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1. Introduction

Development and implementation of large-scale parallel graph algorithms poses
numerous challenges in terms of scalability and productivity [1, 2]. Linear algebra
formulations of many graph algorithms already exist in the literature [3, 4, 5]. By ex-
ploiting the duality between matrices and graphs, linear algebraic formululations aim
to apply the existing knowledge on parallel matrix algorithms to parallel graph algo-
rithms. One of the key linear-algebraic primitives for graph algorithms is computing
the product of two sparse matrices (SpGEMM) over a semiring.It serves as a building
block for many algorithms including graph contraction [6],breadth-first search from
multiple source vertices, peer pressure clustering [7], recursive formulations of all-
pairs shortest-paths algorithms [8], matching algorithms[9], and cycle detection [10],
as well as for some other applications such as multigrid interpolation/restriction [11],
and parsing context-free languages [12].

Most large graphs in applications, such as the WWW graph, finiteelement meshes,
planar graphs, and trees, are sparse. In this work, we consider a graph to be sparse if
nnz= O(n), wherennzis the number of edges andn is the number of vertices. Dense
matrix multiplication algorithms are inefficient for SpGEMM since they requireO(n3)
space and the current fastest dense matrix multiplication algorithm runs inO(n2.38) [13,
14] time. Furthermore, fast dense matrix multiplication algorithms operate on a ring
instead of a semiring, which makes them unsuitable for many algorithms on general
graphs. For example, it is possible to embed the semiring into the ring of integers for
the all-pairs shortest-paths problem on unweighted and undirected graphs [14], but the
same embedding does not work for weighted or directed graphs[15].

Let A ∈ S
m×n be a sparse rectangular matrix of elements from an arbitrarysemiring

S. We usennz(A) to denote the number of nonzero elements inA. When the matrix
is clear from context, we drop the parenthesis and simply usennz. For sparse matrix
indexing, we use the convenient Mr colon notation, whereA(:, i) denotes theith
column,A(i, :) denotes theith row, andA(i, j) denotes the element at the (i, j)th position
of matrix A. For one-dimensional arrays,a(i) denotes theith component of the array.
Sometimes, we abbreviate and usennz( j) to denote the number of nonzeros elements
in the jth column of the matrix in context. Array indices are 1-basedthroughout this
paper. We use flops(A opB), pronounced “flops”, to denote the number of nonzero
arithmetic operations required by the operationA opB. Again, when the operation and
the operands are clear from context, we simply use flops.

The most widely used data structures for sparse matrices arethe Compressed Sparse
Columns (CSC) and Compressed Sparse Rows (CSR) [16]. The second chapter of the
first author’s thesis [17] give concise descriptions of common SpGEMM algorithms
operating both on CSC/CSR and triples. The SpGEMM problem was recently recon-
sidered by Yuster and Zwick [18] over a ring, where the authors use a fast dense matrix
multiplication such as arithmetic progression [13] as a subroutine. Their algorithm
usesO(nnz0.7 n1.2 + n2+o(1)) arithmetic operations, which is theoretically close to opti-
mal only if we assume that the number of nonzeros in the resulting matrixC isΘ(n2).
This assumption rarely holds in reality. Instead, we provide a work sensitive analy-
sis by expressing the computation complexity of our SpGEMM algorithms in terms of
flops.



Practical sparse algorithms have been proposed by different researchers over the
years [19, 20] using various data structures. Although theyachieve reasonable perfor-
mance on some classes of matrices, none of these algorithms outperforms the classical
sparse matrix-matrix multiplication algorithm for general sparse matrices, which was
first described by Gustavson [21] and was used in Matlab [22] and CSparse [23]. The
classical algorithm runs inO(flops+ nnz+n) time.

In Section 2, we present two novel algorithms for sequentialSpGEMM. The first
one is geared towards computing the product of twohypersparse matrices. A matrix
is hypersparse if the ratio of nonzeros to its dimension is asymptotically 0. It is used
as the sequential building block of our parallel 2D algorithms described in Section 3.
Our H GEMM algorithm uses a newO(nnz) data structure, calledDCSC
for doubly compressed sparse columns, which is explained in Section 2.2. The H-
 GEMM is based on the outer-product formulation and has time complexity
O(nzc(A) + nzr(B) + flops · lg ni), wherenzc(A) is the number of columns ofA that
contain at least one nonzero,nzr(B) is the number of rows ofB that contain at least
one nonzero, andni is the number of indicesi for which A(:, i) , ∅ andB(i, :) , ∅.
The overall space complexity of our algorithm is onlyO(nnz(A) + nnz(B) + nnz(C)).
Notice that the time complexity of our algorithm does not depend onn, and the space
complexity does not depend on flops.

Section 3 presents parallel algorithms for SpGEMM. We propose novel algorithms
based on 2D block decomposition of data in addition to givingthe complete description
of an existing 1D algorithm. To the best of our knowledge, parallel algorithms using
a 2D block decomposition have not earlier been developed forsparse matrix-matrix
multiplication.

Toledo et al. [24] proved that 2D dense matrix multiplication algorithms are optimal
with respect to the communication volume, making 2D sparse algorithms likely to be
more scalable than their 1D counterparts. In Section 4, we show that this intuition is
indeed correct by providing a theoretical analysis of the parallel performance of 1D
and 2D algorithms.

In Section 5, we model the speedup of parallel SpGEMM algorithms using realis-
tic simulations and projections. Our results show that existing 1D algorithms are not
scalable to thousands of processors. By contrast, 2D algorithms have the potential for
scaling up indefinitely, albeit with decreasing parallel efficiency, which is defined as
the ratio of speedup to the number of processors.

Section 6 describes the experimental setup we used for evaluating our Sparse SUMMA
implementation, and presents the final results. We describeother techniques we have
used for implementating our parallel algorithms, and theireffects on performance in
Section 7. Section 8 offers some future directions.



2. Sequential Sparse Matrix Multiply

We first analyze different formulations of sparse matrix-matrix multiplication us-
ing the layered graph model in Section 2.1. This graph theoretical explanation gives
insights on the suitability of the outer-product formulation for multiplying hypersparse
matrices H GEMM. Section 2.2 defines hypersparse matrices and Section 2.3
introduces the DCSC data structure that is suitable to storehypersparse matrices. We
present our H GEMM algorithm in Section 2.2.

2.1. Layared graphs for different formulations of SpGEMM

Matrix multiplication can be organized in many different ways. The inner-product
formulation that usually serves as the definition of matrix multiplication is well-known.
Given two matricesA ∈ R

m×k andB ∈ R
k×n, each element in the productC ∈ R

m×n is
computed by the following formula:

C(i, j) =
k∑

l=1

A(i, l)B(l, j). (1)

This formulation is rarely useful for multiplying sparse matrices since it requires
Ω(mn) operations regardless of the sparsity of the operands.

We represent the multiplication of two matricesA andB as a three layered graph,
following Cohen [25]. The layers havem, k andn vertices, in that order. The first layer
of vertices (U) represent the rows ofA and the third layer of vertices (V) represent
the columns ofB. The second layer of vertices (W) represent the dimension shared
between matrices. Every nonzeroA(i, l) , 0 in theith row of A forms an edge (ui ,wl)
between the first and second layers and every nonzero inB(l, j) , 0 in the jth column
of B forms an edge (wl , v j) between the second and third layers.

We perform different operations on the layered graph depending on the way we
formulate the multiplication. In all cases though, the goalis to find pairs of vertices
(ui , v j) sharing an adjacent vertexwk ∈ W, and if any pair shares multiple adjacent
vertices, to merge their contributions.

