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Abstract 1. Introduction

As software becomes increasingly complex and difficult to Large, scalable software systems are increasingly beiittg bu
analyze, it is more and more common for developers to useusing collections of components to better manage software
high-level, type-safe, object-oriented (OO) programming complexity through reusability, modularity, and faultlso
languages and to architect systems that comprise multipletion. Since each programming language has its own unique
components. Different components are often implemented incombination of performance, speed of development, and
different programming languages. In state-of-the-arttimmul  library support, different software components are often
component, multi-language systems, cross-component comimplemented in different languages. As evidence of this,
munication relies on remote procedure calls (RPC) and mes-Thrift [34] and Protocol Buffers [31] have been developed
sage passing. As components are increasingly co-locatedby engineers at Facebook and Google, respectively, to en-
on the same physical machine to ensure high utilization of able more efficient interoperation across multi-language
multi-core systems, there is a growing potential for using components employed within their applications and back-
shared memory for cross-language cross-runtime communi-end services. For web applications, different languages ar
cation. better suited for the implementation of different tiershbigu

We present the design and implementation of Co-Located Python, Java, and JavaScript facilitate fast development o
Runtime Sharing (CoLoRS), a system that enables cross-the presentation layer, Java, PHP, Perl, Python, and Ruby
language, cross-runtime type-safe, transparent shared me components commonly implement server-side logic, and
ory. CoLoRS provides object sharing for co-located OO run- Java, query languages, and C++ are used for a wide range
times for both static and dynamic languages. CoLoRS de- of backend database technologies. The components of these
fines a novel language-neutral object/class model, which is multi-language, multi-component applications and mashup
a static-dynamic hybrid and enables class evolution while typically execute within independent runtime systems-(lan
maintaining the space/time efficiency of a static model.-CoL guage virtual machines (VMs), interpreters, etc.) and com-
ORS uses type mapping and class versioning to transpar-municate and interoperate via remote procedure calls (RPC)
ently map shared types to private types. CoLoRS also con-and message passing.
tributes a synchronization mechanism and a parallel, con- Increasingly, administrators co-locate runtimes to bet-
current, on-the-fly GC algorithm, both designed to fadiéita  ter utilize multi-core resources. This makes it possible to
cross-language cross-runtime object sharing. use shared memory for such cross-component communica-

We implement CoLORS in open-source, production- tion as well as for a cross-runtime language-neutral trans-
quality runtimes for Python and Java. Our empirical eval- parent object storage. However, despite its growing practi
uation shows that CoLoRS extensions impose low overhead.cal value, shared memory has not yet been investigated in
We also investigate RPC over CoLoRS and find that using either of these contexts. To evaluate the potential of us-
shared memory to implement co-located RPC significantly ing shared memory for cross-language, safe, transparent
improves both communication throughput and latency by communication and object storage, we design and imple-
avoiding data structure serialization. mentCo-Located Runtime Systems (CoLoRS). CoLoRS pro-

vides direct object sharing across static and dynamicgbbje
oriented (OO) languages.
CoLoRS virtualizes VM components that assume a lang-

uage-specific object/class/memory model. In CoLoRS, share
[Copyright notice will appear here once 'preprint’ optiGrémoved.]
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objects retain their language-specific behavior includiveg Java CoLoRS server process ByRen
semantics of virtual method calls, locking, and field access process process
In addition, builtin/library data structures, such as eoll

tions, transparently map to their shared counterpartsen th

> 4
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languages. The CoLoRS object model is a static-dyna \\ co-located on a //
hybrid, which provides the efficiency of a static mod multi-core system
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with the flexibility of dynamic class modifications. T e
enable this, COLORS uses an extensible static model\  Figure 1. CoLoRS architecture. There is exactly one CoL-
versioning and type mapping. ORS server process, which manages the shared memory seg-

A GC algorithm that is parallel, concurrent, and on-the- Ment and runs concurrent GC. Runtimes for different lan-

fly — one that is better suited for multi-VM memory man- 9guages (Java and Python in this case) attach to the shared
agement than extant GCs. CoLoRS GC is simpler than memory segmentand allocate/use objects in the shared heap.
state-of-the-art on-the-fly GCs, does not require tight in-
tegration into a runtime, imposes no system-wide pauses
and guarantees termination of the on-the-fly collection.

'time/library virtualization. We then discuss CoLORS im-
plementation and its empirical evaluation, compare/@sttr
¢ A synchronization mechanism that avoids the complexi- CoLoRS with related work, and conclude.

ties of conventional approaches to monitor synchroniza-

tion, while providing the same semantics and good per- 2 CoL oRS Overview

f .
ormance The primary design goal of CoLoRS is to provide type-

CoLoRS implementation for Java and Python. To inves- safe, transparent, direct object sharing between coddcat
tigate object sharing between dynamic and static OO managed runtimes for different OO languages. This includes
languages, we integrate CoLORS support within open- poth statically-typed (e.g. Java) and dynamically-typed (
source, production-quality runtimes: HotSpot JVM and Python) languages. The key challenge with providing such
cPython. support are the major differences between language imple-
CoLoRS experimental evaluation. We have evaluated mentations, including object/class models, memory models
CoLoRS efficacy using standard Java and Python bench-type systems, builtin types, standard libraries, and mgmor
marks and found that CoLoRS extensions impose low management (GC). For instance, dynamic languages sup-
execution time overhead. We also provide experimental port attribute (member) addition at runtime, while staic-

results for the CoLoRS GC algorithm and CoLoRS syn- guages permit class changes at compile-time only.
chronization. Figure 1 shows a high-level view of a CoLORS system.

