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Abstract
As software becomes increasingly complex and difficult to
analyze, it is more and more common for developers to use
high-level, type-safe, object-oriented (OO) programming
languages and to architect systems that comprise multiple
components. Different components are often implemented in
different programming languages. In state-of-the-art multi-
component, multi-language systems, cross-component com-
munication relies on remote procedure calls (RPC) and mes-
sage passing. As components are increasingly co-located
on the same physical machine to ensure high utilization of
multi-core systems, there is a growing potential for using
shared memory for cross-language cross-runtime communi-
cation.

We present the design and implementation of Co-Located
Runtime Sharing (CoLoRS), a system that enables cross-
language, cross-runtime type-safe, transparent shared mem-
ory. CoLoRS provides object sharing for co-located OO run-
times for both static and dynamic languages. CoLoRS de-
fines a novel language-neutral object/class model, which is
a static-dynamic hybrid and enables class evolution while
maintaining the space/time efficiency of a static model. CoL-
oRS uses type mapping and class versioning to transpar-
ently map shared types to private types. CoLoRS also con-
tributes a synchronization mechanism and a parallel, con-
current, on-the-fly GC algorithm, both designed to facilitate
cross-language cross-runtime object sharing.

We implement CoLoRS in open-source, production-
quality runtimes for Python and Java. Our empirical eval-
uation shows that CoLoRS extensions impose low overhead.
We also investigate RPC over CoLoRS and find that using
shared memory to implement co-located RPC significantly
improves both communication throughput and latency by
avoiding data structure serialization.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Large, scalable software systems are increasingly being built
using collections of components to better manage software
complexity through reusability, modularity, and fault isola-
tion. Since each programming language has its own unique
combination of performance, speed of development, and
library support, different software components are often
implemented in different languages. As evidence of this,
Thrift [34] and Protocol Buffers [31] have been developed
by engineers at Facebook and Google, respectively, to en-
able more efficient interoperation across multi-language
components employed within their applications and back-
end services. For web applications, different languages are
better suited for the implementation of different tiers: Ruby,
Python, Java, and JavaScript facilitate fast development of
the presentation layer, Java, PHP, Perl, Python, and Ruby
components commonly implement server-side logic, and
Java, query languages, and C++ are used for a wide range
of backend database technologies. The components of these
multi-language, multi-component applications and mashups
typically execute within independent runtime systems (lan-
guage virtual machines (VMs), interpreters, etc.) and com-
municate and interoperate via remote procedure calls (RPC)
and message passing.

Increasingly, administrators co-locate runtimes to bet-
ter utilize multi-core resources. This makes it possible to
use shared memory for such cross-component communica-
tion as well as for a cross-runtime language-neutral trans-
parent object storage. However, despite its growing practi-
cal value, shared memory has not yet been investigated in
either of these contexts. To evaluate the potential of us-
ing shared memory for cross-language, safe, transparent
communication and object storage, we design and imple-
mentCo-Located Runtime Systems (CoLoRS). CoLoRS pro-
vides direct object sharing across static and dynamic, object-
oriented (OO) languages.

CoLoRS virtualizes VM components that assume a lang-
uage-specific object/class/memory model. In CoLoRS, shared
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objects retain their language-specific behavior includingthe
semantics of virtual method calls, locking, and field access.
In addition, builtin/library data structures, such as collec-
tions, transparently map to their shared counterparts in the
CoLoRS object model.

Our key hypothesis is that sharing objects across static/dy-
namic OO languages using shared memory can be safe,
transparent, and efficient. Our main contributions include:

• An object and memory model that enable language-
neutral object and class sharing across dynamic and static
languages. The CoLoRS object model is a static-dynamic
hybrid, which provides the efficiency of a static model
with the flexibility of dynamic class modifications. To
enable this, CoLoRS uses an extensible static model with
versioning and type mapping.

• A GC algorithm that is parallel, concurrent, and on-the-
fly – one that is better suited for multi-VM memory man-
agement than extant GCs. CoLoRS GC is simpler than
state-of-the-art on-the-fly GCs, does not require tight in-
tegration into a runtime, imposes no system-wide pauses,
and guarantees termination of the on-the-fly collection.

• A synchronization mechanism that avoids the complexi-
ties of conventional approaches to monitor synchroniza-
tion, while providing the same semantics and good per-
formance.

• CoLoRS implementation for Java and Python. To inves-
tigate object sharing between dynamic and static OO
languages, we integrate CoLoRS support within open-
source, production-quality runtimes: HotSpot JVM and
cPython.

• CoLoRS experimental evaluation. We have evaluated
CoLoRS efficacy using standard Java and Python bench-
marks and found that CoLoRS extensions impose low
execution time overhead. We also provide experimental
results for the CoLoRS GC algorithm and CoLoRS syn-
chronization.

• RPC as a CoLoRS use-case. We have found empirically
that CoLoRS can significantly (up to 2 orders of mag-
nitude) improve the performance of cross-language RPC
systems, such as CORBA [13], REST [24], Thrift [34],
and Protocol Buffers [31]. This is because using shared
memory in the co-located case avoids expensive ob-
ject serialization. The improvements in communication
throughput and latency due to CoLoRS significantly in-
crease end-to-end transaction performance in Cassan-
dra [10] (a key-value database), and the Hadoop Dis-
tributed File System (HDFS) server [26].

In the sections that follow, we present the design and ar-
chitecture of CoLoRS, describe the key contributions of our
system, including a language-neutral object/memory model,
memory management, garbage collection, and synchroniza-
tion support, as well as transparent object sharing via run-
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Figure 1. CoLoRS architecture. There is exactly one CoL-
oRS server process, which manages the shared memory seg-
ment and runs concurrent GC. Runtimes for different lan-
guages (Java and Python in this case) attach to the shared
memory segment and allocate/use objects in the shared heap.

time/library virtualization. We then discuss CoLoRS im-
plementation and its empirical evaluation, compare/contrast
CoLoRS with related work, and conclude.

2. CoLoRS Overview
The primary design goal of CoLoRS is to provide type-
safe, transparent, direct object sharing between co-located
managed runtimes for different OO languages. This includes
both statically-typed (e.g. Java) and dynamically-typed (e.g.
Python) languages. The key challenge with providing such
support are the major differences between language imple-
mentations, including object/class models, memory models,
type systems, builtin types, standard libraries, and memory
management (GC). For instance, dynamic languages sup-
port attribute (member) addition at runtime, while static lan-
guages permit class changes at compile-time only.

Figure 1 shows a high-level view of a CoLoRS system.
In this example, two VM processes (one for Java and one for
Python) are co-located on a multi-core system. There is ex-
actly one CoLoRS server process which manages the shared
heap (this includes the setup of the shared memory segment,
data structure initialization, as well as support for garbage
collection). Each VM process has its own private heap and a
private object/class model and runs its applications threads.
In the shared heap, there is a CoLoRS object/class model
which is transparently translated to a private object/class
model in each VM. We do not allow pointers from the shared
heap to any private heap because of memory/type safety. All
VMs map the shared memory segment at the same address
in the virtual address space and use shared objects directly
via pointers.

Static (class) fields are not subject to sharing because
they often represent local resources and sharing them would
break resource isolation. For instance (object) fields, how-
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ever, CoLoRS supports fully transparent sharing with regard
to allocation, GC, field access, (virtual) method invocation,
monitor synchronization, standard libraries, and class load-
ing. We do not support code sharing because that would re-
quire defining a VM-neutral language and checking whether
two methods are equivalent, which is undecidable. In fact,
sharing only instance fields makes CoLoRS more practical
as the code and static data do not have to match across lan-
guages (note that builtin types, e.g. string, differ significantly
across VMs in terms of both interface and implementation).
The programming burden associated with the necessity of
keeping instance fields in shared classes consistent across
languages can be further reduced via tools that translate class
implementations between languages.

A general approach we take in CoLoRS is to define a
language-neutral, shared object model (with respect to non-
static data) and then dynamically map it to each runtime-
specific object model. To implement this, we virtualize all
runtime components that rely on a specific object model.
Modifications to runtimes are necessary to make object shar-
ing transparent.

2.1 CoLoRS Usage

CoLoRS provides a simple application programming inter-
face (API) for developers. The CoLoRS API for Java com-
prises the following methods in theSharedMemory class
(Python has equivalent API):

Object copyToSharedMemory(Object root);
Object allocate(Class objectClass);
Object allocate(Class containerClass, int length);
boolean isObjectShared(Object object);
ObjectRepository findOrCreateRepository(String key);
ObjectChannel findOrCreateChannel(String key);
Type getSharedType(Object object);

CoLoRS supports two ways of creating shared objects: via
direct object allocation (theallocate method) and via deep
copying of a private object graph to shared memory (the
copyToSharedMemory method). Theallocate method
has two variants: one for allocation of fixed-size objects
and one for allocation of container objects (which takes the
initial size of a container as a parameter).

Note that we do not support a state model where a thread
can switch to the shared mode and issue regular object al-
locations to allocate in shared memory (as is done in related
work on cross-JVM sharing [36]). The reason is that the state
model requires complex rules specifying which allocations
should target shared memory. For instance, in a JVM, we
must exclude class loading, static initializers, and exception
handling from leaking objects into shared memory.

