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1. Introduction

Development and implementation of large-scale parallaplgralgorithms poses
numerous challenges in terms of scalability and produgtiidi, 2]. Linear algebra
formulations of many graph algorithms already exist in iterature [3, 4, 5]. By ex-
ploiting the duality between matrices and graphs, linegelaaic formululations aim
to apply the existing knowledge on parallel matrix algarithto parallel graph algo-
rithms. One of the key linear-algebraic primitives for gnagdgorithms is computing
the product of two sparse matrices (SpGEMM) over a semitinggrves as a building
block for many algorithms including graph contraction [Bieadth-first search from
multiple source vertices, peer pressure clustering [Qungive formulations of all-
pairs shortest-paths algorithms [8], matching algoritfi@sand cycle detection [10],
as well as for some other applications such as multigridpaiationrestriction [11],
and parsing context-free languages [12].

Most large graphs in applications, such as the WWW graph, fhé@ment meshes,
planar graphs, and trees, are sparse. In this work, we a@maigraph to be sparse if
nnz= O(n), wherennzis the number of edges amds the number of vertices. Dense
matrix multiplication algorithms are ifigcient for SpGEMM since they requi@(n®)
space and the current fastest dense matrix multiplicatgorithm runs inO(n?38) [13,
14] time. Furthermore, fast dense matrix multiplicatiogaalthms operate on a ring
instead of a semiring, which makes them unsuitable for mdggrishms on general
graphs. For example, it is possible to embed the semirirtive ring of integers for
the all-pairs shortest-paths problem on unweighted andertdd graphs [14], but the
same embedding does not work for weighted or directed grdi#is

Let A € S™" be a sparse rectangular matrix of elements from an arbisemjiring
S. We usennZA) to denote the number of nonzero element&inWhen the matrix
is clear from context, we drop the parenthesis and simplynunge For sparse matrix
indexing, we use the convenientsMas® colon notation, wherd(:, i) denotes théth
column,A(i, :) denotes théh row, andA(i, j) denotes the element at thejjth position
of matrix A. For one-dimensional arraya(i) denotes théh component of the array.
Sometimes, we abbreviate and use(j) to denote the number of nonzeros elements
in the jth column of the matrix in context. Array indices are 1-bagedughout this
paper. We use flopa(opB), pronounced “flops”, to denote the number of nonzero
arithmetic operations required by the operatfoapB. Again, when the operation and
the operands are clear from context, we simply use flops.

The most widely used data structures for sparse matricéBafeompressed Sparse
Columns (CSC) and Compressed Sparse Rows (CSR) [16]. Thadebapter of the
first author’s thesis [17] give concise descriptions of cann$pGEMM algorithms
operating both on CSCSR and triples. The SpGEMM problem was recently recon-
sidered by Yuster and Zwick [18] over a ring, where the alghuse a fast dense matrix
multiplication such as arithmetic progression [13] as arsutine. Their algorithm
usesO(nn27 n'2 + n?+°M) arithmetic operations, which is theoretically close tdi-op
mal only if we assume that the number of nonzeros in the iieguthatrix C is @(n?).
This assumption rarely holds in reality. Instead, we prevadwork sensitive analy-
sis by expressing the computation complexity of our SpGEM@b@thms in terms of
flops.



Practical sparse algorithms have been proposed fiigreint researchers over the
years [19, 20] using various data structures. Although Hahieve reasonable perfor-
mance on some classes of matrices, none of these algorithperforms the classical
sparse matrix-matrix multiplication algorithm for genlesparse matrices, which was
first described by Gustavson [21] and was used in Matlab [B&]@Sparse [23]. The
classical algorithm runs i@(flops+ nnz+n) time.

In Section 2, we present two novel algorithms for sequeSEGEEMM. The first
one is geared towards computing the product of hypersparse matrices. A matrix
is hypersparse if the ratio of nonzeros to its dimension ysngotically 0. It is used
as the sequential building block of our parallel 2D algarithdescribed in Section 3.
Our Hyrersparse_GEMM algorithm uses a neW@(nn2 data structure, calleBCSC
for doubly compressed sparse columns, which is explained in Section 2.2. TherH
PERSPARSE_GEMM is based on the outer-product formulation and has tiorepiexity
O(nzqA) + nzr(B) + flops- Ig ni), wherenzdA) is the number of columns &k that
contain at least one nonzenozr(B) is the number of rows oB that contain at least
one nonzero, andi is the number of indicesfor which A(;,i) # 0 andB(i,:) # 0.
The overall space complexity of our algorithm is o@nnZA) + nnAB) + nnZC)).
Notice that the time complexity of our algorithm does notelggh onn, and the space
complexity does not depend on flops.

Section 3 presents parallel algorithms for Sp GEMM. We psepmovel algorithms
based on 2D block decomposition of data in addition to gitiregcomplete description
of an existing 1D algorithm. To the best of our knowledge afiat algorithms using
a 2D block decomposition have not earlier been developedgarse matrix-matrix
multiplication.

Toledo et al. [24] proved that 2D dense matrix multiplicatadgorithms are optimal
with respect to the communication volume, making 2D spalgerithms likely to be
more scalable than their 1D counterparts. In Section 4, w ghat this intuition is
indeed correct by providing a theoretical analysis of thealkel performance of 1D
and 2D algorithms.

In Section 5, we model the speedup of parallel SpGEMM alborit using realis-
tic simulations and projections. Our results show thattadslD algorithms are not
scalable to thousands of processors. By contrast, 2D #igmihave the potential for
scaling up indefinitely, albeit with decreasing parallilaiency, which is defined as
the ratio of speedup to the number of processors.

Section 6 describes the experimental setup we used foragiraglour Sparse SUMMA
implementation, and presents the final results. We desothmr techniques we have
used for implementating our parallel algorithms, and tleffiects on performance in
Section 7. Section 8fters some future directions.



2. Sequential Sparse Matrix Multiply

We first analyze dferent formulations of sparse matrix-matrix multiplicatios-
ing the layered graph model in Section 2.1. This graph thmaideexplanation gives
insights on the suitability of the outer-product formutatifor multiplying hypersparse
matrices Hrersparse_GEMM. Section 2.2 defines hypersparse matrices and Sec8on 2
introduces the DCSC data structure that is suitable to $typersparse matrices. We
present our Kprersparse_GEMM algorithm in Section 2.2.

2.1. Layared graphs for gfierent formulations of SpGEMM

Matrix multiplication can be organized in manyfidirent ways. The inner-product
formulation that usually serves as the definition of matridtiplication is well-known.
Given two matriceA € R™* andB e R®", each element in the produCte R™" is
computed by the following formula:

k
Chi, j) = > AG DB, j). (1)
1=1

This formulation is rarely useful for multiplying sparse tmees since it requires
Q(mn) operations regardless of the sparsity of the operands.

We represent the multiplication of two matricRsandB as a three layered graph,
following Cohen [25]. The layers have, k andn vertices, in that order. The first layer
of vertices U) represent the rows ok and the third layer of verticed/] represent
the columns oB. The second layer of vertice8\j represent the dimension shared
between matrices. Every nonzek@i, 1) # O in theith row of A forms an edgel(, w)
between the first and second layers and every nonzeBd i) # 0 in the jth column
of B forms an edgew, v;) between the second and third layers.

We perform diferent operations on the layered graph depending on the way we
formulate the multiplication. In all cases though, the geab find pairs of vertices
(ui,v;) sharing an adjacent vertex, € W, and if any pair shares multiple adjacent
vertices, to merge their contributions.