In this example, two VM processes (one for Java and one for
Python) are co-located on a multi-core system. There is ex-
actly one CoLoRS server process which manages the shared
heap (this includes the setup of the shared memory segment,
data structure initialization, as well as support for ggea
collection). Each VM process has its own private heap and a
private object/class model and runs its applications tisea
In the shared heap, there is a CoLoORS object/class model
which is transparently translated to a private object&las
model in each VM. We do not allow pointers from the shared
heap to any private heap because of memory/type safety. All
VMs map the shared memory segment at the same address
In the sections that follow, we present the design and ar- in the virtual address space and use shared objects directly
chitecture of CoLoRS, describe the key contributions of our via pointers.
system, including a language-neutral object/memory model  Static (class) fields are not subject to sharing because
memory management, garbage collection, and synchroniza-they often represent local resources and sharing them would
tion support, as well as transparent object sharing via run- break resource isolation. For instance (object) fields,-how

RPC as a CoLoRS use-case. We have found empirically
that CoLoRS can significantly (up to 2 orders of mag-
nitude) improve the performance of cross-language RPC
systems, such as CORBA [13], REST [24], Thrift [34],
and Protocol Buffers [31]. This is because using shared
memory in the co-located case avoids expensive ob-
ject serialization. The improvements in communication
throughput and latency due to CoLoRS significantly in-
crease end-to-end transaction performance in Cassan
dra [10] (a key-value database), and the Hadoop Dis-
tributed File System (HDFS) server [26].
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ever, CoLoRS supports fully transparent sharing with régar ObjectChannel class supports blocking send/receive cross-

to allocation, GC, field access, (virtual) method invocatio VM semantics. The following code fragments show an id-

monitor synchronization, standard libraries, and claasl{o  iomatic repository usage for two Java processes. The client

ing. We do not support code sharing because that would re-process:

quire defining a VM-neutral language and checking whether ObjectRepository r = SharedMemory.findOrCreateRepositdin”);

two methods are equivalent, which is undecidable. In fact, synchronized(r} while(r.get() == null) r.wait();}

sharing only instance fields makes CoLoRS more practical The server process:

as the code and static data do not have to match across lan©bjectRepository r = SharedMemory.findOrCreateRepositain”);

guages (note that builtin types, e.g. string, differ siguaifitly synchronized(r) r.set(root); r.notifyAll(); }

across VMs in terms of both interface and implementation). For object channels, we have a similar pattern but synchro-

The programming burden associated with the necessity ofnization/waiting is not necessary because of the blocking

keeping instance fields in shared classes consistent acrosbehavior of send and receive.

languages can be further reduced via tools that transkads cl Each repository holds a reference to its root object. Each

implementations between languages. channel has a fixed capacity for messages and blocks the
A general approach we take in CoLoRS is to define a sender when full. As long as a shared object is reachable

language-neutral, shared object model (with respect te non from any repository, channel, or any VM, it stays alive.

static data) and then dynamically map it to each runtime- Unreachable shared objects are garbage collected. Clsannel

specific object model. To implement this, we virtualize all and repositories are identified by a key (string).

runtime components that rely on a specific object model. The CoLoRS API enables reflective inspection of the

Modifications to runtimes are necessary to make object shar-shared type of a shared object via thetSharedType

ing transparent. method. We need this API method because in CoLoRS, ex-
pressions that evaluate to an object class, e.g. objeCtagst()
2.1 ColLoRSUsage in Java, retrieve a private class to which a specific shared

CoLoRS provides a simple application programming inter- Class currently maps. To see the shared class before map-
face (API) for developers. The CoLoRS API for Java com- Ping to & private class occurgetSharedT'ype is used.
prises the following methods in th&hared Memory class Shareq classes are regu!ar objects — CoLoRS uses a three-
(Python has equivalent API): level circular meta-data hierarchy that is fully traversahy

programs wishing to inspect it.

A programmer can check whether an object is in shared
memory via theisObjectShared method. The system
throws aSharedMemoryException to prevent shared-to-
private pointers as well as to signal type mapping failures,
out-of-memory errors, and locking issues.

Object copyToSharedMemory(Object root);

Object allocate(Class objectClass);

Object allocate(Class containerClass, int length);
boolean isObjectShared(Object object);
ObjectRepository findOrCreateRepository(String key);
ObjectChannel findOrCreateChannel(String key);
Type getSharedType(Object object);

CoLoRS supports two ways of creating shared objects: via
direct object allocation (thellocate method) and via deep
copying of a private object graph to shared memory (the . .
coz?;/T(?Sharec?MemoryJmetﬁodg. Theallocate methg/d( 3. CoLoRS Design and Architecture
has two variants: one for allocation of fixed-size objects CoLORS uses a dedicated process (CoLoRS server) to man-
and one for allocation of container objects (which takes the age shared memory. There is one CoLORS server per OS
initial size of a container as a parameter). instance. This server creates, initializes, and destrogs t
Note that we do not support a state model where a threadshared memory segment, as well as runs concurrent, parallel
can switch to the shared mode and issue regular object al-GC. That is, GC continues to function even when no run-
locations to allocate in shared memory (as is done in relatedtimes are currently attached.
work on cross-JVM sharing [36]). The reasonis thatthe state  To use shared memory, runtimes first connect to the ColL-
model requires complex rules specifying which allocations oRS server using TCP/IP sockets and then attach to the
should target shared memory. For instance, in a JVM, we shared memory segment (by mapping it to their virtual ad-
must exclude class loading, static initializers, and ekoep dress space at the pre-defined, fixed address). The shared
handling from leaking objects into shared memory. memory segment contains three spaces: metadata space
CoLoRS provides two mechanisms to initiate commu- (for state variables and synchronization), classes sgace (
nication between two runtimes: channels and repositories,shared types, repositories, and channels), and objeats spa
both of which are named entities enabling exchange of (for garbage-collected shared objects). Each VM runs a sep-
a reference to a shared object. Th®jectRepository arate CoLoRS thread which is responsible for collaboration
class provides nonblocking get/set functionality while th  with the CoLoRS server during GC.
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3.1 The CoLoRSObject Model (OM) Several hybrid models have been introduced to mitigate

