
On Stateless Multicounter Machines?

Ömer Eğecioğlu and Oscar H. Ibarra??

Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

Email: {omer, ibarra}@cs.ucsb.edu

Abstract. We investigate the computing power of stateless multicounter
machines with reversal-bounded counters. Such a machine has m-counters
operating on a one-way input delimited by left and right end markers.
The move of the machine depends only on the symbol under the input
head and the signs of the counters (zero or positive). At each step, every
counter can be incremented by 1, decremented by 1 (if it is positive),
or left unchanged. An input string is accepted if, when the input head
is started on the left end marker with all counters zero, the machine
eventually reaches the configuration where the input head is on the right
end marker with all the counters again zero. Moreover, for a specified
k, no counter makes more than k-reversals (i.e., alternations between
increasing mode and decreasing mode and vice-versa) on any computa-
tion, accepting or not. We mainly focus our attention on deterministic
realtime (the input head moves right at every step) machines. We show
hierarchies of computing power with respect to the number of counters
and reversals. It turns out that the analysis of these machines gives rise
to rather interesting combinatorial questions.

Keywords: Stateless multicounter machines, reversal-bounded, realtime compu-
tation, hierarchies.

1 Introduction

There has been recent interest in studying stateless machines (which is to say
machines with only one state) because of their connection to certain aspects of
membrane computing [8], a subarea of molecular computing that was introduced
in a seminal paper by Gheorge Păun [6] (see also [7]).

Since stateless machines have no states, the move of such a machine depends
only on the symbol(s) scanned by the input head(s) and the local portion of the
memory unit(s). Acceptance of an input string has to be defined in a different
way. For example, in the case of a pushdown automaton (PDA), acceptance is
by “null” stack. It is well known that nondeterministic PDAs with states are
equivalent to stateless nondeterministic PDAs [1]. However, this is not true for
the deterministic case [4]. For Turing Machines, where acceptance is when the

? This research was supported in part by NSF Grants CCF-0430945 and CCF-0524136.
?? Corresponding author

machine enters a halting configuration, it can be shown that the stateless version
is less powerful than those with states. In [3,8] the computing power of stateless
multihead automata were investigated with respect to decision problems and
head hierarchies. For these devices, the input is provided with left and right
end markers. The move depends only on the symbols scanned by the input
heads. The machine can be deterministic, nondeterministic, one-way, two-way.
An input is accepted if, when all heads are started on the left end marker, the
machine eventually reaches the configuration where all heads are on the right end
marker. In [5], various types of stateless restarting automata and two-pushdown
automata were compared to the corresponding machines with states.

In this paper, we investigate the computing power of stateless multicounter
machines with reversal-bounded counters. Such a machine has m-counters oper-
ating on a one-way input delimited by left and right end markers. The move of
the machine depends only on the symbol under the input head and the signs of
the counters, which indicate if the counter is zero or not. An input string is ac-
cepted if, when the input head is started on the left end marker with all counters
zero, the machine eventually reaches the configuration where the input head is
on the right end marker with all the counters again zero. Moreover, the machine
is k-reversal bounded: i.e. for a specified k, no counter makes more than k al-
ternations between increasing mode and decreasing mode and vice-versa in any
computation, accepting or not. In this paper, we mainly study deterministic re-
altime (the input head moves right at every step) machines. We show hierarchies
of computing power with respect to the number of counters and reversals.

2 Stateless Multicounter Machines

A deterministic stateless one-way m-counter machine operates on an input of
the form cw$, where c and $ are the left and right end markers. At the start of
the computation, the input head is on the left end marker c and all m counters
are zero. The moves of the machine are described by a set of rules of the form:

(x, s1, .., sm) → (d, e1, ..., em)

where x ∈ Σ ∪ {c, $}, Σ is the input alphabet, si = sign of counter Ci (0 for
zero and 1 for positive), d = 0 or 1 (direction of the move of the input head:
d = 0 means don’t move, d =1 means move head one cell to the right), and
ei = +,−, or 0 (increment counter i by 1, decrement counter i by 1, or do not
change counter i), with the restriction that ei = − is applicable only if si = 1.
Note that since the machine is deterministic, no two rules can have the same left
hand sides.

The input w is accepted if the machine reaches the configuration where the
input head is on the right end marker $ and all counters are zero. The machine
is k-reversal if it has the property that each counter makes at most k “full”
alternations between increasing mode and decreasing mode and vice-versa on
any computation, accepting or not. Thus, e.g., k = 2 means a counter can only
go from increasing to decreasing to increasing to decreasing.

