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Abstract work with which such systems can be compared. The
wo systems which enable this are YCSB [6] and the
ppScale platform [5, 2]. YCSB is the Yahoo! Cloud
Serving Benchmark. YCSB provides a new DB inter-
face and a synthetic workload executor for exercising the
BBs that the authors attach to the interface. The system
measures the response time of pr|m|t|ve operations in a

In this paper, we present a technique that connects we
applications to cloud-based distributed datastore techg
nologies that implement the Google App Engine cloud
datastore API. We implement our approach as a Googl|
App Engine (GAE) application that we employ to expose
the GAE datastore API to developers — for use W|th any,

on both GAE and over AppScale, the open-source imple

mentation of GAE that removes the programming and li-

brary restrictions of GAE and that enables GAE applica-
tions to execute on virtualized cluster resources, includ-
ing Eucalyptus and EC2, without modification. As part
of this work, we extend AppScale with simple caching
support to improve the performance of datastore acces
and evaluate our technique with and without this suppor

stores (without rephcatlon) HBase, Cassandra, PNUTS
“(Yahoo's internal key-value store), and Sharded MySQL.
AppScale is an open-source implementation of the
Google App Engine (GAE) cloud platform. It employs
the GAE Datastore API as a unifying API through which
any datastore can be “plugged in”. Once a datastore im-
tpIementatlon is added to AppScale, it is deployed and

We also make use of this support within multiple pro- configured automatically (there are command-line pa-

totypes (e.g. Ruby/Rails, Python/Django) to show therameter settings for replication factor, cloud size, etc.)

ease-of-use and applicability of our contribution to otherW'thln the AppScale cloud deployment. Thus App-
web development environments. Scale automates the configuration and deployment of

these complex distributed systems and facilitates differ-
1 Introduction ent databases to be compared. AppScale currently im-
plements this key-value API using HBase, Hypertable,
Distributed key-value datastores have become popular iffassandra, Voldemort, MongoDB, MemcacheDB, and
recent years due to their simplicity, ability to scale withi MySQL Cluster. The system however, unlike YCSB,
web applications and services usage models, and theffeasures application end-to-end performance (the round
ability to grow and shrink in response to demand. Astrip time from the user/browser to the web server to the
a result of their success in non-trivial and highly visible datastore, and back). Unfortunately, AppScale only sup-
cloud systems for web services, e.g. BigTable [4] withinports applications written in the languages that GAE sup-
Google, Dynamo [1] within Amazon, and Cassandra [3]Ports (currently Python and Java). YCSB does not sup-
within Facebook, a wide variety of open-source varia-Port applications at all but instead spawns requests be-
tions of distributed key-value stores have emerged andwveen the server and the datastore for the sole purpose of
are gaining wide-spread use. measuring datastore response time and throughput.
However, these datastores implement a wide variety In this work, we address the problem of how to easily
of features that make them difficult for prospective usersprovide users of any programming language and frame-
to compare. For example there are differences in queryork with a database-agnostic interface to key-value
languages, topology (master/slave vs peer-to-peer), cortatastores. To enable this, we (i) employ AppScale as a
sistency policies, and end-user library interfaces. As aloud platform to configure and deploy the needed data-
result, we and others have investigated a single framestore, and (ii) design and implement a GAE application



that runs over AppScale, called Active Cloud DB (in the tributed and scalable versions — for either Python or Java.
spirit of Ruby’s ActiveRecord). Active Cloud DB is a That is, GAE applications can be written in either lan-
cloud software component that exposes an HTTP APQuage. AppScale implements front-ends for both lan-
that is implemented via GAE datastore API. guages in this way.

As a result, Active Cloud DB provides application de- GAE applications write to a key-value datastore using
velopers with automatic and straight-forward access tdhe following Google Datastore API:
the scalable datastore back-ends that AppScale imple- o pyt(k, v): Add keyk and valuev to table; creating
ments and to GAE BigTable. Active Cloud DB is easy to atable if needed
use and to integrate into language and framework front- ) )
ends and also provides the functionality to move data ® G€t(k): Return value associated with key
between distributed datastores without manual configu- e Delete(k): Remove kek and its value
ration or deployment and without knowledge about the
datastore implementation.

