst a single
JikesRVM GC; instead, we are comparing our system againgbeéke and worst
performing GC at every heap sizeor example, for large heap sizes for the SPECjbb
benchmark, the SS system performs best. For small heap &S performs best.

In this case, to compute percent degradation, we take tfexeliice between execu-
tion times enabled by our system and the SS system for large $iees, and our
system and the GMS system for small heap sizes.

We also collected the same results for when we omit Mark-$wBES) collec-
tion. MS works well for small heaps but is thought to implerm@psolete technology.
On average across benchmarks and heap sizes, our systeses1d3 overhead over
the best performing GC at each point. In addition, our systminces the overhead of
selecting the worst performing collector by 21 — 34% (depaomdn the heap size).
Interestingly, when MS is not available in the system, therage degradatiode-
creases This is due to the fact that MS is the best performing codlect a number
of cases in which small and medium sized heaps are used.

Figure 3.22 presents the percent degradationawveays using the Generational/Mark-
Sweep Hybrid (GMS)GMS is thought to be the best performing, JikesRVM GC —

it is the default collector in JikesRVM version that we exted. However, our data
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GC Annot: Average
Degradation Over

Benchmark Generational Mark-Sweep
compress -0.37% (-28ms)
jess 2.82% (85ms)
db -14.17% (-3122ms)
javac 5.19% (373ms)
mtrt 2.32% (78ms)
jack 3.22% (147ms)
JavaGrande| -0.19% (-87ms)
SPECjbb 0.95%  (1.72*16/tput)
MST -44.66% (-827ms)
\oronoi -11.88% (-241ms)
Average -5.68%

Figure 3.22: Percent degradation of our system over the widely used GMS co
lection. The negative values indicate that on average adreap sizes, our system
improves performance over GMS.

shows that it does not work well for all programs for all heges. Our system
enables a 6% improvement (a negative degradation) oveyslusing GMS across
benchmarks and heap sizes. This improvement varies acmogtsi 14% and 12%
for db and Voronoi, to almost 45% for MST. Note, however, tM&T is a very short
running program — small differences in execution time (88ptmanslate into very
large percent differences. The improvement in db transladea benefit of over 3

seconds.
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Overall, these results indicate that our framework is ablechieve performance
that is similar to the best performing collector (in termsbofth execution perfor-
mance and compilation overhead) by making use of the anansab guide dynamic
switching between GCs. Moreover, when there is a switch gomprograms, our
system can enable the best performance on average ovemgteg GiC for that pro-
gram. For cases in which there is no crossover between dptwtiactors, our sys-
tem maintains performance similar to that of the refererystesn. However, since
the optimal GC varies across benchmarks, our system is alplerform better than

any single GC across benchmarks.

Automatic Switching

We next evaluate the effectiveness of automatically switchetween GCs using
online program behavior and simple heuristics. Automatitching requires the use
of method invalidation and OSR to maintain correctnessrgite use of aggressive
specializations: including/avoiding write barriers andining allocation routines —
for the currently available, underlying GC. Our system emplour new version of
OSR to enable both high performance and correctness.

The automatic switching scenario that we investigate ad® what happens
when there is suddenly a loss of memory availability, ilee, ©S reclaims memory

from the JVM for use by another, high-priority, applicatidn such a case, automatic
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switching can avoid OutOfMemory errors (or prevent exaaspaging) by switching

to a GC that works well when resources are constrained. Vésiigated the case in
which memory was reduced to a point that the program camséike progress. For
such cases, by switching to a more appropriate GC, we canadtiamverhead of
garbage collection and improve performance.

We consider the situation in which after program startug Qi$ reclaims memory
such that the resulting heap size is twice the size of thavedespace (live data)
following a garbage collection. We start with a maximum heege of 200MB. We
trigger heap resizing when the program steady state begitsch we approximate
by 100 thread switches (we use 500 for SPECjbb since it is a&lagning program).
The switching system decides to switch when the GC load (€éfin section 3.4)
remains high for multiple GC cycles (we use three in the tekulln addition, the
system also switches when it observes that GCs are beingteddoo frequently,
measured as the duration for which application threadsutadmetween successive
garbage collections (we choose 300ms as the minimum apiphaduration observed
over 3 GC cycles).

We present the performance of this scenario in Figure 3.23umdw 2 and 3
show the time in seconds for execution for the clean (Baségsyand our automatic
switching system (including all overheads). Column 4 shdvesgercent improve-

ment enabled by our system. On average, our GC switchingraysan improve the
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performance of the program given dynamically changinguesoconditions by over
21%. For the SpecJVM98 benchmarks, we improve performan28% on average.
Interestingly, for some benchmarks, we found that GermratiMark-Sweep (GMS)
incurs more garbage collections compared to always exegthie application with
Semispace. Yet, switching to GMS benefits the applicationesthe total GC time
is less compared to Semispace, since on average, a singlecGlM&tion runs for a
very short duration (as low as 9 milliseconds) compared pecal Semispace col-
lection (150 to 200 milliseconds). compress and MST do riotate enough for a
switch to be triggered. The right half of the table shows tI&RGtatistics. Column 5
is the number of OSRs, column 6 is the total OSR time in millisets, and column
7 is the heap size following the system memory reclamation.

In summary, automatic GC switching has the potential forbéng the appli-
cation to make progress and avoid OutOfMemory errors if ugsgs become con-
strained during program execution. In addition, it impperformance under such
conditions by switching to a GC that imposes less GC overhé&tbuld memory
availability be restored, our system can switch to a cabletitat performs well for
large heap sizes, e.g., SS. Given the ability to dynamicatig efficiently switch
between competing collection systems, we now have thetyalbdliconsider other

mechanisms (e.g., program phase and data locality behdegrodeciding when to
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Benchmark Base Autoswitch  Pct. Imp # OSIRs OSR Timé (msleapsize (MB)
compress 7.6b 7.45 0.¢0 -- - 60
jess 7.23 3.8p 46.3p 10 28.46 28
db 31.29 23.1p 25.98 1 1.89 P4
javac 11.73 10.7p 8.4[L 10 22 45 47
mtrt 24.77 9.11 63.21p 2 58.35 P4
jack 7.53 5.36 28.8p 4 6.50 B2
SPECjbb 175.1p 158.70 9.1 0 0]/00 100
JavaGrande 102.09 76.80 24176 1 1.58 24
MST 0.94 0.94 0.0 - - 100
\oronoi 4.37 3.94 9.1 P 3.900 60
Average 37.2Y 30.03 21.45 4 1522 50
Average Spec98 15.03 9.p8 28[p1 5 23.43 36

Figure 3.23: Performance of automatic switching when memory resourcesad-

denly constrained. Columns 2 and 3 show the time in secondsxémution for the
clean (Base) system and our automatic switching systenu@imgy all overheads).
Column 4 shows the percent improvement enabled by our systamright half of

the table shows the OSR statistics: number of OSRs, total @$&Rih milliseconds,
and the heap size following the memory reclamation by thtegys

switch and to which GC we should switch to. We plan to invegggsuch techniques

in future work.

3.6 Related Work

Two areas of related work show that performance due to ther@@ayed varies
across applications and that switching collectors dynalyican be effective. In [67,
78], the authors show that performance can be improved byicong variants of the
same collector in a single system, e.g., mark-and-sweepnankl-and-compact. and
semispace and slide-compact In [81], the authors show thging compaction with

a semispace collector can be effective. No extant systeaurtknowledge, provides
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a general, easily extensible framework that enables dynamitching between a
number of completely unrelated collectors.

Other related work shows empirically that performance &thby garbage col-
lection is application-dependent. For example, Fitzgeaald Tarditi [40] performed
a detailed study comparing the relative performance ofiegibns using several
variants of generational and non-generational semispgmegrgy collectors (the vari-
ations had to do with the write barrier implementations).eylshowed that over
a collection of 20 benchmarks, each collector variant sonest provided the best
performance. On the basis of these measurements they dayyedfile-directed se-
lection of GCs. However, they did not consider variationshput, required different
prebuilt binaries for each collector, and only examinedispate copying collectors.

Other studies have identified similar opportunities [5,,187]. IBM’s Persistent
Reusable JVM [55] attempts to split the heap into multipleipgrouped by their
expected lifetimes, employs heap-specific GC models ang-bepansion to avoid
GCs. It supports command-line GC policies to allow the usechimose between
optimizing throughput or average pause time. BEAs WeblaliRockit VM [11]
employs an adaptive GC system that performs dynamic heanggslIt also auto-
matically chooses the collection policy to optimize foheit minimum pause time or
maximum throughput, choosing between concurrent andlpb@C, or generational

and single-spaced GC, based on the application develogesisec BEA's white-
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paper [11], however, describes the system at a very highdedprovides few details
or performance data. We were unable to compare our systemsatgee JRockit, due
to its proprietary nature. To our knowledge, no extant netehas defined and evalu-
ated a general framework for switching between very div&Gesystems, such as the
one that we describe. In addition, our automatic switchiagristic, albeit simple,
requires no user intervention and achieves considerabierpgnce improvement.
On-stack replacement (OSR) was initially conceived of byrésearchers and en-
gineers of the Self-91 system [22]. The system employed @3Rfier compilation
of uncommon code until its initial execution, to increaséimpzation opportunities,
and to reduce compiled code space and compilation overhBael authors in [47]
extended OSR to enable dynamic de-optimization of optichczale to facilitate de-
bugging; [47] describes the complete OSR implementatioBali. Our OSR tech-
nique is similar to this one since optimized code is replanatlOSR occurkazily as
control is transferred back to executing methods (via retostructions). However,
in this prior work, de-optimization can occur (and henceudgling can commence)
only at two points in a method: method prologue and loop bexdres. As such, state
extraction is needed only at these points. Our system mtrstoaestate at these points
as well as all call sites (which include allocation sitesg¢t@ble OSR to occur at any

point in a method at which control is transferred to anothxexcating thread.
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In Self-93 [48], the Self group used OSR to improve execupenformance
within an adaptively optimizing runtime system. The systeocompiled hotspots and
used OSR to enable optimized execution of currently exeguinoptimized meth-
ods; this process is also calletethod promotion State extraction for method pro-
motion is somewhat trivial since the method being replasedhioptimized and all
variable values can be easily identified.

To enable deferred compilation, the Self system insert®naitonal calls that
invoke the OSR process at points that guard paths to uncedhpidde. We refer to
these calls as OsrPoints. Recently, Fink et.al. [39] presktiie implementation and
empirical evaluation of unconditional OSR in the Jikes Reded/irtual Machine
from IBM T.J. Watson Research Center. The unconditional OSRucison, i.e.,
OSRPoint, implementation is based on the Self implememtainal is similar to other
deferred compilation systems [88]. Fink et al use the systeimplement profile-
guided deferred compilation and method promaotion.

We extend this prior JikesRVM OSR implementation in this kvdDsrPoints are
a restricted and simpler (in terms of their implementatiea)sion of the general-
purpose OSR that we describe herein. These prior approaetyese that the com-
piler insert explicit, “pinned”, instructions at the pomtwhich invalidation and OSR
mustoccur. Since our goal is to use OSR to correct for speciazatssumptions in-

validated byexternal eventsuch as class loading, a change in the implementation of
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MRE services, or a user event, we cannot use uncondition&ddgs — since we do
not know when such events will occur. Instead, we extendikesBRVM OSR system

to enable state collection ahy point at which assumptiomaightbe invalidated.

3.7 Summary

Managed runtime environments (MRES) are ubiquitous andigeosafe and
portable mechanisms for the execution of type safe code. MRgsally run di-
verse type of applications ranging from scripting engireeddtabases and applica-
tion servers. Dynamic memory management, i.e. garbagecatiwh (GC) is a key
component of MREs. Garbage collection plays an increasingbprtant role in next
generation Internet computing and server software tecigned.

The performance of collection systems is largely dependpoih application ex-
ecution behavior and resource availability. In additidre bverhead introduced by
selection of the “wrong” GC can be significant. To overcomesthlimitations, we
have developed a framework that can automatically swittlvéen GCs without hav-
ing to restart and possibly rebuild the execution enviromiyes is required by extant
systems. Our system can switch between collection stestediile the program is

executing.
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We present specialization techniques that enable thersytstbée very low over-
head and to achieve significant performance improvemenrgs waditional, non-
switching, virtual execution environments. We describeoaehimplementation of
on-stack replacement (OSR) that can enable efficient replaceof executing code
at any point in the program at which a GC (and thus a GC switah)occur.

We also present two techniques that exploit the efficient Gitching function-
ality. In particular, we describe and present the effeciss of annotation-guided
(based on offline profiling) and automatic (based on onlirwdilprg) switching. We
empirically evaluate our system using a wide range of hemgssbenchmarks, and

scenarios.

The text of chapter 3 is in part a reprint of the material apjitesrs in The Elsevier
Journal of Systems and Software (JSS), Volume 80, Issue07j20 he dissertation
author was the primary researcher and author and the corauisted directed and

supervised the research that forms the basis for thesehtyear.
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Chapter 4

Scalable Memory Management for
Multi-Tasking Managed Runtime
Environments

The second part of this dissertation focuses on memory neanagt for multi-
tasking persistent MREs. MREs commonly execute a single arogvith a single
MRE instance, and rely on the underlying operating systersdiaie programs from
each other for security, as well as for resource managemera@ounting.