There are two types of stateless machines: in realtime machines d = 1 in every
move, i.e., the input head moves right at each step. In this case all the counters
are zero when the input head reaches $ for acceptance. In non-realtime machines
d can be 0 or 1. In particular, when the input head reaches $, the machine can
continue computing until all counters become zero and then accept. In this paper,
we are mainly concerned with deterministic realtime machines.

3 Stateless Realtime Multicounter Machines

We will show that these devices are quite powerful, even in the unary input
alphabet case of Σ = {a}.

Since the machine is realtime, in each rule, (x, s1, .., sm) → (d, e1, ..., em),
d = 1. So there is no need to specify d and we can just write the rule as
(x, s1, ..., sm) → (e1, ..., em).

We refer to a vector of signs v = (s1, .., sm) that may arise during the compu-
tation of an m-counter machine as a sign-vector. Thus a sign-vector is a binary
string s1 · · · sm of length m, or equivalently a subset S of the set {1, 2, . . . , m}.
The correspondence between a subset S and a sign vector v is given by putting
si = 1 iff i ∈ S. The string 0m as a sign-vector signifies that all counters are zero.
We will use both binary strings and subsets of {1, 2, . . . , m} interchangeably in
describing sign-vectors. For w ∈ Σ∗ and a ∈ Σ, we define |w|a as the number of
occurrences of a in w.

Theorem 1. The language L over Σ = {a} accepted by a stateless realtime
multicounter machine M is either infinite or a singleton.

Proof. We show that

1. if (c, 0m) → 0m is a move of M then M accepts ε or Σ∗,
2. if (c, 0m) → S with S 6= 0m for some S is a move of M , then M accepts a

singleton or an infinite language.

In the first case, it is possible that M has no move of the form (a, 0m) →
(e1, ..., em). Then an accepting computation must proceed from c to $ directly;
i.e. the accepted input is c$. However if M does have the move (a, 0m) → 0m,
then M accepts Σ∗.

Suppose now (c, 0m) → S1 with S1 6= 0m is a rule of M and that M halts.
Let t be the smallest integer such that M accepts at. Then t > 0 and when the
machine is reading the a immediately before $, the sign-vector is some nonempty
St, and the counter values are 1 for counters corresponding to 1’s in St, and 0
otherwise.

We consider the two subcases depending on whether or not (a, 0m) → 0m is
a rule of M . If (a, 0m) → 0m is a rule of M then M accepts atΣ∗. If (a, 0m) → S
with S 6= 0m is a rule of M then let r > 0 be the smallest integer such that
M accepts at+r. If there is no such integer, then M accepts the singleton at.
Otherwise at+kr ∈ L for k ≥ 0. ut

3.1 1-Reversal Machines

We are interested in machines accepting only a singleton language of the form
L = {an}. By a rather intricate analysis, we are able to derive the precise value
of the maximum such n. Moreover, we are able to show that the program of the
machine achieving this n is unique (up to relabelling of the counter indices). Note
that we can interpret an as the “maximum” number that a 1-reversal m-counter
machine can count.

By Theorem 1, if (c, 0m) → 0m, then a realtime stateless machine accepts
either ε or Σ∗. Therefore an accepting computation of an m-counter machine
that accepts a non-null singleton can be represented in the form

0m → S1 → S2 → · · · → St → 0m (1)

where Si 6= 0m for 1 ≤ i ≤ t and the arrows indicate the sequence of sign-vectors
after each move of the machine. Such a machine accepts the singleton language
{at}, or equivalently can count up to t.

Borrowing terminology from the theory of Markov chains, we classify the
nonempty sign-vectors in (1) as transient or recurrent, as follows:

1. S is transient if it appears exactly once in (1),
2. S is recurrent if it appears more than once in (1).

Thus a transient S contributes exactly one move, whereas a recurrent S is “re-
entered” more than once during the course of the computation of M .

We prove a few lemmas characterizing possible computations of a 1-reversal
machine accepting a singleton.

Lemma 1. If S is transient and S′ appears between two occurrences of S in
(1), then S ⊆ S′.

Proof. Suppose j ∈ S\S′. Then counter Cj zero at the start of the computation,
it is nonzero at the first appearance of S, and is zero at or before the appearance
of S′ in the computation. Since M is 1-reversal, it is not possible for counter Cj

to be nonzero again at the second occurrence of S. ut

Lemma 2. If S is transient and S′ appears between two occurrences of S in
(1), then S′ = S.