CoLoRS provides two mechanisms to initiate commu-
nication between two runtimes: channels and repositories,
both of which are named entities enabling exchange of
a reference to a shared object. TheObjectRepository
class provides nonblocking get/set functionality while the

ObjectChannel class supports blocking send/receive cross-
VM semantics. The following code fragments show an id-
iomatic repository usage for two Java processes. The client
process:
ObjectRepository r = SharedMemory.findOrCreateRepository(“db”);
synchronized(r){ while(r.get() == null) r.wait();}
The server process:
ObjectRepository r = SharedMemory.findOrCreateRepository(“db”);
synchronized(r){ r.set(root); r.notifyAll();}
For object channels, we have a similar pattern but synchro-
nization/waiting is not necessary because of the blocking
behavior of send and receive.

Each repository holds a reference to its root object. Each
channel has a fixed capacity for messages and blocks the
sender when full. As long as a shared object is reachable
from any repository, channel, or any VM, it stays alive.
Unreachable shared objects are garbage collected. Channels
and repositories are identified by a key (string).

The CoLoRS API enables reflective inspection of the
shared type of a shared object via thegetSharedType
method. We need this API method because in CoLoRS, ex-
pressions that evaluate to an object class, e.g. object.getClass()
in Java, retrieve a private class to which a specific shared
class currently maps. To see the shared class before map-
ping to a private class occurs,getSharedType is used.
Shared classes are regular objects – CoLoRS uses a three-
level circular meta-data hierarchy that is fully traversable by
programs wishing to inspect it.

A programmer can check whether an object is in shared
memory via theisObjectShared method. The system
throws aSharedMemoryException to prevent shared-to-
private pointers as well as to signal type mapping failures,
out-of-memory errors, and locking issues.

3. CoLoRS Design and Architecture
CoLoRS uses a dedicated process (CoLoRS server) to man-
age shared memory. There is one CoLoRS server per OS
instance. This server creates, initializes, and destroys the
shared memory segment, as well as runs concurrent, parallel
GC. That is, GC continues to function even when no run-
times are currently attached.

To use shared memory, runtimes first connect to the CoL-
oRS server using TCP/IP sockets and then attach to the
shared memory segment (by mapping it to their virtual ad-
dress space at the pre-defined, fixed address). The shared
memory segment contains three spaces: metadata space
(for state variables and synchronization), classes space (for
shared types, repositories, and channels), and objects space
(for garbage-collected shared objects). Each VM runs a sep-
arate CoLoRS thread which is responsible for collaboration
with the CoLoRS server during GC.
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3.1 The CoLoRS Object Model (OM)

CoLoRS employs a new OM that aims at transparent and ef-
ficient cross-language object sharing, while supporting both
static and dynamic languages. Our primary goal is main-
taining the language-specific OM and object/class semantics
while a VM interacts with shared objects. The rationale be-
hind this is to avoid introducing a new unfamiliar program-
ming model. In addition, CoLoRS combines certain charac-
teristics of static and dynamic OMs in order to support the
flexibility of a dynamic model while providing the efficiency
and simplicity of a static model.

3.1.1 CoLoRS Type System

CoLoRS preserves language-specific type-safety without
defining new typing rules by mapping shared types to private
types. When mapping a shared typeS to a private typeP1 in
one VM and to private typeP2 in another VM, we guarantee
that any field access permitted byP1 does not violate the
field typing constraints imposed byP2 (and vice versa).

In the CoLoRS type system, every value is an object
(there are no primitive types like in Java or C#). This is mo-
tivated by dynamic languages like Python and Ruby which
treat everything as an object and therefore require that each
value have a unique identity.

Unlike extant systems for cross-language data sharing,
CoLoRS does not specify its own data definition language
(DDL). Conventional approaches have resulted in a number
of domain-specific DDLs, e.g., SQL in relational databases,
WSDL in web services, and IDL in CORBA. The primary
limitation of DDLs is their static nature and the necessity for
a programmer to master another language. Instead, CoLoRS
generates the shared data model automatically from the na-
tive language data model defined by the programmer. More-
over, this happens dynamically at runtime and only for types
that are used in shared memory.

The CoLoRS OM strives to strike a balance between
supporting diverse languages (both static and dynamic) and
staying sufficiently close to each individual language so that
costly runtime data conversions are avoided if possible. An-
other key design tradeoff is to support the flexibility of dy-
namic languages while leveraging the benefits provided by
static typing. In fully static OMs (e.g. Java), object layout
is completely described by classes, fields are efficiently ac-
cessed via offsets, each object consumes only as much mem-
ory as necessary for its attribute values, and the data model
is fully documented by classes. On the other hand, in fully
dynamic OMs (e.g. Python) classes do not describe object
attributes, each object maintains a dictionary mapping at-
tribute names to values, field access is expensive as it takes
place via names, and space usage is suboptimal due to the
redundancy across attribute dictionaries. However, unlike
static OMs, dynamic OMs support dynamic attribute addi-
tion/removal as well as per-object attributes.

Several hybrid models have been introduced to mitigate
the static-dynamic tradeoffs. A partially static/dynamicOM
is used by Google App Engine, where each object has a static
part (fields described by a class) and a dynamic part (per-
object dictionary). On attribute access, the system first tries
to use a static field then falls back to an object dictionary on
failure. Dynamically created attributes do not become part
of the static model. A similar concept has been introduced
to Python (via the slots declaration). The JavaScript V8
runtime implements hidden classes to enable fast, offset-
based attribute lookup while supporting dynamic attribute
addition and deletion.

3.1.2 Hybrid OM and Versioning

CoLoRS OM is a new static-dynamic hybrid, which can be
described as an extensible static model with versioning and
type mapping. Our goal is to keep CoLoRS OM as static
as possible but still allow the flexibility of modifications
(add/remove/change name/type of a field).

Shared classes are always created based on private classes
when a private object gets allocated in (or copied to) shared
memory. On each allocation in shared memory, we inspect
the fields of the allocated object and look for a shared class
being an exact match for a given type name and field set. If
we do not find an exact match, we create a new class (or if a
class with this name already exists, we create a new shared
class version, having the same class name but a different
field set). For example, suppose that we have the following
class in Java:
class Employee{ String name; double salary;}
and we perform shared allocation using:
Employee e = (Employee)SharedMemory.allocate(Employee.class);
If no Employee class is present in shared memory yet, we
create one, with two fields that correspond to the private
Employee class. Now assume that we add a new field to the
Employee class, sayEmployee manager; and we repeat
the shared allocation as shown above. This time, CoLoRS
will create a new version of the sharedEmployee class, with
three fields. Note that at any point in time there is exactly
one privateEmployee class (which may evolve in time) and
there may be multiple versions of sharedEmployee class
(reflecting the schema evolution). Field removal is handled
in a similar way.

Shared objects use shared classes to describe their lay-
out. Different versions of a single shared class may have dif-
ferent layouts in memory and field sets. Shared classes are
read-only, they do not change. However, shared objects may
change their class pointers (from one version of a particular
class to its another version). This can happen both in static
and dynamic languages. For example, the following code in
Python, which uses our two-fieldEmployee class:
e = sharedmemory.copyto(Employee(’Smith’, 100))
e.state = ’NY’
adds a new field (calledstate) dynamically. To support this
in shared memory, CoLoRS creates a new version of the
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Employee class and changes the current class of thee ob-
ject to the new class version. Dynamic field removal (viadel
in Python) is handled similarly.

The advantage of versioning over a pure OO model is
lower space consumption. In conventional OO systems, class
evolution takes place via subclassing: to add or hide a field
a new class is created that inherits from the old class. As a
result, it is not possible to remove any attribute and space is
consumed forever by unused fields. In contrast, with version-
ing, even if classes evolve, the newly-created objects always
consume the optimal amount of space.

3.1.3 Type Mapping

To correctly handle multiple class versions in shared mem-
ory, CoLoRS uses type mapping. Each private classP in a
VM always has exactly one version which, at any given mo-
ment, may be mapped to several different versions of class
P in shared memory (a one-to-many relationship). Except
for builtins (e.g. Integer, String), mapping only occurs be-
tween classes with the same name – programs in different
languages must agree on package/module and class names.
We map a shared field to a private field if and only if both
have the same name and the same (or convertible) type. In
dynamic languages, we map solely on the field name basis
as there are no static types available.

Since type mapping is a relatively expensive process,
we perform it lazily, once per shared-class-version, and
maintain the mapping in a private hash table in each VM.
We also use a reverse mapping table, to avoid shared-type
lookup/matching on every allocation in shared memory.
Note that on allocation, we need to obtain the shared type
based on a private type. In contrast, when accessing a field
in a shared object, we perform the mapping from a shared
type to the private type.

When CoLoRS allocates a new object in shared memory,
it tries to find a shared class version that exactly matches
the private field set of the newly-allocated object. If no
exact match is found, it creates a new shared class version.
Consequently, newly-created objects do not contain fields
that were removed from a private class due to its evolution.
The rationale behind this is that we want to keep the object
size in shared memory optimal. However, when mapping
a shared class to a private class in a context other than
allocation, we allow both private and shared fields to remain
unmapped (if they do not have a match). When a VM uses
an unmapped field in a shared object, we dynamically add a
field to a class. To do so, we create a new shared class version
that contains the previously unmapped field, and change the
shared object’s class pointer to point to the new class version.
Note that the shared object’s type does not change, as seen
from the VM’s perspective – all versions of a shared class
always map to the same private class (with the same name).