Unfortunately program isolation at the granularity of thual machine can sig-
nificantly restrict the performance of MREs that execute ipl@f independent, pro-
grams concurrently. This execution model duplicates etioross MRE instances,
since it prohibits sharing of MRE services and internal repngéations, memory,
code, etc., across programs. Such redundancy increasegpdiene and memory

consumption and degrades overall system performance alabdity.
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A multitasking implementation of an MRE can address thesélpms while
maintaining portability, mobility, and type-safety. Wecfes a state-of-the-art im-
plementation of a multi-tasking MRE, Sun Microsystem Labsiltitasking Virtual
Machine (MVM) [29] that executes multiple programs withisiagle operating sys-
tem process. Co-locating programs in the same address spguaéiss the virtual
machine implementation through sharing of the runtimeasg@ntation of programs
and dynamically compiled code. Such sharing also avoid$ichipd effort across
programs (e.g. loading, verification) and amortizes ruatouosts, such as dynamic
compilation, over multiple program instances. Prior worktbe MVM [27], shows
how a multitasking design reduces startup time and mematpfmt, and improves
performance over a single-program MRE approach.

However, prior work on multi-tasking MREs does not addresgérformance of
concurrent workloads, i.e., multiple applications examusimultaneously Multi-
tasking MREs are designed to run multiple applications siamgously, and no prior
work has shown conclusively that multi-tasking can outperi single-tasking, while
maintaining similar memory footprint for concurrent agpliion execution. In addi-
tion, the design of the state-of-the-art MVM MRE suffers freeveral drawbacks,
such as lack of performance isolation in the memory managesubdsystem and im-
precise tracking of heap resources. Garbage collectiggdred by any application

pauses all applications. Further, a multi-tasking MRE isgie=d to have a lifetime
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that is longer than any single application. The MVM suffemi the inability to free
a terminated application’s resources without having tospaand garbage collect all
applications executing in the MRE.

We present thdulti-Tasking Memory ManageiMTM) which combines multi-
tasking memory management techniques to provide perfarenanlation, per-application,
scalable generational garbage collection, GC-free redlamaf terminated appli-
cations’ resources, per-application control of memorysystem parameters, while
constraining memory footprint. We have prototyped MTM im3uabs’ state-of-the-
art Multi-tasking Virtual Machine (MVM). We show that MTM aibles multi-tasking
to outperform single-tasking MREs and that multi-tasking vsable approach for ex-

ecuting concurrent applications. We describe our approadbtail below.

4.1 Application-Aware Memory Management for Multi-

Tasking Managed Runtime Environments

The current MVM system [92] implements a simple memory manaent system
in which a single heap and management policy is shared aall@gsplications. Such
sharing does not isolate applications from interferinghvaihe another (in terms of
performance), and restricts the scalability of the systbfareover, there is no per-

application control over GC parameters or reclamation aphesources upon appli-
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cation termination without requiring an expensive, fuldp&sC. Extant multi-tasking
approaches (e.g. [26]), that do not employ MRE support, iregasilar restrictions.
An alternative approach is to assign a separate heap spade@asibly different
GC policies) to each application. Using such an approachptioates the memory
management system, restricts the opportunistic use afvessedle memory by other
applications, and can limit the number of concurrent apgilbns that the system can
support.

We present a design that addresses these challenges fori@asydtems’ MVM [92].
Key to our design is an organization of the heap that enab)lpertapplication perfor-
mance isolation for the memory management system, (iiyjaddent allocation and
collection of young objects, and (iii) GC-free memory reckdion upon application
termination.

The design follows a hybrid approach that divides the heap application-
private and shared sections, so that we confine a majorit{Cad&ivity to application-
private sections. This hybrid organization of the heap wqrticularly well with
generational GC algorithms that divide the heap into migdtgenerations. Genera-
tional GCs segregate objects by age and concentrate theiff@€ ®n the youngest
generations (i.e., the generations holding the younggstts) by exploiting the weak

generational hypothesis [94], which states that most ¢bjdie young.
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In our implementation, the heap consists of multippléependent young genera-
tions (one per running application), and a single old generatiai &ll applications
share. When an application enters the system, it is givervatpryoung generation
that the system sizes according to parameters specifiedebgpglication. An ap-
plication allocates primarily from its young generation. &hthis area is full, the
system performs eninor collection for that applicationDuring a minor collection,
the GC system moves (promotes) mature live objects to thredlodd generation.

The shared old generation efficiently tracks the regionisagaeh application con-
sumes usingld generation regionsAn application uses its old generation regions
both for object promotion during minor collections and faredt (pre-tenuring) al-
location of objects. Per-application old generation regiprovide numerous advan-
tages — they cluster objects of the same application togath@e shared old gen-
eration, they ease accounting of space consumed by ajtisah the shared gen-
eration, they enable immediate reclamation of old germnagpace without garbage
collection upon application termination, and they helptitne amount of old gener-
ation space that the system must scan to identify roots glaninor collection. In ad-
dition, by combining per-application young generationghwald generation regions,
we eliminate interference between mutators and colledbdsfferent applications.
As a result, our system is able to perform minor collectiareim application, concur-

rently with the execution of mutators of other applications
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Although simple, the approach of sharing a generationgb regween dynami-
cally varying numbers of independent applications presesaveral problems. First
is the absence gderformance isolationvith respect to garbage collection. That is,
garbage collection affects all applications at once, arsdaheost proportional to the
live objects of all applications. A second problem is thebiligy to immediately re-
claim the heap space consumed by an application, upon msnation. Resource
reclamation requires a full garbage collection, which @8eall applications. Both
problems adversely impact scalability and response time.

The following section presents a generational garbageaadh system that at-
tempts to better address the requirements of MVM with a caoatlon of three fea-
tures — per-application independent young generatiomsgaication old generation

regions, and application-concurrent scavenging.

4.1.1 Hybrid generational heap

The first element of the design builds on [27], by providingreapplication
with a private young generation, while sharing a single adegation between all
applications. This hybrid approach attempts a compronese&den sharing the heap
between all applications and giving each application aepetident heap. There are

several reasons for this choice.
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First, the young generation is typically much smaller thia@ old generation.
Thus, having one per application young generation and rsfpdhie tenured space
makes better use of heap resources, by avoiding committimgnuch memory per
application, and unnecessarily limiting the degree of maktking. Old generation
space is allocated to an application on demand, either glumimor collection, or
when pre-tenuring objects.

Second, the vast majority of allocations and most garbaliections occur over
the young generation. Thus, an independent young geneisdtields an application
from most heap-related interference, especially varyllogation rate, tenuring deci-
sions, and interleaving of objects from different appli@as. Also, minor collection
pauses are proportional to the live set of objects of a giygfi@ation, as opposed to
all applications.

Third, key parameters for generational garbage collecsoich as young gen-
eration size, age-based tenuring policy, etc., can be @tedron a per-application
basis. This enables users to specify an appropriate apphespecific set of tuning
parameters for each application.

Figure| 4.1 depicts our layout for per-application young egations. A table,
called the young generation virtualizer, maps the appticaidentifier to the cor-
responding young generation. Each young generation hasathe layout as in the

original HotSpot JVM, with the notable exception that a ygp@eneration may con-
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sist of several discontinuous regions of memory. Specificsppace for young gener-
ations is allocated from a pool of fixed-sized chunks, the sizwhich is parameter-
izable and set at 2MB by default. On startup, an applicasaallocated an integral
number of chunks corresponding to the size of the young géinarrequested (or
the default if none is specified). The chunk manager attetop#iocate contiguous
chunks when possible, otherwise, it assigns additionaletiethe young generation,
one per region of contiguous chunks allocated from the mwolifarly to the surplus
memory in [27]). The pool manager may re-arrange the chulidsaded to a young
generation to reduce the fragmentation of its eden. Suelresxgement takes place
as necessary following minor collection, when all the INgects of the eden space
have been evacuated. This organization also allows us tandigally change the size
of a young generation at runtime.

The to and from spaces are typically much smaller than the sgace. For
simplicity, the current prototype limits their size to thudta single chunk.

As in the original HotSpot JVM, threads are assigned one aerttwread local
allocation buffers (TLABS) so that they can allocate objegthout synchronization
with other threads. The TLAB of a thread is allocated from ¢lden of the young
generation of the thread’s application.

Per application young generations provide some degreerfufrpgance isolation

— the copying cost of scavenging is proportional to the nunobéve objects of the
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Figure 4.1: Application independent flexible young generations. A gatien vir-
tualizer maps applications to young generations. Eachrgeéae comprises one or
more eden spaces, each of which consists of an integral mohbentiguous chunks
allocated from a pool. Eden spaces of an application aredin@gether. Chunks can
be added or removed dynamically.

application that triggered the scavenge; further, onlyurgabbjects of that applica-
tion are promoted to the shared old generation.

However, per application young generations alone are ficgarit for complete
performance isolation. All applications must still be gied at a safepoint in order
for the scavenger to have a consistent view of the old gapardh particular, consis-
tency of the remembered set of references to young genesatiost be guaranteed,
in order to precisely locate references from the old ger@rato the young genera-
tion being scavenged. Note, however, that applicationstagped at the safepoint
only for the duration of the scavenge of the live objects ahgle application, which
improves over a design that shares a single young genetatareen applications.

Another concern is that per application young generati@nsal enable immedi-

ate reclamation of all heap space consumed by a terminaf@idaton. The young
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generation can only be reclaimed when there are no longered@sences to it from
the old generation. Otherwise, it may lead to situationsre/taan obsolete pointer
from the old generation may be mistaken for a valid pointehd reclaimed space
has been re-allocated for the young generation of anotipdicapon. For this reason,
young generation space can only be freed once all such nefesdnave been cleared.
This can be done opportunistically at any scavenge, whdarsag the remembered
set. In addition, space consumed by a terminated applicatithe old generation
can only be reclaimed upon a full collection of the old getiera

To address the problems listed above, we complement pacapph young gen-
erations with old generation regions. Regions allow insta@bus, collection-less,
reclamation of all heap space (i.e., both young and old) woiesl by a terminated
application. Regions also help to simplify synchronizatissues towards efficient

support for application-concurrent scavenging.

4.1.2 Per-application Old Generation Regions

Immediate, collection-less reclaiming of the heap spaee by a terminated ap-
plication can be obtained by precisely tracking old genenategions in which ob-
jects allocated by each application reside. With this kealgk, young generation
collection can ignore all regions of the old generation thanot contain objects of

the application being scavenged, since these are not eegiardetermine roots for
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collection. Since no regions of old generation that may @ionbbsolete references
to young generations of terminated applications will benseal, young generations
of terminated applications can be re-used immediatelyyauit GC.

The old generation space used by a terminated applicatiorbeae-used im-
mediately without any collection as well. The only referendo regions used by
a terminated application originate from the tables used ¢diate access from the
shared part of the runtime representation of classes stord@ permanent genera-
tion, to their application-private parts located in the géheration. Thus, the regions
corresponding to a terminated application can be immdgliateused, if the GC ig-
nores entries of the tables corresponding to terminateticagipns. This, however,
prevents re-use of the identifiers of terminated applicatioThese identifiers will
eventually must be reclaimed by cleaning correspondingesnin the global appli-
cation table. The cleaning of these entries can be done typstically on the next
GC that requires scanning the application table, or by aragpaackground thread.
Note that cleaning itself does not require any synchroignawith applications.

Precisely identifying which regions of the shared old gatien hold objects of a
terminated application is key to the collection-less rexdtion of the heap space used
by the terminated application as described above. Tradhkutigidual objects would
likely be prohibitively expensive. Instead, we propose g@plication old generation

regions ,i.e., a contiguous region of the old generatioigaesd to a application. Old
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generation regions are primarily used during scavengingefoung generation of
an application when promoting young objects to the old gerar. They are also
used for the occasional direct allocation of objects in tliegeneration, either be-
cause the object does not fit in the young generation, or asudt td a pre-tenuring
decision. For example, as described previously, the agijmic-private representa-
tion of a class is always pre-tenured. The size of a regiorbeaapplication-specific
and adjusted dynamically. It is generally chosen to sasisfyeral scavenges (promo-
tions). Allocation in a region involves increasing a curpthe first free byte in the
region (bump-pointer). When mutator threads allocate inggore synchronization
between threads is required, since the region of an apiplicet shared between all
threads of the application.

Figure 4.2 illustrates old generation region managemeachEpplication is as-
sociated with a current region and a list of full regions. Aitial region is allocated
to an application at startup, prior to the first allocationtbg application. When a
region is full (typically during a scavenge), its addres®iorded in the application’s
list of full regions, and a new one is provided to the applarat

If an object does not fit in an old generation region, spackdsated directly from
the old generation, either from a previously freed regiariram the free space at the
end of the old generation (beyond the last region). In boskesahe object is recorded

as a full region in a list corresponding to the applicationf@ening allocation. The
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list of full regions, thus, precisely tracks regions of tHd generation used by an
application.

When an application completes, its application identifiexdded to a list of ap-
plications whose application table entries can be freedensed. The application’s
current region and full regions are added to a global listeé fregions, and become
immediately available for re-use by other applicationsup generation chunks of
the application are returned to the global pool, and are idhately available for re-
use by the young generations of other applications (seéoBettl.1).

Adjacent free regionsPare coalesced in a single regior. rféggons at the end of
the old generation are removed from the list and the poiotésy of the old genera-
tion is updated accordingly, as illustrated in Figure 4.pa# from limiting the space
overhead of tracking regions, coalescing can increaseizeeo§contiguous free re-
gion areas, consequently limiting fragmentation and &rtteducing the frequency
of full GC.

regions have several interesting properties. First, thgyraove isolation between
applications, since most allocation in the shared old gaimer is performed from a
region that is private to one application, eliminating anpaf interference between
applications. Second, they efficiently keep track of theggderation space used by
applications. Tracking is relatively inexpensive and anlyolves adding a region to

a list of full regions when a region is full, or when an objestger than the current
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per-task PABs free PABs
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task 3

Figure 4.2: Example of region management & tenured space reclamatapypdica-
tion termination without a full GC. (A) Initial configuration(B) Both applications
1 & 2 have performed promotions and their respective fullaedist are now non-
empty. (C) Application 1 terminates and its set of full regios added to the global
free list. (D) Application 3 enters the system and appl@a® & 3 start using space
allocated from the region free list.

region capacity is allocated. This precise tracking ersatddlection-less reclamation
of both young and old generations space used by terminaggdagons. Further,

it optimizes the identification of references from the olchgmetion to a particular
young generation (as will be described later). Last, it &®precise accounting of

space consumed by applications.