CoLoRS employs a new OM that aims at transparent and ef- (€ static-dynamic tradeoffs. A partially static/dynar@b
ficient cross-language object sharing, while supportirthbo 1S used by Google App Engine, where each object has a static

static and dynamic languages. Our primary goal is main- Part (fields described by a class) and a dynamic part (per-
taining the language-specific OM and object/class semmntic OPiect dictionary). On attribute access, the system fifess tr

while a VM interacts with shared objects. The rationale be- to use a static field then falls back to an object dictionary on
hind this is to avoid introducing a new unfamiliar program- failure. Dynamically created attributes do not become part

ming model. In addition, CoLoRS combines certain charac- of the static model. A similar concept has been introduced
teristics of static and dynamic OMs in order to support the © Python (via the slots. declaration). The JavaScript V8

flexibility of a dynamic model while providing the efficiency ~ funtime implements hidden classes to enable fast, offset-
and simplicity of a static model. based attribute lookup while supporting dynamic attribute

addition and deletion.

3.1.2 Hybrid OM and Versioning

3.11 ColLoRSType Sysiem CoLORS OM is a new static-dynamic hybrid, which can be
CoLoRS preserves language-specific type-safety withoutdescribed as an extensible static model with versioning and
defining new typing rules by mapping shared types to private type mapping. Our goal is to keep CoLoRS OM as static
types. When mapping a shared typéo a private typeP; in as possible but still allow the flexibility of modifications
one VM and to private typé& in another VM, we guarantee  (add/remove/change name/type of a field).
that any field access permitted B does not violate the Shared classes are always created based on private classes
field typing constraints imposed Wy, (and vice versa). when a private object gets allocated in (or copied to) shared
In the CoLORS type system, every value is an object memory. On each allocation in shared memory, we inspect
(there are no primitive types like in Java or C#). This is mo- the fields of the allocated object and look for a shared class
tivated by dynamic languages like Python and Ruby which being an exact match for a given type name and field set. If
treat everything as an object and therefore require thdt eac we do not find an exact match, we create a new class (or if a
value have a unique identity. class with this name already exists, we create a new shared
Unlike extant systems for cross-language data sharing,class version, having the same class name but a different
CoLoRS does not specify its own data definition language field set). For example, suppose that we have the following
(DDL). Conventional approaches have resulted in a numberclass in Java:
of domain-specific DDLs, e.g., SQL in relational databases, class Employed String name; double salary;
WSDL in web services, and IDL in CORBA. The primary and we perform shared allocation using:
limitation of DDLs is their static nature and the necessity f ~ Employee e = (Employee)SharedMemory.allocate(Emplajess);
a programmer to master another language. Instead, CoLoRS3f no Employee class is present in shared memory yet, we
generates the shared data model automatically from the nacreate one, with two fields that correspond to the private
tive language data model defined by the programmer. More- Employee class. Now assume that we add a new field to the
over, this happens dynamically at runtime and only for types Employee class, sayFmployee manager; and we repeat
that are used in shared memory. the shared allocation as shown above. This time, CoLORS
The CoLoRS OM strives to strike a balance between will create a new version of the shar&dnployee class, with
supporting diverse languages (both static and dynamic) andthree fields. Note that at any point in time there is exactly
staying sufficiently close to each individual language st th  one privatelfmployee class (which may evolve in time) and
costly runtime data conversions are avoided if possible. An there may be multiple versions of sharanployee class
other key design tradeoff is to support the flexibility of dy- (reflecting the schema evolution). Field removal is handled
namic languages while leveraging the benefits provided by in a similar way.
static typing. In fully static OMs (e.g. Java), object layou Shared objects use shared classes to describe their lay-
is completely described by classes, fields are efficienty ac out. Different versions of a single shared class may have dif
cessed via offsets, each object consumes only as much memferent layouts in memory and field sets. Shared classes are
ory as necessary for its attribute values, and the data modefead-only, they do not change. However, shared objects may
is fully documented by classes. On the other hand, in fully change their class pointers (from one version of a particula
dynamic OMs (e.g. Python) classes do not describe objectclass to its another version). This can happen both in static
attributes, each object maintains a dictionary mapping at- and dynamic languages. For example, the following code in
tribute names to values, field access is expensive as it take$?ython, which uses our two-fieldmployee class:
place via names, and space usage is suboptimal due to the = sharednemory.copyto(Employee(’Smith’, 100))
redundancy across attribute dictionaries. However, enlik e.state =’NY’
static OMs, dynamic OMs support dynamic attribute addi- adds a new field (callestate) dynamically. To support this
tion/removal as well as per-object attributes. in shared memory, CoLoRS creates a new version of the
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Employee class and changes the current class ofetlob- < shared memory —— > private
ject to the new class version. Dynamic field removal @da objects space classes space memory
in Python) is handled similarly. _

The advantage of versioning over a pure OO model obiect Al L > [cass A C'alissst oebal Private
lower space consumption. In conventional OO systems, cl /ﬁss e class A with
evolution takes place via subclassing: to add or hide a fit a=1 | poihter } f'e'd;j'ozt b”
a new class is created that inherits from the old class. A class /I adde
result, it is not possible to remove any attribute and spgce object A | nointer i ol class A
consumed forever by unused fields. In contrast, with versic class A Moo= '_' i a
ing, even if classes evolve, the newly-created objectsyewi a=1 inta | ___---""" - foat b
consume the optimal amount of space. b=01 floath | shared to private