Using inner products, we analyze each pait\(j) to find the set of vertices in
VTU- C W = {wy, Wy, ..., W} that are connected to bothh amdyv; in the graph shown in
Figure 1. The algorithm then accumulates contributianshy; for all w; € W” The
result becomes the value ©fi, j) in the output. In general this inner-product subgraph
is sparse, and a contribution from happens only when both edgasandby; exist.
However, this sparsity is not exploited using inner prodias it needs to examine each
(u;, v;) pair, even when the s&¥; is empty.

In the outer-product formulation, the product is writterttzss summation ok rank
one matrices:

k
C=> AGDB(,). )
1=1

A different subgraph results from this formulation as it is theodaterticesW
that represent the shared dimension that play the centeal Kwte that the edges are
traversed in the outward direction from a nogee W, as shown in Figure 2. For



Figure 1: Graph representation of the inner prodh@t:) - B(:, j)

suficiently sparse matrices, this formulation may run fasterabee this traversal is
performed only for the vertices M (sizek) instead of the inner product traversal that
had to be performed for every pair (siza). The problem with outer-product traversal
is that it is hard to accumulate the intermediate resultstim final matrix.

A row-by-row formulation of matrix multiplication performa traversal starting
from each of the vertices i towardsV, as shown in Figure 3 fay. Each traversal
is independent from each other because they generdésetit rows ofC. Finally, a
column-by-column formulation creates an isomorphic treak in the reverse direction
(fromV to U).

2.2. Hypersparse Matrices

One conventional storage format for sparse matrices is threptessed Sparse
Rows (CSR) format, which stores the nonzeros in consecldiza&tions and main-
tains pointers to the first nonzero element of each row. Dukdse pointers, it takes
O(n + nn2 space for am-by-n matrix. Recall that a matrix is hypersparseaifz < n.
Although CSR is a fairly flicient storage scheme for general sparse matrices having
nnz= Q(n), it is asymptotically suboptimal for hypersparse masiddypersparse ma-
trices are fairly rare in numerical linear algebra (indegaonsingular square matrix
must havennz > n), but they occur frequently in computations on graphs,ipalerly
in parallel.

Our main motivation for hypersparse matrices comes froralfgprocessing. Hy-
persparse matrices arise after the 2-dimensional bloegkatomposition of ordinary
sparse matrices for parallel processing. Consider a spaag@x with ¢ nonzero el-
ements in each column. After the 2D decomposition of the impatiach processor
locally owns a submatrix with dimensions/(y/p) X (n/ 4/p). Storing each of those
submatrices in CSC format tak€%n+/p + nn2 space, whereas the amount of space
needed to store the whole matrix in CSC format on a singlegasar is only®(n+nn2.

As the number of processors increases ik term dominates thenzterm.



Figure 2: Graph representation of the outer prod\(cti) - B(i, :)

Figure 3: Graph representation of the sparse row times xatoductA(i,:) - B
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Figure 4: 2D Sparse Matrix Decomposition

J = 1 3 3 3 33 3 455
3 Lol
IR = 6 8 4 2
NUM = 01 02 03 04

Figure 5: MatrixA in CSC format

Figure 4 shows that the average number of nonzeros in a sioglenn of a sub-
matrix, nnZj), goes to zero ap increases. Storing a graph using CSC is similar to
using adjacency lists. The column-pointers array repitegée vertices, and the row-
indices array represents their adjacencies. In that S&@f3€,is a vertex based data
structure, making it suitable for 1D (vertex) partitioniofithe graph. 2D partitioning,
on the other hand, is based on edges. Therefore, using C8QWwitistributed data
is forcing a vertex based representation on edge distdude¢a. The result is unnec-
essary replication of column pointers (vertices) on eackegssor along the processor
column.

The indficiency of CSC leads to a more fundamental problem: any dhgori
that uses CSC and scans all the columns is not scalable farépgrse matrices.
Even without any communication at all, such an algorithmnearscale fom+/p >
maxflops nnz. Sparse matrix-vector and sparse matrix-matrix multgilan algo-
rithms scan column indices. For these operations, any datetisre that depends on
the matrix dimension (such as CSR or CSC) is asymptoticatiytasteful for subma-
trices.

2.3. DCSC Data Structure

We use a new data structure for our sequential hypersparsix-meatrix multipli-
cation. This structure, calle@CSC for doubly compressed sparse columns, has the
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Figure 6: MatrixA in Triples format Figure 7: MatrixA in DCSC format

following properties:

1. It usesO(nn3) storage.
2. It lets the hypersparse algorithm scale with increaspagssty.
3. It supports fast access to columns of the matrix, whenssecg.

For an example, consider the 9-by-9 matrix with 4 non-zerbsse triples rep-
resentation is given in Figure 6. Figure 5 showns its CSCagirwhich includes
repetitions and redundancies in the column pointers ag@). Our new data structure
compresses th&C array to avoid repetitions, giving th@P(column pointers) array of
DCSC as shown in Figure 7. DCSC is essentially a sparse afrgiyaose columns,
whereas CSC is a dense array of sparse columns.

After removing repetitionsCP[i] does no longer refer to thigh column. A new
JC array, which is parallel t&€P, gives us the column numbers. Although ourekk-
sparRse_GEMM algorithm does not need column indexing, DCSC supgfesscolumn
indexing for completeness. Whenever column indexing is eged/e construct an
AUX array that contains pointers to nonzero columns (columatthve at least one
nonzero element). Each entry AUX refers to aln/ nzd-sized chunk of columns,
pointing to the first nonzero column in that chunk (there rhlgdnone). The storage
requirement of DCSC i®©(nn2 since[NUM| = |IR| = nnz |JC| = nzg |CP| = nzc+1,
and|AUX| = nzc

In our implementation, thAUX array is a temporary work array that is contructed
on demand, only when an operation requires repetitive ugeThis keeps the storage
and copying costs low. The time to constrtiX is only O(nzg, which is subsumed
by the cost of multiplication.

2.4. A Sequential Algorithm to Multiply Hypersparse Magsc

The sequential hypersparse algorithny¢keksparse_ GEMM) is based on outer prod-
uct multiplication. Therefore, it requires fast accessaws of matrixB. This could
be accomplished by having each input matrix representedCi8®and also in DCSR
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Figure 8: Nonzero structures of operafdandB

(doubly compressed sparse rows), which is the same as tisptse in DCSC. This
method, which we described in an early version of this wof{,[doubles the storage
but does not change the asymptotic space and time compkexitiere, we describe

a more practical version whek is transposed as a preprocessing step, at a cost of
transB). The actual cost of transposition is eitl@{n+nnzZB)) or O(nnZB) Ig nnZB)),
depending on the implementation.

The idea behind the t#ersparse_GEMM algorithm is to use the outer product
formulation of matrix multiplication #iciently. The first observation about DCSC is
that thelC array is already sorted. Therefofe,JC is the sorted indices of the columns
that contain at least one nonzero and simil@&TyJC is the sorted indices of the rows
that contain at least one nonzero. In this formulation,itheolumn ofA and theith
row of B are multiplied to form a rank-1 matrix. The naive algorithimed the same
procedure for all values afand gets: different rank-1 matrices, adding them to the
resulting matrixC as they become available. Our algorithm has a preprocessipg
that finds intersectiorsect = A.JCNBT.JC, which is the set of indices that participate
nontrivially in the outer product.