Using inner products, we analyze each pair (ui , v j) to find the set of vertices in
W̃i j ⊆ W = {w1,w2, ...,wk} that are connected to bothui amdv j in the graph shown in
Figure 1. The algorithm then accumulates contributionsail · bl j for all wl ∈ W̃i j . The
result becomes the value ofC(i, j) in the output. In general this inner-product subgraph
is sparse, and a contribution fromwl happens only when both edgesail andbl j exist.
However, this sparsity is not exploited using inner products as it needs to examine each
(ui , v j) pair, even when the set̃Wi j is empty.

In the outer-product formulation, the product is written asthe summation ofk rank
one matrices:

C =
k∑

l=1

A(:, l)B(l, :). (2)

A different subgraph results from this formulation as it is the setof verticesW
that represent the shared dimension that play the central role. Note that the edges are
traversed in the outward direction from a nodewi ∈ W, as shown in Figure 2. For
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Figure 1: Graph representation of the inner productA(i, :) · B(:, j)

sufficiently sparse matrices, this formulation may run faster because this traversal is
performed only for the vertices inW (sizek) instead of the inner product traversal that
had to be performed for every pair (sizemn). The problem with outer-product traversal
is that it is hard to accumulate the intermediate results into the final matrix.

A row-by-row formulation of matrix multiplication performs a traversal starting
from each of the vertices inU towardsV, as shown in Figure 3 forui . Each traversal
is independent from each other because they generate different rows ofC. Finally, a
column-by-column formulation creates an isomorphic traversal, in the reverse direction
(from V to U).

2.2. Hypersparse Matrices

One conventional storage format for sparse matrices is the Compressed Sparse
Rows (CSR) format, which stores the nonzeros in consecutivelocations and main-
tains pointers to the first nonzero element of each row. Due tothese pointers, it takes
Θ(n+ nnz) space for ann-by-n matrix. Recall that a matrix is hypersparse ifnnz< n.
Although CSR is a fairly efficient storage scheme for general sparse matrices having
nnz= Ω(n), it is asymptotically suboptimal for hypersparse matrices. Hypersparse ma-
trices are fairly rare in numerical linear algebra (indeed,a nonsingular square matrix
must havennz≥ n), but they occur frequently in computations on graphs, particularly
in parallel.

Our main motivation for hypersparse matrices comes from parallel processing. Hy-
persparse matrices arise after the 2-dimensional block data decomposition of ordinary
sparse matrices for parallel processing. Consider a sparsematrix with c nonzero el-
ements in each column. After the 2D decomposition of the matrix, each processor
locally owns a submatrix with dimensions (n/

√
p) × (n/

√
p). Storing each of those

submatrices in CSC format takesΘ(n
√

p + nnz) space, whereas the amount of space
needed to store the whole matrix in CSC format on a single processor is onlyΘ(n+nnz).
As the number of processors increases, then

√
p term dominates thennzterm.
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Figure 2: Graph representation of the outer productA(:, i) · B(i, :)
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Figure 4: 2D Sparse Matrix Decomposition
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Figure 5: MatrixA in CSC format

Figure 4 shows that the average number of nonzeros in a singlecolumn of a sub-
matrix, nnz( j), goes to zero asp increases. Storing a graph using CSC is similar to
using adjacency lists. The column-pointers array represents the vertices, and the row-
indices array represents their adjacencies. In that sense,CSC is a vertex based data
structure, making it suitable for 1D (vertex) partitioningof the graph. 2D partitioning,
on the other hand, is based on edges. Therefore, using CSC with 2D distributed data
is forcing a vertex based representation on edge distributed data. The result is unnec-
essary replication of column pointers (vertices) on each processor along the processor
column.

The inefficiency of CSC leads to a more fundamental problem: any algorithm
that uses CSC and scans all the columns is not scalable for hypersparse matrices.
Even without any communication at all, such an algorithm cannot scale forn

√
p ≥

max{flops,nnz}. Sparse matrix-vector and sparse matrix-matrix multiplication algo-
rithms scan column indices. For these operations, any data structure that depends on
the matrix dimension (such as CSR or CSC) is asymptotically too wasteful for subma-
trices.

2.3. DCSC Data Structure

We use a new data structure for our sequential hypersparse matrix-matrix multipli-
cation. This structure, calledDCSC for doubly compressed sparse columns, has the
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Figure 7: MatrixA in DCSC format

following properties:

1. It usesO(nnz) storage.
2. It lets the hypersparse algorithm scale with increasing sparsity.
3. It supports fast access to columns of the matrix, when necessary.

For an example, consider the 9-by-9 matrix with 4 non-zeros whose triples rep-
resentation is given in Figure 6. Figure 5 showns its CSC storage, which includes
repetitions and redundancies in the column pointers array (JC). Our new data structure
compresses theJC array to avoid repetitions, giving theCP(column pointers) array of
DCSC as shown in Figure 7. DCSC is essentially a sparse array of sparse columns,
whereas CSC is a dense array of sparse columns.

After removing repetitions,CP[i] does no longer refer to theith column. A new
JC array, which is parallel toCP, gives us the column numbers. Although our H-
 GEMM algorithm does not need column indexing, DCSC supportsfast column
indexing for completeness. Whenever column indexing is needed, we construct an
AUX array that contains pointers to nonzero columns (columns that have at least one
nonzero element). Each entry inAUX refers to a⌈n/nzc⌉-sized chunk of columns,
pointing to the first nonzero column in that chunk (there might be none). The storage
requirement of DCSC isO(nnz) since|NUM| = |IR| = nnz, |JC| = nzc, |CP| = nzc+1,
and|AUX| ≈ nzc.

In our implementation, theAUX array is a temporary work array that is contructed
on demand, only when an operation requires repetitive use ofit. This keeps the storage
and copying costs low. The time to constructAUX is only O(nzc), which is subsumed
by the cost of multiplication.

2.4. A Sequential Algorithm to Multiply Hypersparse Matrices

The sequential hypersparse algorithm (H GEMM) is based on outer prod-
uct multiplication. Therefore, it requires fast access to rows of matrixB. This could
be accomplished by having each input matrix represented in DCSC and also in DCSR



A =



1 2 3 4 5 6

1 × ×
2 × ×
3 × × ×
4 × ×
5 ×
6 ×



, B =



1 2 3 4 5 6

1 × ×
2
3 × ×
4 × ×
5 × × ×
6 × × ×



Figure 8: Nonzero structures of operandsA andB

(doubly compressed sparse rows), which is the same as the transpose in DCSC. This
method, which we described in an early version of this work [26], doubles the storage
but does not change the asymptotic space and time complexities. Here, we describe
a more practical version whereB is transposed as a preprocessing step, at a cost of
trans(B). The actual cost of transposition is eitherO(n+nnz(B)) or O(nnz(B) lg nnz(B)),
depending on the implementation.

The idea behind the H GEMM algorithm is to use the outer product
formulation of matrix multiplication efficiently. The first observation about DCSC is
that theJC array is already sorted. Therefore,A.JC is the sorted indices of the columns
that contain at least one nonzero and similarlyBT.JC is the sorted indices of the rows
that contain at least one nonzero. In this formulation, theith column ofA and theith
row of B are multiplied to form a rank-1 matrix. The naive algorithm does the same
procedure for all values ofi and getsn different rank-1 matrices, adding them to the
resulting matrixC as they become available. Our algorithm has a preprocessingstep
that finds intersectionIsect = A.JC∩BT.JC, which is the set of indices that participate
nontrivially in the outer product.

The preprocessing takesO(nzc(A)+nzr(B)) time as|A.JC| = nzc(A) and|BT.JC| =
nzr(B). The next phase of our algorithm performs|Isect| cartesian products, each of
which generates a fictitious list of sizennz(A(:, i)) · nnz(B(i, :)). The lists can be gen-
erated sorted, because all the elements within a given column are sorted according to
their row indices (i.e.IR(JC(i))...IR(JC(i)+1) is a sorted range). The algorithm merges
those sorted lists, summing up the intermediate entries having the same (row id, col id)
index pair, to form the resulting matrixC. Therefore, the second phase of H-
 GEMM is similar to multiway merging [27]. The only difference is that we
never explicitly construct the lists; we compute their elements one-by-one on demand.