3.1.3 TypeMapping mapping (many-to-one)

To correctly handle multiple class versions in shared me ~ Figure 2. An example illustrating CoLoRS versioning and
ory, CoLoRS uses type mapping. Each private clads a type mapping as private class evolves by having a field
VM always has exactly one version which, at any givenm  added.
ment, may be mapped to several different versions of cluoo
P in shared memory (a one-to-many relationship). Except
for builtins (e.g. Integer, String), mapping only occurs be
tween classes with the same name — programs in differentall object attributes are always present in its class andean
languages must agree on package/module and class namemtrospected via reflection.
We map a shared field to a private field if and only if both Figure 2 shows an example where private clagsolves
have the same name and the same (or convertible) type. Infrom a single-field class containing “int a” into a class with
dynamic languages, we map solely on the field name basistwo fields, “int a” and “float b”. Private clasd has exactly
as there are no static types available. one version (the newest one with both fields). Shared class
Since type mapping is a relatively expensive process, A has two versions. Both shared versions are mapped to the
we perform it lazily, once per shared-class-version, and private classA so that they can be uniformly used, despite
maintain the mapping in a private hash table in each VM. being distinct types in shared memory. The shared objects
We also use a reverse mapping table, to avoid shared-typespace contains two objects of claés- one allocated for the
lookup/matching on every allocation in shared memory. old version ofA and one allocated for the new version of
Note that on allocation, we need to obtain the shared type A. Note that each shared object uses only as much space as
based on a private type. In contrast, when accessing a fieldnecessary for its attribute set. Both objects have the same
in a shared object, we perform the mapping from a sharedtype in a VM, and the VM may access both fieldsghd
type to the private type. b) in both objects. On access to a non-existent filid ¢his
When CoLoRS allocates a new object in shared memory, case) in older shared objects, CoLoRS will expand the object
it tries to find a shared class version that exactly matchesto make room for the new field (initializing the new field to
the private field set of the newly-allocated object. If no 0).
exact match is found, it creates a new shared class version. Reconsidering the example in Figure 2 in the case when
Consequently, newly-created objects do not contain fields class A evolves by having thé field removed, we have
that were removed from a private class due to its evolution. a similar situation. Private clasd again has exactly one
The rationale behind this is that we want to keep the object version (the newest one, with one fieljl Shared classt
size in shared memory optimal. However, when mapping has two versions, both mapped to the same private #/pe
a shared class to a private class in a context other thanField b remains unmapped as it can never be used by the
allocation, we allow both private and shared fields to remain VM and this field is simply ignored in those shared objects
unmapped (if they do not have a match). When a VM uses that have it. Note that newly-allocated shared objects do
an unmapped field in a shared object, we dynamically add anot reserve a slot for field, thus using optimal amount of
field to a class. To do so, we create a new shared class versioispace. In contrast, OO inheritance does not allow removal
that contains the previously unmapped field, and change theof a field from an object (unused inherited fields continue
shared object’s class pointerto point to the new classmersi  to consume slots in objects). Field renaming is equivalent t
Note that the shared object’s type does not change, as seefield removal followed by a field addition.
from the VM'’s perspective — all versions of a shared class  Note that using CoLoRS cannot lead to broken program
always map to the same private class (with the same name).invariants because matching fields can never remain un-
Although CoLoRS supports dynamic changes, once the mapped. Thus, if class implementations across languages
data model is stable, both space usage and field access worknatch and preserve some invariant in each language, CoL-
exactly like a fully static model. Also, in the CoLoRS OM, 0oRS will preserve this invariant too.
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3.1.4 Built-In Typesand Libraries | shared | java | python |

CoLoRS provides full transparency for builtin types (e.g. integer | byte, short, int, long, char, Byte, _
strings, integers, lists, and sets). Builtin types diffag-s Short, Integer, Long, Character int
nificantly across languages and at the same time are fre- |__1°at float, double, Float, Double float
guently used by programs and libraries. CoLORS preserves boto_lean boolegtnf Boolean bOtO|
language-specific interfaces for builtin types by virtzizg ;:\:? 5 ;'Q[? 5 tZarrra
the builtin implementation and/or standard libraries iolea hary - Dytel s y y
. . . o " list List, ArrayList, Object][], int[],
runtime. Library virtualization amounts to modifying the float[], T[] list, tuple
code of library methods so that _these _methods ch_eck v_vhether et Set, HashSet set. frozensel
any of the met_hod argu_ments (including th_e receiver, if any) map Map, HashMap dict
is a shared object and, if so, to execute a differentimplemen
tation of the method. Table 1. Builtin types supported by CoLoRS and their map-
CoLoRS defines a set of builtin types which we identify Pings to Java and Python builtin types. For transparent and
in Table 1 with their mappings in Java and Python. convenient use by programmers, multiple mappings are pos-

We support 64-bit integers, which can be mapped to Sible per shared type.
Pythonint and to any integer type in Java, both primitive,
e.g.int, short, and reference, e.d.ong, Integer. Having
only one integer type allows us to avoid complex rules for
field mapping during schema evolution. For example, if we
supportedint andshort as distinct integer types in shared
memory, then we would have to define complex semantics
for changing the field type fronmt to short and vice versa,

i.e. when we create a new field dynamically and when we
reuse existing integer field. 3.1.5 Static Languages

We use a similar approach in case of floating-point types
supporting only 64-bit IEEE floats. The CoLoRS 64-bit float
can be used in Java as any floating point type, €ogble
or Float. We do overflow/underflow checks when read-
ing/writing integer/float fields requires conversion.