The preprocessing tak€nzqA) + nzr(B)) time as/A.JC| = nzdA) and|B".JC| =
nzr(B). The next phase of our algorithm perforiisect| cartesian products, each of
which generates a fictitious list of simmZA(:,1)) - nnZB(i, :)). The lists can be gen-
erated sorted, because all the elements within a given ecoamn sorted according to
their row indices (i.elR(JC(i))...IR(JC(i) + 1) is a sorted range). The algorithm merges
those sorted lists, summing up the intermediate entriemalre samerpw._id, col_id)
index pair, to form the resulting matri€. Therefore, the second phase ofrdek-
spARSE_.GEMM is similar to multiway merging [27]. The only fierence is that we
never explicitly construct the lists; we compute their edens one-by-one on demand.

Figure 9 shows the setup for the matrices from Figure 8AAE = {1,2,3,4,6}
andBT.JC = {1, 3, 4,5, 6}, Isect = {1, 3, 4, 6} for this product. The algorithm does not
touch the shaded elements, since they do not contribute toutput.

The merge uses a priority queue (represented as a heapg of sizhich is the size
of Isect, the number of indicesfor which A(:,i) # 0 andB(i,:) # 0. The value in
a heap entry is ithlUM value and the key is a pair of indiceis j) in column-major
order. The idea is to repeatedly extract the entry with murmkey from the heap and
insert another element from the list that the extracted efgrariginally came from. If
there are multiple elements in the lists with the same kean their values are added
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Figure 9: Cartesian product and the multiway merging analog

on the fly. If we were to explicitly creatai lists instead of doing the computation on
the fly, we would get the lists shown in the right side of Fig@revhich are sorted from
bottom to top. For further details of multiway merging, coli&nuth [27].

The time complexity of this phase @(flops- Ig ni), and the space complexity is
O(nnZC) + ni). The output is a stack dlUM values in column-major order. The
nnZC) term in the space complexity comes from the output, and tpsflerm in the
time complexity comes from the observation that

D" nnZA(, 1)) - nngB(i, ) = flops

ielsect

The final phase of the algorithm constructs the DCSC stradtom this column-
major-ordered stack. This requiré$nnzC)) time and space.

The overall time complexity of our algorithm @(nzqA) + nzr(B) + flops- Ig ni),
plus the preprocessing time to transpose maixXNote thatnnZC) does not appear
in this bound, sincenzZC) < flops. We opt to keep the cost of transposition separate,
because our parallel 2D block SpGEMM will amortize this sosition of each block
over +/p uses of that block. Therefore, the cost of transpositioh lvélnegligible in
practice. The space complexity@nnzZA) + nnZB) + nnZC)). The time complexity
does not depend am and the space complexity does not depend on flops.

Figure 10 gives the pseudocode for the whole algorithm.ds a0 subprocedures:
CartMurt-InserT generates the next element from ttiefictitious list and inserts it to
the heap PQ, andiérement-List increments the pointers of thh fictitious list or
deletes the list from the intersection set if it is empty.

To justify the extra logarithmic factor in the flops term, weelfly analyze the com-
plexity of each submatrix multiplication in the parallel Bbck SpGEMM. Our paral-
lel 2D block SpGEMM performg +/p submatrix multiplications, since each submatrix

of the output is computed usirgy; = Zkz‘/ﬁl Aix Byj. Therefore, with increasing number
of processors and under perfect load balance, flops scaielyyit,/p, nnzscale with
1/p, andn scales with 1+/p. Figure 11 shows the trends of these three complexity
measures ap increases. The graph shows that thierm becomes the bottleneck af-
ter around 50 processors and flops becomes the lower-omer ta contrast to the



C : RS(™M = Hypersparse GEMM(A : RS(™K) BT : RS(MK))

1 Isect « InTERSECTION(A.JC, BT.JC)
2 for j « 1tollsect|

3 do CartMurt-Insert(A, BT, PQ, Isect, |)
4 IncremENT-LisT(ISECt, |)
5 while IsNorFinisHED(Isect)
6 do (key valug « Extract-MmN(PQ)
7 (product i) « UnPair(valug
8 if key# Tor(Q)
9 then Enqueue(Q, key, produc)
10 else UppateTor(Q, produc)
11 if IsNorEmpTY(ISect(i))
12 then CartMurt-Insert(A, BT, PQ, lists, Isect, i)
13 INcREMENT-L1sT(ISECt, i)

14 Construct-Dcsc(Q)

Figure 10: Pseudocode for hypersparse matrix-matrix plidétion algorithm

classical algorithm, our ¥bersparse_ GEMM algorithm becomes independentpiby
putting the burden on the flops instead.
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3. Parallel Algorithmsfor Sparse GEMM

This section describes parallel algorithms for multiptyitwo sparse matrices in
parallel onp processors, which we call PSpGEMM. The design of our allyorit is
motivated by distributed memory systems, but expect thepetéorm well in shared
memory too, as they avoid hot spots and load imbalances hyriagsproper work
distribution among processors. Like most message pasgjogithms, they can be
implemented in the partitioned global address space (P@#dslel as well.

3.1. 1D Decomposition

We assume the data is distributed to processors in block vekere each processor
receivesm/p consecutive rows. We writ&; = A(ip : (i+1)p—1,:) to denote the block
row owned by théth processor. To simplify the algorithm description, we Aggto
denoteAi(:, jp : (j + 1)p— 1), the jth block column ofA;, although block rows are not
physically partitioned.

A, A ] ... Alp B;
A, Aot || App B,

For each processéi(i), the computation is:

P
Ci=Ci+AiB=C; =Ci+ZAij Bj
=1

3.2. 2D Decomposition

Our 2D parallel algorithms, Sparse Cannon and Sparse SUMMA the hyper-
sparse algorithm, which has complex®(nzdA) + nzr(B) + flops- Ig ni), as shown
in Section 2.2, for multiplying submatrices. Processosslagically organized on a
square+/p x 4/p mesh, indexed by their row and column indices so that ihigth
processor is denoted (i, j). Matrices are assigned to processors according to a 2D
block decomposition. Each node gets a submatrix of dimessfg/ /p) x (n/ 4/p) in
its local memory. For exampld is partitioned as shown below a#qg| is assigned to
processof(i, j).

A1y Alﬁ

A = (4)

A \ml c e A \/T)\/T)
For each processéi(i), the computation is:

VP
Cij = Z Aik Byj
kel



: RPCM>N) = By ock 1D PSGEMM(A : RPEM>N) B - RPSMxn)

for all processor®(i) in parallel
do InrtiaLize(SPA)
for j«—1top
do Broapcast(Bj)
for k < 1ton/p
do Loap(SPA, Ci(k, :))
SPA « SPA+Aij(k, ) Bj
UnLoap(SPA, Ci(k, 3))

co~NoO O wWNDE O

Figure 12: Operatio® « AB using block row Sparse 1D algorithm

Lerr-CircuLar-Surrr(L ocal : RS(™M )

1 Senp(Local, P(i, (j — s) mod +/p)) > This is processoP(i, j)
2 Recerve(Temp, P(i, (j + s) mod /p))

3 Local « Temp

Figure 13: Circularly shift left bys along the processor row

3.3. Sparse 1D Algorithm

The row-wise SpGEMM forms one row @ at a time, and each processor may
potentially need to access all Bfto form a single row ofc. However, only a portion
of B is locally available at any time in parallel algorithms. Télgorithm, thus, per-
forms multiple iterations to fully form one row &. For accumulating the nonzeros
of the current active row o, the algorithm uses a special structure called the sparse
accumulator (SPA) [22] that performs accumulation in Imi@ae. Figure 12 shows
the pseudocode of the algorithm.

3.4. Sparse Cannon

Ouir first 2D algorithm is based on Cannon’s algorithm for @emsitrices [28]. The
pseudocode of the algorithm is given in Figure 15. Sparsen@aralthough elegant,
is not our choice of algorithm for the final implementatios, itiis hard to general-
ize to non-square grids, non-square matrices, and matsihese dimensions are not
perfectly divisible by grid dimensions.