Figure 9 shows the setup for the matrices from Figure 8. AsA.JC = {1,2,3,4,6}
andBT.JC = {1,3,4,5,6}, Isect = {1,3,4,6} for this product. The algorithm does not
touch the shaded elements, since they do not contribute to the output.

The merge uses a priority queue (represented as a heap) of sizeni, which is the size
of Isect, the number of indicesi for which A(:, i) , ∅ andB(i, :) , ∅. The value in
a heap entry is itsNUM value and the key is a pair of indices (i, j) in column-major
order. The idea is to repeatedly extract the entry with minimum key from the heap and
insert another element from the list that the extracted element originally came from. If
there are multiple elements in the lists with the same key, then their values are added
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Figure 9: Cartesian product and the multiway merging analogy

on the fly. If we were to explicitly createni lists instead of doing the computation on
the fly, we would get the lists shown in the right side of Figure9, which are sorted from
bottom to top. For further details of multiway merging, consult Knuth [27].

The time complexity of this phase isO(flops · lg ni), and the space complexity is
O(nnz(C) + ni). The output is a stack ofNUM values in column-major order. The
nnz(C) term in the space complexity comes from the output, and the flops term in the
time complexity comes from the observation that

∑

i∈Isect

nnz(A(:, i)) · nnz(B(i, :)) = flops.

The final phase of the algorithm constructs the DCSC structure from this column-
major-ordered stack. This requiresO(nnz(C)) time and space.

The overall time complexity of our algorithm isO(nzc(A) + nzr(B) + flops· lg ni),
plus the preprocessing time to transpose matrixB. Note thatnnz(C) does not appear
in this bound, sincennz(C) ≤ flops. We opt to keep the cost of transposition separate,
because our parallel 2D block SpGEMM will amortize this transposition of each block
over

√
p uses of that block. Therefore, the cost of transposition will be negligible in

practice. The space complexity isO(nnz(A) + nnz(B) + nnz(C)). The time complexity
does not depend onn, and the space complexity does not depend on flops.

Figure 10 gives the pseudocode for the whole algorithm. It uses two subprocedures:
CM-I generates the next element from theith fictitious list and inserts it to
the heap PQ, and I-L increments the pointers of theith fictitious list or
deletes the list from the intersection set if it is empty.

To justify the extra logarithmic factor in the flops term, we briefly analyze the com-
plexity of each submatrix multiplication in the parallel 2Dblock SpGEMM. Our paral-
lel 2D block SpGEMM performsp

√
p submatrix multiplications, since each submatrix

of the output is computed usingCi j =
∑√p

k=1 Aik Bk j. Therefore, with increasing number
of processors and under perfect load balance, flops scale with 1/p

√
p, nnzscale with

1/p, andn scales with 1/
√

p. Figure 11 shows the trends of these three complexity
measures asp increases. The graph shows that then term becomes the bottleneck af-
ter around 50 processors and flops becomes the lower-order term. In contrast to the



C : R
S(m×n) = H GEMM(A : R

S(n×k),BT : R
S(n×k))

1 Isect← I(A.JC,BT.JC)
2 for j ← 1 to |Isect|
3 do CM-I(A,BT,PQ, Isect, j)
4 I-L(Isect, j)
5 while INF(Isect)
6 do (key, value)← E-M(PQ)
7 (product, i)← UP(value)
8 if key, T(Q)
9 then E(Q, key,product)

10 else UT(Q,product)
11 if INE(Isect(i))
12 then CM-I(A,BT,PQ, lists, Isect, i)
13 I-L(Isect, i)
14 C-D(Q)

Figure 10: Pseudocode for hypersparse matrix-matrix multiplication algorithm

classical algorithm, our H GEMM algorithm becomes independent ofn, by
putting the burden on the flops instead.
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3. Parallel Algorithms for Sparse GEMM

This section describes parallel algorithms for multiplying two sparse matrices in
parallel onp processors, which we call PSpGEMM. The design of our algorithms is
motivated by distributed memory systems, but expect them toperform well in shared
memory too, as they avoid hot spots and load imbalances by ensuring proper work
distribution among processors. Like most message passing algorithms, they can be
implemented in the partitioned global address space (PGAS)model as well.

3.1. 1D Decomposition

We assume the data is distributed to processors in block rows, where each processor
receivesm/p consecutive rows. We writeAi = A(ip : (i+1)p−1, :) to denote the block
row owned by theith processor. To simplify the algorithm description, we useAi j to
denoteAi(:, jp : ( j + 1)p− 1), the jth block column ofAi , although block rows are not
physically partitioned.

A =



A1
...

Ap


=



A11 . . . A1p
...
. . .

...

Ap1 . . . App


,B =



B1
...

Bp


(3)

For each processorP(i), the computation is:

Ci = Ci + Ai B = Ci = Ci +

p∑

j=1

Ai j B j

3.2. 2D Decomposition

Our 2D parallel algorithms, Sparse Cannon and Sparse SUMMA,use the hyper-
sparse algorithm, which has complexityO(nzc(A) + nzr(B) + flops · lg ni), as shown
in Section 2.2, for multiplying submatrices. Processors are logically organized on a
square

√
p × √p mesh, indexed by their row and column indices so that the (i, j)th

processor is denoted byP(i, j). Matrices are assigned to processors according to a 2D
block decomposition. Each node gets a submatrix of dimensions (n/

√
p) × (n/

√
p) in

its local memory. For example,A is partitioned as shown below andAi j is assigned to
processorP(i, j).

A =



A11 . . . A1
√

p

...
. . .

...

A√p1 . . . A√p
√

p


(4)

For each processorP(i), the computation is:

Ci j =

√
p∑

k=1

Aik Bk j



C : R
P(S(n)×n) = B1D PSGEMM(A : R

P(S(n)×n),B : R
P(S(n)×n))

1 for all processorsP(i) in parallel
2 do I(SPA)
3 for j ← 1 to p
4 do B(B j)
5 for k← 1 to n/p
6 do L(SPA,Ci(k, :))
7 SPA← SPA + Ai j (k, :) B j

8 U(SPA,Ci(k, :))

Figure 12: OperationC← AB using block row Sparse 1D algorithm

L-C-S(Local : R
S(n×n), s)

1 S(Local,P(i, ( j − s) mod
√

p)) � This is processorP(i, j)
2 R(Temp,P(i, ( j + s) mod

√
p))

3 Local← Temp

Figure 13: Circularly shift left bys along the processor row

3.3. Sparse 1D Algorithm

The row-wise SpGEMM forms one row ofC at a time, and each processor may
potentially need to access all ofB to form a single row ofC. However, only a portion
of B is locally available at any time in parallel algorithms. Thealgorithm, thus, per-
forms multiple iterations to fully form one row ofC. For accumulating the nonzeros
of the current active row ofC, the algorithm uses a special structure called the sparse
accumulator (SPA) [22] that performs accumulation in linear time. Figure 12 shows
the pseudocode of the algorithm.

3.4. Sparse Cannon

Our first 2D algorithm is based on Cannon’s algorithm for dense matrices [28]. The
pseudocode of the algorithm is given in Figure 15. Sparse Cannon, although elegant,
is not our choice of algorithm for the final implementation, as it is hard to general-
ize to non-square grids, non-square matrices, and matriceswhose dimensions are not
perfectly divisible by grid dimensions.