We employ the APl to implement support for
disparate web-based language frameworks, includ-
ing Ruby/Sinatra, Ruby/Rails, Python/Django, and e Count(t): For a given query, returns the size of the
Python/Web.py. We evaluate the performance of the API list of values returned

using Cassandra and MemcacheDB datastores to invesisAE applications employ this API to save/restore data
gate the performance differences of the primitive dataszg part of the GAE application implementation. The
tore operation_s. Finally, we extend AppScaIe with a Sim'AppServer (and GAE SDK) encodes each request using
ple data caching scheme mechanism for Active Cloudy Google Protocol Buffer [9]. Protocol Buffers facili-
DB — that also can be used by any GAE application thagate fast encode/decode times and provide highly com-
runs over AppScale, and evaluate its impact. pact encoding. As a result, they are much more effi-

In the sections that follow, we overview AppScale, the cient for data serialization than other approaches. The
implementation and evaluation framework we use to in-AppServer sends/receives Protocol Buffers to/from a
vestigate the performance of our approach. We then deprotocol Buffer Server in AppScale over encrypted sock-
scribe Active Cloud DB and the caching support with ets. All details about and use of Protocol Buffers and
which we extend AppScale. We then describe four prookhe pack-end datastore (in Google or in AppScale) is ab-
of concepts we have developed that make use of Activetracted away from GAE applications using this API.

e Query(q): Perform query using the Google query
language (GQL) on a single table, returning a list of
values

Cloud DB, evaluate this web SerVice, and conclude. The AppSCa|e Protocol Buffer Server imp|ements all
of the libraries necessary to interact with each of the
2 AppScale datastores that are plugged into AppScale. Since this

server interacts with all front-ends, it must be very fast

AppScale is a robust, open source implementation of thend scalable so as not to impact end-to-end application
Google App Engine APIs that executes over private vir-performance. AppScale places a Protocol Buffer Server
tualized cluster resources and cloud infrastructures inen each node to which datastore reads and writes can
cluding AWS and Eucalyptus [8]. Users can execute theibe sent (i.e. the datastore entry points) by applications.
existing App Engine applications over AppScale without For master-slave datastores, the server runs on the master
modification. [5] describes the design and implementanode. For peer-to-peer datastores, the server runs on all
tion of AppScale. We summarize the key components ohodes.

AppScale that impact our description and implementa- AppScale currently implements seven popular open-
tion of Active Cloud DB. source datastore/database technologies. They are Cas-
AppScale is an extension of the non-scalable testsandra, HBase, Hypertable, MemcacheDB, MongoDB,

ing/debugging front-end that Google makes available as/oldemort, and MySQL Cluster (with a key-value data
open-source, and to which Google refers as the Googliayout). Each of these technologies vary in their matu-
App Engine (GAE) software development kit. This ex- rity, eventual/strong consistency, performance, fauit to
tension is called the AppServer in AppScale. App-erance support, implementation and interface languages,
Scale integrates open-source datastore/database systetmgologies, and data layout, among other characteristics.
as well as new software components that faciliate configf2] presents the details on each of these datastores.
uration, one-button deployment, and distributed system Active Cloud DB and our caching support is datastore-
support for scalable, multi-application, multi-user alou agnostic. These extensions thus work for all of the App-
operation. Scale datastores (current and future) and for GAE ap-
The AppServer decouples the APIs from their non-plications deployed to Google’s resources. In our eval-
scalable SDK implementations and replaces them disuation section, we choose two representative datastores



(due to space constraints) to collect empirical resultsoverview Active Cloud DB and then describe the design
for. Cassandra and MemcacheDB. We provide a briefind implementation of our caching scheme.
overview of each.

3.1 Implementation

Cassandra. Developed and released as open sourc&ur goal with Active Cloud DB is to remove the limita-
by Facebook in 2008, Cassandra is a hybrid betweetion imposed by AppScale and Google App Engine that
Google’s BigTable and Amazon’s Dynamo [3]. It incor- requires that applications be written in Python or Java to
porates the flexible column layout from the former andgain access to the functionality of the distributed datas-
the peer-to-peer node topology from the latter. Its peertore back-ends that these cloud fabrics implement. This
to-peer layout allows the system to avoid having a singlds particularly important for Google App Engine, since
point of failure as well as be resiliant to network parti- not only must applications be written in these languages
tions. Furthmore, read and write requests can be serjut they must employ the web frameworks specified by
to any node in the system, allowing for greater through-Google using a restricted set of “whitelisted” libraries.
put. However, this also results in data being “eventually-AppScale removes this constraint but currently still only
consistent.” Specifically, this means that a write to onesupports Python and Java GAE applications.

node will take some time to propagate throughout the Active Cloud DB is a Google App Engine application
system and that application designers need to keep thi¢at runs over AppScale that exposes an HTTP API to
in mind. Cassandra exposes a Thrift API through whichthe underlying datastore. Internally, Active Cloud DB
applications can interact with in many popular program-allows for objects to be created with a given name (key)
ming languages. and one string within (its value). This can be ftrivially
extended to allow for all data types, but we consider only
string-type keys and values here.