Although CoLoRS supports dynamic changes, once the
data model is stable, both space usage and field access work
exactly like a fully static model. Also, in the CoLoRS OM,

class A

int a

float b

class A

int a

class A

int a

float b

class version 
list for Aobject  A

a = 1

object  A

a = 1

b = 0.1

class 
pointer

class 
pointer

shared memory

objects space classes space
private 

memory

Private 
class A with 
field “float b” 

added

shared to private 
mapping (many-to-one)

Figure 2. An example illustrating CoLoRS versioning and
type mapping as private classA evolves by having a field
added.

all object attributes are always present in its class and canbe
introspected via reflection.

Figure 2 shows an example where private classA evolves
from a single-field class containing “int a” into a class with
two fields, “int a” and “float b”. Private classA has exactly
one version (the newest one with both fields). Shared class
A has two versions. Both shared versions are mapped to the
private classA so that they can be uniformly used, despite
being distinct types in shared memory. The shared objects
space contains two objects of classA – one allocated for the
old version ofA and one allocated for the new version of
A. Note that each shared object uses only as much space as
necessary for its attribute set. Both objects have the same
type in a VM, and the VM may access both fields (a and
b) in both objects. On access to a non-existent field (b in this
case) in older shared objects, CoLoRS will expand the object
to make room for the new field (initializing the new field to
0).

Reconsidering the example in Figure 2 in the case when
classA evolves by having theb field removed, we have
a similar situation. Private classA again has exactly one
version (the newest one, with one fielda). Shared classA
has two versions, both mapped to the same private typeA.
Field b remains unmapped as it can never be used by the
VM and this field is simply ignored in those shared objects
that have it. Note that newly-allocated shared objects do
not reserve a slot for fieldb, thus using optimal amount of
space. In contrast, OO inheritance does not allow removal
of a field from an object (unused inherited fields continue
to consume slots in objects). Field renaming is equivalent to
field removal followed by a field addition.

Note that using CoLoRS cannot lead to broken program
invariants because matching fields can never remain un-
mapped. Thus, if class implementations across languages
match and preserve some invariant in each language, CoL-
oRS will preserve this invariant too.
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3.1.4 Built-In Types and Libraries

CoLoRS provides full transparency for builtin types (e.g.
strings, integers, lists, and sets). Builtin types differ sig-
nificantly across languages and at the same time are fre-
quently used by programs and libraries. CoLoRS preserves
language-specific interfaces for builtin types by virtualizing
the builtin implementation and/or standard libraries in each
runtime. Library virtualization amounts to modifying the
code of library methods so that these methods check whether
any of the method arguments (including the receiver, if any)
is a shared object and, if so, to execute a different implemen-
tation of the method.

CoLoRS defines a set of builtin types which we identify
in Table 1 with their mappings in Java and Python.

We support 64-bit integers, which can be mapped to
Pythonint and to any integer type in Java, both primitive,
e.g.int, short, and reference, e.g.Long, Integer. Having
only one integer type allows us to avoid complex rules for
field mapping during schema evolution. For example, if we
supportedint andshort as distinct integer types in shared
memory, then we would have to define complex semantics
for changing the field type fromint to short and vice versa,
i.e. when we create a new field dynamically and when we
reuse existing integer field.

We use a similar approach in case of floating-point types,
supporting only 64-bit IEEE floats. The CoLoRS 64-bit float
can be used in Java as any floating point type, e.g.double
or Float. We do overflow/underflow checks when read-
ing/writing integer/float fields requires conversion.

For scalar types, we also provide a boolean and a string.
As in Thrift [34], CoLoRS defines three container types: a
list, set, and map. Containers are untyped (i.e. may contain
objects of different types at the same time). This is because
we cannot automatically infer the container element type
(at least in Java and Python), even if the container is not
empty. To support a compact byte array representation we
provide thebinary type, suitable for blobs. Note that in
Java, a sharedlist can be used as an array (of any type)
and as aList. The rationale behind this is transparency
– we want to support Java arrays even though CoLoRS
and Python do not have arrays so that we do not change
the Java programming model. Scalar types (integer, float,
boolean, and string) are immutable. Builtin objects always
have exactly one version, one mapping to a private type, and
do not have any programmer-visible fields.

In order to use shared objects along with private objects
in a single hash-based container, hash codes and equal-to
methods must agree across runtimes. We unify them for
Java and Python builtin types. For shared objects, CoLoRS
provides default hash code generation, equal-to methods,
and less-then methods (all based on object addresses). They
can be overridden by programmers.

For programmer convenience, CoLoRS automatically
copies scalar types (e.g. integer, string) to shared memory.

shared java python

integer byte, short, int, long, char, Byte,
Short, Integer, Long, Character int

float float, double, Float, Double float
boolean boolean, Boolean bool
string String str
binary byte[] bytearray

list List, ArrayList, Object[], int[],
float[], T[], ... list, tuple

set Set, HashSet set, frozenset
map Map, HashMap dict

Table 1. Builtin types supported by CoLoRS and their map-
pings to Java and Python builtin types. For transparent and
convenient use by programmers, multiple mappings are pos-
sible per shared type.

On field assignment/array store, the system checks whether
the assignment uses a private r-value and a shared l-value. If
so, and the r-value is of a scalar type, CoLoRS silently calls
thecopyToSharedMemory method on the r-value, instead
of throwing an exception. This mechanism is particularly
useful for constructors.

3.1.5 Static Languages

In static languages, object fields are typed and typically ac-
cessed using field offsets. Since CoLoRS uses a mostly-
static OM, it also identifies fields in shared objects by their
offsets. Private and shared field offsets may differ so it is nec-
essary to map between them. Unidirectional mapping from
the private offset to the shared offset is sufficient because
VMs always access shared fields using the context of a pri-
vate type. To make this mapping efficient, we associate a
field-offset-table with each pair (S,P) where S is a shared
type mapped to private type P. Whenever we access a shared
field in a shared object, we index the appropriate field-offset-
table with the private field offset and obtain the shared field
offset.

When inspecting a class of a shared object (e.g. via ob-
ject.getClass() in Java) we always get a unique private class
as a result. For example,integer maps toSharedInteger
while list maps toSharedList. However, to ensure trans-
parency, shared builtins can map to multiple different private
types. In OO languages, this can be implemented via multi-
ple inheritance. For instance, if we can makeSharedList
inherit fromList, Object[], ArrayList, etc. then represent-
ing sharedlist as privateSharedList is correct in all pos-
sible mappings. However, some languages (e.g. Java) do not
support multiple inheritance or inheritance of array types.
We instead simulate both by modifying the runtime so that
SharedList can be cast to any of the private types that
sharedlist maps to. We apply a similar approach forinteger
andfloat.

Each private class maps to a unique shared class. A gen-
eral rule that we use is that whenever we allocate private type
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P as shared typeS, we must later be able to use the shared
typeS asP .

Type mapping may cause class loading in a VM. This is
because whenever we encounter an instance of a shared type
T , which maps to a private typeU , we must load classU .
Thus, CoLoRS introduces a new class loading barrier.

Since in static languages, the static type of a field is avail-
able, we permit certain conversions while mapping shared
fields to private fields. Let us denote any private class to
which a shared classS maps as map(S). For a given field
of shared typeS and of private typeP , CoLoRS allows both
upcasts and downcasts during mapping.

Upcasts occur if classP is a superclass of class map(S)
or class map(S) implements interfaceP . For instance, we
have an upcast when we map a field of shared typelist to a
field of private typeList (because map(list) = SharedList
andSharedList implements theList interface). Or we have
an upcast when we map a field of shared typestring to a
field of private typeObject, becauseObject is a superclass
of class map(string) = String. Upcasts are most useful to
support interface-type private fields, such asList in Java.

Downcasts take place if classP subclasses map(S). For
example, there is a downcast if a field of shared typelist is
mapped to a field of private typeString[], becauseString[]
subclassesObject[] = map(list). Thanks to downcasts, pri-
vate arrays (whose elements are typed) can conveniently ac-
cess shared lists (whose elements are untyped).

To ensure type safety, downcasts require a read barrier
which checks the actual object type on each read access.
Upcasts represent a covariant type operator (analogous to the
array upcasts in Java) and therefore require a write barrier
that checks the type of the stored object against the expected
static type.

3.1.6 Dynamic Languages

In dynamic languages, fields are accessed by name (not by
offsets) and static field types are not available. Therefore,
when creating a new shared class or comparing to an exist-
ing one, CoLoRS relies on actual types of all non-null at-
tributes in a particular object (i.e. the one being copied to
shared memory). This results in type concretization – shared
classes created by dynamic runtimes always have the most
derived field types. We ignore NULL fields as for them no
static type can be inferred. When looking for an exact type
match (during shared allocation), we allow type conversions
(upcasts and downcasts). No read barrier is necessary as dy-
namic languages do not guarantee any particular type for any
field. However, each field store must verify the type of the
stored object against an appropriate static shared type (via a
write barrier).

When mapping a shared typeS to a private typeP , we do
not map fields, as we do not have field types and offsets inP .
Instead, we just create a hash table mapping field names to
shared offsets. This speeds up attribute access (which is done
via names). Since multiple private types can be mapped to a

single shared type (e.g.list andtuple in Python both map
to sharedlist), we employ multiple inheritance if possible
(e.g. in Python) or we extend the runtime to simulate it for
the types in question.