Proof. Suppose that the first occurrence of S is followed by S′′; i. e.

S → S′′ → · · · → S′ → · · · → S

We first show that S′′ ⊆ S. By way of contradiction, assume j ∈ S′′ \S. Then at
S the counter Cj must be incremented from 0 to 1. But this cannot happen more
than once at the two S’s since M is 1-reversal. Therefore S′′ ⊆ S. By Lemma
1, S ⊆ S′′, and therefore S = S′′. It follows that all sign-vectors S′ between two
occurrences of S are equal to S. ut

The next lemma gives an upper bound on the number of distinct sign-vectors
that can appear in (1).

Lemma 3. Suppose S1, S2, . . . , Sd are the distinct non-null sign-vectors that ap-
pear in the computation of a 1-reversal machine M with m counters that accepts
a singleton. Then d ≤ 2m − 1 .

Proof. Put S0 = Sd+1 = 0m and consider the m × (d + 2) binary matrix B
where the j-th column is Sj−1 for 1 ≤ j ≤ d + 2. Since M is 1-reversal, each
row of B has at most one interval consisting of all 1’s. Therefore there are a
total of at most m horizontal intervals of 1’s in B. These together have at most
2m endpoints: i.e. a pair 01 where a such an interval of 1’s starts, and a pair
10 where an interval ends. Since the Sj are distinct, going from Sj to Sj+1 for
0 ≤ j ≤ d must involve at least one bit change, i.e. at least one of the 2m pairs
of 01 and 10’s. It follows that d + 1 ≤ 2m. ut

Lemma 4. Suppose at the first occurrence of the sign-vector S in (1), the values
of the counters are v1(S) ≥ v2(S) ≥ · · · ≥ vm(S) ≥ 0. Then

1. v1(S) − 1 is an upper bound to the number of times M makes a move from
S back to S.

2. v1(S) + v2(S) is an upper bound to the largest counter value when M makes
a move from S to some S′.

Proof. The lemma is a consequence of the fact that since M halts, some counter
for any non-null sign-vector S must be decremented. ut

Lemmas 3 and 4 immediately give an upper bound on how high a 1-reversal,
m-counter machine can count. We necessarily have v1(S1) = 1, and this value
can at most double at each Si. Therefore we obtain the bound

1 + 2 + 22 + · · · + 22m−2 = 22m−1 − 1 . (2)

As an example, for m = 2, the bound given in (2) is 7. This is almost achieved
by the machine M defined by the following program with four rules:

(c, 00) → +0, (a, 01) → 0−, (a, 10) → ++, (a, 11) → − + , (3)

where we have used the notation (a, 11) → −+ for the move (a, 1, 1) → (−, +),
and similarly for others. The computation of M proceeds as follows:

Sign-vector Entering counter values Move number
0 0 0 0 0
1 0 1 0 1
1 1 2 1 2
1 1 1 2 3
0 1 0 3 4
0 1 0 2 5
0 1 0 1 6
0 0 0 0

Therefore M can count up to n = 6. However, we can do better than (2). The
reason is that in order to be able to double v1(S), other than the trivial case of
S = S1, S has to be recurrent, and it is not possible to have all Si recurrent if
M is 1-reversal. Consider the machine M∗

m whose moves are defined as:

(c, 0m) → + 0m−1 ,
(a, 1i0m−i) → +i+1 0m−i−1 for 0 < i < m ,
(a, 0j1m−j) → 0j − +m−j−1 for 0 ≤ j < m .

(4)

The first set of sign-vectors above defined for input a are transient and the
second ones are recurrent. The transient sign-vectors accumulate as much as
possible in the counters, and the recurrent ones spend as much time as possible
while about doubling the maximum counter value. The machine M described in
(3) is M∗

2 . Another example machine, M∗

3 , is given in the Appendix.

Theorem 2. The machine M∗

m described in (4) is 1-reversal and accepts the
singleton {an} with

n = (m − 1)2m + m . (5)

Furthermore, this quantity is tight, and the program of any machine that achieves
this bound is unique up to relabelling of the counters.

Proof. First we establish the bound in (5). The first m moves of the machine
result in the sign-vector 1m and the counter contents m, m− 1, . . . , 2, 1. After m
more moves, we arrive at the sign-vector 01m−1 with contents of the counters

0, 2m− 1, 2m− 2, . . . , m + 1.