MemcacheDB. Developed and released as open .
_ Active Cloud DB exposes three URL routes:gat

source by Steve Chu in 2007, memcachedb is a modi d alel h of which
fication of the popular open source distributed cachindOUte’ aput route, and alel et e route, each of whic

service memcached. Buildling upon the memcached"aP t© their corresponding primitive operations. Appli-

API, MemcacheDB adds replication and persistence yscations perform an HTTP POST request with the neces-

ing Berkeley DB [7] as a backing store. MemcacheDB &Y key or key/value pair via the AppServ_er. Requests
provides a key-value datastore with a master-slave nod an also t_>e or the AppLoadBaIancer provided by App-
layout. Reads can be directed to any node in the sys= cale, which dynamically maps requests to AppServers.

tem, while writes can only be directed to the master node3 2 Intearation
This allows for strong data consistency but also multiple™ =

points of access for read requests. As MemcacheDB igo communicate with Active Cloud DB, developers im-

a master-slave datastore, the master node in the systeflement the client side-interface. We have done this
is the single point of failure. MemcacheDB can use anyfor four popular web frameworks, Rails and Sinatra for
library available for memcached, allowing for native ac- Rypy, and Django and web.py for Python. In Rails and

cess via many programming languages. Django, we remove the built-in database abstractions and
in all add in a wrapper for communicating with Active
3 ActiveCloud DB Cloud DB. It abstracts all remote communication logic

and error handling such that the application developer

We next present Active Cloud DB, a software serviceneed not be aware that the database is located remotely.
that executes over AppScale to expose datastores tm all frameworks we use the default templating library
cloud clients. Clients are web-based applications andor creating the presentation layer of the applications.
software implemented using language frameworks other The four prototype applications with which we make
than Google App Engine. Active Cloud DB exports to use of Active Cloud DB implement a simple bookstore
clients access to cloud-based distributed datastore teclypplication (inspired by the application given in [10]).
nologies automatically and scalably. To access Active Cloud DB, the application makes HTTP

Active Cloud DB is a software layer that we imple- POST requests with the key and value to put, or the key
ment as a GAE application that executes over AppScaléo get or delete. The bookstore application maintains a
(and thus Google App Engine). Its implementation re-special key containing a list of all the books in the data-
quires no modification to AppScale. To enable scal-store, which is maintained whenever books are added or
ability and low response times, we also extend App-removed. When a book is added, we change this spe-
Scale with datastore caching support to improve the pereial key accordingly and then add an entry to the data-
formance of datastore access by applications. We firsstore with the book’s name (the key) and a summary of



the book’s contents for users to view (the value). Wherd.1 M ethodology

users wish to view all books in the bookstore, we access )
the special key to get a list of all the books, and for each O 0ur experiments, we measure the performance of the

book (key), we return the corresponding book informa-Primitive operations performed in bulk and as part of an
tion (its value). overall workload. In both scenarios, this is done over

two back-end AppScale datastores, Cassandra v0.5.0 and
3.3 Caching Support Memcacheo_lb v1.2.1-|_3eta. For the first _set of ex_peri-
ments, we fill a table in each database with 1000 items
To reduce latency and improve throughput to/from theand perform the get, put, query, and delete operations. To
datastores in AppScale, we provide a transparent cachingrovide a baseline measurement we also perform a no-op
layer for data. To enable this, we leverage the Googl&peration which simply returns and performs no back-
Memcache API (similar to memcached). The API cachesnd processing. We invoke each operation 1000 times
web service data and provides a least-recently-used rg¢100 times for query since it takes significantly longer
placement policy. than the others). A query retrieves all 1000 items from
To efficiently cache data, we combine two cachingthe datastore.
strategies, write-through and generational. For basic op- For each experiment, we access Active Cloud DB us-
erations (get, put, delete) we employ a write-throughing a machine on the same network. Our measurements
caching strategy. With this strategy all put operationsare of round-trip time to/from the AppServer as well as
are written to the datastore as well as to the cache. In dog|| database activity. For each experiment, there are nine
ing so, subsequent requests will likely be served directlyconcurrent threads that each perform all of the opera-
from cache, avoiding any datastore interaction. tions and record the times for each. We consider multi-
Efficiently caching query operations is more complexple static configurations of the AppScale cloud that con-
than basic operations because query results can contaéists of 4, 8, 16, 32, 64, and 96 nodes. On each node,
multiple data items. Furthermore, when a particular dataappScale runs a Database Slave/Peer, a Protocol Buffer
item is updated one must expire all query results whichserver, and an AppServer. Each thread accesses a single
contain that item so that stale data is not returned. |I’AppServer’ S0 nine are in use in our setting. For each
order to ensure this property we utilizeganerational  configuration, there is also a head node that implements
caching strategy. In essence, a generation value is maifhe AppController and the Database Master if there is
tained for the data. The generation value is included irpne (otherwise it is a Database Peer).
the cache key for all query operations. Hence, by chang- The second set of experiments test the performance of
ing the generation value all prior cached results are im+he primitive operations of the system when performed as
plicitly expired as they will never be accessed again.  part of an overall workload. Here, the number of nodes
Specifically, the operations are: is constrained to 16 nodes (due to space limitations) and
e Get(k): Return value associated with key If the 10000 random operations are performed with a 50/30/20