3.5. Sparse SUMMA

SUMMA [29] is a memory efficient, easy to generalize algorithm for parallel dense
matrix multiplication. It is the algorithm used in parallelBLAS [30]. As opposed to
Cannon’s algorithm, it allows a tradeoff to be made between latency cost and memory
by varying the degree of blocking. The algorithm, illustrated in Figure 16, proceeds



U-C-S(Local : R
S(n×n), s)

1 S(Local,P((i − s) mod
√

p, j)) � This is processorP(i, j)
2 R(Temp,P((i + s) mod

√
p, j))

3 Local← Temp

Figure 14: Circularly shift up bysalong the processor column

C : R
P(S(n×n)) = C PSGEMM(A : R

P(S(n×n)),B : R
P(S(n×n)))

1 for all processorsP(i, j) in parallel
2 do L-C-S(Ai j , i − 1)
3 U-C-S(Bi j , j − 1)
4 for all processorsP(i, j) in parallel
5 do for k← 1 to

√
p

6 do Ci j ← Ci j + Ai j Bi j

7 L-C-S(Ai j ,1)
8 U-C-S(Bi j ,1)

Figure 15: OperationC← AB using Sparse Cannon

in k/b stages. At each stage,
√

p active row processors broadcastb columns ofA
simultaneously along their rows and

√
p active column processors broadcastb rows of

B simultaneously along their columns.
Sparse SUMMA, which is a sparse generalization of SUMMA, is our algorithm

of choice for our final implementation, because it is easy to generalize to non-square
matrices, and to matrices whose dimensions are not perfectly divisible by grid dimen-
sions.
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Figure 16: Sparse SUMMA Execution (b = n/
√

p)



4. Analysis of Parallel Algorithms

In this section, we analyze the parallel performance of our algorithms, and show
that they scale better than existing 1D algorithms in theory. We begin by introducing
our parameters and model of computation. Then, we present a theoretical analysis
showing that 1D decomposition, at least with the current algorithm, is not sufficient for
PSpGEMM to scale. Finally, we analyze our 2D algorithms in depth.

In our analysis, the cost of one floating-point operation, along with the cost of
cache misses and memory indirections associated with the operation, is denoted byγ,
measured in nanoseconds. The latency of sending a message over the communica-
tion interconnect isα, and the inverse bandwidth isβ, measured in nanoseconds and
nanoseconds per word transfered, respectively. The running time of a parallel algo-
rithm on p processors is given by

Tp = Tcomm+ Tcomp,

whereTcomm denotes the time spent in communication andTcomp is the time spent
during local computation phases.Tcommincludes both the latency (delay) costs and the
actual time it takes to transfer the data words over the network. Hence, the cost of
transmittingh data words in a communication phase is

Tcomm= α + hβ.

The sequential work of SpGEMM, unlike dense GEMM, depends onmany param-
eters. This makes parallel scalability analysis a tough process. Therefore, we restrict
our analysis to sparse matrices following the Erdős-Ŕenyi graph model explained in
Section 5.1. Consequently, the analysis is probabilistic,exploiting the independent and
identical distribution of nonzeros. When we talk about quantities such as nonzeros
per subcolumn, we mean the expected number of nonzeros. Our analysis assumes that
there arec > 0 nonzeros per row/column. The sparsity parameterc, albeit oversimpli-
fying, is useful for analysis purposes, since it makes different parameters comparable
to each other. For example, ifA andB both have sparsityc, thennnz(A) = cn and
flops(AB) = c2n. It also allows us to decouple the effects of load imbalances from the
algorithm analysis because the nonzeros are assumed to be evenly distributed across
processors.

The lower bound on sequential SpGEMM isΩ(flops) = Ω(c2n). This bound is
achieved by some row-wise and column-wise implementations[21, 22], provided that
c ≥ 1. Gustavson’s classical algorithm implemented using CSR is the natural kernel to
be used in the 1D algorithm where data is distributed by rows.As mentioned earlier, it
has an asymptotic complexity of

O(n+ nnz(A) + flops)= O(n+ cn+ c2n) = Θ(c2n).

Therefore, we take the sequential work (W) to beγc2n in our analysis.

4.1. Scalability of the 1D Algorithm
We begin with a theoretical analysis whose conclusion is that 1D decomposition is

not sufficient for PSpGEMM to scale. In B1D PSGEMM, each processor sends
and receivesp− 1 point-to-point messages of sizennz(B)/p. Therefore,



Tcomm= (p− 1)
(
α + β

nnz(B)
p
)
= Θ(pα + β c n). (5)

We previously showed that the B1D PSGEMM algorithm is unscalable with
respect to both communication and computation costs [31]. In fact, the computational
cost per processor is constant with increasing number of processors, disabling any
speedup. This is because the cost of SPA loading and unloading, which is not amor-
tized by the number of nonzero arithmetic operations in general, dominate the com-
putational time. The current S-P implementation [7] by-passes this problem by
all-to-all broadcasting nonzeros of theB matrix, so that the wholeB matrix is essen-
tially assembled at each processor. This avoids the cost of loading and unloading SPA
at every stage, but it usesnnz(B) memory at each processor.

4.2. Scalability of the 2D Algorithms

In this section, we provide an in-depth theoretical analysis of our parallel 2D SpGEMM
algorithms, and conclude that they scale significantly better than their 1D counterparts.
Although our analysis is limited to the Erdős-Ŕenyi model, its conclusions are strong
enough to be convincing.

In C PSGEMM, each processor sends and receives
√

p − 1 point-to-point
messages of sizennz(A)/p, and

√
p − 1 messages of sizennz(B)/p. Therefore, the

communication cost per processor is

Tcomm=
√

p
(
2α + β

(nnz(A) + nnz(B)
p

))
= Θ(α

√
p+
β c n
√

p
). (6)

The average number of nonzeros in a column of a local submatrix Ai j is c/
√

p.
Therefore, for a submatrix multiplicationAikBk j,

ni(Aik,Bk j) = min
{
1,

c2

p
} n
√

p
= min{ n

√
p
,

c2 n
p
√

p
},

flops(AikBk j) =
flops(AB)

p
√

p
=

c2 n
p
√

p
,

Tmult =
√

p
(
2 min

{
1,

c
√

p
} n
√

p
+

c2n
p
√

p
lg
(
min
{ n
√

p
,

c2n
p
√

p
}))
.

The probability of a single column ofAik (or a single row ofBk j) having at least
one nonzero is min{1, c/√p} where 1 covers the casep ≤ c2 andc/

√
p covers the case

p > c2.
The overall cost of additions, usingpprocessors, and Brown and Tarjan’sO(mlg n/m)

algorithm [32] for merging two sorted lists of sizem andn (for m< n), is

Tadd =

√
p∑

i=1

( flops
p
√

p
lg i
)
=

flops
p
√

p
lg

√
p∏

i=1

i =
flops
p
√

p
lg (
√

p !).



Note that we might be slightly overestimating, since we assume flops/nnz(C) ≈ 1
for simplicity. From Stirling’s approximation and asymptotic analysis, we know that
lg (n !) = Θ(n lg n) [33]. Thus, we get:

Tadd = Θ
( flops
p
√

p
√

p lg
√

p
)
= Θ

(c2n lg
√

p

p

)
.

There are two cases to analyze:p > c2 and p ≤ c2. Since scalability analysis is
concerned with the asymptotic behavior asp increases, we just provide results for the
p > c2 case. The total computation costTcomp= Tmult + Tadd is

Tcomp= γ
( c n
√

p
+

c2n
p

lg
( c2n
p
√

p
)
+

c2n lg
√

p

p

)
= γ
( c n
√

p
+

c2n
p

lg
(c2n

p
))
. (7)

In this case, parallel efficiency is

E =
W

p
(
Tcomp+ Tcomm

) = γc2n

(γ + β) c n
√

p+ γc2n lg
( c2n

p

)
+ α p

√
p
. (8)

Scalability is not perfect and efficiency deteriorates asp increases due to the first
term. Speedup is, however, not bounded, as opposed to the 1D case. In particular,
lg (c2n/p) becomes negligible asp increases and scalability due to latency is achieved
whenγc2n ∝ α p

√
p, where it is sufficient for n to grow on the order ofp1.5. The

biggest bottleneck for scalability is the first term in the denominator, which scales with√
p. Consequently, two different scaling regimes are likely to be present: A close to

linear scaling regime until the first term starts to dominatethe denominator and a
√

p-
scaling regime afterwards.