Maintaining regions Across Major GCs

Reclamation and reuse of regions mitigates full heap GC, mdtia replacement

for it. The old generation may fill up eventually, requiringllection. A sliding
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free PABs
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old generation
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task 1
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Figure 4.3: Example illustrating shrinking of old generation footgrupon applica-
tion termination.

mark-compact collector is used for the old generation. Tdlkector may reclaim
garbage in regions and compact live objects inside regitns invalidating their
original boundaries. Consequently, old generation calestmay require adjustment
to regions boundaries. The following describes how thisistdjent is performed
(Figure 4.4).

The old generation mark-compact GC is a standard 4 phaseaxtimg collec-

tor [74] involving the following phases.

Mark live objects.

Compute new addresses for live objects.

Scan objects and adjust references to point to the new torsati

Relocate (copy) objects to their new locations.
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Adjustment of region boundaries can be performed betwessdhond and third
phases. During the second phase (computing new addregge&C stores the new
address for a live object that will be relocated, in the obleader. To compute new
boundaries for a particular region, we locate the addrefisedfirst live object in the
region. If no live object is found, this region can be dropfredn the corresponding
application’s list. If a live object is found, we read its newdress from the header,
which now becomes the new start of the region. To adjust tde&a region, we note
that the first live object beyond the end of the region wouldrmved to a location
right after the new end of the region. The new end of the regidherefore the new
location of the first live object past the current end.

Note that locating the first live object from either the starend of a region can
be expensive. However, we make use of an optimization tleaexiisting garbage
collector itself uses to quickly skip over dead objects. iDgithe second phase of
mark-compaction, the GC records the address of the nexblyect in the header
of the first dead object in a group of contiguous dead objdctshe best case, the
current boundary of an old generation region is the first dead in a group of dead
objects. However, this may not always be the case, hence, ayeneed to iterate
over successive dead objects until we find the next live (G&eah object. To avoid
excessive scanning, it may be necessary to limit the nunflobram objects scanned,

and discard the region entirely if this number is over a tho&k In practice, we
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adjust_promotion_area(PromotionArea pa) {
pa.start = adjust(pa.start);
pa.end = adjust(pa.end);
if(pa.start == pa.end) pa = NULL;

}
Word* adjust(Word* q) {
if(q < first_dead) //GC maintains address of
return;  /ffirst dead object found in
/Iphase 2 of mark-compact
new_q = NULL;
while(q < end) {//end here is the end of old gen bef ore GC
new_g = forwaring_word(q);
if(is_gc_marked(q)) {
return new_g; //forwarding word is new location
}else {
if(new_q != NULL) {
Ilfast case in determining next live object
Ilg happens to be the first dead object of a
/lclump of dead objects: next live object is new_g
q=new_g;
}Yelse {
/g happens to be in the middle of a clump of dead
/lobjects. Iterate till we find the next live objec t.
q=q+size(q);
}

}

[lwe reached the end without finding the new locati on forq

if(q@ >new_top) /new_top is the end of the last live
return new_top; //object after GC

return NULL;

Figure 4.4: Region adjustment at full G(alis the region to be adjusted.

find that this overhead is not excessive. Note that discgndigions does not affect

correctness.

Optimizing Scavenging

Scavenging uses a card table [21, 50, 45] to identify refmefrom the shared old
generation to per-application young generations, in a@@&tentify reachable young
objects. In the presence of a large number of dirty cardsnigehg to different appli-
cations, scanning the entire set of dirty cards at each sgaumight prove expensive.
The existing card table implementation does not associatisavith applications and

hence, every scavenge requires scanning all dirty cardanglanutators record ap-
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plication information in cards would add an additional daosthe write barrier, thus
negating an important advantage of using a card table. litiaddextra space per
card would be needed to record a application identifier, mtaf application identi-

fiers.

Our scheme of tracking per-application old generation esag regions can be
readily used to scan dirty cards of only the applicationiatiig young generation
collection. This substantially reduces the number of céeiag scanned. During
card table scanning, we only iterate over the dirty cardsabaespond to the list of

regions for the application that initiates GC.

4.1.3 Application-Concurrent Scavenging

By combining independent young generations and old geoereggions, we im-
plement a mechanism that enables mutator activity and nioikgctions to be per-
formed concurrently. We refer to this mechanismmagator-concurrent scavenging

Mutator-concurrent scavenging requires maintaining istescy while scanning
of the old generation during promotion. In order to maingiconsistent view of the
old generation, changes to the old generation during daiémtation must not affect
old generation objects accessed during scavenging. Toisres that both object
allocation and initialization of the object be done atortlyci order for the collector

to only trace objects with valid class information. Guaesmg the atomic behavior
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of these two operations cannot be done efficiently with nlmaiing synchronization

(in contrast to allocation alone which can be implementeth \&i single compare-
and-swap operation, i.eas ). Other synchronization mechanisms would impose a
prohibitive overhead on allocation.

regions provide a synchronization-free solution since aedonly to scan application-
private regions during scavenging. Other applications diegctly allocate in their
own private regions without affecting minor collection.

Key to mutator-concurrent scavenging is a modified syndhation mechanism
that only pauses threads that belong to the applicationriggers collection (thérig-
ger henceforth), during scavenging. This process first obtaiglobalThreadslock
so that no new threads can be started, or existing threatsnged while the run-
time is negotiating a safepoint. We then count the numbéiregids belonging to the
trigger that are running, and iterate until this number ineaczero.

In the MVM, threads periodically poll (access) a constasereed address that
does not belong to the application heap. This address lies motected page and
accessing this page results in an exception. The excep#odlér is responsible
for blocking threads for a safepoint operation. We makeipglapplication-aware
by making threads access an application-private pollingepa/Vhen a non-global

safepoint is initiated, we set only the polling page for 8t belonging to the trigger
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begin_per_task_safepoint {
Threads_lock->lock(); /no threads should terminate or start
Safepoint_lock->lock(); //only 1 safepoint at a time
0t O Threads
if wants_safepoint(t) { /t belongs to initiator
++running;
protect(t.polling_page);
}

while(running > 0) {
O t O Threads
if wants_safepoint(t) {
/lwait until t is waiting on
/IScavenge_lock
if(tis_running(t))

--running;
}
IlIsafepoint reached
Safepoint_lock->unlock();
Threads_lock->unlock();
}
end_per_task_safepoint {
Threads_lock->lock(); /no threads should terminate or start

Safepoint_lock->lock(); //only 1 safepoint at a time
0t O Threads
if wants_safepoint(t) { /t belongs to initiator
unprotect(t.polling_page);
t->restart();
}
Scavenge_lock->notify_all(); //wake up all threads waiting
1/ on the Scavenge_lock
Safepoint_lock->unlock();
Threads_lock->unlock();

}

Figure 4.5: Per-application safepointindyeginper applicationsafepointinitiates
a safepoint for a single application aedd per_applicationsafepointends it and
resumes mutators for that application.

to an address that corresponds to a protected page. An excejit be triggered for
these threads when they poll for a safepoint.

The exception handler causes threads to wait 8oavengdock, which will only
be released when scavenging is complete. Note that onlgdhrbelonging to the
trigger will wait on theScavengdock When all such threads are paused, the number

of threads running drops to zero, and GC commences. Threddsding to other
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applications may continue to allocate, however, they maypeoform a GC while
the current GC is in progress. Releasing a safepoint is thrergevof this process.
The private polling page for blocked threads is set to anesfdbelonging to an
unprotected page, and tlseavengdock is released. This process is illustrated in

Figure 4.5.

4.1.4 Evaluation

To evaluate our extensions to MVM memory management, wepadd a num-
ber of empirical experiments. We gathered our results usibedicated dual 1.5GHz
UltraSPARC system, running Sun Solaris 10. The MVM impleragah that we
extended in this work is based on Hotspot 1.5. We presenttsefsun a number of
SpecJVM98 [85] and Dacapo [31] benchmarks.

To evaluate the performance of our system, we first preseotighput and re-
sponse time for short running applications, when execuwtorgurrently with a GC-
intensive program. We then consider throughput as well a®terall performance
of concurrent, homogeneous applications. Finally, weyareeathe impact of our tech-
niques on the number of GCs that the system performs as wdieasne spent in
GC.

In the first set of results (Figures 4.6 and 4.7), we show theutthput and re-

sponse time improvement enabled by independent young afémes and regions
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Figure 4.6: Throughput improvement enabled by independent young géoes &
regions for short running applicationgyac andjavap ) executing concurrently
with 3 GC-intensive applicationgess , jack andps. The top graph is fojavac

and the bottom fojavap . The first bar in each set of bars shows a single instance
of the short running program with the GC intensive, long fagrprogram, and the
second denotes 2 instances of the short program.

over a system with a shared young generation. In this setpErérents we execute
multiple serial instances of a short running applicatioonaurrently with a single

instance of a GC-intensive application in a fixed time interVae goal is to measure
the number of serial instances of the short running appdicahat can be executed
with the shared young generation system, versus the nurhbyetances of the same
application executed with an implementation that includdgependent young gener-

ations and regions. We also report response time (averggieatmn time) for the
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Figure 4.7: Response time improvement enabled by independent youngagiems

& regions for short running applicationgyac andjavap ) executing concurrently
with 3 GC-intensive applicationsjess ,jack andps. The top graph is fojavac

and the bottom fojavap . The first bar in each set of bars shows a single instance
of the short running program with the GC intensive, long fagrprogram, and the
second denotes 2 instances of the short program.

short running application. The goal of these experiments ghow the throughput
increase (measured as the extra number of serial instaf¢les small application
we can execute), and the response time improvement, of stearaywersus the shared
young generation system. The short applications we conar@gavac & javap
with small command-line inputs (which we can provide on exty and the GC-

intensive applications afess , jack andps.
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Number of tasks
Bmark #GCs 1 2 3 4 5

Minor|Major| ET [GCT| ET [GCT| ET |GCT| ET |[GCT| ET |GCT

(s) {(ms)] (s) [(ms)] (s) [(ms)] (s) [(ms)| (s) |(ms)

jess 146 2| 4.59| 302| 6.17( 608| 9.58(1001|12.65(1346|16.60|1893
raytrace 76 2| 2.82| 257| 3.76( 533| 5.74| 765| 7.25 900| 8.98|1157
db 38 2|18.53| 255|21.85( 638)33.25(1000|43.89(1809|57.16|4164
mpeg 1 1| 8.73| 50| 8.89| 95|13.44| 149(18.17| 190|22.46( 272
jack 99 8| 4.16| 649| 5.39( 939| 7.64(1690| 9.38(1706|14.17|2322
ps 217 0[26.67| 118|43.96| 477|57.67| 817|74.59(1272(90.84|1878
jython 142 0]14.32| 222|24.75(1408) 32.73|2246|42.31(2785|51.22|3446

Figure 4.8: Data for the Base MVM system (shared new generation). Columns 2
& 3 show the number of minor (scavenges) and major collesti@spectively for

a single instance of the benchmark in Column 1. The rest of thentns show
execution time (ET) in seconds & GC time (GCT) in millisecofaisl, 2, 3, 4 and 5
concurrent instances, respectively, of the programdlidtggures 4.9 and 4.11 show
improvement relative to this data.

The results show that in all cases, we enable a significamti¢finput increase and
a response time improvement over a shared young genergstens Forjavap ,
on average, throughput improvement seems to increase wiatlconcurrent short
applications, over a single instance of that applicatiohisTs due to the fact that
javap is very short running and does not exercise GC, and, two iostanan be
optimally scheduled on our two processor system. jgeac , throughput gains
remain almost the same with two concurrent instances siiolces perform stop-the-
world GC. Figure 4.7 shows similar trends for the response.tiResponse time for
javac isimproved by over 15%, whilgavap shows a 8% to 12% improvement.

In summary, the impact on the execution of a short runningfanm that concur-
rently executes with another program that shows signifigdrgap usage, is visibly
reduced. This is an effect of performance isolation pravioleper-application young

generations and fast tenured generation reclamationged\ny regions.
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We next evaluate the overall performance of our mutatocement scavenging
system for a concurrent workload. Figure 4.8 shows dataHerariginal MVM,
which is configured with a shared new generation (we henttefefer to this con-
figuration as thébasg. This includes the number of minor and major GCs, total
execution time and GC time for up to 5 concurrent homogen&wmiances of the
benchmarks.

Figure 4.9 shows the percentimprovement in the end-to-erfdimance enabled
by mutator-concurrent scavenging over the base MVM. Thatooiconcurrent scav-
enging configuration includes the old generation regiondementation. The bars
represent homogeneous concurrent applications, withafiestapplications (left to
right bars).

Mutator-concurrent scavenging enables a 10-12% perfazenamprovement for
this configuration, across benchmarks on avergges andjack show the most
improvement (over 20% in many cases), since they involveifstgntly more GC
activity compared to other benchmarksaytrace  also shows similar behavior.
This is apparent from the data in Figlrre 4.8.