CoLoRS uses reverse mapping to avoid shared class
lookup on each allocation. Reverse mapping can improve
performance only if private instances of a single private class
have similar attribute sets (a natural property but one thatis
not always enforced by dynamic languages). Otherwise, the
system might end up relying on dynamic field addition fre-
quently as some objects’ types may be mapped to static types
that have too few static attributes.

3.2 The CoLoRS Memory Model (MM)

CoLoRS defines a new memory model that builds on and
simplifies memory models supported by mainstream lan-
guages. CoLoRS MM is equivalent to the Java MM for pro-
grams that do not contain data races. Java programs that rely
on volatile and final fields or other race-related aspects
of the Java MM may work incorrectly with CoLoRS be-
cause shared object fields drop their Java-specific modifiers.
Python does not define any MM so using CoLoRS cannot
break extant Python programs.

Following the Java Memory Model (JMM) approach and
recent standardization effort for the C++ MM [9], CoL-
oRS guarantees sequentially consistent semantics only to
programs that are properly synchronized (i.e. those that do
not contain data races). A data race occurs when multiple
threads can access the same object field at the same time and
at least one of them performs a write.

Similarly to Java and C#, CoLoRS provides monitor syn-
chronization. Monitors provide mutual exclusion for threads
and restrict re-ordering of memory accesses. Monitor entry
has load acquire semantics (downward fence) while monitor
exit has store release semantics (upward fence). Full mem-
ory fence is not supported in CoLoRS (following Java and
C# design). In CoLoRS, monitors are fault-tolerant: if a VM
dies while holding a monitor, subsequent acquisitions of this
monitor do not result in a deadlock or access to corrupted
data, but throw a runtime exception before entering a critical
section.

Like the JMM (and unlike the C++ MM), CoLoRS must
guarantee basic type- and memory-safety even in the pres-
ence of data races. Therefore, in CoLoRS, all pointer stores
and loads are always safe (even with data races). This prop-
erty is relatively easy to implement (an aligned machine-
word-wide load/store is atomic on most architectures). This
property is not strictly necessary for type-safety in case of
primitive values, like integer or float, and therefore CoLoRS
does not guarantee it for non-pointer fields. Operations like
shared class creation or dynamic field addition are always
thread-safe because they are rare and can be internally pro-
tected by a lock.

Note that CoLoRS MM avoids many of the complexities
of the JMM by supporting only instance field sharing (no
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statics, no methods, no constructors) and ignoring field mod-
ifiers like final and volatile. Unlike C++ MM, CoLoRS
MM does not support atomic operations and thetrylock
functionality, which simplifies the model significantly.

3.3 Monitor Synchronization

CoLoRS employs a new synchronization mechanism that
is an adaptation and simplification of extant, commonly-
used schemes. We have found these schemes inadequate
for CoLoRS because of their complexity, tight integration
with VM services, and reliance on the ability to stop all the
threads.

State-of-the-art high-performance VMs, like HotSpot
JVM, use biased locking [32] to avoid atomic CAS oper-
ations in the common case. However, biased locking re-
quires safepoint support – it occasionally needs to stop all
the threads to recover from its speculative behavior. One of
the design goals in CoLoRS is to avoid stopping all VMs at
once – such system-wide safepoints are inherently unscal-
able and introduce lengthy pauses. Therefore, biased locking
is not suitable for CoLoRS.

Another commonly-used locking scheme is lightweight
locking [32], which strives to avoid using OS primitives in
the common case by relying on atomic CAS operations. We
have investigated the efficacy of this approach and found that
in modern OSes that provide futexes (fast user-mode locking
primitives), lightweight locking performs worse that an OS
mutex. In older OSes, OS-backed synchronization was slow
because it required kernel entry/exit. Linux implements fu-
texes that in the uncontended case perform one atomic CAS.
In contrast, lightweight locking needs two atomic CASes,
one for locking and one for unlocking [32] path. We have
compared the cost of 2 atomic CASes with POSIX mutex
lock and unlock. Our results show that two atomic CASes
are slower: on a dual-core Intel Core2 by 31%, and on a
quad-core Intel Xeon by 45%. Therefore, we have designed
CoLoRS to use OS primitives (POSIX mutexes based on fu-
texes) directly.

Most extant monitor implementations (e.g. HotSpot JVM)
reserve a word in the object header to assign a lock pointer
to an object once a lock is needed. The presence of such
a pointer leads to significant design complexity in ex-
tant systems because once the pointer is set, one can only
clear it when all threads are stopped or the object has be-
come unreachable. CoLoRS does not ever stop-the-world
(halt/safepoint all threads in the system), hence we take a
different approach.

Instead of using a pointer to a monitor, we hash the object
address (shared objects do not move in CoLoRS) into a
fixed-size table of monitors kept in shared memory. Since
few objects are used as monitors at a time, it is unlikely that
multiple simultaneously locked objects will ever hash to the
same monitor-table entry. Thus, we can multiplex OS locks
without significant loss of concurrency level in the common
case. Note that such multiplexing of OS locks due to hashing

conflicts is correct and does not lead to a deadlock because
CoLoRS translates notify operations to notify-all operations.
Even if two or more threads block on the same monitor while
synchronizing on different objects, each monitor notification
awakens all blocked threads and a progress can be made.
If a thread acquires locks on multiple objects then if two
or more objects end up using the same monitor, locking
remains correct because locks are recursive.

The above synchronization scheme can be transparently
integrated into Java based on Java monitors. Python does
not support the monitor abstraction (locks are not associ-
ated with objects) and therefore needs to be extended with
dedicated API for monitors.

3.4 Garbage Collection

Since CoLoRS targets multi- and many-core systems and
avoids system-wide safepoints, the most appropriate GC al-
gorithm for shared objects is parallel (i.e. using multiple
GC threads), concurrent (i.e. performing most work with-
out stopping the application), and on-the-fly (i.e. stopping at
most one thread at a time) GC. In addition, CoLoRS needs a
non-moving, mark-sweep-style GC because some runtimes
(e.g. Python) assume that objects do not move and other ones
(e.g. Mono for C#) use conservative stack scanning.

We have found extant on-the-fly mark-sweep GCs to be
unsuitable given the CoLoRS architecture and requirements.
Therefore, we have designed a new variation of snapshot-
at-the-beginning (SATB) GC, which is parallel, concurrent,
and on-the-fly.

The state-of-the-art in on-the-fly GC systems include
those that employ the Doligez-Leroy-Gonthier [17, 18] algo-
rithm and its extensions by Domani et al. [19, 20] for gener-
ational heap layout and multiprocessors without sequential
consistency.

State-of-the-art, snapshot-based, on-the-fly GC algo-
rithms require multiple (three to start the collection cycle)
system-wide handshakes with all the threads. The mutators
must check whether they need to respond to handshakes
regularly during their normal operation. For scalability,we
designed CoLoRS to work at the granularity of VMs, not
individual threads. The handshakes would require keeping
track of all threads in all VMs. In addition, we do not want to
require VMs to implement the per-thread handshake-polling
mechanism, as it is not generally supported in VMs.

A design goal of CoLoRS GC is to abstract away private
VM memory management to one operation: shared root re-
port, without imposing any specific implementation details.
As a result, we have designed an on-the-fly GC that does not
use handshakes and works at the VM level (not thread level).
In addition, the CoLoRS GC is simpler (as it does not have
any phase transitions) and guarantees termination (some pre-
vious algorithms unreliably depend on the relative speed of
the collector and mutation rate for termination).

CoLoRS uses thread-local allocation buffers (TLABs)
to reduce allocation cost. Each thread performs bump-
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pointer unsynchronized allocation in its own TLAB. Once
the TLAB is exhausted, it is retired, and the thread requests
a new one. VMs request TLAB or large-object allocation
directly from the object space. The freelist contains all un-
allocated blocks whose size is at least the TLAB size. The
freelist is protected by a lock.

3.4.1 GC Algorithm

Our GC comprises four concurrent phases: flag clearing, root
report, marking, and sweeping. The CoLoRS server initiates
a new GC cycle as soon as the heap usage crosses a specified
threshold. The main GC thread is awoken by an allocating
thread once this happens. CoLoRS GC imposes no pauses.
If a VM is capable of reporting shared roots without causing
internal pauses (e.g. as Python can), then the system never
needs to pause any threads.
Flag clearing. The main GC thread first clears all GC-
related flags in the heap. This operation is fully concurrent.
Each object has three GC flags: pending (i.e. it needs to
be recursively marked), marked (i.e. it has been recursively
marked), and recent (it has been recently allocated).

Unlike in extant SATB GCs, in CoLoRS, the snapshot
mode is active all the time. This simplifies the algorithm
as it avoids complex state transitions and handshakes. The
snapshot mode means that all objects are allocated live (i.e.
with the recent flag set) and mutators use a write barrier: on
pointer stores they mark the overwritten pointer as live (i.e.
they set the pending flag). When GC scans a live object it sets
its marked flag. During the flag-clearing heap scan, the main
GC thread also computes a fully-balanced heap partitioning
that is used later on for parallel scanning. The key system
invariant is that it is always possible to sequentially scan
all blocks in the heap, without any synchronization. We
carefully design allocation procedures so that we do not
break this invariant.