At this point the first counter has made a reversal, but all the other counters are
still increasing. When first j counters are zeroed, each of them has completed a
single reversal and the sign-vector becomes 0j1m−j for 1 ≤ j < m. The largest
counter value when we enter this sign-vector is 2j−1m − 2j−1 + 1. When the
machine starts to decrement the last counter, its content is 2m−1m− 2m−1 + 1.
Therefore the number of moves from 10m−1 to the last appearance of 0m−11 is

m − 1 + (2m−1m − 2m−1 + 1) + (2m−1m − 2m−1) = (m − 1)2m + m .

We sketch the proof of uniqueness. Since M halts, any recurrent sign-vector must
decrease one or more counters. Therefore a recurrent S is followed by some subset
of S. Since each such recurrent sign-vector can be used to double the maximum
content of the counters whereas a transient one only contributes 1 move, the
chain of subsets must be as long as possible. By relabeling if necessary, we can
assume that these subsets are 0j1m−j for 0 ≤ j < m. This leaves m− 1 distinct
sign vectors, and the pattern of intervals of 1’s that is necessary because M is
1-reversal, forces these to be transient and in the form 1i0m−i → +i+10m−i−1

for 0 ≤ i < m. Finally the largest values of the counters when the machine enters
the recurrent sign-vector 1m is when the moves are defined as in M∗

m. ut

Next we prove that for 1-reversal machines m + 1 counters is better than m
counters. Here we no longer assume that the language accepted is a singleton
(or finite), nor a unary alphabet.

Theorem 3. Suppose L is accepted by a realtime 1-reversal machine with m
counters. Then L is accepted by a realtime 1-reversal machine with m + 1 coun-
ters. Furthermore the containment is strict.

Proof. Given a realtime 1-reversal machine M with m counters that accepts M ,
we can view M as an m + 1 counter machine which behaves exactly like M
on the first m counters, and never touches the (m + 1)-st counter. Since the
acceptance of an input string is defined by entering $ when all counters are
zero, this machine is also 1-reversal and accepts L. By theorem 2, the singleton
{an | n = m2m+1 + m + 1} is accepted by the 1-reversal machine M∗

m+1. Since
(m − 1)2m + m < m2m+1 + m + 1 for m > 0, this language is not accepted by
any 1-reversal realtime machine with m-counters. ut

3.2 k-Reversal Machines

Now we consider k-reversal machines, k ≥ 1. The next result gives an upper-
bound on the maximal n that is countable by a k-reversal m-counter machine.

Theorem 4. If the upper bound on n for 1-reversal m-counter machine is f(m),
then f((2k−1)m) is an the upper bound on n for a k-reversal m-counter machine.

Proof. We sketch the proof. Let L = {an} be a singleton language accepted by
a k-reversal m-counter machine M . We will show how we can construct from M
a 1-reversal (2k−1)m-counter machine M ′ that makes at least as many steps as
M and accepts a language L′ = {an′

} for some n′ ≥ n. The result then follows.
The construction of M ′ from M is based on the following ideas:

1. Consider first the case k = 2. Assume for now that the counters reverse from
decreasing to increasing at different times.

2. Let C be a counter in M that makes 2 reversals. We associate with C three
counters C, T, C′ in M ′. Initially, T = C′ = 0.

3. C in M ′ simulates C in M as long as C does not decrement. When C
decrements, T is set to 1 (i.e., it is incremented). Then as long as C does
not increment the simulation continues.

4. When C in M increments, C in M ′ is decremented while simultaneously
incrementing C′ until C becomes zero. During the decrementing process all
other counters remain unchanged. But to make M ′ operate in realtime, its
input head always reads an a during this process.

5. When the counter C of M ′ becomes zero, T is set to zero (i,e., it is decre-
mented), and C′ is incremented by 1.

6. Then the simulation continues with C′ taking the place of C. Counters C
and T remain at zero and no longer used.

So if C in M makes 2 reversals, we will need three 1-reversal counters C, T, C′ in
M ′. If C makes 3 reversals, we will need five 1-reversal counters C, T, C′, T ′, C′′ in
M ′. In general, if C makes k reversals, we will need (2k−1) 1-reversal counters in
M ′. It follows that if there are m counters where each counter makes k reversals,
we will need (2k− 1)m 1-reversal counters. If some of the counters “reverse” (to
increasing) at the same time, we handle them systematically one at a time, by
indexing the counters. ut

Corollary 1. If L = {an} is accepted by a k-reversal m-counter machine, then

n ≤ ((2k − 1)m − 1)2(2k−1)m + (2k − 1)m .