In the base system all applications must pause for a mindeatmn triggered
by any application, hence applications that cause more @@tgcscale poorly. Al-
thoughps causes a large number of scavenges, the improvement isrtessunced

as a percentage of the total execution time due to the fadtb@rogram is long run-
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Figure 4.9: Total end-to-end performance improvement enabled by mwutat
concurrent scavenging over the base MVM for homogeneoushibeark instances.
Bars indicate increasing number of applications (from 1 to 5)

Change in # GCs

Bmark 1 2 3 4 5

Minor [Major [Minor|Major [Minor|Major |Minor|{Major |Minor|Major
jess 9 -2 18 -3 26 -4 34 -4 42 -4
raytrace 5 1 9 -2 76 -1 95 -2| 155 -1
db 2 1 25 0 57 -1| 105 -1f 136 -4
mpeg 0 0 0 0 0 0 0 0 0 0
jack 6 9 11 -9 16 -15 80[ -11 26 -11
ps 14 0 25 -1 36 -1 48 -1 58 -2
jython 8 1 16 -11 23| -15 31| -15 38 -16

Figure 4.10: Change in the number of GCs (minor and major) with mutator-
concurrent scavenging over the base MVM for 1 thru 5 instanmiethe same
benchmark.

ning (over a minute). We believe thaipeg does not make significant use of the heap
and thus, does not reap the benefits from young generatitaticsoor concurrent
allocation techniques. In fact, performance is slightigrdeled for this benchmark
due to an increase in GC time (explained below).

We next investigate the impact of our techniques on GC agtivirigure 4.10

shows the change in the number of scavenges and full GCs a/éate MVM, for
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Figure 4.11: Total GC time improvement (minor + major) enabled by mutator
concurrent scavenging over the base MVM. Bars indicate asingg number of ho-
mogeneous applications (from 1 to 5).

one to five concurrent homogeneous applications, for eacbhpeark. We observe
that with mutator-concurrent scavenging, the number ofestges slightly increases
in a majority of the programs. The reason for this is that mlthse system, a scav-
enge copies live objects from the entire young generatioms€guently, at the end
of the scavenge, the young generation is empty. Howeveh, mittator-concurrent
scavenging, promotion is isolated and only the triggerjecis will be promoted. At
the end of the scavenge, only one of the young generatiohbevémpty, while the
rest may yet trigger a GC since they are allocating indepathdeHowever, we per-
form less work during any single scavenge. Note thpeg shows no change in the

number of GCs.
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Figure 4.11 shows the percentage change (improvement) iti@&Cfor our im-
plementation versus the base MVM. These figures show a rieduntfull GCs with
independent scavenging, and a consequent reduction IrGGtéime, ranging from
9% to 19%. Since, the mutator-concurrent scavenging camwfiigm also includes
regions, as applications terminate, other applicaticau$ gsing the terminated appli-
cations’ freed regions, thus leading to full GC avoidancell 6Cs are much more
expensive than scavenges, hence, reduction in full GCgsesu sizeable reduction
in overall GC time. Cases in which we are unable to avoid full Gfdsnot show an
improvement in GC time. In fact, time spent per garbage ctida in our system is
higher than the base MVM, leading to a performance degmadathen the number
of GCs is not reduced. This is due to the extra time spent iatiteg over a discontin-
uous set of regions in old generation. This is especialljophasn the case ompeg,
db, andps. Note, however, that GC time is not an indication of overalhcurrent
system performance.

To summarize, in the base system, every concurrent agplicaill pause on ev-
ery GC, and therefore experience degraded performance wihiependent scaveng-
ing significantly improves upon. Yet mutator-concurrera\@nging does not impact
total GC time adversely although more scavenges are pegtbthan with a shared

new generation. Coupled with reclamation of promotion greagator-concurrent
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scavenging reduces the number of full GCs, which are gegeralte expensive than

scavenges, resulting in an improvement in total GC time istroases.

4.2 Discussion

Application-aware GC is thus able to achieve significanfgrarance improve-
ment for concurrent applications, as well as system thrpugand scalability when
most GC activity is confined to the young generation.

However, old generation collection is performed acrossaaks. When applica-
tions that make significant use of the old generation triggeold generation GC,
this causes all applications to pause and a global mark-aon@C cycle to execute.
Old generation GC across all old generation regions is ptapal to the size of the
entire old generation. Further, the old generation objextd to be longer lived. If
old generation GC activity constitutes a significant partad the workload’s execu-
tion time, performance may suffer. Further, collecting gdsheration regions that are
non contiguous (by design) is challenging — sliding markipact GC assumes that
the heap memory being collected is contiguous.

In the next section, we motivate the need for and presentcgerteration GC

that combines two different and diverse GC algorithms taemxehhigh performance,
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while maintaining a low footprint for concurrent workloati&at make significant use
of the old generation.

Figure 4.12 shows the results from a set of experiments teatave conducted
to compare MVM [28, 83], with the per-application young geaimn GC extensions
from Section 4.1, with the single-tasking JVM (the Sun Maystems HotSpot vir-
tual machine version 1.5.0) from which the MVM is derived. eTjprograms are a
subset of the benchmarks that we use for our evaluation \{teatescribe in detail
in Section 4.3.2) that exhibit significant garbage colect{GC) activity for the old
generation (the longer-lived region). The figure shows thatMVM significantly
degrades execution performance for concurrent worklo2ads,(and 10 concurrent
program instances in this graph), despite the significapbdpnity for sharing (i.e.
multiple versions of the same program are executing coantly).

The MVM prototype that we use in this study (cf. Section 4.thiaves per-
formance isolation for the young generation across appbics, reclamation of an
application’s heap memory upon task termination withoutifgito perform GC,
per-application accounting of heap usage, and per-apipircaontrol of heap size
settings. However, the extensions described in Sectiorst#llack complete GC
performance isolation, resulting in poor performance wefglVM’s single-tasking
counterpart for concurrent workloads that fully exercise tnemory management

system. The key impediment to scalability is the lack of gystem GC isolation
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Figure 4.12: Performance of a state-of-the-art multi-tasking MRE (MVMjwper-
application young generation GC versus multiple instamdéd¢be Java HotSpot vir-
tual machine foconcurrentexecution of five community benchmarks. No prior work
has performed such an evaluation. Although per-applicatmung generation GC
significantly improves performance over prior state-ad-#rt, for programs that in-
volve significant old generation GC activity, performanaffers due to the choice of
an unsuitable old generation GC algorithm.

and an unsuitable old generation GC — sliding mark-compé&xctiat performs com-
paction over the entire old generation.

To address these issues, we propose a nodmid GC technique for the old gen-
eration that leverages the synchronization mechanisnmajese earlier (Section 4.1).
Our hybrid GC combines two well-known GC algorithms — mankesp GC and
copying GC in order to achieve high performance, yet, a lownag footprint.

This hybrid GC (i) maintains the constraint that all live etfs within a region be-
long to the same application (which is key to GC isolation #redaccuracy of track-
ing per-application heap usage), (ii) ensures that theeggge footprint of the multi-

tasking MRE is small for concurrent workloads, and (iii) elesbspace reclaimed
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through opportunistic evacuation of objects from spargelgulated regions of one
program to be made available to other programs. To achiesethoals)/T M per-
forms full collection of a single program’s heap in isolatiwith co-located concur-
rent programs by combining fast, space-efficient, markepaeollection for regions
with little fragmentation, with copying collection for rems with significant garbage
and fragmentation.

We have integrated hybrid GC with the MVM prototype desalibeSection 4.1,
and have used it to compare the execution of multiple progmxacuted using a sin-
gle multi-tasking MRE versus using multiple concurrent amgtes of single-tasking
MREs (one per program). Two metrics are particularly intémgswith respect to the
scalability of the two approaches: the overall footprintenwtexecuting multiple pro-
grams, and the execution times of programs. We demonshratevith application-
aware memory management and hybrid GC, on averdge)/ achieves better over-
all execution times and footprint versus its single-taglkdiounterpart, for concurrent
workloads using a number of community benchmarks. Moredvér)/ is able to do
so while maintaining the other benefits of running with a masking MRE.MT M
outperforms the HotSpot single-tasking MRE by up to 14% omaye for concur-
rent instances of the same program (homogeneous), and by 124 on average
for workloads with a mix of programs (heterogeneou®)I'M achieves up to 41%

reduction in footprint on average for homogeneous worldoadd by up to 33% on
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average for heterogeneous workloads over the singleAg$kRE. Finally, we show
that M'T"'M outperforms an extant state-of-the-art multi-tasking MREL8% to 22%
for concurrent workloads.

In summary, in this section, we describe,

o the first study that compares multi-instance JVM executensws multi-tasking

execution for concurrent program execution;

e a complete memory management system that provides full Gforpgance

isolation for multi-tasking MREsS;

e the design and implementation of a hybrid, multi-taskingueevGC that com-
bines GC approaches that are well understood, i.e., magejsand copying, to
balance GC performance and memory footprint. Hybrid GCsesueclaimed
space across multiple isolated program executions; teigdechieves footprint-
aware memory management that facilitates runtime effigidoc concurrent

workloads;

e an empirical evaluation that shows that multi-tasking MRHEgew equipped
with appropriate mechanisms for GC performance isolatompare favorably
to single-tasking MREs with respect to footprint and progmmacution time
for concurrent workloads. This result further strengthtres case for multi-

tasking MREs.
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4.3 Scalable Hybrid Collection for Multi-Tasking Man-

aged Runtime Environments

MT M'’s synchronization mechanism allows application threadset paused on
a per-application basis. We leverage this mechanism tguesid implement and
per-application, old generation GC that is a hybrid of mankeep GC and copying
GC.

As before, MT M follows the generational design [94] and each applicat®on i
provided with a private two-generation heap. As with priersrons of MVM, a third
generation, called the permanent generation, is sharedsapplications. The per-
manent generation is used to allocate long-lived meta-datd as the runtime repre-
sentation of classes (including method byte codes, congtants, etc.), symbols and
interned strings, and data structures of the MRE itself, fallach may be transpar-
ently shared across programs. The meta-data stored inimapent generation may
survive the execution of many programs, and is rarely ctatkc

The permanent generation is a single contiguous area. Mefaothe young
and old generations of applications originates from twolpod fixed-size regions
managed byMT' M. Each pool uses its own region size. The two pools and the
shared permanent generation are contiguous in virtualkesgach that old regions

are in between the young regions pool and the permanentajemer
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As before, memory for the young generation of a program mcated at pro-
gram startup, by provisioning a region from the young geti@mgool. Memory for
a program’s old generation is allocated on demand, on agggoir basis, from an
old region pool Thus, old and young generations are both made of one or reere r
gions, which are possibly disjoint in virtual space. Regiarns made of an integral
number of operating system virtual pages and aligned to pagadaries to enable
on-demand allocation / deallocation of the physical padlesated to regions by the
operating systef Backing storage for the virtual pages of a region is allatatay
upon allocation of the region to a program. Conversely, whieggeon is returned to
the pool, the backing storage for its virtual memory pagdéesd immediately.

A region can only contain objects allocated by the same progrn.e., a re-
gion is always private to a program. This constraint feaiéis both tracking of pro-
gram memory usage and instantaneous, GC-less, reclamésipaae upon program-
termination [83]. It also helps performance isolation si@®C only needs to synchro-
nize with the threads of a single application (instead o&pplications).

Tracking of cross-generation references uses a card-ngaskheme [21, 50, 45,
13]. Old regions are card-aligned and consist of an integuahber of cards, so
that young generation collection of an application onlydset® scan the dirty cards

that correspond to the old regions allocated to the apphica hese are maintained

1E.g., usingnap'unmap system calls on the Solafi4’ OS.
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in a per-application list ordered by increasing virtual @$$. Each application is
also associated with@urrentold region, which identifies the region used to allocate
tenured space for the applications. Tenured space is slbpaimarily during young
generation collection, when promoting young objects, arwhsionally, directly by
mutator threads of the application to allocate space fgelabjects.

MT M initiates a young generation collection for an applicatdren the applica-
tion’s young generation is full, and an old generation ai; when the application
reaches its maximum heap size limit, or when allocation @&ggon from the pool of
old region fails. Minor collection for an application is f@med concurrently with
respect to other applications using mechanisms descritesibpsly [83].

Collection of the old generation of an application’s heapcsp@allows ahybrid
approach that combines fast, space-efficient, mark-swaagdions of the old gen-
eration with little fragmentation or garbage, with a comytollection for regions of
the old generation with either significant fragmentatiomh a significant amount
of garbage. Old generation collection is on a per-appbealiasis, i.e., only the old
generation of the application that triggers GC is collected

We also exploit MVM's representation of classes to orgatiimepermanent gen-
eration in a way to limit tracing, during young and old geniera collection, to ob-
jects of the application that initiated the collection (beforth called thé&C initia-

tor). The MVM separates the application-dependent part of tildme represen-
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tation of classes from the rest of the class representatiimen a class is sharable
across applications, task tableis interposed between the class representation and
its application-dependent part, the latter being allatatethe old generation of the
corresponding application. The task table for a class hanay for every applica-
tion executing in the MRE, and each application is assignpdnstartup, a unique
number the task identifier that is used to index these tables. The entry of a task
table holds a reference to the object that holds the appicalependent part of the
class when the application associated with that entry |talslass, or a null pointer
otherwise [28]. Classes whose representation cannot bedshaross programs (e.g.,
classes defined by program-defined class loaders) refeatlgite the application-
dependent part. All data structures that directly refeseaqplication-dependent data
are clustered in a specific area of the permanent generaitioch is the only area that
must be traced during collection of younger generations. Méreapplication does
not use program-defined class loaders, tracing is limitedsiagle entry in every task
table (the entry assigned to the GC trigger).

Other data-structures that reference application-degpgndiata (e.g., JNI Han-
dles) are organized either in a per-application pool or bies with one entry per
application, similar to the task table. We exploit thistan only those pools or table
entries associated with the GC initiatoFurther, only stacks of threads of the GC

initiator are scanned for roots.
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We describelV/'T'M’s hybrid garbage collector in detail in the next section.