GC flag clearing has a similar effect to activating the
snapshot mode from scratch in other algorithms, but does
not require handshakes. Once GC flags are cleared, the main
GC thread requests root dumps from all attached VMs.
Root report. Each VM must be able to identify pointers
into shared memory in its private heap/stacks in an efficient
way. In VMs using tracing GC this is straightforward – we
either scan the whole heap (non-generational GC) or use a
card table (generational GC). In the latter case, we extend
the card table so that we can quickly find not only pointers
from the old generation(s) to the young generation but also
pointers from the old generation(s) to shared memory. To
report shared roots, we simply trigger a fast minor collection
and efficiently find all pointers to shared memory.

In VMs which use reference counting GC (e.g. cPython),
CoLoRS can track shared roots as they are created and de-
stroyed, thus being able to report them any time without
any processing. For each shared reference, we create a small
proxy object in private memory with reference count set to
one. Once the proxy object becomes unreachable (which we

know immediately thanks to reference counting) we reclaim
it and forget the shared root. Note that only private refer-
ences can exist to the proxy object since there are no shared-
to-private pointers.

CoLoRS requests roots from each VM and waits until all
reports arrive. To report a shared root, a VM sets the object’s
pending flag. To ensure store visibility, a memory fence takes
place on both sides once the reporting completes. CoLoRS
does not use timeouts because it detects VM termination in
a reactive way via TCP/IP sockets. Termination is noticed
right away and the exited VM is removed from the waiting-
for-roots list.
Marking. As soon as all roots are reported, the main GC
thread initiates parallel, concurrent marking done by several
worker GC threads. Each worker thread scans its own heap
partition looking for pending objects, and recursively marks
them using depth-first search. To ensure dynamic load bal-
ancing during marking, worker GC threads employ random-
ized work stealing. GC threads use barrier synchronization
to meet at subsequent GC phases.

Once first marking completes, the main GC thread enters
a loop. During each iteration, CoLoRS performs parallel,
concurrent marking from pending objects. However, this
time it stops marking the object graph once its sees an object
with the recent flag set. The loop terminates when no new
objects have been marked. Stopping marking on recently-
allocated objects guarantees GC termination – there is a
finite number of “old” objects in the heap when the GC
starts, and all the newly-allocated objects are being flagged
as recent. Therefore, GC must finish in a finite number of
steps.

For correctness, we must prove that a recently-allocated
object cannot have a pointer to an object that is live but other-
wise unreachable and invisible to GC (and thus it cannot be
incorrectly left unmarked). Note that such a situation may
occur during the first marking pass, which marks from the
VM roots. Our snapshot write barrier (SATB WB) does not
capture root pointer updates – it only captures heap stores.
Suppose that rootr points to objectO, and a new objectN
is allocated having its only pointer set toO. If root r is later
updated to point toN , we end up with a newly-allocated ob-
ject N that has a pointer to a live objectO that is reachable
only throughN . The reason for this is that we do not notice
root updates. Such a situation is impossible from the second
marking on, as during 2nd and subsequent markings we ig-
nore roots and mark from the pending flags only (i.e. from
heap objects that are protected by SATB WB). Reconsider-
ing our example in the heap context: objectO is marked as
pending onr update, and will be marked/scanned even if we
stop marking on objectN (which has its recent flag set).
Sweeping. As soon as the marking loop terminates, CoLoRS
moves on to concurrent, parallel sweep. Each worker GC
thread scans its heap chunk trying to find the first potentially-
free (candidate) block. This scan is done without synchroniz-
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ing with mutators that are actively allocating objects. Once
a GC thread finds a candidate block, it acquires the freel-
ist lock and continues the scan as long as it encounters re-
claimable blocks. Finally, it removes all found dead blocks
from the freelist and inserts one coalesced block into the
freelist. The GC thread releases the freelist lock and looks
for the next candidate block. Our GC-mutator contract guar-
antees that all block headers are always parsable.

4. CoLoRS Implementation
CoLoRS can work under any OS that supports adequate IPC
functionality. We have implemented CoLoRS in HotSpot
JVM 1.6 and cPython 3.1.

We find that extending a VM with CoLoRS support is
relatively straightforward. The first step is to determine the
VM object/class model, its relationship to the CoLoRS OM,
memory management (GC) algorithm(s), and operations that
use objects, typically field access, method calls, synchro-
nization, etc. Next, we define type mapping for builtins and
user-defined types, and add any runtime extensions (such
as multiple inheritance) to support it. The next step is heap
access virtualization which amounts to extending an inter-
preter, a JIT compiler, or both, to provide a separate con-
trol path for handling shared objects. Depending on a VM,
other components may need similar extensions, e.g. the GC
subsystem. Typically, we must intercept all program instruc-
tions that read/write heap objects. Next, we insert calls to
the CoLoRS API along the newly added control paths. This
step translates VM-specific operations into VM-neutral op-
erations (e.g. getting an attribute by name into getting a field
by offset). Lastly, we add GC runtime support – we imple-
ment a dedicated CoLoRS thread and the shared-root-dump
operation in the private GC system.

4.1 Shared Memory Segment

The CoLoRS shared memory segment contains three spaces:
metadata, classes, and objects. The objects space is a garbage-
collected mark-sweep heap with TLAB/free-list allocation.
The classes space is a bump-pointer space for immortal ob-
jects that contains shared classes, class version lists, and
registered object repositories/channels. The metadata space
contains several pointers to objects allocated in the classes
space: pointers to all builtin types, pointers to the repos-
itories/channels hash tables (mapping names to reposito-
ries/channels), a pointer to class versions hash table (map-
ping names to class version lists), as well as user-level mon-
itors, internal system locks, the freelist head and space usage
statistics, and the bump-pointer top (for the classes space).

Each CoLoRS monitor has its POSIX mutex and condi-
tion variable. We use the PTHREADPROCESSSHARED
flag to make the POSIX mutexes and conditions work across
OS processes. In addition, monitors use the recursion count
(to avoid re-locking by the same thread) as well as owner ID
(VM ID plus thread ID).

The CoLoRS server maintains additional state (metadata)
in private memory to manage GC threads, and to track at-
tached VMs. For each attached VM there is a dedicated
monitoring thread, which detects VM termination using an
open TCP/IP connection. On VM termination, the monitor-
ing thread receives an error when reading from a closed
socket. Note that OS-level IPC (e.g. sockets) is the only reli-
able way of detecting process termination without resorting
to timeout/keep-alive solutions. This is because in Unix sys-
tems certain signals (e.g. the KILL signal) cannot be inter-
cepted.

We group class versions into lists based on their name.
Object repositories/channels and classes are permanent en-
tities – we do not collect them as they are reusable. Object
repositories/channels are treated as GC roots during GC.

GC flags are implemented as one-byte-wide fields be-
cause of concurrent access. We assume that writes issued
by a particular thread are visible to other threads in the order
they are issued (sequential consistency guarantees this).

The objects space is a contiguous sequence of blocks.
Each block can be an object, a free chunk (part of the freel-
ist), or a TLAB. The block header contains two fields: block
length and block type. This enables quick traversal of the
heap without parsing actual objects – a key property for our
concurrent GC. TLAB blocks contain an owner ID, which
identifies the VM that is currently using the TLAB. This
enables us to reclaim TLABs orphaned by asynchronously
terminated VMs.

To provide transparent object sharing, CoLoRS intercepts
all VM operations that access heap memory. To efficiently
check whether an object is shared, CoLoRS uses a constant
border between private and shared area in the virtual mem-
ory. Each memory-related operation, such as field access,
compares the pointer value against this constant border.

4.2 HotSpot JVM

In static runtimes with high-performance, adaptively opti-
mizing compilers, border-checks may be expensive as they
make the intermediate code larger and more difficult to op-
timize. Therefore, in our CoLoRS implementation in the
HotSpot JVM server compiler, we compile methods in two
modes: CoLoRS-aware and CoLoRS-safe. The CoLoRS-
aware mode is used for methods in which shared mem-
ory has been determined (via profiling during interpretation)
to be commonly-used. For such methods, border-checking
overhead and the additional code that handles the shared
pointers are acceptable.

The remaining methods (a vast majority in practice) are
compiled in the CoLoRS-safe mode, where private pointers
are the common case. The CoLoRS-safe methods contain
only the minimum number of border-checks needed to take
a trap on shared pointers. Such traps deoptimize the method
and recompile it as CoLoRS-aware, running the method in
the interpreted mode in the meantime. The CoLoRS-aware
methods use fast upcalls to C to handle shared pointers
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(CoLoRS is implemented in C). If fast upcalls fail (e.g. be-
cause class loading is needed), we bail out to the interpreter.

In CoLoRS-safe methods, we combine null checks with
shared-border checks. Assuming that shared memory area
is at lower virtual addresses than the private area, check-
ing if a pointer is below the border detects both NULL
pointers and shared pointers. If the check passes, we trap
to the interpreter, which finds the actual cause of a trap itself
(the trap cost is not a problem as it is the uncommon case
path). In CoLoRS-aware methods we guard virtual method
calls to prevent calling into a CoLoRS-safe method with a
shared receiver (such calls need a trap). CoLoRS-safe meth-
ods must translate user-provided null checks into null-and-
border checks to avoid eliding border checks along with null
checks.