Compared to the 1D algorithms, Sparse Cannon both lower the degree of unscala-
bility due to bandwidth costs and mitigate the bottleneck ofcomputation. This makes
overlapping communication with computation more promising.

Sparse SUMMA, like dense SUMMA, incurs an extra cost over Cannon for using
row-wise and col-wise broadcasts instead of nearest-neighbor communication, which
might be modeled as an additionalO(lg p) factor in communication cost. Other than
that, the analysis is similar to sparse Cannon and we omit thedetails. Using the DCSC
data structure, the expected cost of fetchingb consecutive columns of a matrixA is
b plus the size (number of nonzeros) of the output [26]. Therefore, the algorithm
asymptotically has the same computation cost for all valuesof b.



5. Performance Modeling of Parallel Algorithms

In this section, we first project the estimated speedup of 1D and 2D algorithms
in order to evaluate their prospects in practice. We use a quasi-analytical performance
model where we first obtain realistic values for the parameters (γ, β, α) of the algorithm
performance, then use them in our projections. In the secondpart, we perform another
modeling study where we simulate the execution of Sparse SUMMA using an actual
implementation of the H GEMM algorithm. This modeling study concludes
that H GEMM is scalable with increasing hypersparsity, suggesting that it
is a suitable algorithm to be the sequential kernel of a 2D parallel SpGEMM.

5.1. Sparse Matrix Models

For testing and analysis, we have extensively used three main models: the R-MAT
model, the Erd̋os-Ŕenyi random graph model, and the regular 3D grid model.

5.1.1. Synthetic R-MAT Graphs
The R-MAT matrices represent the adjacency structure of scale-free graphs, gen-

erated using repeated Knonecker products [34, 35]. R-MAT models the behavior of
several real-world graphs such as the WWW graph, small world graphs, and citation
graphs. We have used an implementation based on Kepner’s vectorized code [36],
which generates directed graphs. Unless otherwise stated,R-MAT matrices used in
our experiments have an average of degree of 8, meaning that there will be approxi-
mately 8n nonzeros in the adjacency matrix. The parameters for the generator matrix
area = 0.6, andb = c = d = 0.13. As the generator matrix is 2-by-2, R-MAT matrices
have dimensions that are powers of two. An R-MAT graph withscale l hasn = 2l

vertices.

5.1.2. Erdős-Rényi Random Graphs
An Erdős-Ŕenyi random graphG(n, p) hasn vertices, each of the possiblen2 edges

in the graph exists with fixed probabilityp, independent of the other edges [37]. In
other words, each edge has an equally likely chance to exist.A matrix modeling the
Erdős-Ŕenyi graphG(n, p) is expected to have withn2/p nonzeros, independently and
identically distributed (i.i.d.) across the matrix. Erdős-Ŕenyi random graphs can be
generated using thesprand function of M.

5.1.3. Regular 3D Grids
As the representative of regular grid graphs, we have used matrices arising from

graphs representing the 3D 7-point finite difference mesh (grid3d). These input ma-
trices, which are generated using the M Mesh Partitioning and Graph Separator
Toolbox [38], are highly structured block diagonal matrices.

5.2. Estimated Speedup of Parallel Algorithms

This study estimates the speedup of 1D and 2D algorithms by using a quasi-analytic
model that projects the performance on large systems using realistic values for the
performance parameters.



In order to obtain a realistic value forγ, we performed multiple runs on an AMD
Opteron 8214 (Santa Rosa) processor using matrices of various dimensions and spar-
sity; estimating the constants using non-linear regression. One surprising result is the
order of magnitude difference in the constants between sequential kernels. The classi-
cal algorithm, which is used as the 1D SpGEMM kernel, hasγ = 293.6 nsec, whereas
H GEMM, which is used as the 2D kernel, hasγ = 19.2 nsec. We attribute
the difference to cache friendliness of the hypersparse algorithm.The interconnect
supports 1/β = 1 GB/sec point-to-point bandwidth, and a maximum ofα = 2.3 mi-
croseconds latency, both of which are achievable on TACC’s Ranger Cluster. The
communication parameters ignore network contention.
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Figure 17: Modeled speedup of Synchronous Sparse 1D algorithm

Figures 17 and 18 show the modeled speedup of B1D PSGEMM and C-
 PSGEMM for matrix dimensions fromn = 217 to 224 and number of processors
from p = 1 to 4096. The inputs are Erdős-Ŕenyi graphs.

We see that B1D PSGEMM’s speedup does not go beyond 50x, even on
larger matrices. For relatively small matrices, having dimensionsn = 217−220, it starts
slowing down after a thousand processors, where it achievesless than 40x speedup. On
the other hand, C PSGEMM shows increasing and almost linear speedup for up
to 4096 processors, even though the slope of the curve is lessthan one. It is crucial
to note that the projections for the 1D algorithm are based onthe memory inefficient
implementation that performs an all-to-all broadcast ofB. This is because the original
memory efficient algorithm given in Section 3.1 actually slows down asp increases.

It is worth explaining one peculiarity. The modeled speedupturns out to be higher
for smaller matrices than for bigger matrices. Remember that communication require-
ments are on the same order as computational requirements for parallel SpGEMM.
Intuitively, the speedup should be independent of the matrix dimension in the absence
of load imbalance and network contention, but since we are estimating the speedup
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Figure 18: Modeled speedup of synchronous Sparse Cannon

with respect to the optimal sequential algorithm, the overheads associated with the hy-
persparse algorithm are bigger for larger matrices. The bigger the matrix dimension,
the slower the hypersparse algorithm is with respect to the optimal algorithm, due to
the extra logarithmic factor. Therefore, speedup is betterfor smaller matrices in theory.
This is not the case in practice, because the peak bandwidth is usually not achieved
for small sized data transfers and load imbalances are severer for smaller matrices.
Section 7.1 addresses the load imbalance.

We also evaluate the effects of overlapping communication with computation. Fol-
lowing Krishnan and Nieplocha [39], we define the non-overlapped percentage of com-
munication as:

w = 1−
Tcomp

Tcomm
=

Tcomm− Tcomp

Tcomm

The speedup of the asynchronous implementation is:

S =
W

Tcomp+ w(Tcomm)

Figure 19 shows the modeled speedup of asynchronous SpCannon assuming truly
one-sided communication. For smaller matrices with dimensionsn = 217−220, speedup
is about 25% more than the speedup of the synchronous implementation.

The modeled speedup plots should be interpreted as upper bounds on the speedup
that can be achieved on a real system using these algorithms.Achieving these speedups
on real systems requires all components to be implemented and working optimally. The
conclusion we derive from those plots is that no matter how hard we try, it is impossible
to get good speedup with the current 1D algorithms.
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Figure 19: Modeled speedup of asynchronous Sparse Cannon

5.3. Scalability with Hypersparsity

This modeling study reveals the scalability of our hypersparse algorithm with in-
creasing sparsity. We have implemented our data structuresand multiplication algo-
rithms in C++. Our code is compiled using the GNU Compiler Collection (GCC)
Version 4.1, with the flags-03, because these are the settings that our comparison
platform, M, is compiled with. We have incorporated Peter Sander’s Sequence
Heaps [40] for all the priority queues used by our algorithms. Througout the experi-
ments, the numerical values are represented as double-precision floating points.

We compare the performance of our implementation with M R2007A’s (64-
bit version) implementation of the classical algorithm. Sparse matrix multiplication is
a built-in function in M, so there are no interpretation overheads associated with
it. We are simply comparing our C++ code with the underlying precompiled C code
used in M.