3.5. Sparse SUMMA

SUMMA [29] is a memory ficient, easy to generalize algorithm for parallel dense
matrix multiplication. It is the algorithm used in paralBLAS [30]. As opposed to
Cannon’s algorithm, it allows a tradd@o be made between latency cost and memory
by varying the degree of blocking. The algorithm, illustchin Figure 16, proceeds



Up-CircuLar-Sarrr(L ocal : RS(M™), g)

1
2
3

co~NO UG WNE O

Senp(L ocal, P((i — s) mod /P, })) > This is processoP(i, j)
Recerve(Temp, P((i + s) mod /P, j))
Local « Temp

Figure 14: Circularly shift up by along the processor column

: RPSM™M) = Cannon PSGEMM(A : RPEM™M) B RPSMx))

for all processor®(i, j) in parallel
do Lerr-CircuLAR-SHIFT(Ajj, 1 — 1)
Up-CircuLar-SHIFT(B;j, j — 1)
for all processor®(i, j) in parallel
do for k < 1to /p
do Cij — Cij +Aij Bij
Lert-CircuLAR-SHIFT(Aj, 1)
Ur-CircuLar-SHIFT(B;j, 1)

Figure 15: Operatio® < AB using Sparse Cannon

in k/b stages. At each stage/p active row processors broadcdstolumns ofA
simultaneously along their rows angp active column processors broaddasbws of
B simultaneously along their columns.

Sparse SUMMA, which is a sparse generalization of SUMMA, us algorithm

of choice for our final implementation, because it is easyeoegalize to non-square
matrices, and to matrices whose dimensions are not pegrigigtsible by grid dimen-
sions.



Figure 16: Sparse SUMMA Executiob & n/ /p)




4. Analysisof Parallel Algorithms

In this section, we analyze the parallel performance of ¢goraghms, and show
that they scale better than existing 1D algorithms in the@vg begin by introducing
our parameters and model of computation. Then, we presdmaetical analysis
showing that 1D decomposition, at least with the currendidtigm, is not stiicient for
PSpGEMM to scale. Finally, we analyze our 2D algorithms ipttle

In our analysis, the cost of one floating-point operatiolonglwith the cost of
cache misses and memory indirections associated with th&tpn, is denoted by,
measured in nanoseconds. The latency of sending a messagéevwommunica-
tion interconnect iy, and the inverse bandwidth # measured in nanoseconds and
nanoseconds per word transfered, respectively. The rgrtivite of a parallel algo-
rithm on p processors is given by

Tp = Teomm+ Tcomp

where T¢omm denotes the time spent in communication aignp is the time spent
during local computation phasek,,mmincludes both the latency (delay) costs and the
actual time it takes to transfer the data words over the nétwblence, the cost of
transmittingh data words in a communication phase is

Teomm= @ + hB.

The sequential work of SpGEMM, unlike dense GEMM, dependsiany param-
eters. This makes parallel scalability analysis a touglegss. Therefore, we restrict
our analysis to sparse matrices following the &denyi graph model explained in
Section 5.1. Consequently, the analysis is probabiliekp|oiting the independent and
identical distribution of nonzeros. When we talk about qitest such as nonzeros
per subcolumn, we mean the expected number of nonzeros.nalysas assumes that
there arec > 0 nonzeros per rofgolumn. The sparsity parametgralbeit oversimpli-
fying, is useful for analysis purposes, since it makdtedent parameters comparable
to each other. For example, & andB both have sparsitg, thennngA) = cn and
flops(AB) = ¢n. It also allows us to decouple théects of load imbalances from the
algorithm analysis because the nonzeros are assumed tebky eNstributed across
processors.

The lower bound on sequential SpPGEMM@Xflops) = Q(c?n). This bound is
achieved by some row-wise and column-wise implementa{@hs22], provided that
¢ > 1. Gustavson’s classical algorithm implemented using G3Re natural kernel to
be used in the 1D algorithm where data is distributed by révesmentioned earlier, it
has an asymptotic complexity of

O(n + nnZA) + flops) = O(n + cn+ ¢?n) = B(c?n).
Therefore, we take the sequential wowk)(to beyc?n in our analysis.

4.1. Scalability of the 1D Algorithm

We begin with a theoretical analysis whose conclusion isXBedecomposition is
not suficient for PSpGEMM to scale. InBck1D_ PSGEMM, each processor sends
and receivep — 1 point-to-point messages of sinaaB)/p. Therefore,



Teomm=(pP-1) (¢ +p nnZ(B)

)=0(pa+pBcn). (5)

We previously showed that tha&KlD,PSpGEMM algorithm is unscalable with
respect to both communication and computation costs [8lfiadt, the computational
cost per processor is constant with increasing number afgssors, disabling any
speedup. This is because the cost of SPA loading and unipadirich is not amor-
tized by the number of nonzero arithmetic operations in ggndominate the com-
putational time. The currentt&-P implementation [7] by-passes this problem by
all-to-all broadcasting nonzeros of tBematrix, so that the whol8 matrix is essen-
tially assembled at each processor. This avoids the costdfig and unloading SPA
at every stage, but it uses2B) memory at each processor.

4.2. Scalability of the 2D Algorithms

In this section, we provide an in-depth theoretical analg§our parallel 2D SpGEMM
algorithms, and conclude that they scale significantlydoeitian their 1D counterparts.
Although our analysis is limited to the Eig-Renyi model, its conclusions are strong
enough to be convincing.

In Cannon_PSGEMM, each processor sends and receiygs— 1 point-to-point
messages of sizenZA)/p, and 4/p — 1 messages of sizengB)/p. Therefore, the
communication cost per processor is

nnZA) + nnZB) .\ Becn
— )) = O Vp+ 7 6)

The average number of nonzeros in a column of a local submatyiis ¢/ +/p.
Therefore, for a submatrix multiplicatiofBy;,

Teomm= VP (2 + B(

- . c2on . n cn
ni(Aik, Bkj) = min{1, B}% = mm{ﬁ, p_\m},

flops@B)  cZn
PVP  PVP
n czn . n ¢n
lg(m )

Tmun=\/‘(2 min(L, \/_}\/_ ogp a(mint25 )

The probability of a single column & (or a single row ofBy;j) having at least
one nonzero is mifi, ¢/ 4/p} where 1 covers the cage< ¢ andc/ /P covers the case
p>c.

The overall cost of additions, usingprocessors, and Brown and Tarja@gnlg n/m)
algorithm [32] for merging two sorted lists of simeandn (for m < n), is

flopsAiBx;) =

flops , .\ flops @. flop
Tada = ,le(px/‘l 91) = pyp 1:[ pyp O (VP



Note that we might be slightly overestimating, since we amstlopg nn4C) ~ 1
for simplicity. From Stirling’s approximation and asymptoanalysis, we know that
Ig(n!) = ®(nlgn) [33]. Thus, we get:

flops
Tada=0O(——= VP lg p)=®(
aaa = O( /p VPlo VP
There are two cases to analyze:> ¢ andp < ¢2. Since scalability analysis is
concerned with the asymptotic behavior@screases, we just provide results for the
p > ¢ case. The total computation CO&bmp= Tmult + Tadd IS

c’nlg \/f))
— )

cn ¢n. _, c2n_ c’nlg \/TJ): (ﬂ

W N T o

In this case, parallelfgciency is

CZ 2
Teomp= % ¥ ?” |g(°_;))_ ©

B W B ye2n
P (Tcomp+ Teomm  (y +B)cn+/p+yc2n g (%”) +ap+p

E (8)

Scalability is not perfect andfiéciency deteriorates gsincreases due to the first
term. Speedup is, however, not bounded, as opposed to thedd ¢n particular,

Ig (c>n/ p) becomes negligible gsincreases and scalability due to latency is achieved
whenyc?n « « p+/p, where it is séicient forn to grow on the order op'S. The
biggest bottleneck for scalability is the first term in thedminator, which scales with
+/P. Consequently, two flierent scaling regimes are likely to be present: A close to
linear scaling regime until the first term starts to domirtatedenominator and §p-
scaling regime afterwards.