4.3.1 Hybrid Mark-Evacuate-Sweep Garbage Collector

Our experiments with prototypes of MVM suggest that effiti&C is key to
making the concurrent execution of multiple programs usingti-tasking a viable
alternative to running the same programs using one instahaesingle-task MRE
per application.

MTM:’s old generation design is constrained by the need to ertbatean old
region contains only objects from the same applicationp&formance isolation, as
well as for efficient and accurate tracking of heap resour¢éss implies that dead
space within an old region allocated to an application cabeoreused by another
application. This can potentially lead to significant fraggtation and substantially
increase footprint for multi-tasking. Copying GC is effgetiat mitigating fragmen-
tation, but at the cost of excessive copying of live objemtsl the necessity of a copy
reserve area. In place compaction requires multiple passasthe heap (although
recent work has significantly optimized compaction [64])arksweep, however, is
fast, and involves a single pass over live data, but may tr@syloor space utiliza-
tion [61].

MT M combines two relatively simple and well-understood teghas: mark-

sweep and copying. We use copying to evacuate live objemts énly those regions
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that are fragmented or are sparsely populated, and mar&psvee the remaining
regions. The goal is to maintain a low footprint, but withthet overhead of copying
of all live objects and a copy reserve for every GC. Spaceirmelhvia sweeping can
only be used by the GC initiator, since the free space may teaated with live data
in the same region. Evacuated regions, on the other handyecegturned to the old
region pool where the backing storage for their virtual gagdreed until the regions
are re-assigned to an application.

Candidate regions for evacuation are selected based on thenawof fragmenta-
tion the GCis likely to causen the region. Before the collection begind, 7'M sus-
pends all the threads of the GC initiator at a &@epoint The threads are restarted
when GC completes.

The collection itself is performed in four phases: marksgecting candidate re-
gions for evacuation, evacuation (copying), and sweepmbeaaljustment of regions
(performed in the same pass). The first two phases gathemafmn (liveness, con-
nectivity, occupancy, and estimated fragmentation) reaggdor the last two phases.
Evacuation and adjustment are optional, and occurs onhgeitecond phase selects
regions for evacuation.

Figure 4.13 illustrates with an example the main phase® @t\/’s hybrid col-

lection. The following sub-sections detail each of the fphases.
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Marking Phase

The marking phase begins a collection and produces two ttatdwges as output:
amark bitmapthat records live objects of the GC initiator; and@nectivity matrix
that records connectivity information between old genenategions. Together, these
are used to determine regions to evacuate, sweep and adjust.

Storage for the mark bitmap and the connectivity matrix iscated for the du-
ration of the hybrid GC cycle. The mark bitmap has one bit fgrg word of heap
memory. Marking starts with the roots of live objects for tB€ initiator: the stacks
of the application’s threads; the entry corresponding &@®@C initiator in each task
table for the runtime representation of shared classegipghmanent generation, and
entries in global tables maintained by the multi-tasking MB&ch as JNI handles).

Marking then traverses the object graph from these roots.alBecisolation is
strictly enforced between applications through applarafprivate regions, the mark-
ing phase will never access an object allocated by anoth@icapon nor traverse a
region allocated to another application.

The connectivity matrix is updated when a yet unmarked algeticaversed. The
matrix is encoded as a two-dimension boolean array, so themty (i, j) set totrue
indicates that there existd leastone reference from regiarto region;. The matrix

is initially zero-filled.
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Testing whether each reference crosses a region boundatyecaxpensive. We
have observed that inter region object references in thgaheration are clustered,
and that the distance between the referencing (sourcegtadnpel the object being
referenced (destination) in an old region is often smalkr€fore, given an old region
size that is large enough, the source and destination slgeetikely to reside in the
same region. If region size is a power of two, and regionslagaed, testing whether

two addresses are in the same region can be inexpensivétyrped as follows™:

to == =*from;
if (to A from) >> LOG _REGIONSIZE) = 0 {
/I Not in the same region.

update _connectivity _matrix(to,from);

When the test fails, a slow path is taken in order to update dheectivity matrix.
The choice of an appropriate region size contributes to serdiusters of connected
objects to a single region, which has two benefits: redudiegptverhead of tracking
inter-region connectivity (i.e., the fast path will be takenore often); and limiting

the number of regions that must be inspected for potentigt@oadjustment after

2This test for cross-region object references is similahéotést in the write barrier of the Beltway
framework|[15] except that, in our case, the test is perfaratemarking-time.
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regions are evacuated. We have empirically identified arregtbn size of 256KB
that works well.
In summary, tracking of connectivity information helps &mluce the amount of

live data that must be scanned during pointer adjustmeniifegion is evacuated.

Selecting Regions for Evacuation

The decision to evacuate a region attempts to balance thef@scuation (copy-
ing and pointer adjustment) and heap fragmentation (caresdty, footprint). To
maintain a low cost for evacuation we evacuate sparselylptgzliregions, while to
maintain a low footprint, we evacuate regions with fragraéon.

That is, our evacuation policy evacuates a region uncantitly if the ratio of the
live to dead spacdiye ratio) is less than a certain minimum live ratid/(n Live Ratio).
The region is also evacuated if it is estimated to be fragatenthis is done by com-
paring the average size of each contiguous fragment of deackso a threshold
(MinFragmentSize). That is, givenL, the amount of live data in the regio#,
the number of contiguous areas of dead objects in the regimhR the size of the

region, a region is selected for evacuation if:

(L/R) < MinLiveRatioV((L/R) < KA(F > 1)A((R—L)/F) < MinFragmentSize)

We empirically chose\lin Live Ratio to be 0.25, i.e., a region is always evacu-

ated if it contains over 75% of garbage. When the pool of oldoregis closed to
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exhaustion, this parameter is increased up to 0.9 to aggesevacuate all but the
almost full regions.K is the occupancy threshold and chosen to be 0.9, i.e., we look
for fragmentation in regions that are at least 90% fillin F'ragmentSize is set to

50 bytes by default.

In order to realize this policy)/T' M needs to determine the ratio of live to dead
data and the number of contiguous fragments of dead spa@eimregion. This is
done following the completion of the marking phase, by saanthe mark bitmap.

For each region belonging to the GC initiatdf,7’ M/ walks over the region’s objects,
using the mark bitmap to determine their liveness and theotdj header to obtain
their size. In addition, in this pass, adjacent dead obge<oalesced into a single

dead area to reduce scanning time for future passes.

Evacuation, Sweeping and Adjustment of Old Regions

Live objects in regions selected for evacuation are re&atad new regions allo-
cated from the old regions pool. Evacuation traverses thiemebeing evacuated for
live objects using the mark bitmap. Live objects are coptethé new region, and a
forwarding pointer is installed in the header of the (oldpieal object. Forwarding
pointers are necessary for pointer adjustment. This, hexyevevents the evacuated

regions from being freed before adjustment is complete.
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Figure 4.13: Marking, Evacuation and Sweeping of Old Regions. Each agidic
has a corresponding list of live areas. Marking traverses dbjects for an appli-
cation and marks live objects in the mark bitmap. After magkicandidate regions
for evacuation (or sweeping) are selected based on the drablive data and frag-
mentation. Regions selected for evacuation are then evatuagions selected for
sweeping are swept and free areas in these added to a perasipplfree list. Pointer
adjustment for swept regions is also performed during tagspif necessary.

New regions used to store evacuated objects are added tettbérggions that
need adjustment, i.e., we assume that the a region is likebpmtain objects that
point to other objects in the same region.

Once evacuation is complete, sweeping and adjustment ofgrsican be per-

formed in the same pass. For each region that was not evdgtiagemark bitmap
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corresponding to the region is used to build lists of live & areas within the
region. The connectivity matrix is also checked to deteemirthe region contains
objects that reference objects in evacuated regions. thedive objects in the region
are scanned to adjust references. Finally, the free antidigeof areas are combined
into a list of live old generation areas used by the applicatiThe live list is used
to account for the old generation usage of the applicatierwell as during young
generation collection to limit the amount of work that is daduring card scanning,
i.e., we only need to scan dirty cards that correspond to pipdcation’s list of old
generation regions. The application’s free list that wasstrmicted during sweeping
can only be used to satisfy allocation requests for thatiegupdn.

If any region is evacuated, in addition to adjustment of sateregions, we
also need to adjust objects in the young generation of thicagipn, the permanent
generation, and outside the heap (globals) that referebgets in the evacuated
region(s).

The young generation is typically small (the default is 2MB) &an therefore be
scanned in its entirety without significant overhead. Haveperforming an object
graph traversal beginning from the roots to identify glstaid permanent generation
pointers that must be adjusted can be prohibitively expensnstead, we keep track

of the locations of these pointers during the marking phasd,update them during
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Figure 4.14: Adjustment of old regions. Application 1 is being collectétle build
the region connectivity matrix for application 1 during tmarking phase. Region 2
has outgoing pointers to Region 3, therefore, Region 2 mustdrengd if Region 3
is evacuated. However, Region 1 and 4 do not must be scanned.

pointer adjustment. The space overhead required to keelp dfethese locations is
small, and is reported as part of the total footprinfiéf'M/ in Section 3.5.

Once all regions have been adjusted, the evacuated reg®retarned to the pool
of free regions, and backing physical memory corresponttirigeir virtual address
pages is unmapped, i.e., freed regions do not consume phys&nory and can be
later re-mapped and used as part of the old generatiormnjapplication.

Objects larger than a single region are treated specialheyTare assigned an
integral number of contiguous old regions large enough td tiee object. MT M
notes whether a region is part of a single large object regimhwhether that ob-
ject contains no references (scalars only). This inforomais used to reclaim space
when these large objects die (e.g., by returning their regimmediately to the pool,

without waiting for adjustment).
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4.3.2 Evaluation

The design ofMT'M was motivated partly by the poor behavior of extant ap-
proaches to multi-tasking for concurrent application vioakis.

In this section, we report our assessment of how well a niagking MRE using
MT M fares with concurrent workloads. We first compare the paréorce of MVM
with per-application young generation GC (the extensiascdbed in Section 4.1)
to MVM maodified to integrate hybrid old generation GC as wélle then compare
MTM to a single-tasking MRE. We use the Ja¥aHotSpot virtual machine, ver-
sion 1.5.0-03 [91], a production quality, high-performamirtual machine from Sun
Microsystems (which we will refer to as HSVM from now od)['T"M derives its im-
plementation from HSVM and shares a significant amount oécadhich facilitates
a fair comparisonMT M differs only in its memory management sub-systems and
modification to the runtime to achieve GC performance ismhatAll other mecha-
nisms to support multi-tasking and sharing of the runtinggesentation of classes,
byte code and compiled code (see [28, 29] for detailed desmns) as well as other
virtual machine implementation aspects inherited from INESAfe identical.

The main metrics of interest for our comparison are exeouiime and the ag-
gregate memory footprint necessary to run concurrent wadd. We begin with a

description of our experimental setup, including hardwaemnchmark, and method-

ology.
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Benchmark Description
compress Spec]VM98 compression utility (input 100)
jess SpecJVM98 expert system shell benchmark:
Computes solutions to rule based puzzles (input 100)
db Spec]VM98 database access program (input 100)
javac Spec]VM98 Java to bytecode compiler (input 100)
mtrt SpecJVM98 multi-threaded ray tracing implementation (input 100)
jack SpecJVM98 Java parser generator based on the Purdue Compiler
antlr Dacapo antlr: Parses grammar files and generates a parser
and lexical analyzer for each (default input)
fop Dacapo fop: XSL-FO to PDF parser/converter (default input)
luindex Dacapo luindex: uses lucene to index the works of Shakespeare
and the King James Bible (default input)
ps Dacapo ps: Postscript interpreter (default input)
opengrok Open source code browser and cross reference tool
(input: Source files in HSVM "memory" subdirectory, 118 files)
jruby Ruby interpreter written in Java
(uses small scripts as input: beer song, fibonacci numbers,
number parsing, thread test)
groovy Groovy interpreter written in Java
(input: unsigns, i.e., strips MANIFESTs) for a number of jar
files from Apache ant)
antlr-mixed mixed workload consisting of antlr, fop and opengrok
luindex-mixed mixed workload consisting of luindex, fop and ps
javac-mixed mixed workload consisting of javac, jess, mtrt and jack
scripts-mixed mixed workload consisting of groovy and jruby

Figure 4.15: Benchmarks and workloads used in the empirical evaluatiovi 6f\/

Experimental Methodology

We ran our experiments on a dedicated dual CPU 1.5GHz UItrREPWI sys-
tem, with 2GB physical memory, 32KB instruction and 64KBaleache running the
Solari§’™ Operating System version 10. Figure 4.15 describes thehbesrts and
workloads we used for our experiments.

Programs used in our concurrent workloads are selected dmmmunity pro-
grams from the SpecJVM98 [85] and Dacapo [31] benchmarbéi&s well as two
commonly used open-source scripting applicatigndyy [62] andgroovy [41],

and an open-source source code browser and cross refevsehcaltedopengrok [76].