For scalar types, we also provide a boolean and a string.
As in Thrift [34], CoLoRS defines three container types: a
list, set, and map. Containers are untyped (i.e. may contain
objects of different types at the same time). This is because
we cannot automatically infer the container element type
(at least in Java and Python), even if the container is not
empty. To support a compact byte array representation we
provide thebinary type, suitable for blobs. Note that in
Java, a sharetist can be used as an array (of any type)
and as alList. The rationale behind this is transparency . ; ; .

ject.getClass() in Java) we always get a unique privatesclas
— we want to support Java arrays even though CoLoRS ,
and Python do not have arrays so that we do not changeas a re'sult. For examplmte_ger maps toSharedInteger
the Java programming model. Scalar types (integer, roat,Whlle List maps toShgreszst. However: 0 ensure trar_1$-
boolean, and string) are immutable. Builtin objects always parency, shared builtins can map to multiple differentasy

: ; . types. In OO languages, this can be implemented via multi-
have exactly one version, one mapping to a private type, and ° " : - : .
. . ple inheritance. For instance, if we can makkaredList
do not have any programmer-visible fields.

) ; . . inheritfrom List, Object|], ArrayList, etc. then represent-
In order to use shared objects along with private objects . . - o .
. . ; ing sharedist as privateSharedList is correct in all pos-
in a single hash-based container, hash codes and equal-to.

methods must agree across runtimes. We unify them forSlble mappings. However, some languages (€.g. Java) do not

Java and Python builtin types. For shared objects CoLoRSsupport multiple inheritance or inheritance of array types
. ' . ' We instead simulate both by modifying the runtime so that
provides default hash code generation, equal-to methods

. ‘SharedList can be cast to any of the private types that
and less-then methods (all based on object addresses). Theghare dist maps to. We applyas)i/milar appf)roach tn)gger
can be overridden by programmers. '

For programmer convenience, CoLORS automatically and float.

copies scalar types (e.g. integer, string) to shared memor Each private class maps to a unique shared class. A gen-
P yp 9 ger. 9 Y eral rule that we use is that whenever we allocate private typ

On field assignment/array store, the system checks whether
the assignment uses a private r-value and a shared I-value. |
so, and the r-value is of a scalar type, CoLoRS silently calls
thecopyT oShared M emory method on the r-value, instead

of throwing an exception. This mechanism is particularly
useful for constructors.

" In static languages, object fields are typed and typically ac
cessed using field offsets. Since CoLoRS uses a mostly-
static OM, it also identifies fields in shared objects by their
offsets. Private and shared field offsets may differ so ies-n
essary to map between them. Unidirectional mapping from
the private offset to the shared offset is sufficient because
VMs always access shared fields using the context of a pri-
vate type. To make this mapping efficient, we associate a
field-offset-table with each pair (S,P) where S is a shared
type mapped to private type P. Whenever we access a shared
field in a shared object, we index the appropriate field-tffse
table with the private field offset and obtain the shared field
offset.

When inspecting a class of a shared object (e.g. via ob-
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P as shared typ#, we must later be able to use the shared single shared type (e.gist andtuple in Python both map

typeS asP.

to sharedist), we employ multiple inheritance if possible

Type mapping may cause class loading in a VM. This is (e.g. in Python) or we extend the runtime to simulate it for
because whenever we encounter an instance of a shared typtne types in question.

T, which maps to a private typ€, we must load clas¥.
Thus, CoLoRS introduces a new class loading barrier.

CoLoRS uses reverse mapping to avoid shared class
lookup on each allocation. Reverse mapping can improve

Since in static languages, the static type of a field is avail- performance only if private instances of a single privasssl|
able, we permit certain conversions while mapping shared have similar attribute sets (a natural property but oneithat
fields to private fields. Let us denote any private class to not always enforced by dynamic languages). Otherwise, the

which a shared clasS maps as mag). For a given field
of shared typeS' and of private typd®, CoLoRS allows both
upcasts and downcasts during mapping.

Upcasts occur if clas® is a superclass of class ma&f)(
or class mapf) implements interfacé’. For instance, we
have an upcast when we map a field of shared tygpeto a
field of private typeList (because mapist) = SharedList
andSharedList implements thd.ist interface). Or we have
an upcast when we map a field of shared typeng to a
field of private typeObject, becaus®bject is a superclass
of class map{tring) = String. Upcasts are most useful to
support interface-type private fields, such/ast in Java.

Downcasts take place if clagd subclasses mag]. For
example, there is a downcast if a field of shared tipeis
mapped to a field of private typgtring|[], becaus&tring]]
subclasse®bject[] = map(ist). Thanks to downcasts, pri-

system might end up relying on dynamic field addition fre-
guently as some objects’ types may be mapped to static types
that have too few static attributes.

3.2 TheCoLoRSMemory Model (MM)

CoLoRS defines a new memory model that builds on and
simplifies memory models supported by mainstream lan-
guages. CoLoRS MM is equivalent to the Java MM for pro-
grams that do not contain data races. Java programs that rely
on volatile and final fields or other race-related aspects
of the Java MM may work incorrectly with CoLoRS be-
cause shared object fields drop their Java-specific modifiers
Python does not define any MM so using CoLoRS cannot
break extant Python programs.