We also perform approximate data flow analysis which
conservatively computes all methods which can operate on
a pointer to a shared object. The analysis exploits the fact
that shared pointers can only be produced by the meth-
ods from the CoLoRS API. We dynamically and incre-
mentally build the call graph as classes are loaded. In the
graph, nodes represent methods and there is an edge from
node m to n, if method m can pass/return a reference
to methodn. In case of interface methods, we have ad-
ditional edges leading to all implementors of a particular
method. We divide all loaded methods into two classes: pri-
vate and potentially-shared. Private methods can never reach
shared objects. If any potentially-shared method containsthe
putstatic bytecode, then we assume all methods containing
thegetstatic bytecode to be potentially-shared. Otherwise,
if a method is reachable from a potentially-shared method
in the call graph, that method is also considered potentially-
shared. Potentially-shared methods are compiled as either
CoLoRS-aware or CoLoRS-safe, depending on the profiling
data. Private methods do not contain any instrumentation. If
class loading makes a previously-private method potentially-
shared, we make the method non-entrant and recompile it.

CoLoRS intercepts all bytecode instructions that access
objects in the heap (both fields and object header): put-
field, getfield, arrayload, arraystore, invoke, monitor-related
ones, arraylength, and objectclass. We extend the HotSpot
template interpreter and the server compiler (both targeting
amd64). In addition we virtualize the HotSpot runtime writ-
ten in C (biased locking, GC, class loading, JNI, JVM, JMM,
JVMTI). Several internal classes are not allowed to be in in-
stantiated in shared memory (e.g. Thread, ClassLoader) –
they are VM-specific and do not make sense in the context
of other VMs.

4.3 cPython Runtime

We virtualize shared objects via private proxy objects, each
containing a forwarding pointer to a shared object and a nor-
mal Python header (comprising private type and a reference
count). This design choice is dictated by the fact that Python
uses reference counting GC and CoLoRS uses tracing GC

(so there is no reference counts in shared object headers).
The cost of one level of indirection is fully compensated by
the fact that we do not need to perform type mapping on each
shared object access – proxy objects have their private type
computed once. All proxy objects have the same size and are
bucket-allocated in a dedicated memory region (for fast bor-
der checks). Deallocation takes place once a reference count
drops to zero. Thus, the number of proxies never exceeds the
number of private-to-shared pointers. Finding shared roots
in such a setting is fast and amounts to a linear scan of the
proxy object region.

Proxy objects also simplify Python runtime virtualiza-
tion, as the Python interpreter dispatches basic operations
such as field access, method call, and operator evaluation,
based on object type (note that proxies already have the
proper private type set). We provide a new private type for
each builtin shared type, and the interpreter automatically in-
vokes the right implementation (shared/private). Python VM
allocates only one global TLAB because the interpreter is
single-threaded and simulates multi-threading by context-
switching between program threads. The Python runtime
component most complex to virtualize are standard libraries
and builtin types, which provide rich, complex interfaces
(e.g. for sorting, set algebra, etc).

5. Related Work
CoLoRS is unique in that it is the first system to sup-
port type-safe, transparent, and direct object sharing via
shared memory between managed runtimes of different
object-oriented languages. To enable this, we design a new
language-neutral object and class model, memory model
supporting monitor synchronization, and a new parallel and
concurrent, pause-free GC system.

CoLoRS takes a top-down approach to object sharing be-
tween runtimes for high-level languages. That is, we assume
full isolation between the runtimes via operating system pro-
cess semantics and provide a new mechanism for object
sharing within this context. Several previous systems [6, 16,
23] took a bottom-up approach by executing multiple appli-
cations in a single OS process and providing software-based
isolation between them.

Note that although one can use CoLoRS to implement an
efficient cross-language RPC for the co-located case (similar
in spirit to LRPC [7]), CoLoRS is more general than RPC
systems and it focuses mainly on transparent object sharing
(as opposed to message passing). CoLoRS is the first system
to enable type-safe, transparent, shared memory across OO
language runtimes. Thus, CoLoRS differs significantly from
RPC systems (such as LRPC) in terms of both architecture
and programming model.

State-of-the-art systems that support type-safe, cross-
language communication for OO languages, such as OMG
CORBA [13], Apache Thrift [34], Google Protocol Buffers [31],
SOAP, and REST, target distributed systems and rely on
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message-passing and data serialization. CoLoRS differs
from these systems in that it targets co-location and shared
memory (as opposed to message passing). CoLoRS is com-
plementary to RPC frameworks as it can be used to optimize
RPC in the co-located case. Note, however, that CoLoRS is
not an RPC system and its primary goal is type-safe, trans-
parent object sharing.

The XMem system by Wegiel and Krintz [36] is most
related to ours. XMem provides direct object sharing be-
tween JVMs. XMem also takes a top-down and transpar-
ent approach, but does not support sharing between het-
erogeneous languages and requires global synchronization
across runtimes (which CoLoRS avoids) for such opera-
tions as garbage collection, class loading, shared memory
attach/detach, and communication channel establishment.

Systems supporting communication between isolated
tasks within a single-language, single-process runtime in-
clude Erlang [3], KaffeOS [6], MVM [16], Alta [5], GVM [5],
and J-Kernel [35]. These systems take a bottom-up approach
which provides weaker isolation (i.e. weaker protection
guarantees than the CoLoRS approach) and is more com-
plex to implement. Unlike CoLoRS, they replicate operating
system (OS) mechanisms within a single OS process instead
of leveraging existing OS inter-process isolation.

Language-based operating systems also provide mecha-
nisms for communication and interoperation between pro-
cesses [8, 21, 23, 25, 27–29, 33, 37]. Such systems typically
implement support for light-weight processes that share a
single address space and provide compiler support to guar-
antee type and control safety within and between processes.
To facilitate the latter, these systems require that the compo-
nents (processes/tasks) be written in the same safe/checkable
language. In addition, since CoLoRS is not an operating sys-
tem, it is significantly simpler.

Some concurrent languages provide direct support for
inter-process communication between light-weight pro-
cesses [4, 14, 21] written in the same language. The key
difference between these systems and CoLoRS is that they
employ share-nothing semantics for message-based commu-
nication whereas CoLoRS provides support for direct object
sharing when runtimes are co-located on the same physical
machine.

CoLoRS is also distinct from distributed shared mem-
ory and single system image runtimes for clusters such as
MultiJav [11], cJVM [2], JESSICA [30], Split-C [15], and
UPC [22]. In contrast to them, CoLoRS provides a uni-
form cost for accessing all objects (private and shared) and
does not target distributed computing. These systems pro-
vide sharing between code written in the same language,
and focus on guaranteeing memory consistency and cache
coherence for concurrent access to objects across multiple
machines.

6. Experimental Evaluation
An important practical use case for CoLoRS is improving
communication performance of RPC in the co-located case.
We evaluate CoLoRS in this context because there are cross-
language RPC frameworks, such as CORBA, Thrift, Proto-
col Buffers, and REST, to which we can compare. CoLoRS,
however, provides significantly more functionality over ex-
tant cross-language RPC systems by enabling direct, type-
safe, and transparent object sharing.

We compare CoLoRS-based RPC against extant RPC
frameworks in terms of communication performance (i.e.
latency and throughput). We also evaluate end-to-end server-
client performance (response time and transaction rate) for
two applications: Cassandra and HDFS. Finally, we measure
the overhead of CoLoRS in programs that do not employ
shared memory, using standard community benchmarks for
Java and Python.

6.1 Methodology

Our experimental platform is a dedicated machine with a
quad-core Intel Xeon and 8GB main memory. Each core
is clocked at 2.66GHz and has 6MB cache. We run 64-bit
Ubuntu Linux 8.04 (Hardy) with the 2.6.24 SMP kernel.

We use HotSpot JVM from OpenJDK 6 build 16 (April
2009) compiled with GCC 4.2.4 in the 64-bit mode. Our con-
figuration employs the server (C2) compiler, biased locking,
and parallel GC (copying in young generation and compact-
ing in old). For the Python runtime we use the open-source
cPython 3.1.1 (released August 2009) compiled with GCC
4.2.4 in the 64-bit mode.

To measure CoLoRS overhead in Java, we use Da-
Capo’08 and SPECjbb (’00 and ’05). We set the heap size to
3.5x the live data size so that GC activity does not dominate
performance and so that we capture all sources of overhead.
We use the default input for DaCapo and 5 warehouses, with
90s runs, for SPECjbb.

In Python, we evaluate CoLoRS overhead using PyBench
(a collection of tests that provides a standardized way to
measure the performance of Python implementations), a set
of Shootout cPython benchmarks (from [1]), and PyStone (a
standard synthetic Python benchmark).

In all experiments, we repeat each measurement a min-
imum of seven times. For experiments that employ shared
memory, we perform sufficient iterations to guarantee that
GC is performed by CoLoRS. We report average values. The
standard deviation is below 5% in all cases.

CoLoRS reserves 256MB in shared memory for objects
and 64MB for classes. We use 32KB TLABs, and 2 parallel
GC threads. In each experiment, we employ two co-located
runtimes: Python and Java. Whenever running an unmodi-
fied (CoLoRS-unaware) JVM, we set its heap size to 300MB
so that its private memory is comparable in size to the shared
memory.
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Note that our results underestimate CoLoRS potential
since we implement CoLoRS in Python 3.1 and compare its
communication performance with RPCs running on Python
2.6. This is because the RPC frameworks that we use have
not yet been ported to Python 3.1. To quantify this differ-
ence we evaluate the performance of Python 3.1 relative to
Python 2.6. The last Column in Table 5 shows the overhead
of Python 3.1 relative to Python 2.6 across our set of bench-
marks. On average, Python 3.1 is slower by 20%.