3We used version 2006-10-MR2 version of the Dacapo benctsnaridps from Dacapo version
beta-05022004.
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Number of instances
2 5 10
Exec time| Footprint || Exec time | Footprint || Exec time | Footprint
Bmark (sec) (MB) (sec) (MB) (sec) (MB)
compress 10.96 139.44 27.60 351.16 56.41 650.80
jess 4.93 19.82 12.33 33.18 24.54 55.12
db 20.84 35.95 52.50 74.05 105.10 141.00
javac 10.40 49.51 26.78 109.85 53.97 261.03
mtrt 3.39 20.46 8.47 62.27 16.24 114.26
jack 4.21 30.84 10.75 59.53 20.89 104.78
antlr 9.17 67.51 20.95 114.23 39.86 219.61
fop 6.00 51.84 14.31 87.45 28.53 148.49
luindex 40.08 76.68 89.45 173.35 169.42 333.43
ps 27.18 16.63 68.37 23.91 136.80 37.02
opengrok 10.44 101.50 25.40 230.85 51.35 429.77
groovy 10.15 138.06 21.54 366.63 50.92 544.25
ljruby 2.58 34.80 5.66 49.67 10.67 73.47
Average 12.33 60.23 29.55| 133.55 58.82 239.46
Number of instances
1 2
Exec time| Footprint | Exec time | Footprint
Bmark (sec) (MB) (sec) (MB)

antlr-mixed 12.64 79.52 24.43 148.06

luindex-mixed 34.44 77.04 42.47 132.76

javac-mixed 13.28 31.97 23.58 63.57

scripts-mixed 8.28 68.68 11.30 118.95

Average 17.16 64.30 25.45 115.84

Figure 4.16: Total execution time (in seconds) and footprint (in MB) data¥!/ T M
with application-aware memory management and hybrid oleegeion GC for con-
current homogeneous (multiple instances of same apmgidatand heterogeneous
(multiple instances of different applications). The banelnks are described in Fig-
ure 4.15. All relative performance improvement resultsérecution time as well
footprint in this section use these values.

We excludanpegaudidrom SpecJVM98 (as is commonly done) since it does not ex-
ercise the GC.

We experimented with two types of workloadsamogeneouandheterogeneous
A homogeneous workload consists of multiple concurrertaimses of the same pro-
gram. For instance, “10 instancesjatac ” implies that 10 instances of this pro-
gram are launched simultaneously. A heterogeneous watkloasists of concurrent
instances of different programs.

We refer to the heterogeneous workloadnaigsedin Figure 4.15. We present

results for 1 and 2 instances each of an application in adgge@eous workload. For
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example, 2 instances each fantlr-mixed implies that we launch 2 instances
each ofantlr ,fop andopengrok simultaneously, i.e., 6 concurrent instances.

We report total execution time by reporting the time elapsiede the applica-
tions in a workload were launched and until the last appboatompletes. We use
a harness that executes each application asaate [57] using reflection and we
report total elapsed time usirfgystem.nanoTime() . To measure footprint, we
use the UNIXpmap utility, which we execute as an external process in a tighplo
and report the maximum of the total RSS (resident segment \&ae reported by
executingpmap -x onthe MRE process. Footprint and execution times are reporte
using independent runs. In case of single-tasking, we senR®S values returned
by pmap for each individual MRE process (since to execute concunsankloads,
we must launch a single-tasking MRE process for each apialigat

We perform all HSVM experiments using thkkentcompiler and the default serial
GC (sliding mark-compact) used for client configuratior.(i.using theclient
-XX:+UseSerialGC  command line flags). HSVM andl/ 7'M both use copying
GC for collecting the young generation. For all results, wespnt the average of 5

executions.

MT M with Per-Application Hybrid GC Versus MVM
We first present performance results for the improvemenbledaby MT M

with per-application hybrid GC versus the prior MVM versitmat provides per-
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Figure 4.17: Percentage improvement in execution time enabled/fyN (MVM
extended with per-application hybrid GC) with per-applieathybrid GC versus a
prior implementation of MVM (cf. Section 4.1) when execugtinoncurrent work-
loads that show significant old generation GC activityI'M enables better perfor-
mance due to a more efficient old generation GC and perforenanéation.

application young generation GC, but a mark-compact oldigeioa GC that collects
the entire old generation heap (i.e., for all applicatidng)Section 4.1). As seen ear-
lier, this prior version provides performance isolation fllee young generation, yet
performs poorly for concurrent workloads relative to exemithe same concurrent
workload with multiple instances of HSVM (cf. Figure 4.12y fapplications that
show significant old generation usage.

Figure 4.17 shows the performance improvement enabled/@y\/ over this
MVM. The results indicate that/T' M outperforms MVM by 10%, 15%, and 22%
on average when running 2, 5, and 10 concurrent instancggectvely. For this
experiment, we only present results for applications thatssignificant old gener-

ation GC activity. This performance improvement is possiiilie to the hybrid old
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Number of instances
2 5 10

MVM  MTM? % imp| MVM MTM? % imp| MVM MTM? % imp
Bmark (sec) (sec) (sec) (sec) (sec) (sec)
db 0.57 0.28 51.95| 2.92 0.70 76.05 5.47 1.38 74.81
javac 3.24 2.51 22.47| 8.95 3.48 61.06| 40.10 7.93 80.23
antlr 2.44 0.48 80.17| 4.11 1.29 68.69 6.23 1.39 77.75
fop 1.18 0.67 42.96| 2.29 1.11 51.58| 4.98 2.54 49.00
luindex 4.27 1.51 64.73| 8.36 2.86 65.82| 14.35 8.24 42.60
Average 2.34 1.09 52.46| 5.32 1.89 64.64| 14.22 4.29 64.88

Figure 4.18: Old generation GC times (total) fav/ 7'M (MVM extended with per-
application hybrid GC) versus a prior implementation of MVMsdribed in Sec-
tion/4.1. GC times are presented in seconds along with pergernmprovement in
GC time enabled bW/TM . MTM ’s per-application hybrid old generation GC
outperforms mark-compact old generation GC used in the priplementation.

generation GC inV/'T'M that enables performance isolation, as well as improved old
generation GC performance.

Figure 4.18 shows the old generation GC times\6iF M versus the prior version
of MVM. MTM:'s hybrid GC significantly improves GC performance. The prio
MVM version uses a stop-the-world mark-compact GC for the getneration that
performs three passes over the entire old generation (fapgplications), with cost
proportional to the size of the heap. With more concurresiiainces, the cost of old
generation GC increases.

In addition, M'T'M never pauses tasks to perform GC and all allocation and col-
lection for any application is isolated with respect to otugplications.M T M scales
better overall due to performance isolation as the numbansténces is increased,
as seen in Figure 4.17. The impact of performance isolasogspecially evident

in the case ofavac . For instance, when 10 concurrent instancefgaefc exe-

152



Chapter 4. Scalable Memory Management for Multi-Tasking &pad Runtime
Environments

cute, the total old generation GC time with full heap markapact GC is about 40
seconds. The cost of old generation GC is higher since mamipact GC needs to
scan a larger heap. Further, siraleapplications are paused during old generation
GC, performance fojavacis significantly degraded. In the casedid andluindex

GC time does not dominate total execution time, and consglythe improvement

enabled byMT'M’s hybrid GC is less significant.

MT M with Per-Application Hybrid GC Versus HSVM

We next compare the execution time and footprind 6’ M with per-application
hybrid GC to HSVM. HSVM allows users to specify an initial Ipesize (32MB by
default) and a maximum heap size (64MB by default) when laungcan application.
The initial heap size controls the heap limit, the point atchta full GC is triggered.
The initial heap size grows (or shrinks) after a full GC, if uegd. For results in
Figures 4.19, 4.20, 4.21, and 4.22, we set the initial hezg feir HSVM equal to
the maximum heap size. With this setting, HSVM performs fesguent GC and
achieves better overall performance (total execution timempared to when the
initial heap size is at the default value. This setting al@ingle-tasking to perform
at its best potential since the application heap is notiotstt. We also present results
for the other case, i.e., when the initial heap size for HS¥Mat set to the maximum

initially (the default behavior), thereby allowing HSVM &hieve a smaller footprint

(Figures 4.25, 4.26, 4.23 and 4.24)[T M does not restrict the initial heap size, or
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use a “soft limit” for applications, yetve always ensure that we never exceed the
maximum heap size setting for an applicatigvhich is set to the HSVM default
maximum heap size of 64MB in order to ensure a fair compayison

Figure 4.19 shows percentage improvement in total exatdtioe when homo-
geneous workloads are executed witlY" M versus the HSVM virtual machine, i.e.,
concurrent instances of the same application. We pressuitsdor 2, 5 and 10 con-
current instances for each application. Multi-taskingwa sharing of compiled code
and classes between applications resulting in reduceadibesecution time M T M
enables an improvement of 11%, 13% and 14% for 2, 5 and 10 camtwapplica-
tions on average for homogeneous workload$7' M allows complete application
isolation and space reclaimed by evacuating old generatigions for an applica-
tion to be reused by other applications. Scripting and pgrapplications such as
antlr andjruby are commonly used on desktop systems and particularly show a
significant benefit due to sharing of compiled code.

For some applications, such esmpress , javac andps multi-tasking does
not outperform single-tasking. Fa@ompress in particular, multi-tasking perfor-
mance lags single tasking due to the fact that it allocatgelabjects (byte arrays)
in the old generation which leads to fragmentation and w@€eperformance in a
shared old generation address space, and also due to tiheasatue to a level of in-

direction to access static variables [28]. Howewéf] M attempts to mitigate the ad-
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Figure 4.19: Percentage improvement in execution time enabledVidy M over
HSVM (default initial heap size = max heap size = 64MB) for hg®eous con-
current workloads (multiple instances of the same appioat Benchmarks are de-
scribed in Figure 4.15.
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Figure 4.20: Percentage improvement in execution time enabledfyM versus
HSVM (default initial heap size = max heap size = 64MB) for he¢eeneous con-
current workloads (multiple instances of different apafions). Benchmarks are de-
scribed in Figure 4.15.

verse impact of fragmentation and achieves a significangfiidor these worst-case
applications over the state-of-the-art multi-tasking MRfiplementation, as shown

earlier (cf. Figure 4.17), while achieving performancettisaclose to the perfor-
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Figure 4.21: Percentage improvement in footprint enabled\§ M/ versus HSVM
(default initial heap size = max heap size = 64MB) for homogeseconcurrent
workloads (2, 5, and 10 instances of the same application).

mance of these applications with single-tasking (within)3%n averageMT M
significantly outperforms single-tasking.

Figure[ 4.20 shows the percentage improvement in total éwectime for het-
erogeneous workloads, i.e., concurrent instances ofrdiffeapplications for 1 in-
stances of each application, and 2 instances of each ajiptidar every hetero-
geneous workload (see Figure 4.15). For examgfelr-mixedwith two instances
indicates that 2 instances each of antlr, fop, opengrok xaeuted concurrently (6
concurrent applications). On averagé,]’ M improves performance by up to 16%,
with improvements ranging from 3% to 25% in individual casés seen earlier,

scripting workloads in particular perform very well with ftittasking.
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Figure 4.22: Percentage improvement in footprint enabled\§ M/ versus HSVM
(default initial heap size = max heap size = 64MB) for hetenegels concurrent
workloads. 1 denotes 1 instance each of the mix of applicattbat constitute a
heterogeneous workload. 2 indicates 2 instances of eadicaipm in the mix.

Figures 4.21 and 4.22 compare the total process footpnat/f6 A/ versus HSVM
for the same set of applications as in the previous figuresh Bar represents the ra-
tio of the footprint forMT'M versus HSVM. The value 1 indicates thet7' M and
HSVM have identical footprint for a given workload. Valuess than 1 indicate that
MTM has a lower footprint.

MTM shows a better footprint compared to HSVM and on averddé&, M
achieves 34% to 41% reduction in footprint for homogeneoorklwads, and 31% to
33% benefit for heterogeneous workloads. These savingasge due to sharing
of classes and compiled code in a multi-tasking MRE.

However,compress shows worse footprint (around 50% or 1.5x). The worse

footprint forcompress can be attributed to large scalar objects (objects that tlo no
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Figure 4.23: Percentage improvement in footprint enabled\§ M/ versus HSVM
(default initial heap size = 32MB) for homogeneous concurverkloads (2, 5, and
10 instances of the same application).

hold references, such as byte arrays). As noted earberpress allocates a signif-
icant number of large byte arrays, which are directly alledan the old generation.
Since our old generation is non-contiguous, and since weatk large scalar objects
in a separate region, which we can safely skip during potgustment, allocation
of very large & minimum region size, which is 256KB by default), byte arrégeds
to excess fragmentation. A new region must be allocateddoh such large byte
array, and this region must be aligned to the region bounfderrgorrectness. How-
ever, the number and size of these is unknown at runtimepwith priori profiling.
Therefore, we cannot pre-allocate a suitable sized redismart of future work, we
plan to address the allocation of large objects, by progdiper-application large ob-

ject region that is sized differently and collected sepdyatrom the old generation.
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Figure 4.24: Percentage improvement in footprint enabled\6§'M versus HSVM
(default initial heap size = 32MB), heterogeneous worklpags, multiple concur-
rent instances of different applications. 1 denotes 1 nt&taach of the mix of ap-
plications that constitute a heterogeneous workload. BZates 2 instances of each
application in the mix.

Note thatcompress is a numerical computation benchmark and does not represent
typical MRE workloads.

Figures 4.23 and 4.24 compare the process footprinff@tA/ versus HSVM,
when the initial heap size for HSVM is restricted and inceshgradually. In this
configuration, HSVM gradually increases the heap (if rezpjiy starting from an ini-
tial default (32MB), in order to achieve smaller footprints Axpected, HSVM runs
in a much smaller heap and consequently, the process fobiptower. On average,
MTM shows a footprint improvement of 6% to 14% for homogeneousiwads,
and 12% to around 15% for heterogeneous workloads. Notetlibae values are
smaller compared to the earlier configuration of HSVM, i.ehew the initial heap

size for HSVM is not restricted. However, if we look at the exton time forM T M
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Figure 4.25: Percentage improvement in execution time enabledViB¥ M ver-
sus HSVM (default initial heap size = 32MB) homogeneous caorecul workloads.
Benchmarks are described in Figure 4.15.
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Figure 4.26: Percentage improvement in execution time enabledVbByM ver-
sus HSVM (default initial heap size = 32MB) for heterogeneooscurrent work-
loads (multiple instances of different applications). Bamarks are described in

Figure 4.15.

versus HSVM (Figures 4.25 and 4.26) when the initial heap &z HSVM is re-

stricted, MT'M outperforms HSVM by ayreater marginthan when we do not re-
strict the initial heap size for HSVM. On averagd,l’ M shows an improvement of
15% to over 17% for homogeneous workloads, and 19% to 21%eftmrbgeneous

workloads.
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Figure 4.27: Percentage improvement in execution time enabledVidy M over
HSVM for 1 through 4 times the minimum heap size that each lnerack needs to
execute inV/TM .