Compared to the 1D algorithms, Sparse Cannon both lowerdfeed of unscala-
bility due to bandwidth costs and mitigate the bottleneckarhputation. This makes
overlapping communication with computation more prongsin

Sparse SUMMA, like dense SUMMA, incurs an extra cost overr@arfor using
row-wise and col-wise broadcasts instead of nearest-hergtommunication, which
might be modeled as an additiora{lg p) factor in communication cost. Other than
that, the analysis is similar to sparse Cannon and we omdétails. Using the DCSC
data structure, the expected cost of fetchingonsecutive columns of a matri is
b plus the size (number of nonzeros) of the output [26]. Theegfthe algorithm
asymptotically has the same computation cost for all vadiids



5. Performance Modeling of Parallel Algorithms

In this section, we first project the estimated speedup of a® 2D algorithms
in order to evaluate their prospects in practice. We use siqumalytical performance
model where we first obtain realistic values for the paraméje, «) of the algorithm
performance, then use them in our projections. In the separtdwe perform another
modeling study where we simulate the execution of Sparse BAMsing an actual
implementation of the kbersparse_GEMM algorithm. This modeling study concludes
that HyrersparRse_GEMM is scalable with increasing hypersparsity, suggestimat it
is a suitable algorithm to be the sequential kernel of a 2RIEISPpGEMM.

5.1. Sparse Matrix Models

For testing and analysis, we have extensively used three madels: the R-MAT
model, the Erd@s-Renyi random graph model, and the regular 3D grid model.

5.1.1. Synthetic R-MAT Graphs

The R-MAT matrices represent the adjacency structure dédoae graphs, gen-
erated using repeated Knonecker products [34, 35]. R-MAWetsothe behavior of
several real-world graphs such as the WWW graph, small wodglw, and citation
graphs. We have used an implementation based on Kepnetsrizecd code [36],
which generates directed graphs. Unless otherwise stRHIAT matrices used in
our experiments have an average of degree of 8, meaninghirat will be approxi-
mately 8n nonzeros in the adjacency matrix. The parameters for thergear matrix
area = 0.6, andb = ¢ = d = 0.13. As the generator matrix is 2-by-2, R-MAT matrices
have dimensions that are powers of two. An R-MAT graph witdle | hasn = 2
vertices.

5.1.2. Erdds-Rényi Random Graphs

An Erdds-Renyi random grapi®(n, p) hasn vertices, each of the possibiéedges
in the graph exists with fixed probability, independent of the other edges [37]. In
other words, each edge has an equally likely chance to eXistatrix modeling the
Erdds-Renyi graphG(n, p) is expected to have with?/p nonzeros, independently and
identically distributed (i.i.d.) across the matrix. BedRenyi random graphs can be
generated using theprand function of MarLas.

5.1.3. Regular 3D Grids

As the representative of regular grid graphs, we have usdédoes arising from
graphs representing the 3D 7-point finitéfeience meshgfrid3d). These input ma-
trices, which are generated using therhs Mesh Partitioning and Graph Separator
Toolbox [38], are highly structured block diagonal matsice

5.2. Estimated Speedup of Parallel Algorithms

This study estimates the speedup of 1D and 2D algorithmsihg asquasi-analytic
model that projects the performance on large systems usilistic values for the
performance parameters.



In order to obtain a realistic value for we performed multiple runs on an AMD
Opteron 8214 (Santa Rosa) processor using matrices ofugadionensions and spar-
sity; estimating the constants using non-linear regressiine surprising result is the
order of magnitude dlierence in the constants between sequential kernels. Tés-cla
cal algorithm, which is used as the 1D SpGEMM kernel, has2936 nsec, whereas
Hypersparse_GEMM, which is used as the 2D kernel, has 19.2 nsec. We attribute
the diference to cache friendliness of the hypersparse algorithhe interconnect
supports 18 = 1 GB/sec point-to-point bandwidth, and a maximumaot 2.3 mi-
croseconds latency, both of which are achievable on TAC@gsder Cluster. The
communication parameters ignore network contention.
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Figure 17: Modeled speedup of Synchronous Sparse 1D digorit

Figures 17 and 18 show the modeled speedupioftBLD_ PSGEMM and Gin-
NoN_PSGEMM for matrix dimensions fronm = 217 to 2> and number of processors
from p = 1 to 4096. The inputs are Eid-Renyi graphs.

We see that Bock 1ID_.PSSGEMM's speedup does not go beyond 50x, even on
larger matrices. For relatively small matrices, havingeisionsh = 217 - 220, it starts
slowing down after a thousand processors, where it achiessshan 40x speedup. On
the other hand, Gwon_PSGEMM shows increasing and almost linear speedup for up
to 4096 processors, even though the slope of the curve igHaasone. It is crucial
to note that the projections for the 1D algorithm are basethermemory inéficient
implementation that performs an all-to-all broadcasBofhis is because the original
memory dficient algorithm given in Section 3.1 actually slows dowrpascreases.

It is worth explaining one peculiarity. The modeled speetlups out to be higher
for smaller matrices than for bigger matrices. Remembédrabi@munication require-
ments are on the same order as computational requiremenpaifallel SpGEMM.
Intuitively, the speedup should be independent of the mdimension in the absence
of load imbalance and network contention, but since we atiemasng the speedup



800

5000

2000

0 o
Matrix Dimension N Num Procs

Figure 18: Modeled speedup of synchronous Sparse Cannon

with respect to the optimal sequential algorithm, the ogads associated with the hy-
persparse algorithm are bigger for larger matrices. Thgdsithe matrix dimension,
the slower the hypersparse algorithm is with respect to gtenal algorithm, due to
the extra logarithmic factor. Therefore, speedup is béttesmaller matrices in theory.
This is not the case in practice, because the peak bandvadtbuially not achieved
for small sized data transfers and load imbalances are esef@r smaller matrices.
Section 7.1 addresses the load imbalance.
We also evaluate thefects of overlapping communication with computation. Fol-

lowing Krishnan and Nieplocha [39], we define the non-oygpkd percentage of com-

munication as:

Teom Tecomm— Teom
w=1 p_ p

Tcomm Tcomm

The speedup of the asynchronous implementation is:

B W
Teomp+ W(Tcomm

Figure 19 shows the modeled speedup of asynchronous Sp@assoming truly
one-sided communication. For smaller matrices with diroerss) = 217-229, speedup
is about 25% more than the speedup of the synchronous imptatian.

The modeled speedup plots should be interpreted as uppedban the speedup
that can be achieved on a real system using these algoritkchgving these speedups
on real systems requires all components to be implementbdiarking optimally. The
conclusion we derive from those plots is that no matter how fee try, it is impossible
to get good speedup with the current 1D algorithms.