value was not in the cache, store it for future ac-9et/put/query ratio. Once an operation is selected, nine
cesses. concurrentthreads perform the operation and access their

e Put(k, v): Add keyk and valuev to table and the corresponding AppServers.
cache. Increment the generation value.

e Delete(k): Remove kek and its value from the ta- 4.2 Results
ble and the cache. Increment the generation value.

e Query(q): Perform query using the Google Query We first present results for web application response time
Language (GQL) on a single table, returning a list of between Active Cloud DB and the datastores. Response
values. Store the result in the cache with the currentime includes the round-trip time between Active Cloud
generation number for future queries. DB and datastore including the processing overhead of

e Count(t): Acquire the query data via the new querythe Protocol Buffer Server.
technique, and return the size of the list of values Figure 1 displays results for the get, put, and delete
found. operations. The left graph shows the performance of the

get operation. The additional entry points for Cassan-
4 Evaluation dra allows it to process reads faster than MemcacheDB.

Varying the number of nodes in the system does not have
We next employ Active Cloud DB over AppScale to eval- a significant impact on the performance of the get op-
uate the performance characteristics of the various superation. With caching, there is an improvement in per-
ported datastores. We begin by describing our methodoformance for both Cassandra and MemcacheDB. This is
ogy and the present our results. because write-through caching leads to cache hits for all
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Figure 1: Average round-trip time for get (left), put (midjiland delete (right) operations under a load of 9 concurren
threads for a range of different AppScale cloud sizes (nodat).
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a query operation returns all 1000 items in the datastore,
- and we see that having more entry points negatively im-
pacts the datastore’s ability to return all the items for a
s00;7 given table. This impact is consistent across the various
6.00 7 =
a 16 32 64 9%

node deployments, with Cassandra consistently perform-
ing worse than MemcacheDB.

Employing the caching scheme negates this difference
since all reads (except for the first) access the cache in-
stead of the datastore. This yields results and conclu-
sions very similar to that for the get operation, but with a

Node Count degraded performance due to the fact that our caching
Figure 2: Average time for query operation for different scheme must marshal and un-marshal the data when
node configurations and 9 concurrent threads. The legeaching it. Therefore, un-marshalling all 1000 items in
end is the same as that in Figure 1. the datastore constitutes the difference between these op-

erations. Similarly to the get operation, this speedup only
but the first event and cache access is significantly fastegipplies without writes: a single write causes performance
than datastore access. to degrade for the next read.

The middle graph shows the performance of the put We next consider a second workload. Figure 3
operation. As was the case in [2], the increased numbeshows the performance of the system under a 50/30/20
of entry points for Cassandra allow it to process writesget/put/query workload across 16 nodes. All operations
faster than MemcacheDB. Like in the case of the get opperform faster than in the previous experiments, as this
eration, we see that the performance does not drasticallyorkload is performed on an initially empty database.
change in either direction for either database with respeatiowever, the same trends from before are preserved in
to the number of nodes in the system. We see the samis workload analysis. Get operations are still faster for
trends occurring for the same datastores when caching isassandra than MemcacheDB, but now both are signifi-
employed, and about the same performance for a datagantly slower than their cached equivalents. This is likely
tore regardless of whether the cache is employed or notue to the substantially smaller amount of data in mem-
This shows that the overhead of performing caching iscached, allowing for much faster read access. As was
negligible with respect to the overall time of the oper- the case in the previous experiments, write performance
ation. The right graph shows the performance of theis roughly the same whether or not caching is employed.
delete operation. Deletes perform similarly to puts forFinally, query performance is substantially better than in
both datastores as well as with and without caching.  the previous experiments. This is to be expected since

Figure 2 shows the performance of the query operathe database has substantially less information in it than
tion. This operation is to be the slowest in the systemin the previous experiments. Caching the data has less
since it operates on an entire table and returns all the keysf an impact here since the non-cached versions perform
instead of operating on a single key. For our experimentsnuch better than in the previous experiments.
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Figure 3: Average round-trip time for get (left), put (mid}iland query (right) operations under a load of 9 concurrent
threads for a 50/30/20 get/put/query workload, run overddes.

cept applications, AppScale, and Active Cloud DB, can
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