All of our experiments are performed on a single core of Opteron 2.2 Ghz with
64 GB main memory, where we simulate the execution of a parallel SpGEMM. The
simulation is done by dividing the input matrices of sizen × n into p submatrices of
size (n/

√
p) × (n/

√
p) using the 2D block decomposition, as explained in Section 3.2

and shown in Figure 4.
Expressing the matrix multiplication as algebraic operations on submatrices instead

of individual elements, we see that each submatrix of the product is computed using

Ci j =
∑√p

k=1 Aik Bk j. Since we are primarily concerned with the sequential sparse matrix
multiplication kernel, we will exclude the cost of submatrix additions and other parallel
overheads. That is to say, we will only time the submatrix multiplications, exactly
plotting

time(p,A,B) =

√
p∑

i=1

√
p∑

j=1

√
p∑

k=1

time(Aik Bk j),



which is equal to the amount of work done by a parallel matrix multiplication algorithm
such as SUMMA [29].

Increasingp in this case does not mean we use more processors to compute the
product. Instead, it means we use smaller and smaller blockswhile computing the
product on a single processor. Therefore, a perfectly scalable algorithm would yield
flat timing curves asp increases. We expect our hypersparse algorithm to outperform
the classical algorithm asp increases due to reasons explained in Section 2.2. We
label the classical algorithm M, and our algorithm H GEMM in the
plots. The second input is only transposed once because thisis what would happen in
a parallel implementation.

In all experiments in this section, the input matrices have dimensions 223× 223, i.e.
the input graphs have around 8 million vertices.

5.3.1. Synthetic R-MAT Graphs
We ran two main sets of multiplication experiments with R-MAT matrices, one

where both input matrices are R-MAT, and one whereA is a R-MAT matrix andB is a
permutation matrix. The results are shown in Figures 20(a) and 20(b).

 1250

 1000

 750

 500

 250

 1024 256 64 16 4 1

T
im

e 
(s

ec
s)

Processors

Hypersparse-GEMM
Matlab

(a) Multiplying R-MAT matrices (R-MAT× R-
MAT)
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(b) Permuting an R-MAT matrix (R-MAT×
Perm)
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(c) Multiplying matrices from Erd̋os-Ŕenyi
graphs (Rand× Rand)
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(d) Multiplying matrices from geometric graphs
(grid3d × grid3d)

Figure 20: Model of scalability of SpGEMM kernels



In the case of R-MAT× R-MAT, the classical sequential algorithm is initially faster
than H GEMM. For p > 64, however, the classical algorithm starts perform-
ing poorly because submatrices start getting hypersparse.To see why, consider the ratio
of nnzto n for each submatrix:

nnz(Ai j )

n/
√

p
=

8n/p
n/
√

p
=

8
√

p

This ratio is smaller than 1 forp > 64, and does to 0 asp increases, making submatrices
hypersparse. Forp = 1024, our algorithm performs more than 5 times faster than the
classical algorithm. Its scaling is also very good, showingalmost flat curves.

In the case of multiplying an R-MAT matrix with a permutationmatrix (R-MAT
× Perm), poor scalability of the classical algorithm is more apparent. Our algorithm
starts to outperform for as low asp > 4. The break-even point after which our algorithm
dominates is lower in this case because permutation matrices are more sparse with only
1 nonzero per column/row.

5.3.2. Erdős-Rényi Random Graphs
We have conducted a single set of experiments where we multiply two matri-

ces representing Erdős-Ŕenyi random graphs. Looking at the timings shown in Fig-
ure 20(c), we see that the H GEMM dominates the classical algorithm (as
implemented in Matlab) for most values forp > 64, when used as the sequential kernel
of a 2D parallel SpGEMM. More importantly, when we reach thousands of proces-
sors, our algorithms show their scalability for these inputtypes as well. In particular,
H GEMM is more than 4 times faster than the classical algorithmfor 1024
processors when multiplying Erdős-Ŕenyi random matrices.

5.3.3. Regular 3D Grids
For our last set of experiments, we have usedgrid3d matrices. These matrices

have a banded structure, which makes them unsuitable for 2D block decomposition
since the off-diagonal processors sit idle without storing any nonzerosand performing
any computation. Even though we are just timing the computational costs, ignoring
parallelization overheads in this modeling study, the imbalance has an effect on the
timing of submatrix multiplications. In particular, the heavy diagonals avoid hyper-
sparsity to emerge, thus favoring the classical algorithm in this unrealistic setting.

To remedy this problem, we perform random permutations of vertices on both
inputs before performing the multiplication. In other words, instead of computing
C = AB, we computeC′ = A′B′ = (PAPT)(PBPT) = PCPT. Even after apply-
ing random symmetric permutations, submatrices in the diagonal are expected to have
more nonzeros than others. This is because symmetric permutations essentially relabel
the vertices of the underlying graph, so they are unable to scatter the nonzeros in the
diagonal.

Multiplications among diagonal blocks favor the classicalsequential kernel because
diagonal blocks can never become hypersparse no matter how much p increases. Mul-
tiplication among off-diagonal blocks are more suitable for our hypersparse kernel.
More technically, our observation means

flops(Aii Bii ) > flops(Aii Bi j ) > flops(Aik Bk j).



Therefore, the variances in timings of submatrix multiplications are large compared
with other sets of test matrices.

Asymptotic behavior of the algorithms is also slightly different in this case as it can
be seen in Figure 20(d). Yet, our algorithm is around 4 times faster than the classical
algorithm forp = 1024.



6. Parallel Scaling of Sparse SUMMA

6.1. Experimental Design

We have implemented two versions of the 2D parallel SpGEMM algorithms in
C++. The first one is directly based on Sparse SUMMA and synchronous in nature.
It does not use any MPI-2 features. The second implementation is asynchronous and
uses one-sided communication features of MPI-2. In this section, we report on the
performance of the synchronous implementation only and leave the results of the asyn-
chronous implementation to Section 7.3. We ran our code on the TACC’s Ranger Clus-
ter, which has four 2.3GHz quad-core processors in each node(16 cores/node). It has
an Infiniband interconnect with 1GB/sec unidirectional point-to-point bandwidth and
2.3 microseconds max latency. We have experimented with multiple compilers and
MPI implementations. We report our best results, which we achieved usingOpenMPI
v1.3b andGNU Compiler (g++ v4.4) with flag-O3.

For both implementations, our sequential H GEMM routines return a set
of intermediate triples that are kept in memory up to a certain threshold without being
merged immediately. This allows for a more balanced merging, thus eliminating some
unnecessary scans that degraded performance in a preliminary implementation [31].

In our experiments, instead of using random matrices (matrices from Erd̋os-Ŕenyi
random graphs), we used synthetically generated RMAT matrices, in order to achieve
results closer to reality. The average number of nonzeros per column is 8 for those
synthetically generated graphs.

6.2. Experimental Results

6.2.1. Square Sparse Matrix Multiplication
In the first set of experiments, we multiply two R-MAT matrices that are struc-

turally similar. This square multiplication is representative of the expansion operation
used in the Markov clustering algorithm [41]. It is also a challenging case for our im-
plementation due to high skew in nonzero distribution. We performed strong scaling
experiments for different matrix dimensions ranging from 221 to 223. Figure 21 shows
the speedup we achieved. The graph shows linear speedup (with slope 0.5) until around
50 processors; afterwards the speedup is proportional to the square root of the number
of processors. Both results are in line with our analysis in Section 4.2.