Following the Java Memory Model (JMM) approach and
recent standardization effort for the C++ MM [9], ColL-

vate arrays (whose elements are typed) can conveniently acORS guarantees sequentially consistent semantics only to

cess shared lists (whose elements are untyped).

programs that are properly synchronized (i.e. those that do

To ensure type safety, downcasts require a read barriernot contain data races). A data race occurs when multiple
which checks the actual object type on each read accessthreads can access the same object field at the same time and

Upcasts represent a covariant type operator (analogobsto t at least one of them performs a write.

array upcasts in Java) and therefore require a write barrier

Similarly to Java and C#, CoLoRS provides monitor syn-

that checks the type of the stored object against the exghecte Chronization. Monitors provide mutual exclusion for thiea

static type.
3.1.6 Dynamic Languages

and restrict re-ordering of memory accesses. Monitor entry
has load acquire semantics (downward fence) while monitor
exit has store release semantics (upward fence). Full mem-

In dynamic languages, fields are accessed by name (not byory fence is not supported in CoLoRS (following Java and
offsets) and static field types are not available. Therefore C# design). In CoLoRS, monitors are fault-tolerant: if a VM
when creating a new shared class or comparing to an exist-dies while holding a monitor, subsequent acquisitionsisf th
ing one, CoLoRS relies on actual types of all non-null at- monitor do not result in a deadlock or access to corrupted
tributes in a particular object (i.e. the one being copied to data, but throw a runtime exception before entering a atitic
shared memory). This results in type concretization — share section.

classes created by dynamic runtimes always have the most Like the JMM (and unlike the C++ MM), CoLORS must
derived field types. We ignore NULL fields as for them no guarantee basic type- and memory-safety even in the pres-
static type can be inferred. When looking for an exact type ence of data races. Therefore, in CoLoRS, all pointer stores
match (during shared allocation), we allow type conversion and loads are always safe (even with data races). This prop-
(upcasts and downcasts). No read barrier is necessary as dyerty is relatively easy to implement (an aligned machine-
namic languages do not guarantee any particular type for anyword-wide load/store is atomic on most architectures)sThi
field. However, each field store must verify the type of the property is not strictly necessary for type-safety in cake o

stored object against an appropriate static shared typea(vi
write barrier).

When mapping a shared typeto a private type?, we do
not map fields, as we do not have field types and offsels in

primitive values, like integer or float, and therefore Col®R
does not guarantee it for non-pointer fields. Operatiores lik
shared class creation or dynamic field addition are always
thread-safe because they are rare and can be internally pro-

Instead, we just create a hash table mapping field names taected by a lock.

shared offsets. This speeds up attribute access (whiclmes do

Note that CoLoRS MM avoids many of the complexities

via hames). Since multiple private types can be mapped to aof the JMM by supporting only instance field sharing (no
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statics, no methods, no constructors) and ignoring field-mod conflicts is correct and does not lead to a deadlock because
ifiers like final andvolatile. Unlike C++ MM, CoLoRS CoLoRS translates notify operations to notify-all opeyas.
MM does not support atomic operations and thelock Even if two or more threads block on the same monitor while
functionality, which simplifies the model significantly. synchronizing on different objects, each monitor notifat
awakens all blocked threads and a progress can be made.
If a thread acquires locks on multiple objects then if two
CoLoRS employs a new synchronization mechanism that or more objects end up using the same monitor, locking
is an adaptation and Simplification of extant, Commonly- remains correct because locks are recursive.
used schemes. We have found these schemes inadequate The above synchronization scheme can be transparently
for CoLORS because of their complexity, tight integration integrated into Java based on Java monitors. Python does
with VM services, and reliance on the ability to stop all the not support the monitor abstraction (locks are not associ-
threads. ated with objects) and therefore needs to be extended with
State-of-the-art high-performance VMs, like HotSpot dedicated API for monitors.
JVM, use biased locking [32] to avoid atomic CAS oper-
ations in the common case. However, biased locking re-
quires safepoint support — it occasionally needs to stop all Since CoLoRS targets multi- and many-core systems and
the threads to recover from its speculative behavior. One of avoids system-wide safepoints, the most appropriate GC al-
the design goals in CoLoRS is to avoid stopping all VMs at gorithm for shared objects is parallel (i.e. using multiple
once — such system-wide safepoints are inherently unscal-GC threads), concurrent (i.e. performing most work with-
able and introduce lengthy pauses. Therefore, biasedlgcki  out stopping the application), and on-the-fly (i.e. stogph
is not suitable for CoLoRS. most one thread at a time) GC. In addition, CoLORS needs a
Another commonly-used locking scheme is lightweight non-moving, mark-sweep-style GC because some runtimes
locking [32], which strives to avoid using OS primitives in  (e.g. Python) assume that objects do not move and other ones
the common case by relying on atomic CAS operations. We (e.g. Mono for C#) use conservative stack scanning.
have investigated the efficacy of this approach and fourtdtha  We have found extant on-the-fly mark-sweep GCs to be
in modern OSes that provide futexes (fast user-mode locking unsuitable given the CoLoRS architecture and requirements
primitives), lightweight locking performs worse that an OS Therefore, we have designed a new variation of snapshot-
mutex. In older OSes, OS-backed synchronization was slowat-the-beginning (SATB) GC, which is parallel, concurtent
because it required kernel entry/exit. Linux implements fu and on-the-fly.
texes that in the uncontended case perform one atomic CAS. The state-of-the-art in on-the-fly GC systems include
In contrast, lightweight locking needs two atomic CASes, those that employ the Doligez-Leroy-Gonthier[17, 18] algo
one for locking and one for unlocking [32] path. We have rithm and its extensions by Domani et al. [19, 20] for gener-
compared the cost of 2 atomic CASes with POSIX mutex ational heap layout and multiprocessors without sequientia
lock and unlock. Our results show that two atomic CASes consistency.
are slower: on a dual-core Intel Core2 by 31%, and on a  State-of-the-art, snapshot-based, on-the-fly GC algo-
guad-core Intel Xeon by 45%. Therefore, we have designedrithms require multiple (three to start the collection @jcl
CoLoRS to use OS primitives (POSIX mutexes based on fu- system-wide handshakes with all the threads. The mutators
texes) directly. must check whether they need to respond to handshakes
Most extant monitor implementations (e.g. HotSpot JVM) regularly during their normal operation. For scalabilitye
reserve a word in the object header to assign a lock pointerdesigned CoLoRS to work at the granularity of VMs, not
to an object once a lock is needed. The presence of suchindividual threads. The handshakes would require keeping
a pointer leads to significant design complexity in ex- track of all threads in all VMs. In addition, we do not want to
tant systems because once the pointer is set, one can onlyequire VMs to implement the per-thread handshake-polling
clear it when all threads are stopped or the object has be-mechanism, as it is not generally supported in VMs.
come unreachable. CoLoRS does not ever stop-the-world A design goal of CoLORS GC is to abstract away private
(halt/safepoint all threads in the system), hence we take aVM memory management to one operation: shared root re-
different approach. port, without imposing any specific implementation details
Instead of using a pointer to a monitor, we hash the object As a result, we have designed an on-the-fly GC that does not
address (shared objects do not move in CoLoRS) into ause handshakes and works at the VM level (not thread level).
fixed-size table of monitors kept in shared memory. Since In addition, the CoLoORS GC is simpler (as it does not have
few objects are used as monitors at a time, it is unlikely that any phase transitions) and guarantees termination (sogne pr
multiple simultaneously locked objects will ever hash te th  vious algorithms unreliably depend on the relative speed of
same monitor-table entry. Thus, we can multiplex OS locks the collector and mutation rate for termination).
without significant loss of concurrency level in the common CoLoRS uses thread-local allocation buffers (TLABS)
case. Note that such multiplexing of OS locks due to hashingto reduce allocation cost. Each thread performs bump-