In summary, by controlling heap growth the single-taskingM¥ virtual ma-
chine can achieve a better footprint when the heap is naotctest, howeverM T M
shows a comparable or better footprint on average acrossug@mt workloads that
we looked at. Furthedy/T'M outperforms HSVM by a larger margin, since there is a
reduction in performance for the single-tasking MRE due toerikequent GC. There
exists a tradeoff between execution time and footprint byosing the threshold at
which GC is triggered. We believe that manually having t@seian appropriate per-
application heap size in a context of a multi-tasking MRE isrder-productive. On
average M'T'M significantly outperforms HSVM and has a better footprinthout
having to manually select an appropriate initial per-aggilon heap size.

We next examine the performance &f 7'M versus HSVM as the heapsize is

varied from the minimum that an application requires to exeen MTM , to 4
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times the minimum for that application (Figure 4.27). Weyornsider benchmarks
that show significant old generation GC activity. The minimheap size selected is
45MB for luindex and 22MB for the rest. Across heap sizé§7" M outperforms
HSVM by 18 — 19% on average.

However, HSVM is able to execute programs in a smaller heappeoed to
MTM (i.e., < 45MB for luindex and< 22MB for other benchmarks). HSVM
uses in-place sliding compacting GC, which is more spaceiaitithan M T M'’s
hybrid GC for small heaps. This is due to the fact that evasoatlthough it is
partial and selective, requires a copy reserve for the duratf the GC to copy live
objects. For highly memory constrained scenarios, HSVMZsr@ay be a more suit-
able choice compared to evacuation. We are investigatinghamsms to perform

in-place compaction across disjoint regions as part ofrévork.

Sensitivity Analysis

In the next set of results, we examine h®Wi" M with selective evacuation (copy-
ing) and mark-sweep compares to only mark-sweep and onlyirmgp Our hybrid
GC can operate as a mark-sweep only GC (by settingtheLive Ratio threshold
described in Section 4.3 ), or as a copying only GC (by setting théin Live Ratio
threshold tal, i.e., 100%).

In particular, in Figure 4.28 we present total process footgdor M7 M with

hybrid GC versus\/T M with mark-sweep only, and/T' M with copying only, for
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Number of instances

2 5 10

% imp % imp % imp
MTM? | MTM? vs MTM? | MTM? vs MTM? [ MTM? vs

MTM?| MS CP | MS | CP || MTM?| MS cP | Ms | cp |[MTM?| MS | CP | MS | cP

Bmark || (KB) | (KB) | (KB) (KB) | (KB) | (KB) (KB) | (KB) | (KB)
javac 49.5| 127.7| 65.4]/61.2{24.3| 109.9| 297.5| 117.7|63.1| 6.6 261.0| 602.1| 261.7|56.6| 0.3
luindex || 76.7| 128.4| 83.5/40.3| 8.2| 173.4| 302.9| 182.0/42.8| 4.7| 333.4| 589.5| 351.9|43.4| 5.2

Number of instances

1 2
% imp % imp
MTM? | MTM? Vs MTM? | MTM? Vs
MTM?| MS cP | MS | CcP || MTM?| Ms CP | MS | CP
Bmark (KB) | (KB) | (KB) (KB) | (KB) | (KB)

antlr-mixed 79.5| 86.1| 80.6| 7.6 1.3| 148.1| 156.6( 148.2| 5.5| 0.1
javac-mixed 32.0/ 51.9|] 41.6|38.4(23.2| 63.6| 91.3| 87.5(30.4|27.4
scripts-mixed 68.7| 94.8| 104.5|/27.5|34.3| 119.0| 127.0] 140.3| 6.4[15.2

Figure 4.28: Footprint for M'T M with hybrid GC (mix of mark-sweep and copying)
versus mark-sweep (MS) only and copying GC (CP) only for a sBbmogeneous
(instances of the same application) and heterogeneoter @t applications) concur-
rent workloads. Hybrid GC achieves a footprint that is lowen always choosing
mark-sweep or always choosing copying.

a subset of benchmark programs. We only present resultefarhimarks that show
significant change in footprint compared to either markegver copying £ 5%).
For all other benchmarks, we did not find a significant changee footprint (how-
ever,MT M with hybrid GC never shows a worse footprint compared toegithark-
sweep or copying).

Forjavac ,luindex ,javac-mixed andscripts-mixed , hybrid GC has
a much smaller footprint compared to mark-sweep. We betlagas due to fragmen-
tation due to using mark-sweep only without any compactiéor. javac-mixed
andscripts-mixed , copying has a higher footprint, since always copying ed li

data requires a larger copy reserve space during GC. Whilerpgrfg evacuation,

163



Chapter 4. Scalable Memory Management for Multi-Tasking &pad Runtime
Environments

Number of instances
2 5 10
% imp % imp % imp
MTM? | MTM? vs MTM? | MTM? vs MTM? [ MTM? vs
MTM? [ MS CP | MS | CP || MTM?*| MS | CP | MS | CP || MTM?| MS cP | Ms | cP
Bmark || (sec) | (sec) | (sec) (sec) | (sec) | (sec) (sec) | (sec) | (sec)
javac || 10.40] 10.82] 10.57] 3.9| 1.6[ 26.78] 28.14] 27.29] 4.8] 1.9] 53.97[ 56.48] 55.25| 4.4[ 2.3

Figure 4.29: Execution timeMT M with hybrid GC (mix of mark-sweep and
copying) versus mark-sweep (MS) only and copying GC (CP) ¢mythe javac
benchmark.

the old as well as the new (copied to) regions must be occypneghped) for the
duration of the GC cycle.

We next examine the effect of using hybrid GC, mark-sweep,arlyg copying
only, on execution time fojavac , which shows a significant difference in perfor-
mance (Figure 4.29). Using mark-sweep only results in exfragmentation. Frag-
mentation has an interesting effect on execution timgjdeac — an increase in
young generation GC time by 8% on average (or 0.51 sec, 0cGérsk1.17 sec for
2, 5 and 10 instances respectively) due to an increase inscarhing time, since
more cards must be scanned. Using copying alone resultcesgsxopying and ad-
justment, and consequently, performance suffers due to@edse in old generation
GC time by around 6% (or 0.07 sec, 0.16 sec and 0.70 sec forr] &@instances
respectively).

For other benchmarks, we did not encounter a significantgdnam execution
time (however, in all cases, hybrid GC never performs wdnae using mark-sweep

or copying alone).
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To summarize, hybrid GC achieves a lower footprint in mangesafor bench-
marks that show significant old generation GC activity, whihaintaining perfor-

mance that is on par or better than using mark-sweep or co@ane.

4.4 Related Work

The techniques that we present herein build upon a body afeglwork in
garbage collection and multi-tasking MRE research. We fisstuss prior work that
is related to our task-aware scavenging mechanism, fotldwyerelated work for hy-

brid collection.

4.4.1 Application-Aware Memory Management

Prior work includes per-task young generations and impremeeclamation of
young generations. It describes temporary dynamic exdamgithe young generation
space. It does not, however, provide reclamation of pds-tds generation areas
without triggering a full GC. This is especially important foon-trivial tasks that
utilize the old generation. More importantly, we provide thbility to collect per-
task young generations without pausing all tasks, whictidea better scalability. In
addition, the prior work requires scanning of dirty cardbhging to all tasks during

scavenging. This makes scavenge dependent on the numiaeskef which inhibits
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scalability. Our old generation regions provide precisgking of regions of the old
generation on a per-task basis, and the number of concuaskg. This allows us to
only scan cards belonging to the GC trigger task.

Detlefs et al's garbage-first GC [34] splits the heap intaaeg, which can be
independently collected to satisfy a soft pause-time lifitie authors employ bidi-
rectional remembered sets between regions to allow any ssgions to be collected
independently of the others. They use GCLABSs, which are thpezdte allocation
buffers that they use during GC time. Since their collectmticy is concurrent,
threads compete to perform an object copy. Since we assgyonsgeon a per-task
basis, in the common case, there is only one per-task threddrming promotion,
without the need for synchronization.

Prior work on thread-specific heaps [37, 86] focuses on inipgoperformance
for an application by enabling garbage collection on a pegad basis, to minimize
synchronization between application threads. Althoubls helps achieve perfor-
mance isolation, our work is different in that there is norsigaof objects between
tasks in MVM. Consequently, we can achieve better isolatinbeswe do not need
to track references between young generations. Threadfisgeeap techniques can
be combined with our scheme to provide further performaso&iion. However,

performance isolation constitutes only a part of our worlsignificant goal is also to
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accurately identify heap usage, and readily reclaim heapesppon task termination,
without requiring collection, minor or major.

Other researchers have presented complementary schemesifcing old to
young generation scanning time during minor collectionjovimay be combined
with our per-task card table scanning mechanism. Azagug} ptesent a scheme
for combining card marking with remembered sets [6, 49] @nttiain collector [51].
They maintain a per-card remembered set that is updatedgloard scanning, so
that the card does not have to be scanned repeatedly unlesaatdified. Another
complementary approach for reducing scanning time, is ¢éoau2-level card table,
with coarse and fine grain cards [33]. This is especiallydtice for large heaps,
since regions of the heap that do not include old to young rge¢io@ pointers can be
logged as a few coarser level cards and quickly skipped.

Dimpsey et al [35] discuss compaction avoidance that leesawo key con-
cepts [60] — address ordered allocation, and wildernessepration. These tech-
niques minimize heap fragmentation, and consequentlyrelneency of compaction.
Since our allocation scheme is a bump pointer, we autoniigtieasure address or-
dered allocation. Our scheme does not require free liste tmdintained and rebuilt
by a mark phase. In addition, the part of the old generatigohe the end of the
last region acts as a wilderness region. We perform largecohjlocations from this

region directly (instead of regions), thereby reducingin&ntation.
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J-Kernel [96] employs protection domains (called taskshhat language level
at compile-time to isolate applications and to assign acaghits and ownership to
applications. J-Kernel consists of an extension to the laveuage Specification
(JLS), a bytecode to bytecode compiler and a set of librahasprovide domain,
rights, sharing and resource management mechanisms. Cdoatiom between
tasks is via capabilities. Objects are shared by passinghéepto a capability object
through a “local RMI (remote method invocation” call. The abjity object contains
a direct reference to the shared object, and thus access $bidined object is through
a level of indirection, and can therefore be revoked. Thabées full reclamation of
a task’s objects when a task terminates. However, GC acisvitot isolated to a task
—a GC for any task will pause all tasks.

Luna [42] is an extension to J-Kernel that enables intdt-tasnmunication via
special types. Arbitrary sharing between tasks is possi@e safe termination is
guaranteed. Special types are used for inter-task comaioncthrough object ref-
erences, which undergo extra indirection at execution.tiiieen a task terminates,
remote references are invalidated and reclamation of thanated task’s objects is
possible.

The KaffeOS [7] provides isolation and resource managefioenintrusted Java
applications. The primary aim is to provide protection asamlate applications from

each other, and to control resources on a per-applicatisis.oBhe MVM concept of
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an isolate is a much lighter-weight abstraction than a Ka8erocess, hence more
efficient, albeit with fewer features. The garbage colleatothe KaffeOS is non-
generational and conservative. Consequently, there isowisown to handle correct-
ness and efficiency on a per-process basis in the presencedeirmGC techniques,
such as pre-tenuring, or thread-local allocation areas.wouk employs a state-of-
the-art generational collector with each task using its egymarate young generation,
but with the old generation shared across tasks to enatier bealability. In addition,
we enable optimizations, such as fast reclamation of olégdion areas upon task
termination, regions and efficient card table scanningrdeto optimize throughput
for modern multi-application environments.

Lastly, reclaiming heap resources on application ternonatioes not require
marking and tracing [72, 97] to identify per-task matureeait§. By tracking pro-
motion areas, we can readily reclaim all per-task dead reathyects upon task ter-

mination.

4.4.2 Scalable Hybrid Collection

To our knowledge, no prior work conclusively demonstratest multi-tasking
has the ability to outperform a single-tasking MRE in termsrécution time, as

well as overall footprint for concurrent workloads (muléppplications executing
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simultaneously). MVM is the most well known, state-of-iwimplementation of a
multi-tasking MRE.

Prior work on MVM reports substantial improvement for stigrt footprint and
execution time compare to a corresponding single-taskifid [R8, 29]. However,
execution times were measured for serial execution of aragr and footprint of
concurrently running programs were obtained when apphicatvere quiescent, and
do not reflect the footprint of programs when they are actuathning concurrently
and are exercising the memory management system.

Sun Microsystems’ CLDC HotSpot Implementation, aimed atlshend-held
devices, supports multi-tasking in a way that is similar toM} but uses a single
heap shared by all tasks [90], with no provision for GC perfance isolation.

Singularity [54] is a research operating system from MiofoResearch that uses
type safety at the language level in order to attempt to aeraedependable OS. Ap-
plications, extensions, services, device drivers and #meet are written using safe
languages. Only parts of the kernel employ unsafe code. Bbh&aztion used to
provide isolation between applications is the softwaréitsan process (SIP), which
consists of a runtime, libraries, application code and.d&Hs are isolated from
each other at the language level by not allowing the samecbtyebe accessed by
multiple SIPs. Ownership of objects can be transferredguBidirectional commu-

nication channels. Application code is statically comghvehen a SIP is composed.
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Each SIP can execute its own, possible different garbadectot. System code is
collected using concurrent mark-sweep. However, we weablerto find results that
demonstrate performance of the memory management syst8imgalarity.