S
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Figure 19: Modeled speedup of asynchronous Sparse Cannon

5.3. Scalability with Hypersparsity

This modeling study reveals the scalability of our hyperspalgorithm with in-
creasing sparsity. We have implemented our data strucamésnultiplication algo-
rithms in G++. Our code is compiled using the GNU Compiler Collection (GCC
Version 4.1, with the flags03, because these are the settings that our comparison
platform, MarLas, is compiled with. We have incorporated Peter Sander's Ssrpl
Heaps [40] for all the priority queues used by our algorithmklrougout the experi-
ments, the numerical values are represented as doublisiprefioating points.

We compare the performance of our implementation withrilMe R2007A's (64-
bit version) implementation of the classical algorithma&g matrix multiplication is
a built-in function in MarLag, so there are no interpretation overheads associated with
it. We are simply comparing our4& code with the underlying precompiled C code
used in MhrLAB.

All of our experiments are performed on a single core of Gpte2.2 Ghz with
64 GB main memory, where we simulate the execution of a Ar@pGEMM. The
simulation is done by dividing the input matrices of siz& n into p submatrices of
size ©1/ 4/P) x (n/ 4/p) using the 2D block decomposition, as explained in Secti@n 3
and shown in Figure 4.

Expressing the matrix multiplication as algebraic operation submatrices instead
of individual elements, we see that each submatrix of thelywbis computed using
Cij = Zk‘g Aix By;. Since we are primarily concerned with the sequential sparix
multiplication kernel, we will exclude the cost of submaidditions and other parallel
overheads. That is to say, we will only time the submatrix tiplitations, exactly
plotting

VP VP P
time(p, A, B) = time(Aix By;),
=1 j=1 k=1



which is equal to the amount of work done by a parallel matmstiplication algorithm
such as SUMMA [29].

Increasingp in this case does not mean we use more processors to compute th
product. Instead, it means we use smaller and smaller blatii® computing the
product on a single processor. Therefore, a perfectly Bleakdgorithm would yield
flat timing curves ap increases. We expect our hypersparse algorithm to outperfo
the classical algorithm ap increases due to reasons explained in Section 2.2. We
label the classical algorithm Mcag, and our algorithm Keersparse GEMM in the
plots. The second input is only transposed once becausks thisat would happen in
a parallel implementation.

In all experiments in this section, the input matrices hawsethsions 28 x 223, i.e.
the input graphs have around 8 million vertices.

5.3.1. Synthetic R-MAT Graphs

We ran two main sets of multiplication experiments with R-M#&atrices, one
where both input matrices are R-MAT, and one whiris a R-MAT matrix andB is a
permutation matrix. The results are shown in Figures 20{e) 20(b).
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Figure 20: Model of scalability of SpGEMM kernels



In the case of R-MATx R-MAT, the classical sequential algorithm is initially fas
than Hreersparse_GEMM. For p > 64, however, the classical algorithm starts perform-
ing poorly because submatrices start getting hyperspéossee why, consider the ratio
of nnzto n for each submatrix:

nnZAij)) 8n/p 8

nvp  n/vp P
This ratio is smaller than 1 fgu > 64, and does to 0 gsincreases, making submatrices
hypersparse. Fgp = 1024, our algorithm performs more than 5 times faster than th
classical algorithm. Its scaling is also very good, shovdhmgost flat curves.

In the case of multiplying an R-MAT matrix with a permutatiomatrix (R-MAT
x Perm), poor scalability of the classical algorithm is mopparent. Our algorithm
starts to outperform for as low @s> 4. The break-even point after which our algorithm
dominates is lower in this case because permutation magi®gmore sparse with only
1 nonzero per colunjrow.

5.3.2. Erd6s-Rényi Random Graphs

We have conducted a single set of experiments where we ryuttim matri-
ces representing Ebdd-Renyi random graphs. Looking at the timings shown in Fig-
ure 20(c), we see that thevbkrsparse_ GEMM dominates the classical algorithm (as
implemented in Matlab) for most values fpr> 64, when used as the sequential kernel
of a 2D parallel SpGEMM. More importantly, when we reach themds of proces-
sors, our algorithms show their scalability for these ingypes as well. In particular,
HypersparRse_GEMM is more than 4 times faster than the classical algorittni024
processors when multiplying Eid-Renyi random matrices.

5.3.3. Regular 3D Grids

For our last set of experiments, we have ugedd3d matrices. These matrices
have a banded structure, which makes them unsuitable forl@gk llecomposition
since the @-diagonal processors sit idle without storing any nonzarasperforming
any computation. Even though we are just timing the commurtat costs, ignoring
parallelization overheads in this modeling study, the ilabee has anfeect on the
timing of submatrix multiplications. In particular, the dw diagonals avoid hyper-
sparsity to emerge, thus favoring the classical algoriththis unrealistic setting.

To remedy this problem, we perform random permutations ofiogs on both
inputs before performing the multiplication. In other wsyrdnstead of computing
C = AB, we computeC’ = A’B’ = (PAPT)(PBPT) = PCP'". Even after apply-
ing random symmetric permutations, submatrices in theatiaare expected to have
more nonzeros than others. This is because symmetric pationg essentially relabel
the vertices of the underlying graph, so they are unabledtiescthe nonzeros in the
diagonal.

Multiplications among diagonal blocks favor the classgsjuential kernel because
diagonal blocks can never become hypersparse no matter ietviincreases. Mul-
tiplication among @-diagonal blocks are more suitable for our hypersparseekern
More technically, our observation means

flops(Aii Bii) > flops(A;i Bij) > flops(Ai Bkj).



Therefore, the variances in timings of submatrix multiglions are large compared
with other sets of test matrices.

Asymptotic behavior of the algorithms is also slightlyfdrent in this case as it can
be seen in Figure 20(d). Yet, our algorithm is around 4 tinassefr than the classical
algorithm forp = 1024.



6. Parallel Scaling of Sparse SUMMA

6.1. Experimental Design

We have implemented two versions of the 2D parallel SpGEMYybi@hms in
C++. The first one is directly based on Sparse SUMMA and synchusimio nature.
It does not use any MPI-2 features. The second implementatiasynchronous and
uses one-sided communication features of MPI-2. In thisiarecwe report on the
performance of the synchronous implementation only anceléze results of the asyn-
chronous implementation to Section 7.3. We ran our code®iACC’s Ranger Clus-
ter, which has four 2.3GHz quad-core processors in each fiédeoregnode). It has
an Infiniband interconnect with 1G&ec unidirectional point-to-point bandwidth and
2.3 microseconds max latency. We have experimented withipteicompilers and
MPI implementations. We report our best results, which wees@d usingdpenMPI
v1.3bandGNU Compiler (g++ v4.4) with flag-03.

For both implementations, our sequentialkeksparse_GEMM routines return a set
of intermediate triples that are kept in memory up to a cetiaieshold without being
merged immediately. This allows for a more balanced merghgs eliminating some
unnecessary scans that degraded performance in a prefnnmalementation [31].

In our experiments, instead of using random matrices (oegrirom Erds-Renyi
random graphs), we used synthetically generated RMAT oeatriin order to achieve
results closer to reality. The average number of nonzerogg@amn is 8 for those
synthetically generated graphs.

6.2. Experimental Results

6.2.1. Square Sparse Matrix Multiplication

In the first set of experiments, we multiply two R-MAT matricthat are struc-
turally similar. This square multiplication is represdivia of the expansion operation
used in the Markov clustering algorithm [41]. It is also al@&#vaging case for our im-
plementation due to high skew in nonzero distribution. Widgrened strong scaling
experiments for dferent matrix dimensions ranging from'2o 222, Figure 21 shows
the speedup we achieved. The graph shows linear speedtiys(@pe 05) until around
50 processors; afterwards the speedup is proportionakteghare root of the number
of processors. Both results are in line with our analysisdot®n 4.2.