6.2.2. Tall Skinny Right Hand Side Matrix
The second set of experiments involves multiplication of R-MAT matrices by tall

skinny matrices of varying sparsity. This set of experiments serves multiple purposes.
Together with the next set of experiments, they reveal the sensitivity of our algorithm
to matrix orientations. It also examines the sensitivity tosparsity, because we vary the
sparsity of the right hand side matrix. Lastly, it is representative of the parallel breadth-
first search that lies in the heart of our distributed-memorybetweenness centrality im-
plementation, which is described in more detail in Chapter 5of the first author’s the-
sis [17]. We varied the sparsity of the right hand side matrixfrom approximately 1
nonzero per column to 105 nonzeros per column, with multiplicative increments of 10.
This way, we imitate the patterns of the betweenness centrality execution where at each
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level of breadth-first search, the current frontier (fringe) has as low as a few vertices
but it can have as high as 300000 vertices. Figure 22 plots thenumber of vertices in
the fringe at each level of the breadth-first search for 10 different runs (with different
starting vertices) on a network of 1 million vertices and 8 million edges.

For our experiments, the R-MAT matrices on the left hand sidehavec1 = 8 nonze-
ros per column and their dimensions vary fromn = 220 to n = 226. The right hand
side matrix is of sizen-by-k, and its number of nonzeros per column,c2 is varied from
1 to 105, with multiplicative increments of 10. Its width,k, varies from 128 to 8192
that grows proportionally to its lengthn. Hence, the total work isW = O(c1c2k), the
total memory consumption isM = O(c1n+ c2k), and total bandwidth requirement is is
O(M

√
p).

We performed scaled speedup experiments where keep bothn/p = 214 andk/p = 2
constant. This way, we were able to keep both memory consumption per processor and
work per processor constant at the same time. However, bandwidth requirements per
processor increases by a factor of

√
p.

Figure 23 shows the three-dimensional performance graph. The timings for each
slice along the XZ-plane (i.e. for everyc2 = {1,10, ...,105} contour), is normalized
to its running time onp = 64 processors. We do not cross-compare the absolute
performances using differentc2 values, as our focus in this section is parallel scaling.
The graph demonstrates that, except for the outlier casec2 = 1000, we achieve the
expected

√
p slowdown due to communication costs. The performance we achieved

for these large scale experiments, where we ran our code on upto 4096 processors, is
remarkable.

6.2.3. Multiplication with the Restriction Operator
The multilevel method is widely used in the solution of numerical and combinato-

rial problems [42]. The method constructs smaller problemsby successive coarsening
of the problem domain. The simplest coarsening is perhaps graph contraction. One
contraction step chooses two or more vertices in the original graphG to become a sin-
gle aggregate vertex in the contracted graphG′. The edges ofG that used to be incident
to any of the vertices forming the aggregate now become incident to the new aggregate
vertex inG′.

Constructing a coarser grid during the V-cycle of the Algebraic Multigrid (AMG)
method [11] or graph partitioning [43] is a generalized graph contraction operation.
Different algorithms need different coarsening operators. For example, a weighted (as
opposed to strict) aggregation [44] might be preferred for partitioning problems. In
general, coarsening can be represented as multiplication of the matrix representing the
original fine domain (grid, graph, or hypergraph) by the restriction operator.

In this experiments, we use a simple restriction operation to perform graph con-
traction. Gilbert et al. [6] describe how to perform contraction using SpGEMM. Their
elegant algorithm creates a special sparse matrixS with n nonzeros. The triple product
SAST contracts the whole graph at once. MakingS smaller in the first dimension while
keeping the number of nonzeros same changes the restrictionorder. For example, we
contract the graph into half by usingS having dimensionsn/2× n, which is said to be
of order 2.
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Figure 24 shows the strong scaling of the operationAST for R-MAT graphs of scale
23. We used restrictions of order 2, 4, and 8. Changing the interpolation order results
in minor changes in performance. The experiment shows good scaling for up to 1024
processors.
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7. Alternative Parallel Approaches

7.1. Load Balancing and Asynchronous Algorithms

In distributed memory dense matrix-matrix multiplicationalgorithms, each proces-
sor performs a total ofW/p work whereW = N3. The sparse inputs are not so naturally
balanced. Our experiments with randomly relabeling vertices (in matrix terms, ap-
plying a symmetric permutation) showed good premise where the maximum overall
work for a single processor was only 9% more than the average work per processor,
even when the initial matrix has significantly skewed degreedistribution2. Aiming for
perfect load balance via graph or hypergraph partitioning [45, 46, 47] seems imprac-
tical whenever the matrices are not reused. Even when one of the matrices are fixed
throughout the computation, load balance for SpGEMM can notbe determined solely
based on one operand, unlike SpMV. We do not know of any applications where both
matrix operands have fixed structure for several subsequentmultiplication operations,
which might have justified complex load balancing.

The sparse 2D algorithms presented in previous sections execute in a synchronous
manner ins stages in their naive form. For sparse matrices, achieving good load bal-
ance per stage is harder than achieving load balance for the whole computation. This is
because a local submatrix update such asCi, j ← Ci, j +Ai,kBk, j might have significantly
more work to do than another update at the same stage, sayCi+1, j ← Ci+1, j +Ai+1,kBk, j .
However, in a subsequent stage the roles of the (i, j)th and the (i + 1, j)th processor
might swap; hence balancing the load across stages. On the other hand, a barrier syn-
chronization at each stage forces everyone to wait for the slowest update until they can
proceed to the next stage. Hence, we expect an asynchronous algorithm to perform
better than a synchronous one for matrices with highly skewed nonzero distribution.

In order to quantify the severity of load imbalance, we performed a simulation of
the Sparse Cannon algorithm that accounts for the computation (in terms of the number
of actual flops only) and communication (nnzonly) done by each processor. We varied
the matrix dimension and the number of processors while the number of nonzeros per
row/column were kept constant. For RMAT matrices with 8 nonzerosper column, the
per-stage load imbalance with 256 processors is shown in Figure 25. Load imbalance
is defined as the ratio of the maximum number of flops performedby any processor
to the average number of flops. These plots are typical in the sense that we permuted
the input matrices multiple times with different random permutations and plotted the
results of the permutation that resulted in the median load imbalance.

Figure 26(a) shows the overall load imbalance for increasing matrix sizes on 256
processors. The problem becomes well balanced (i.e. it has less 10% load imbalance)
for R-MAT inputs of scale 20 and larger. On the other hand, Figure 26(b) shows a
comparison of the trends of overall and per-stage imbalances (average over all stages)
with increasing number of processors and a fixed problem size.

These results on Figures 25 and 26 suggest that per-stage load balance is signifi-
cantly harder to achieve than load balance for the overall computation. Both tend to
decrease as the problem size gets bigger, although per-stage load imbalance has much

2For sufficiently large matrices on 256 processors, as shown in Figure 26
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Figure 25: Load imbalance per stage for multiplying two RMATmatrices on 256 pro-
cessors using Sparse Cannon
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wider variance and tends to decrease less smoothly than the overall load imbalance.
The average per-stage load imbalance across all stages is 1.46 for inputs of scale 20.
This means that a synchronous Sparse Cannon is likely to achieve 46% less speedup
than we estimated in Section 5.2. By contrast, a perfectly asynchronous implementa-
tion would only pay 9% performance penalty due to load imbalance.

One-sided communication is the most suitable paradigm for implementing asyn-
chronous SpGEMM. We used one-sided MPI-2 routines for portability, as GASNet [48]
and ARMCI [49] are not as widely supported on supercomputers. It is still worth men-
tioning that even MPI poses some complications due to immaturity of implementations
and vagueness in parts of the standard. We report our performance results using the
passive target synchronization [50].

MPI-1 standard is inadequate to address the asynchronous implementation chal-
lenge. The blocking operations do trivially synchronize, and the non-blocking oper-
ations buffer the message and revert to a synchronous mode whenever the data is too
large to fit in the buffers [51]. The basic requirement of an asynchronous SpGEMM is
that the (i, j)th processor should be able to fetch its required submatrixfrom its orig-
inal owner regardless of its computation stage at that moment. Although this can be
achieved by the use of a helper thread that waits on the Send()operation, ready to serve
any incoming Recv() requests, this approach has two drawbacks. Firstly, there is a
substantial performance loss due to oversubscribing the processor. Secondly, general
multithreaded MPI support is still in its infancy3.