6.2 CoLoRS Impact on Communication Performance

We first evaluate the performance potential of CoLoRS-
based RPC using communication microbenchmarks with a
range of message types and sizes. We implement equiva-
lent microbenchmarks using RPC frameworks for CORBA,
Thrift, Protocol Buffers, and REST. We compare RPC la-
tency and throughput (call rate).

For the implementation of the microbenchmarks, we use
a Python client and a Java server. Whenever possible we em-
ploy RPC methods with fully symmetric input and output
(i.e. returning a data structure similar to the data structure
passed in as an argument). This ensures that the server and
the client exercise data structure (de-)serialization in asym-
metric way.

To evaluate RPC throughput, we vary method input/output
size between 1 to 1024 units and measure mean time per
method call. Next, we use least-squares linear regression to
compute throughput from the coefficients in the equation
time = latency + size/throughput. We calculate latency
as the mean time needed per call for unit input/output. We
employ this methodology because we have observed that for
small input sizes the functiontime(size) is sometimes non-
linear and approximating it by a line leads to an inaccurate
latency estimation.

Each RPC method call takes a list as input and returns
a list as output. List sizes vary between 1 and 1024. For
each list size we do 10 experiments and use their average in
the calculation above. We use several different objects as list
elements, including built-in primitive types (string, integer,
float, and boolean) and user-defined types. For the latter we
employ binary trees, the depth for which ranges between
1 and 4 levels, and each node contains 4 primitive fields.
This enables us to investigate both shallow- and deeply-
linked data structures. The above choice is also dictated by
the limitations of extant RPC frameworks which support
a small set of builtins and do not support recursive data
structures. (Note that CoLoRS provides a richer and more
flexible object model than these RPC systems.)

We implement an RPC endpoint in CoLoRS as a message
queue on which a server waits for messages (call requests).
Each message is an object encapsulating input and output.
A client issues a call by allocating a message object (and
the associated input) in shared memory, enqueuing it, and
notifying the server. The server removes the request from the
queue and generates the output in shared memory. Finally,

Figure 3. Average execution time (in seconds) for CoLoRS
(left) and CORBA (right) experiments.

the server notifies the client that the result is ready (as the
output field in the message object).

For all experiments, we report throughput as the num-
ber of calls per millisecond, and latency in milliseconds. We
compute these values from the timings that we collect us-
ing the methodology described in the previous subsection.
Due to space constraints, we only present timings graphs that
compare CORBA to CoLoRS. This data is shown in Fig-
ure 3. The x-axis is message size and the y-axis is time in
seconds. This data is representative of all of the RPC exper-
iments. We summarize the latency and throughput of each
below.

Table 2 shows throughput across all microbenchmarks
and RPC systems. We report both absolute values and rel-
ative improvement due to CoLoRS. Table 3 uses a similar
format but presents results for our latency measurements.

CORBA. The Common Object Request Broker Archi-
tecture (CORBA) [13] standardizes object-oriented RPC
across different platforms, languages, and network proto-
cols. A client and a server use automatically-generated stubs
and skeletons to (de)marshall arguments and return values
for methods specified in the Interface Definition Language
(IDL). To implement our CORBA benchmarks, we use the
org.omg.CORBA package and theidlj compiler in Java
and theFnorb module and thefnidl compiler in Python.
Our measurements indicate that, compared to CORBA,
CoLoRS achieves 11–27 times better throughput and 14–
19 times lower latency.

Thrift. Thrift is a framework originally developed at Face-
book for scalable cross-language RPC. Like CORBA, Thrift
requires a language-neutral interface specification from
which it generates client/server template code. However,
Thrift is simpler and much more lightweight than CORBA.
We use Apache Thrift version 2008/04/11. Our experiments
show that CoLoRS improves throughput by 8–17 times and
latency by 2–13 times, over Thrift. We also find that Thrift
achieves much better performance for builtin types than for
user-defined types.
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Throughput in calls/ms; CoLoRS/RPC in parenthesis
bool int float string nodes:1 nodes:2 nodes:3 nodes:4

CORBA 173.22 (11) 82.67 (26) 83.20 (27) 75.96 (15) 14.67 (13) 4.68 (15) 1.83 (17) 0.86 (17)
ProtoBuf 31.73 (59) 30.98 (70) 34.32 (65) 26.43 (43) 2.85 (68) 0.88 (78) 0.36 (85) 0.17 (91)

REST 23.17 (81) 22.45 (97) 21.89 (102) 22.94 (50) 8.73 (22) 2.66 (26) 0.91 (34) 0.31 (49)
Thrift 237.04 (8) 283.23 (8) 274.37 (8) 149.08 (8) 15.38 (13) 4.27 (16) 1.80 (17) 0.87 (17)

CoLoRS 1876.08 (1) 2175.32 (1) 2231.45 (1) 1144.87 (1) 193.66 (1) 68.61 (1) 30.61 (1) 15.08 (1)

Table 2. Throughput for Microbenchmark Programs. For each data type, we show the throughput in calls per millisecond; in
parentheses, we show the CoLoRS/RPC throughput ratio.nodes : n means the type is a binary tree of depthn.

Latency in msecs; RPC/CoLoRS in parenthesis
bool int float string nodes:1 nodes:2 nodes:3 nodes:4

CORBA 0.62 (14) 0.65 (19) 0.62 (14) 0.63 (14) 0.68 (17) 0.82 (15) 1.13 (17) 1.92 (19)
ProtoBuf 0.22 (5) 0.31 (9) 0.21 (5) 0.23 (5) 0.55 (14) 1.32 (23) 2.90 (44) 6.02 (58)

REST 3.89 (90) 3.89 (113) 4.00 (89) 3.92 (90) 4.07 (101) 4.80 (85) 7.35 (111) 9.94 (96)
Thrift 0.09 (2) 0.10 (3) 0.11 (3) 0.12 (3) 0.19 (5) 0.35 (6) 0.74 (11) 1.38 (13)

CoLoRS 0.04 (1) 0.03 (1) 0.04 (1) 0.04 (1) 0.04 (1) 0.06 (1) 0.07 (1) 0.10 (1)

Table 3. Latency for Microbenchmark Programs. For each data type, weshow the latency in milliseconds; in parentheses, we
show the RPC/CoLoRS latency ratio.nodes : n means the type is a binary tree of depthn.

Protocol Buffers. Protocol Buffers (PB) are a language-
neutral, platform-neutral, extensible mechanism for serial-
izing structured data developed by Google engineers as a
more efficient alternative to XML [31]. To use PB, develop-
ers specify message types in a.proto file, and a PB compiler
generates data access classes that allow to parse/encode ob-
jects into a bytes buffer/stream. We use PB version 2.2.0,
which includes message parsers and builders but does not
support RPC. Therefore, we implement RPC on top of PB
by using PB serialization and communication over TCP/IP
sockets. Each message that we send from a client to a
server, contains a method tag, message length, and PB-
serialized data structure (method input). CoLoRS improves
the throughput of PB-RPC by 43–91 times and latency by
5–58 times.

REST. REpresentational State Transfer (REST) [24] is a
client-server architecture based on HTTP/1.0 where requests
and responses are built around the transfer of representations
of resources. REST provides stateful RPC by exchanging
documents that capture the current or intended state of a
resource. Individual resources are identified in requests by
URIs. In our benchmarks, we define a single resource stored
on a server and identified byhttp://localhost:8080/
db/items. A representation of this resource is an XML
document containing all stored items. Clients sendGET
requests to the resource URI, and parse the resulting XML
document. This document contains a varying number of
items (1–1024), where each item is either a primitive or a
user-defined object. We employ the Pythonrestful lib to
implement the client and the Javarestlet (version 1.1.6) for
the server. Relative to REST, CoLoRS throughput is 22–102
times higher and latency is 85–113 times lower. REST has

the highest latency among all of the RPC technologies that
we investigate.

6.3 CoLoRS GC

We gathered basic GC statistics for our Java-Python mi-
crobenchmarks. The results are similar across all the pay-
loads that we use (described in the previous Section). Below
we discuss the experimental data obtained for 4-level binary
trees.

We set the GC triggering threshold to 70%. Average time
between subsequent GC cycles is 1458ms while average GC
cycle time is 325ms (GC is active 18% of the time). Note
that GC runs concurrently in a separate process. The clearing
phase takes 94ms on average (29% GC cycle). The root
dump phase was 1.2ms on average (below 0.4% GC cycle).
In the HotSpot JVM, each root dump request causes a STW
pause which averages at 0.8ms (with the maximum pause of
2.9ms). In cPython there is no pauses. The marking phase
takes 116ms on average (36% GC cycle). Two object graph
scanning iterations suffice on average (the maximum is 3).
The sweep phase averages at 113ms (35% GC cycle). The
dominating GC phases are marking, sweeping, and clearing,
each taking around 1/3 of each GC cycle.