6.2.2. Tall Skinny Right Hand Side Matrix

The second set of experiments involves multiplication dfIRT matrices by tall
skinny matrices of varying sparsity. This set of experirsegrves multiple purposes.
Together with the next set of experiments, they reveal thsiteity of our algorithm
to matrix orientations. It also examines the sensitivitgparsity, because we vary the
sparsity of the right hand side matrix. Lastly, it is reprasgve of the parallel breadth-
first search that lies in the heart of our distributed-menim@iveenness centrality im-
plementation, which is described in more detail in Chaptef the first author’s the-
sis [17]. We varied the sparsity of the right hand side mé&am approximately 1
nonzero per column to 2onzeros per column, with multiplicative increments of 10.
This way, we imitate the patterns of the betweenness céwteakcution where at each
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level of breadth-first search, the current frontier (frijnpas as low as a few vertices
but it can have as high as 300000 vertices. Figure 22 plotadh&ber of vertices in
the fringe at each level of the breadth-first search for H@@int runs (with dferent
starting vertices) on a network of 1 million vertices and 8ion edges.

For our experiments, the R-MAT matrices on the left hand balec, = 8 nonze-
ros per column and their dimensions vary from= 22° to n = 2?6, The right hand
side matrix is of sizen-by-k, and its number of nonzeros per colursis varied from
1 to 1@, with multiplicative increments of 10. Its widttk, varies from 128 to 8192
that grows proportionally to its length Hence, the total work i8V = O(c;c;K), the
total memory consumption &l = O(c;n + czk), and total bandwidth requirement is is
O(M +/P).

We performed scaled speedup experiments where keemppth 24 andk/p = 2
constant. This way, we were able to keep both memory consamypér processor and
work per processor constant at the same time. However, hidtfdrequirements per
processor increases by a factor-gp.

Figure 23 shows the three-dimensional performance grapk.timings for each
slice along the XZ-plane (i.e. for evers = {1,10,...,10°} contour), is normalized
to its running time onp = 64 processors. We do not cross-compare the absolute
performances using fierentc, values, as our focus in this section is parallel scaling.
The graph demonstrates that, except for the outlier case 1000, we achieve the
expected/p slowdown due to communication costs. The performance wiswath
for these large scale experiments, where we ran our code tm4(B6 processors, is
remarkable.

6.2.3. Multiplication with the Restriction Operator

The multilevel method is widely used in the solution of nuit&rand combinato-
rial problems [42]. The method constructs smaller problesnsuccessive coarsening
of the problem domain. The simplest coarsening is perhagshgcontraction. One
contraction step chooses two or more vertices in the otligirepphG to become a sin-
gle aggregate vertex in the contracted grgphThe edges of that used to be incident
to any of the vertices forming the aggregate now becomeémtith the new aggregate
vertex inG’.

Constructing a coarser grid during the V-cycle of the AlgeébMultigrid (AMG)
method [11] or graph partitioning [43] is a generalized ¢grapntraction operation.
Different algorithms need fiiérent coarsening operators. For example, a weighted (as
opposed to strict) aggregation [44] might be preferred fantiponing problems. In
general, coarsening can be represented as multiplicatitre anatrix representing the
original fine domain (grid, graph, or hypergraph) by theniesbn operator.

In this experiments, we use a simple restriction operatioperform graph con-
traction. Gilbert et al. [6] describe how to perform conti@ac using SpGEMM. Their
elegant algorithm creates a special sparse m&twith n nonzeros. The triple product
SAST contracts the whole graph at once. MakBgmaller in the first dimension while
keeping the number of nonzeros same changes the restrictien For example, we
contract the graph into half by usirghaving dimensions/2 x n, which is said to be
of order 2.
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Figure 24 shows the strong scaling of the operafi&h for R-MAT graphs of scale
23. We used restrictions of order 2, 4, and 8. Changing tlegpotation order results
in minor changes in performance. The experiment shows goalthg for up to 1024
processors.
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7. Alternative Parallel Approaches

7.1. Load Balancing and Asynchronous Algorithms

In distributed memory dense matrix-matrix multiplicatialgorithms, each proces-
sor performs a total v/ p work whereW = N3. The sparse inputs are not so naturally
balanced. Our experiments with randomly relabeling vestiin matrix terms, ap-
plying a symmetric permutation) showed good premise whagemaximum overall
work for a single processor was only 9% more than the averamgk per processor,
even when the initial matrix has significantly skewed degtis&ributior?. Aiming for
perfect load balance via graph or hypergraph partitionity g6, 47] seems imprac-
tical whenever the matrices are not reused. Even when orteeahatrices are fixed
throughout the computation, load balance for Sp GEMM carbealetermined solely
based on one operand, unlike SpMV. We do not know of any agjwics where both
matrix operands have fixed structure for several subsegueltiplication operations,
which might have justified complex load balancing.

The sparse 2D algorithms presented in previous sectiorsigxa a synchronous
manner ins stages in their naive form. For sparse matrices, achievirogl doad bal-
ance per stage is harder than achieving load balance forttblewwomputation. This is
because alocal submatrix update sucgs— C; j + A By ; might have significantly
more work to do than another update at the same stag€;sgy<« Ci.1j +Ai+1xBkj.
However, in a subsequent stage the roles of thgth and the i(+ 1, j)th processor
might swap; hence balancing the load across stages. Onheeland, a barrier syn-
chronization at each stage forces everyone to wait for theesdt update until they can
proceed to the next stage. Hence, we expect an asynchrolgmuighen to perform
better than a synchronous one for matrices with highly skewamzero distribution.

In order to quantify the severity of load imbalance, we perfed a simulation of
the Sparse Cannon algorithm that accounts for the compuatéti terms of the number
of actual flops only) and communicationmnzonly) done by each processor. We varied
the matrix dimension and the number of processors while tineber of nonzeros per
row/column were kept constant. For RMAT matrices with 8 nonz@erscolumn, the
per-stage load imbalance with 256 processors is shown uré&ig5. Load imbalance
is defined as the ratio of the maximum number of flops perfortmedny processor
to the average number of flops. These plots are typical inghsesthat we permuted
the input matrices multiple times with féérent random permutations and plotted the
results of the permutation that resulted in the median lodzhlance.

Figure 26(a) shows the overall load imbalance for increpsiatrix sizes on 256
processors. The problem becomes well balanced (i.e. itdsasll0% load imbalance)
for R-MAT inputs of scale 20 and larger. On the other handufeg26(b) shows a
comparison of the trends of overall and per-stage imbata(amerage over all stages)
with increasing number of processors and a fixed problem size

These results on Figures 25 and 26 suggest that per-stady®ddence is signifi-
cantly harder to achieve than load balance for the overafipegation. Both tend to
decrease as the problem size gets bigger, although perd{siadjimbalance has much

2For suficiently large matrices on 256 processors, as shown in Figire 2
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wider variance and tends to decrease less smoothly thanvéralloload imbalance.

The average per-stage load imbalance across all stage®iot inputs of scale 20.

This means that a synchronous Sparse Cannon is likely te\aeHi6% less speedup
than we estimated in Section 5.2. By contrast, a perfecimasonous implementa-
tion would only pay 9% performance penalty due to load imbeda

One-sided communication is the most suitable paradigmnfigieémenting asyn-
chronous SpGEMM. We used one-sided MPI-2 routines for pditig as GASNet [48]
and ARMCI [49] are not as widely supported on supercomputeis still worth men-
tioning that even MPI poses some complications due to imritaf implementations
and vagueness in parts of the standard. We report our peafa@nresults using the
passive target synchronization [50].