Our hybrid GC bears some similitude to incremental copyi@s@at divide the
heap into equally sized regions that can be evacuated indep#ly of others. In
our case, heap space partitioning is primarily motivatedheyneed to allocate pri-
vate tenured space to isolated applications on demand.dukbybrid GC, Garbage
First [34] only evacuates regions that can be reclaimed htith copying. Informa-
tion regarding the amount of live data in regions is provitdgd concurrent marker
(as opposed to a synchronous marking phase in our case).e@&idmal remem-
bered sets between regions are maintained by mutators lfefthfrom the concur-
rent marker) to allow any set of regions to be collected irtelently of the others. In
the case of our hybrid GC, this property is achieved by gatlyesioss-regions con-
nectivity information during marking. The Mature Objecte8p (MOS) collector of
Hudson and Moss [53] is another region-based incremenpglicg GC. It uses uni-
directional remembered sets, which requires regions tovaeuvated in order. MOS
cannot therefore pick an arbitrary region to evacuate basecost-related criteria
(e.g., amount of live data). Both Garbage First and MOS areuateon-only GC.

Lang and Dupont [68] describe a hybrid mark-sweep and camylasi to ours.

The heap is divided into equal size segments. During GC, desgggment is com-
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pacted, while others are swept. Like our hybrid mark-sweazuate GC, the collec-
tor is primarily mark-sweep. The cost of compaction is bahdince a single seg-
ment is collected. However, the segment compacted at eads Gsen arbitrarily.
By contrast, we use copying opportunistically, only to eweusparsely populated
regions or highly fragmented one. We may thus evacuate aesaggions during a
single GC, or none if the regions are densely populated vitth fragmentation.

MC? [80] and its predecessor, Mark-Copy [79] describe an increai€opying
GC that uses a marking phase to precisely annotate equategjmns of the old
generation of the heap with the amount of live data in theke, ¢iur GC, and then
build uni-directional remembered set to update pointesvaxuated objectsl/ C?
builds precise remembered sets, whereas we build an inggreonnectivity matrix
that only records regions that references other regidfS? aims at achieving good
throughput and low pause times for memory constrained dsvic

Beltway [15] provides incremental and generational GC byitpaming the heap
into beltsand collecting a single belt during GC. Garbage cycles lattgen a belt
cannot be reclaimed by collecting a single belt. Howeverjvigsl has a provision
for performing full GC by providing a separate belt with aglenregion and collect-
ing this when it occupies half the heap space. Our per-agpmitc GC is complete
and reclaims all garbage for that application. We, theesfdo not require precise

remembered sets between regions or need mechanisms te ensysleteness.
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McGachey et al [73] present a scheme that uses a generdB@naith a reduced
copy reserve, with the ability to dynamically switch to a quanting GC if necessary.

Page unmapping as well as compaction has been used to rezhlicaton mem-
ory footprint in prior work, such as the Compressor [64]. Hoare Compressor is a
concurrent, parallel compacting GC that achieves low p#éioses. Our goal is dif-
ferent: to provide a relative simple, per-application G&ttachieves good footprint
and overall performance for desktop or small client appilhees, while allowing other

applications to execute concurrently, without interfeen

4.5 Summary

Multi-tasking has been proposed as a means to enable sludignge and classes
between applications in order to enable better startumpwence, footprint and for
faster overall execution compared to single-tasking,@xecuting each application in
a separate MRE process. While prior implementations of ntagtking have demon-
strated the above for serial execution of programs, we shaivthe prior state-of-
the-art performs poorly for concurrent workloads. We htite this to lack of per-
formance isolation due to a heap layout and GC that is not ablerio scaling. In

addition, prior work lacks precise resource accounting,ahility to manage mem-
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ory subsystem setting (mainly heap size limits) on a peliegipon basis and GC-less
reclamation of an application’s resources on termination.

We present a series of generational memory managemenideelsrto improve
the efficiency and scalability of a multi-tasking virtual améne (MVM) for the Java
programming language. Our techniques partition the yowamggation into per-task
regions that are isolated from other tasks, track old geioerdeap consumption
on a per-task basis, and facilitate concurrent mutatiowigctvith garbage collec-
tion. These MVM extensions enable fine-grain control of agpion-specific heap
parameterization and accounting, immediate reclamafibea&p areas upon task ter-
mination, concurrent allocation in the young generatioonmpotion of objects during
minor and major collection for only the task that triggers @8d reduced scanning
overhead during GC.

Further, we describe a hybrid GC for old generation coltecthat achieves scal-
able performance and low footprint. Our hybrid GC combinexkysweep with
copying collection in the same GC cycle along with fast atpent for copied ob-
jects, to achieve good performance and a low footprint wantading the overhead of
full copying GC. The hybrid GC uses marking to gather informai{liveness, con-
nectivity, occupancy, and estimated fragmentation) resrgdo determine regions of
the old generation to evacuate (if any) and to sweep and tdifgevhich regions

must be scanned for pointer adjustment.
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We have integrated/T'M with MVM, a multi-tasking implementation of the
JVM, and a compare it to a widely used, production-qualitygke-tasking MRE for
concurrent application workloads. Our results show thWat M/ enables significant
improvements in overall execution time, throughput as aslfootprint for concur-
rent workloads, compared to prior state-of-the-art single well as multi-tasking
MREs.

These results indicate that multi-tasking is a viable agpindfor executing con-

current applications and strengthens the case for musking MRESs.

The text of chapter|4 is in part a reprint of the material apfiears in the pro-
ceedings of the International Symposium on Memory Manageri&€MM 2006)
and in the proceedings of the European Conference on Objeeht®d Program-
ming (ECOOP 2008). The dissertation author was the primagareher and author
and the co-authors listed directed and supervised theradstieat forms the basis for

this chapter.
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Conclusion

The pervasive nature of heterogeneous networked comppitatigrms has made
portability, security, and programmer productivity keyncerns today. Today’s ap-
plications are programmed in type-safe, object-oriendéedjliages that provide lan-
guage level features to enable productivity. Programgenriin these high-level lan-
guages are translated into an intermediate architeceuéal format and executed
in execution environments, known as Managed Runtime Enviesnis (MRES), that
virtualize the underlying hardware architecture and resesifor programs.

Modern MREs provide a number of runtime services that enaddteibproductiv-
ity, security, and portability. Automatic memory manageiner garbage collection
(GC) is one such service. Today'’s Internet programs do noexgkcit memory al-
location and de-allocation. Programmers rely on garbadeation to reclaim and
reuse memory freed by programs at execution time. Since MREsrm garbage

collection while the application is executing, they potaih imposes significant per-
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formance overhead. Much prior work has attempted to meighé overhead and
execution time impact of GC. However, users today executela wariety of differ-
ent applications, ranging from cell phone programs to ladgsk-side programs, at a
time. Little attention by researchers has been directedRE®hat support different
multi-program execution models.

In this dissertation, we examine garbage collection for MRtas execute mul-
tiple applications. We consider single-tasking persisi#REs that execute a single
application in a single MRE instance (operating system me)ces well as multi-
tasking, persistent MREs that execute multiple applicaticoncurrently in a single
MRE instance in an effort to share application code and datatstes.

With this thesis work, we find that due to the diversity of apgtion characteris-
tics and memory requirements, a single general-purposel@itam does not en-
able the best performance for all applications and heag.sile propose that MREs
be able to dynamically select GC algorithms at executioe tiMoreover, we design,
implement, and evaluate a GC switching framework that altdve GC algorithm to
be changed at execution time.

We demonstrate two uses of our dynamic GC swapping framewarknotation-
guided GC switching that selects the best performing GCriaaplication based on
user-supplied annotations that are determined based dorgapofiling and validated

across multiple inputs; and adaptive GC selection thatgits to achieve good per-
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formance using a heuristic that is based on the heap sizefapglication and heap
residency. We find that to achieve high performance, appdica&ode must be spe-
cialized based on the choice of the GC. Further, if the GC dlgaris changed at ex-
ecution time, this code must be de-specialized by the MREstiag de-optimization
approaches are inadequate since they do not provide a ¢#poepase mechanism
to de-optimize code that is being executed without insgréipecial instructions in
the application code as well as introducing register prestar platforms with a lim-
ited number of registers. We, therefore, introduce a géipengpose de-optimization
mechanism that tracks compiler optimizations and that taais state information
for de-optimization, that the MRE performs out-of-line wiglenerated application
code.

We demonstrate that significant improvement in executioretis possible by
using a GC algorithm that is best suited to a particular appitn, the code of which
is specialized for the GC algorithms. We refer to such an @ggr asapplication-
specific GC

We then investigate GC performance in multi-tasking MRE$ éxacute multi-
ple concurrent applications in the same MRE instance. Tolersdiaring of applica-
tion code and data structures, multi-tasking MREs execupiicgpions in the same
address space. We find that state-of-the-art multi-tasMREs suffer from lack

of performance isolation between applications and lackipeeresource account-
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ing. Further, these MREs must perform GC to reclaim memory wes used by
terminated applications. When executing concurrent agiidins, scalability of the
memory management subsystem is a key concern.

To address these limitations, we present khelti-Tasking Memory Manager
(MTM) that enables performance isolation in a shared addspsce by providing
each application with the view that it alone is executingha MRE instance. We
achieve this through on-demand allocation of heap memaipms, a synchroniza-
tion mechanism that allows only a single application to besed for GC, and lever-
aging existing generational GC mechanisms. Further, toagmheap footprint, yet
enable high performance, we prototype a hybrid GC techrtigaiecombines two dif-
ferent GC algorithms — mark-sweep GC and copying GC, and nmeakigsamic de-
cision about which technique to apply to a particular oldegation region. Copying
GC mitigates fragmentation at the cost of requiring a copginee area and excessive
copying of live data. Mark-sweep GC is fast and suitable fdigeneration collection
since a majority of old generation objects are alive, howat@troduces fragmen-
tation if there are holes created by dead objects, whichataaecommodate future
allocations. The selection of the best garbage collectigardhm for performing
collection of a given old generation region is, thdgnamic

Our techniques enables a state-of-the-art MRE, the Sun Biistem Labs’ Multi-

tasking Virtual Machine (MVM), to provide scalable perfante as well as a small
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heap footprint for concurrent workloads. Our techniques® dhcilitate other im-
provements, such as GC-free reclamation of terminatedcgtjghs’ resources and
selection of memory subsystem parameters on a per-apphdadsis.

In summary, with this research and dissertation, we findithatpossible to en-
able dynamic GC selection on a per-application basis fglsitasking MREs. Fur-
ther, we describe an effective implementation of scalapfdieation-aware GC for
multi-tasking MRESs, as well as dynamic and adaptive seleaiidwo different GC
algorithms based on simple online heuristics (hybrid GCktoaet performance. We
show that it is possible to enable high performance memoryagament for the next
generation of multi-application environments and poeeadyplication technologies.
Our findings and the contributions that we make with thiseafigdion significantly
advance the state of the art of modern MRE systems. We nexissigiotential di-

rections for future research.

5.1 Future Work

In our work on application-specific GC for single-tasking Mi}Eve have im-
plemented two simple heuristics to guide adaptive GC switch Although these
heuristics perform well, as part of future work, we plan teastigate the use of ad-

ditional, hardware-level information, such as memory dnielny and cache statistics.
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Most modern CPUs provide hardware performance monitorsddopmance profil-
ing. We plan to investigate the use of hardware monitors gméumhic profiling to
guide GC selection.

The GC algorithms we experimented with in the first part ofttiesis are stop-
the-world, i.e., all mutators must be paused during GC. $tepaorld GC is most
commonly used for small to medium sized devices. Howevelaige servers with
many cores, it may be beneficial to use parallel (multipleads performing GC)
and/or concurrent GC (executing GC concurrently with thgliaption that triggered
GC). As part of future work, we plan to investigate dynamictshing for GC algo-
rithms that are more suited to server systems.

Our work on scalable memory management for multi-tasking BIREows that
it is possible to extract high performance from a statehetart MRE; our tech-
niques enables multi-tasking to perform to its potentialr ©ld generation GC is
a hybrid mark-sweep-compact collector that reclaims disnaous regions on a per-
application basis. We show that performing mark-compaltéction over the entire
old generation is prohibitively expensive. Instead, weassohybrid GC, which com-
bines mark-sweep GC for regions without much fragmentagiod free space and
copying GC for fragmented and free regions. This achievesod palance between
performance and footprint. However, copying GC requirepayaeserve area. If

memory is constrained and there exists significant fragatiemt, copying/evacuation
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is unsuitable. In this case, we fall back to a full heap cortipgcollection. As part of
future work, we plan to investigate compacting collectierrodiscontinuous regions
for memory constrained devices.

In a multi-tasking MRE, the GC acts as a service that is comroall tapplica-
tions, i.e., the GC is aware of all applications executinthenaMRE. If an application
is idle, yet using memory, it might be beneficial to performo#lection for that ap-
plication and reuse memory freed by it for other applicatia@ven if the application
does not itself trigger a GC.

Today’s server (and many desktop) platforms support 64diress spaces. The
availability of a large address space raises interestirggtipns about the address
space layout for multi-tasking MREs. We can potentially jpdeveach application
with a single contiguous address space, yet enable shdmioggh a carefully de-
signed address space layout. A per-application contigutugal address space can
be mapped to discontinuous physical memory regions, exatiie GC to reclaim a
contiguous region of memory per application. MRE design aedory layout for
future massively multi-core platforms with a large amouhpbysical memory as

well as a large virtual address space is an interestingdwtork area.
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