We can also prove that the number of counters matters for k-reversal machines.

Theorem 5. For any fixed k, there is a language accepted by a k-reversal (m +
1)-counter machine which is not accepted by any k-reversal m-counter machine.

Proof. Consider L = {an} where n is the largest number that a k-reversal m-
counter machine can count. A bound for n is given in Corollary 1. Suppose M
is such a machine and the sequence of sign-vectors in its calculation is

0m → S1 → S2 → · · · → St → 0m

where Si 6= 0m for 1 ≤ i ≤ t. M must have the rule (a, St) → (e1, e2, . . . , em)
where ei = − for i ∈ St and ei = 0 otherwise. We construct a k-reversal (m+1)-
counter machine M ′ that accepts a longer singleton. Define M ′ by

1. If (c, 0m) → (e1, ..., em) is in M , then (c, 0m+1) → (e1, ..., em, +) is in M ′,
2. If (a, s1, ..., sm) → (e1, ..., em) is in M , then (a, s1, ..., sm, 1) → (e1, ..., em, +)

is in M ′,
3. (a, 0, ..., 0, 1) → (0, ..., 0,−) is in M ′.

Thus with every move of M the counter Cm+1 is incremented until the last St

clears its contents, at which point Cm+1 starts clearing its contents, i.e. makes
one reversal. It is clear that M ′ is k-reversal like M , and it accepts the longer
singleton L = {a2n−1}. ut

We can also show that for a fixed m, which may depend on k, k + 1 reversals
are better than k.

Theorem 6. For any fixed m and k < 2m−1/m, there is a language accepted
by a (k +1)-reversal m-counter machine which is not accepted by any k-reversal
m-counter machine.

Proof. We need the following generalization of Lemma 3 to k-reversal machines.
Suppose S1, S2, . . . , Sd are the distinct non-null sign-vectors that appear in the
computation of a k-reversal machine M with m counters that accepts a singleton.
Then d ≤ 2km − 1 . To prove this inequality, put S0 = Sd+1 = 0m and as in
Lemma 3, consider the m×(d+2) binary matrix B where the j-th column is Sj−1

for 1 ≤ j ≤ d + 2. Since M is k-reversal, each row of B has at most k intervals

consisting of all 1’s. Therefore there are a total of at most km horizontal intervals
of 1’s in B, which together have at most 2km endpoints. Since the Sj are distinct,
going from Sj to Sj+1 for 0 ≤ j ≤ d must involve at least one bit change, i.e. at
least one of the 2m pairs of 01 and 10’s. It follows that d + 1 ≤ 2km.

Since k < 2m−1/m, d < 2m − 1. Therefore we can find a non-null set S
with S 6= Si for 1 ≤ i ≤ d. Now the longest singleton accepted by a k-reversal
m-counter machine M is {an} where n is as given in Theorem 2. We use S to
construct a (k+1)-reversal m-counter machine M ′ which accepts a string longer
than n. M ′ is constructed as follows.

1. (c, 0m) → (e1, ..., em) is in M ′, where ei = + for i ∈ S and ei = 0 otherwise.
2. If (c, 0m) → (f1, ..., fm) is in M , then (a, S) → (S1) is in M ′, where S1 is

the sign-vector defined by i ∈ S1 if fi = + and i 6∈ S1 if fi = 0,
3. If (a, s1, ..., sm) → (g1, ..., gm) is in M , with s1 · · · sm 6∈ {0m, S}, then (a, s1, ..., sm)

→ (g1, ..., gm) is in M ′.

Thus M ′ makes an extra initial move, and then continues as M does. The ap-
pearance of S at the beginning of the computation can only introduce one more
reversal. Therefore M ′ is (k + 1)-reversal, and accepts {an+1}. ut

4 Stateless Non-Realtime Multicounter Machines

We briefly consider the case when in each rule, d can be 1 or 0 (i.e., the input
head need not move right at each step).

4.1 1-Reversal Machines

Clearly, any language accepted by a realtime machine can be accepted by a
non-realtime machine. We can show that the latter is strictly more powerful.

Theorem 7. The language L = {w | w ∈ {a, b}∗, |w|a = |w|b} can be accepted
by a non-realtime 1-reversal 2-counter machine M but not by any realtime k-
reversal m-counter machine for any k, m ≥ 1.

Proof. M has counters C1 and C2. On input cw$, M reads the input and stores
the number of a’s (resp., b’s) it sees in C1 (resp., C2). When the input head
reaches $, the counters are decremented simultaneously while the head remains
on $. M accepts if and only if the counters become zero at the same time.