7.2. Overlapping Communication with Computation

In order to hide communication costs as much as possible, each processor starts
prefetching one submatrix ahead while computing its current submatrix product. More
concretely, processorP(i, j) starts prefetchingAi,k+1 andBk+1, j while computingAi,kBk, j .
To keep the memory footprint the same as the synchronous Sparse SUMMA, we split
the submatrices in half, so that each processor performs 2

√
p submatrix multiply-adds

instead of
√

p. The distribution of matrixA on a single processor row is shown in
Figure 27.

7.3. Performance of the Asynchronous Implementation

The pseudocode for our asynchronous implementation (in MPI/C++ notation) is
shown in Figure 28. This implementation achieves two goals at once. It overlaps com-
munication with computation as much as possible by prefetching subsequent subma-
trices while working on the multiplication of the current submatrices. It also achieves
better load balance because it allows each processor to proceed independently without
any global synchronizations.

Figure 29 compares the performance of the asynchronous implementation with the
synchronous Sparse SUMMA implementation for the scale 22 R-MAT ×R-MAT prod-
uct. Although they scale similarly well, the synchronous implementation is 6− 47%
faster.

3OpenMPI’s MPITHREAD MULTIPLE support, which failed in our tests, is known to be untested
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Figure 27: The split distribution of matrixA on a single processor row

Overall poor performance of the asynchronous implementation is partly due to the
extra operations such as splitting and joining matrices. However, their share in the
computation time goes down as we increase the number of processors, so this does not
explain the performance difference on large number of processors.

We first thought the performance hit was due to the progress threads that are used
by MPI implementations on Infiniband [52] to ensure asynchronous progress. On the
other hand, we ran the same code using 4 threads per node so that the progress threads
will not oversubscribe the individual cores. Figure 30 shows that the performance
difference between the synchronous and asynchronous implementations grows as we
use less cores per node. Either our asynchronous implementation, which uses one-
sided point-to-point communication instead of blocking collective communication, or
the underlying MPI implementation does not take full advantage of the extra bandwidth
available per core.

We are not able to explain the load imbalance that happens in practice. LetTp be
the time to complete the SpGEMM procedure on p processors. IfTi is the time for the
ith processor to complete its local procedure, thenTp = max(Ti) over all i due to wait
times. For the asychronous implementation, our preliminary profiling (on 256 cores)
revealed that the fastest processor spends more time waiting for the other processors
than doing useful computation. On average, a processor spent about 1/3rd of its time
waiting.

The slowdown due to the asynchronous execution was previously experienced on
the Connection Machine CM5 [53] on programs with regular communication patterns.
Brewer and Kuszmaul [54] found out that an initial skew of processors slowed down
the overall computation on the CM5, as receiver queues started to back off. The CM-5
data network is similar to Ranger’s, in the sense that they both use a fat-tree [55] in-
terconnect. However, the problem with the CM-5 was the contention on the receivers
due to the computational cost of receiving packets. Ranger’s Infiniband interconnect,
on the other hand, has RDMA support for this task. However, wedo not know whether
MPI-2 functions have been implemented to fully take advantage of the network’s ca-
pabilities. In conclusion, revealing the exact cause of thepoorer performance of the
asynchronous implementation needs further research and more performance profiling.



/ / M1 i s t h e f i r s t h a l f o f t h e l o c a l m a t r i x M, M2 i s t h e second
vec to r<Win> rwf = CreateWindows ( RowWorld , A1 ) ;
vec to r<Win> rws = CreateWindows ( RowWorld , A2 ) ;
vec to r<Win> cwf = CreateWindows ( ColWorld , A1 ) ;
vec to r<Win> cws = CreateWindows ( ColWorld , A2 ) ;

/ / Each window i s made a c c e s s i b l e t o i t s n e i g h b o r s i n t h e i r
/ / r e s p e c t i v e p r o c e s s o r row ( i n t h e case o f A) and
/ / p r o c e s s o r column ( i n t h e case o f B)
ExposeWindows ( ) ;

/ * Per form i n i t i a l two f e t c h e s and m u l t i p l y f i r s t h a l f s* /

f o r ( i n t i = 1 ; i < s t a g e s ; ++ i ) / / main loop
{

CResu l t += SpGEMM(* ARecv1 , * BRecv1 , f a l s e , t rue ) ;

/ / wa i t f o r t h e p r e v i o u s second h a l f s t o comp le te
Comple teFetch ( rws ) ;
Comple teFetch ( cws ) ;

Aowner = ( i +A o f f s e t ) % s t a g e s ;
Bowner = ( i +B o f f s e t ) % s t a g e s ;

/ / s t a r t f e t c h i n g t h e c u r r e n t f i r s t h a l f
S t a r t F e t c h ( ARecv1 , Aowner , rwf ) ;
S t a r t F e t c h ( BRecv1 , Bowner , cwf ) ;

/ / w h i l e m u l t i p l y i n g ( comp le ted ) p r e v i o u s second h a l f s
CResu l t = SpGEMM(* ARecv2 , * BRecv2 , f a l s e , t rue ) ;

/ * now wa i t f o r t h e c u r r e n t f i r s t h a l f t o comp le te* /
/ * s t a r t p r e f e t c h i n g t h e c u r r e n t second h a l f* /

}
/ * per fo rm t h e l a s t p i e c e s o f compu ta t i on* /

Figure 28: Partial C++ code partial for asynchronous SpGEMM using one-sided com-
munication and split prefetching for overlapping communication with computation
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8. Future Work

Our mathematical modeling of the parallel algorithms in Section 3 is an average-
case analysis assuming independent uniform random distribution of nonzeros, which
translates into the Erdős-Ŕenyi random graph model. More realistic models should
assume skewed nonzero distributions, such as power-law distributions. Ultimately,
average case analysis has its limitations because it needs to assume an underlying dis-
tribution. On the other hand, worst case analysis does not make a lot of sense for our
problem, because there are certain sparse matrix pairs thatwill create a dense output
when multiplied. Therefore, a smoothed analysis [56] of thesparse matrix multiplica-
tion algorithms, both sequentially and in parallel, would be a significant advancement,
although it is far from clear how to apply the principles of smoothed analysis to an
algorithm with discrete inputs.

Load imbalance is not severe for sufficiently large matrices, even in the absence
of asynchronous progress. Our one-sided communication approach was based on re-
mote get operations in order to avoid fence synchronization. Given the acceptable load
balance for large matrices, it is worth exploring an option with fence synchronization
and remote put operations. This proposed implementation will still use one-sided com-
munication but all processors in the processor row/column will need to synchronize
after the put operation. We expect better performance because it only takes one trip to
complete a remote put operation whereas remote get requiresa roundtrip.

Our SpGEMM routine might be extended to handle matrix chain products. In par-
ticular, the sparse matrix triple product (RAP) is heavily used in the coarsening phase of
the algebraic multigrid method [57]. Sparse matrix indexing and parallel graph contrac-
tion also require sparse matrix triple product [6]. The support for sparse matrix chain
products eliminates temporary intermediate products and allows more optimizations,
such as performing structure prediction [25] and finding theoptimal parenthesization
based on the sparsity of the inputs.

Finally, there is a need for hierarchical parallelism due tovast differences in the
costs of inter-node and intra-node communication. The flat parallelism model does not
only lose the opportunity to exploit the faster on-chip network, but it also increases
the contention on the off-chip links. We observed that the inter-node communication
becomes slower as the number of cores per node increases because more processes
are competing for the same network link. According to our preliminary experiments
on 1024 cores, Sparse GEMM runs more than 80% faster if we use only 4 cores per
node, compared to utilizing all 16 available cores per node.Therefore, designing a
hierarchically parallel Sparse GEMM algorithm is an important future direction.
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