3.3 Monitor Synchronization

3.4 GarbageCollection
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pointer unsynchronized allocation in its own TLAB. Once know immediately thanks to reference counting) we reclaim
the TLAB is exhausted, it is retired, and the thread requestsit and forget the shared root. Note that only private refer-
a new one. VMs request TLAB or large-object allocation ences can exist to the proxy object since there are no shared-
directly from the object space. The freelist contains al un to-private pointers.
allocated blocks whose size is at least the TLAB size. The  CoLORS requests roots from each VM and waits until all
freelist is protected by a lock. reports arrive. To report a shared root, a VM sets the olgject’
: pending flag. To ensure store visibility, a memory fencesake

341 GC Algorithm place on both sides once the reporting completes. CoLoRS
Our GC comprises four concurrent phases: flag clearing, rootdoes not use timeouts because it detects VM termination in
report, marking, and sweeping. The CoLoRS server initiates g reactive way via TCP/IP sockets. Termination is noticed
anew GC cycle as soon as the heap usage crosses a specifigfjht away and the exited VM is removed from the waiting-
threshold. The main GC thread is awoken by an allocating for-roots list.
thread once this happens. CoLoRS GC imposes no pausesvarking. As soon as all roots are reported, the main GC
If a VM is capable of reporting shared roots without causing thread initiates parallel, concurrent marking done by s&ve
internal pauses (e.g. as Python can), then the system neveforker GC threads. Each worker thread scans its own heap
needs to pause any threads. partition looking for pending objects, and recursively ksar
Flag clearing. The main GC thread first clears all GC- them using depth-first search. To ensure dynamic load bal-
related flags in the heap. This operation is fU”y concurrent ancing during marking, worker GC threads ernpioy random-
Each object has three GC flags: pending (i.e. it needs tojzed work stealing. GC threads use barrier synchronization
be recursively marked), marked (i.e. it has been recussivel to meet at subsequent GC phases.
marked), and recent (it has been recently allocated). Once first marking completes, the main GC thread enters

Unlike in extant SATB GCs, in CoLoRS, the snapshot 3 |oop. During each iteration, CoLoRS performs parallel,
mode is active all the time. This SImp'IerS the algorithm concurrent marking from pending ObjECtS. However' this
as it avoids Complex state transitions and handshakes. ThQime it stops marking the Obiect graph once its sees an Obiect
snapshot mode means that all objects are allocated live (i.e with the recent flag set. The loop terminates when no new
with the recent flag set) and mutators use a write barrier: on gbjects have been marked. Stopping marking on recently-
pointer stores they mark the overwritten pointer as live. (i.  allocated objects guarantees GC termination — there is a
they setthe pending flag). When GC scans a live object it setsfinite number of “old” objects in the heap when the GC
its marked flag. During the flag-clearing heap scan, the main starts, and all the newly-allocated objects are being flagge
GC thread also computes a fully-balanced heap partitioning as recent. Therefore, GC must finish in a finite number of
that is used later on for parallel scanning. The key system steps.
invariant is that it is always possible to sequentially scan  For correctness, we must prove that a recently-allocated
all blocks in the heap, without any synchronization. We object cannot have a pointer to an object that is live butrethe
carefully design allocation procedures so that we do not wise unreachable and invisible to GC (and thus it cannot be
break this invariant. incorrectly left unmarked). Note that such a situation may

GC flag clearing has a similar effect to activating the occur during the first marking pass, which marks from the
snapshot mode from scratch in other algorithms, but doesy/M roots. Our snapshot write barrier (SATB WB) does not
not require handshakes. Once GC flags are cleared, the maiapture root pointer updates — it only captures heap stores.
GC thread requests root dumps from all attached VMs. Suppose that root points to objecO, and a new objec
Root report. Each VM must be able to identify pointers s allocated having its only pointer set@ If root r is later
into shared memory in its private heap/stacks in an efficient ypdated to point tév, we end up with a newly-allocated ob-
way. In VMs using tracing GC this is straightforward —we ject V that has a pointer to a live obje€tthat is reachable
either scan the whole heap (non-generational GC) or use aonly throughN. The reason for this is that we do not notice
card table (generational GC). In the latter case, we extendroot updates. Such a situation is impossible from the second
the card table so that we can QUICk|y find not onIy pointers marking on, as during 2nd and Subsequent rnarkings we |g-
from the old generation(s) to the young generation but also nore roots and mark from the pending flags only (i.e. from
pointers from the old generation(s) to shared memory. To heap objects that are protected by SATB WB). Reconsider-
report shared roots, we simply trigger a fast minor coltetti  ing our example in the heap context: objérts marked as
and efficiently find all pointers to shared memory. pending on- update, and will be marked/scanned even if we