Suppose L is accepted by some realtime k-reversal m-counter machine M ′.
Let x be a string with |x|a = |x|b > 0. Then x is accepted by M ′, i.e., M ′ on
input cx$, starts with the input head on c with all counters zero, computes, and
accepts after reading the last symbol of x with all counters again at zero.

Consider now giving input xab to M . Then after processing x, all counters
are zero. Clearly, after processing symbol a, at least one counter of M ′ must
increment; otherwise (i.e., if all counters remain at zero), M will accept all
strings of the form xai for all i, a contradiction. Then after processing b, all
counters must again be zero, since xab is in L. It follows that on input xab, at
least one counter made an additional reversal than on input x. Repeating the
argument, we see that for some i, x(ab)i will require at least one counter to make
k + 1 reversals. This is a contradiction. ut

The result above can be made stronger. A non-realtime reversal-bounded
multicounter machine is restricted if it can only accept an input when the input
head first reaches the right end marker $ and all counters are zero. Hence, there
is no applicable rule when the input head is on $. However, the machine can be
non-realtime (i.e., need not move at each step) when the head is not on $. The
machine can also be nondeterministic: Two or more rules can have the same left
hand side. Then by the same argument above, we have:

Corollary 2. L = {w | w ∈ {a, b}∗, |w|a = |w|b} cannot be accepted by any
restricted nondeterministic non-realtime reversal-bounded multicounter machine.

Theorem 7 and Corollary 2 show that allowing non-realtime computation
(i.e., allowing the machine to remain) on $ and continue computing makes the
machine more powerful.

We note that we can easily construct a realtime unbounded-reversal 2-counter
machine M to accept the language above. M uses two counters C, T (both
initially zero) and operates as follows when given input cw$:

M reads the first symbol of w and increments C. It also sets T to 1 if the
symbol is b. We consider two cases: When T = 0, M continues reading the
input, incrementing C when it sees an a and decrementing C when it sees a b,
provided C is not zero. If C is zero and M sees a b, it increments C and sets T
to 1. When T = 1, M continues reading the input, incrementing C when it sees
a b and decrementing C when it sees an a, provided C is not zero. If C is zero
and M sees an a, it increments C and sets T to 0.
When $ is reached and C is zero, M accepts.

References

1. J.E. Hopcroft a nd J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Series in Computer Science. Addison -Wesley, Reading, MA, 1979.
2. O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems.

J. Assoc. for Computing Machinery, 25, 116–133, 1978.
3. O. H. Ibarra, J. Karhumaki, and A. Okhotin. On stateless multihead automata: hier-

archies and the emptiness problem. Proceedings of 8th Latin American Symposium,
LNCS 4957, 94–105, 2008.

4. A. J. Korenjak and J. E. Hopcroft. Simple deterministic languages. Proc. of the

7th Annual Symp. on Foundations of Computer Science, 36-46, IEEE Computer
Society, 1966.

5. M. Kutrib, H. Messerschmidt, and Friedrich Otto. On stateless two-pushdown au-
tomata and restarting automata. Pre-Proceedings of the 8th Automata and Formal

Languages, May, 2008.
6. Gh. Păun; Computing with Membranes. Journal of Computer and System Sciences,

61, 1, 2000, 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

7. Gh. Păun. Computing with Membranes: An Introduction, Springer, Berlin, 2002.
8. L. Yang, Z. Dang, and O.H. Ibarra. On stateless automata and P systems. Pre-

Proceedings of Workshop on Automata for Cellular and Molecular Computing, Au-
gust 2007.

Appendix

The computation of machine M∗

3 is as follows. It counts up to n = 19.

Sign-vector Entering counter values Move number
0 0 0 0 0 0 0
1 0 0 1 0 0 1
1 1 0 2 1 0 2
1 1 1 3 2 1 3
1 1 1 2 3 2 4
1 1 1 1 4 3 5
0 1 1 0 5 4 6
0 1 1 0 4 5 7
0 1 1 0 3 6 8
0 1 1 0 2 7 9
0 1 1 0 1 8 10
0 0 1 0 0 9 11
0 0 1 0 0 8 12
0 0 1 0 0 7 13
0 0 1 0 0 6 14
0 0 1 0 0 5 15
0 0 1 0 0 4 16
0 0 1 0 0 3 17
0 0 1 0 0 2 18
0 0 1 0 0 1 19
0 0 0 0 0 0

	On Stateless Multicounter Machines