MPI-1 standard is inadequate to address the asynchronqulenrantation chal-
lenge. The blocking operations do trivially synchronized ahe non-blocking oper-
ations bdfer the message and revert to a synchronous mode whenevathis doo
large to fit in the bffers [51]. The basic requirement of an asynchronous SpGEMM is
that the {, j)th processor should be able to fetch its required submtixr its orig-
inal owner regardless of its computation stage at that mam&lthough this can be
achieved by the use of a helper thread that waits on the Sepel(ation, ready to serve
any incoming Recv() requests, this approach has two drégbaEirstly, there is a
substantial performance loss due to oversubscribing theegsor. Secondly, general
multithreaded MPI support is still in its infanty

7.2. Overlapping Communication with Computation

In order to hide communication costs as much as possiblé, pacessor starts
prefetching one submatrix ahead while computing its caisabmatrix product. More
concretely, process®(i, j) starts prefetching; k.1 andBy.1 ; while computingA; By ;.
To keep the memory footprint the same as the synchronous&BaIMMA, we split
the submatrices in half, so that each processor perforgsstibmatrix multiply-adds
instead of/p. The distribution of matrixA on a single processor row is shown in
Figure 27.

7.3. Performance of the Asynchronous Implementation

The pseudocode for our asynchronous implementation (iry@AP notation) is
shown in Figure 28. This implementation achieves two goadsee. It overlaps com-
munication with computation as much as possible by preiegchubsequent subma-
trices while working on the multiplication of the currentsnatrices. It also achieves
better load balance because it allows each processor tequacdependently without
any global synchronizations.

Figure 29 compares the performance of the asynchronousmapitation with the
synchronous Sparse SUMMA implementation for the scale 224F- x R-MAT prod-
uct. Although they scale similarly well, the synchronougpliementation is 6- 47%
faster.

30penMPI's MPLITHREAD_MULTIPLE support, which failed in our tests, is known to beested
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Figure 27: The split distribution of matri& on a single processor row

Overall poor performance of the asynchronous implememntasi partly due to the
extra operations such as splitting and joining matriceswéiler, their share in the
computation time goes down as we increase the number ofgsor® so this does not
explain the performanceftierence on large number of processors.

We first thought the performance hit was due to the progresads that are used
by MPI implementations on Infiniband [52] to ensure asynobigs progress. On the
other hand, we ran the same code using 4 threads per nodd Heetpaogress threads
will not oversubscribe the individual cores. Figure 30 shaWwat the performance
difference between the synchronous and asynchronous impkginastgrows as we
use less cores per node. Either our asynchronous impletizentevhich uses one-
sided point-to-point communication instead of blockindglexive communication, or
the underlying MPIl implementation does not take full adegetof the extra bandwidth
available per core.

We are not able to explain the load imbalance that happensastige. LetT, be
the time to complete the SpGEMM procedure on p processors.idfthe time for the
ith processor to complete its local procedure, thigr= max(T;) over alli due to wait
times. For the asychronous implementation, our prelinyimaofiling (on 256 cores)
revealed that the fastest processor spends more time gvéitirthe other processors
than doing useful computation. On average, a processot apent 1 3rd of its time
waiting.

The slowdown due to the asynchronous execution was prdyiexperienced on
the Connection Machine CM5 [53] on programs with regular gamication patterns.
Brewer and Kuszmaul [54] found out that an initial skew ofg@ssors slowed down
the overall computation on the CM5, as receiver queuesstéotback &. The CM-5
data network is similar to Ranger’s, in the sense that thély bee a fat-tree [55] in-
terconnect. However, the problem with the CM-5 was the adide on the receivers
due to the computational cost of receiving packets. Rasdefiniband interconnect,
on the other hand, has RDMA support for this task. Howeverdaeot know whether
MPI-2 functions have been implemented to fully take advgmtaf the network’s ca-
pabilities. In conclusion, revealing the exact cause ofptberer performance of the
asynchronous implementation needs further research arelpedformance profiling.



// M1 is the first half of the local matrix M, M2 is the second
vector<Win> rwf = CreateWindows (RowWorld, Al);
vector<Win> rws CreateWindows (RowWorld, A2);
vector<Win> cwf = CreateWindows (ColWorld, Al);
vector<Win> cws = CreateWindows (ColWorld, A2);

// Each window is made accessible to its neighbors in their
// respective processor row (in the case of A) and

// processor column (in the case of B)

ExposeWindows ();

/x Perform initial two fetches and multiply first halfs/

for(int i = 1; i < stages;++i) // main loop

{
CResult += SpGEMM(» ARecvl, *BRecvl, false, true);

// wait for the previous second halfs to complete
CompleteFetch (rws);
CompleteFetch (cws);

Aowner = (i+Aoffset) % stages;
Bowner = (i+Boffset) % stages;

// start fetching the current first half
StartFetch (ARecvl, Aowner, rwf);
StartFetch (BRecvl, Bowner, cwf);

// while multiplying (completed) previous second halfs
CResult = SpGEMM(x ARecv2, «BRecv2, false, true);

/* now wait for the current first half to complete/
/+ start prefetching the current second half/

}

/+x perform the last pieces of computatior/

Figure 28: Partial €+ code partial for asynchronous SpGEMM using one-sided com-
munication and split prefetching for overlapping commatien with computation
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8. Future Work

Our mathematical modeling of the parallel algorithms intfec3 is an average-
case analysis assuming independent uniform random distotbof nonzeros, which
translates into the Ef$-Renyi random graph model. More realistic models should
assume skewed nonzero distributions, such as power-lawbdisons. Ultimately,
average case analysis has its limitations because it needstime an underlying dis-
tribution. On the other hand, worst case analysis does nkémadot of sense for our
problem, because there are certain sparse matrix pairsvilhareate a dense output
when multiplied. Therefore, a smoothed analysis [56] ofgparse matrix multiplica-
tion algorithms, both sequentially and in parallel, wouddebsignificant advancement,
although it is far from clear how to apply the principles of@sthed analysis to an
algorithm with discrete inputs.

Load imbalance is not severe forfBaiently large matrices, even in the absence
of asynchronous progress. Our one-sided communicatioroaplp was based on re-
mote get operations in order to avoid fence synchronizat®ven the acceptable load
balance for large matrices, it is worth exploring an optidthvience synchronization
and remote put operations. This proposed implementatithstilli use one-sided com-
munication but all processors in the processor/column will need to synchronize
after the put operation. We expect better performance Isecaonly takes one trip to
complete a remote put operation whereas remote get requimasdtrip.

Our SpGEMM routine might be extended to handle matrix chadpcts. In par-
ticular, the sparse matrix triple product (RAP) is heavied in the coarsening phase of
the algebraic multigrid method [57]. Sparse matrix indgxand parallel graph contrac-
tion also require sparse matrix triple product [6]. The supfor sparse matrix chain
products eliminates temporary intermediate products dodsmore optimizations,
such as performing structure prediction [25] and findingdp&mal parenthesization
based on the sparsity of the inputs.

Finally, there is a need for hierarchical parallelism duedst diferences in the
costs of inter-node and intra-node communication. The #edlfelism model does not
only lose the opportunity to exploit the faster on-chip natky but it also increases
the contention on thefBchip links. We observed that the inter-node communication
becomes slower as the number of cores per node increasessbatare processes
are competing for the same network link. According to oullipri@ary experiments
on 1024 cores, Sparse GEMM runs more than 80% faster if we nigedacores per
node, compared to utilizing all 16 available cores per notleerefore, designing a
hierarchically parallel Sparse GEMM algorithm is an impoitfuture direction.
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