6.4 CoLoRS Impact on End-to-End Performance

To lend insight into the CoLoRS potential when used by
actual applications, we investigate two popular server-side
software systems: Cassandra [10] version 0.4.1 and HDFS [26]
version 0.20.1. Cassandra is a highly scalable, eventu-
ally consistent, distributed, structured, peer-to-peer,key-
value store developed by Facebook engineers. HDFS is the
Hadoop Distributed File System – a file system server that
provides replicated, reliable storage of files across cluster
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resources. Both of these systems are employed for a wide
range of web applications, e.g. MapReduce, HBase (open-
source BigTable implementation), email search, etc.

Cassandra and HDFS both expose Thrift-based inter-
faces. These interfaces provide a set of query/update meth-
ods which use relatively complex data structures (e.g. maps).
Query methods are natural candidates for in-memory result
caching, recently a common approach to scaling up servers
(e.g. MemchacheD, MySQL cache). If caching is used, then
in the common case (i.e. on cache hit), server processing
is minimal and therefore communication constitutes a large
portion of the end-to-end performance.

In systems with in-memory caching, CoLoRS can im-
prove performance in two ways. First, it can reduce RPC
cost by avoiding serialization. Second, part of the in-memory
cache can be kept in shared memory – immutable objects
such as strings can be shared by multiple clients without the
risk of interference. As a result, CoLoRS can provide copy
semantics without actually copying data. To investigate both
these scenarios, we extend Cassandra and HDFS with in-
memory caches for particular queries and evaluate the effi-
cacy of using CoLoRS for these queries, on end-to-end per-
formance.

For Cassandra, we implement caching for theget key range
query (parameterized by table name, column family, start
value, end value, maximum keys count, and consistency
level). The query returns a list of keys matching the given
criteria. Updaters, such as insert and remove, detect conflict-
ing modifications and invalidate the cache accordingly. The
cache is kept on the server and maps inputs (serialized to a
string) to responses. Cached responses are partially in shared
memory (strings are immutable). Thus, CoLoRS has the po-
tential for improving performance by avoiding serialization
and reducing copying overhead.

For HDFS, we implement an in-memory cache for the
listStatus call, which, given a directory name, generates a
list of FileStatus objects, each describing file attributes,
name, owner, permissions, length, and modification time.
The cache is a map from path name to responses, which we
partially store in shared memory. Cache invalidation hap-
pens on conflicting file system operations: create, append,
write, rm, rename, mkdirs, chmod, and chown.

Figure 4 presents the timing data for Cassandra and CoL-
oRS (left graph) and HDFS and CoLoRS (right graph). The
x-axis is message size and the y-axis is time in seconds. We
use this data to compute latency and throughput, which we
summarize in Table 4. Columns 2–3 show transaction rate
(per millisecond) while Columns 4–5 present response time
(in ms). We use one cache warmup iteration followed by 10
iterations during each of which we vary the query result size
between 1 and 1024 entries. In each Column group, we re-
port measurements for the server without CoLoRS and the
relative improvement due to CoLoRS. For cache-enabled
Cassandra, CoLoRS improves transaction rate by 19 times

Figure 4. Average execution time (in seconds) for Cassan-
dra (left) and HDFS (right) vs. CoLoRS .

Throughput Latency
Server queries CoLoRS in App/

Application per ms /App ms CoLoRS
Cassandra 249.50 19 0.12 3

HDFS 12.03 20 0.19 3

Table 4. End-to-End Performance for Cassandra and HDFS
with Caching. The third and fifth Column show number
of times improvement due to CoLoRS for throughput and
latency, respectively.

and reduces response time by 3 times. For cache-enabled
HDFS, CoLoRS improves transaction rate by 20 times and
decreases response time by 3 times.

6.5 CoLoRS Overhead

To implement CoLoRS, we virtualize components of Java
and Python runtimes. This includes standard libraries, ob-
ject field access, synchronization, method dispatch, inter-
preter, dynamic compiler, allocation, and GC. Doing so pro-
vides transparency, but introduces execution time overhead.
To evaluate this overhead, we compare unmodified release
versions of Python 3.1 and Java 1.6 with their CoLoRS coun-
terparts.

Table 5 shows Python results. In Column 2, we report
per-benchmark execution times for unmodified Python 3.1.
Next, in Column 3, we present the CoLoRS overhead –
percentage increase in execution times relative to Column
2. Across our benchmarks, the average CoLoRS overhead
is 4%. Note that scripting languages are not concerned with
enabling high-performance (they are interpreted and much
slower than statically compiled code).

Table 6 shows the Java results. For each benchmark, we
report its heap size and execution time (for DaCapo – the top
11 benchmarks) or throughput (for SPECjbb), and percent-
age CoLoRS overhead (Column 4). Across the benchmarks,
the average CoLoRS overhead is 5%.
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Bench- Python 3.1 CoLoRS 3.1 Python 2.6
mark time (s) % OHead % Impr

binary-trees 6.79 3.39 -0.44
fannkuch 1.97 4.57 24.68

mandelbrot 15.32 7.18 66.52
meteor-contest 2.25 1.78 32.35

n-body 8.67 2.08 7.04
spectral-norm 14.31 5.73 18.85

pybench 3.92 5.20 1.18

pystone 4.09 5.87 12.98

Average 7.17 4.48 20.40

Table 5. The overhead of CoLoRS support for Python (and
for the use of Python v3.1 over v2.6). Column 2 is execution
time in seconds. Column 3 shows the percent degradation
due to CoLoRS. Column 4 shows the percent improvement
in performance when we use Python 2.6 (over 3.1).

Bench- Heap ET CoLoRS Support
mark Size or TP % OHead
antlr 7 2.40 8.4
bloat 28 6.34 6.3
chart 42 6.19 6.1

eclipse 115 24.54 4.7
fop 28 2.11 7.7

hsqldb 280 3.35 3.6
jython 3 8.35 4.5
luindex 7 7.50 9.0
lusearch 45 4.25 1.4

pmd 56 6.92 8.6
xalan 105 5.97 -0.6

jbb’00 900 112726 5.3
jbb’05 900 54066 1.3

Table 6. The overhead of CoLoRS runtime support for Java.
Column 3 is execution time (ET) in seconds for all but jbb’00
and jbb’05 for which we report throughput (TP). Column 4
shows the percent degradation due to CoLoRS.

6.6 Sockets vs. Shared Memory

We also investigate the relative performance of shared-
memory-based transport (SMTx) and local-socket-based
transport (LSTx). This enables us to determine how much
performance improvement is due to the use of shared mem-
ory versus of sockets and due to avoiding object serializa-
tion.

In this experiment, we extend the Thrift RPC framework
for Java with SMTx and compared it with the LSTx built
into Thrift using our microbenchmarks (described in Sec-
tion 6.2). We have implemented the Thrift transport layer
on top of a bidirectional FIFO channel based on a shared
memory segment and POSIX mutexes/conditions. We focus
on Java and Thrift here because of their high-performance
characteristics.

We observe that Thrift over LSTx attains better through-
put – the improvement ranges from 1.7x (for the integer
payload) to 3.2x (for 4-level binary trees) and averages at
2.7x. At the same time, Thrift over SMTx has lower latency
for small messages (up to 29% for the integer payload) and
higher latency for larger payloads (up to 0.8x for 4-level bi-
nary trees), while averaging at 9% lower latency than Thrift
over LSTx.

Thrift/LSTx achieves better communication performance
than Thrift/SMTx because of the zero-copy network-stack
optimizations in the Linux kernel as well as faster synchro-
nization (kernel vs. user-land POSIX). Based on this exper-
iment, we can conclude that CoLoRS improves throughput
and latency because it avoids serialization and not becauseit
uses shared memory instead of sockets.

6.7 Summary

CoLoRS can improve communication performance sig-
nificantly when runtimes executing interoperating compo-
nents (written in different languages) are co-located on the
same physical system, compared to extant type-safe cross-
language RPCs (latency 2–113 times and throughput 8–102
times). In systems with short request processing times (e.g.
servers with caches) this improvement can translate to large
end-to-end performance gains (19–20x for transaction rates
and 3x for response times). As more and more components
are co-located on multi-cores and caches become preva-
lent in servers, object sharing systems like CoLoRS have
a growing potential for increasing performance of multi-
component, multi-language systems.

7. Conclusions
We have presented the design and implementation of CoL-
oRS, the first system supporting cross-language, type-safe
shared memory for co-located VMs. CoLoRS contributes a
new language-neutral object/class/memory model for static
and dynamic OO languages, as well as a novel pause-free
concurrent GC and monitor synchronization mechanism.

We implement and evaluate CoLoRS within runtimes for
Python and Java. CoLoRS imposes low overhead when there
is no use of shared memory (4% for Python and 5% Java)
due to virtualization of runtime services and libraries.

An important use case for CoLoRS is improving the per-
formance of RPC protocols in the co-located case. We have
found that for microbenchmarks CoLoRS increases through-
put by 8–102 times and reduces latency by 2–113 times.
CoLoRS improves the performance for the cache-enabled
Cassandra database and HDFS by 19–20 times for through-
put and 3 times for latency.

In summary, CoLoRS enables type-safe, object sharing
across OO languages in a transparent and efficient way. As
part of future work, we are extending name support to other
OO languages (C++ and Ruby) and are investigating its
use within multi-language distributed cloud systems such as
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AppScale [12] for which components migrate dynamically
(co-location is intermittent).
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