In VMs which use reference counting GC (e.g. cPython), stop marking on objeav (which has its recent flag set).
CoLoRS can track shared roots as they are created and desweeping. As soon as the marking loop terminates, CoLoRS
stroyed, thus being able to report them any time without moves on to concurrent, parallel sweep. Each worker GC
any processing. For each shared reference, we create a smaghread scans its heap chunk trying to find the first poteptiall

proxy object in private memory with reference count set to free (candidate) block. This scan is done without synctzroni
one. Once the proxy object becomes unreachable (which we
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ing with mutators that are actively allocating objects. ©nc The CoLoRS server maintains additional state (metadata)
a GC thread finds a candidate block, it acquires the freel- in private memory to manage GC threads, and to track at-
ist lock and continues the scan as long as it encounters retached VMs. For each attached VM there is a dedicated
claimable blocks. Finally, it removes all found dead blocks monitoring thread, which detects VM termination using an
from the freelist and inserts one coalesced block into the open TCP/IP connection. On VM termination, the monitor-
freelist. The GC thread releases the freelist lock and looksing thread receives an error when reading from a closed
for the next candidate block. Our GC-mutator contract guar- socket. Note that OS-level IPC (e.g. sockets) is the only rel

antees that all block headers are always parsable. able way of detecting process termination without resgrtin
to timeout/keep-alive solutions. This is because in Unsc sy

4. CoLoRS Implementation tems certain signals (e.g. the KILL signal) cannot be inter-
cepted.

COLO.RS can work under any OS that supports gdequate IPC we group class versions into lists based on their name.
functionality. We have implemented CoLORS in HotSpot Object repositories/channels and classes are permanent en

JVM 1.6 and cPython 3.1. tities — we do not collect them as they are reusable. Object

We find that extending a VM with COLORS support is o qitories/channels are treated as GC roots during GC.
relatively straightforward. The first step is to determihe t GC flags are implemented as one-byte-wide fields be-

VM object/class model, its relationship to the COLOR_S oM, cause of concurrent access. We assume that writes issued
memory management (,GC) algorithm(s), and operations thatby a particular thread are visible to other threads in theord
use Qb]eCtS' typically fmld_ access, metr_]od caIIs,_ s_,ynchro- they are issued (sequential consistency guarantees this).
nization, etc. Next, we define type mapping for builtinsand 1,4 objects space is a contiguous sequence of blocks.

user-defined types, and add any runtime extensions (SUCl, 1y piock can be an object, a free chunk (part of the freel-
as multiple inheritance) to support it. The next step is heap gy o 5 T AB. The block header contains two fields: block
access virtualization which amounts to extending an inter- length and block type. This enables quick traversal of the

preter, a JIT ComP”e“ or both, .to provide a geparate con- heap without parsing actual objects — a key property for our
trol path for handling shared objects. Depending on @ VM, qncrrent GC. TLAB blocks contain an owner 1D, which

other components may need similar extensions, e.g. the GGy iifies the VM that is currently using the TLAB. This

subsystem. Typically, we mustintercept all programirsiru - gnapies s to reclaim TLABs orphaned by asynchronously
tions that read/write heap objects. Next, we insert calls t0 (o minated VMs

the CoLoRS API along the newly added control paths. This

o X X To provide transparent object sharing, CoLoRS intercepts
step translates VM-specific operations into VM-neutral op-

. ; . : . -7 all VM operations that access heap memory. To efficiently
erations (e.g. getting an attribute by name into gettingld fie oo\ \whether an object is shared, CoLoRS uses a constant

by offset). Lastly, we add GC runtime support —we imple- 4o hetween private and shared area in the virtual mem-
ment a dedicated CoLoRS thread and the shared-root-dumrbry_ Each memory-related operation, such as field access

operation in the private GC system.

compares the pointer value against this constant border.

4.1 Shared Memory Segment 4.2 HotSpot JVM

The CoLoRS shared memory segment contains three spacedn static runtimes with high-performance, adaptively opti
metadata, classes, and objects. The objects space is ggarbamizing compilers, border-checks may be expensive as they
collected mark-sweep heap with TLAB/free-list allocation make the intermediate code larger and more difficult to op-
The classes space is a bump-pointer space for immortal obtimize. Therefore, in our CoLoRS implementation in the
jects that contains shared classes, class version lists, an HotSpot JVM server compiler, we compile methods in two
registered object repositories/channels. The metadatzesp modes: CoLoRS-aware and CoLoRS-safe. The CoLoRS-
contains several pointers to objects allocated in the etass aware mode is used for methods in which shared mem-
space: pointers to all builtin types, pointers to the repos- ory has been determined (via profiling during interpretgtio
itories/channels hash tables (mapping names to repositoto be commonly-used. For such methods, border-checking
ries/channels), a pointer to class versions hash table-(mapoverhead and the additional code that handles the shared
ping names to class version lists), as well as user-level mon pointers are acceptable.
itors, internal system locks, the freelist head and spaageais The remaining methods (a vast majority in practice) are
statistics, and the bump-pointer top (for the classes 3pace compiled in the CoLoRS-safe mode, where private pointers
Each CoLoRS monitor has its POSIX mutex and condi- are the common case. The CoLoRS-safe methods contain
tion variable. We use the PTHREAPROCESSSHARED only the minimum number of border-checks needed to take
flag to make the POSIX mutexes and conditions work acrossa trap on shared pointers. Such traps deoptimize the method
OS processes. In addition, monitors use the recursion countand recompile it as CoLoRS-aware, running the method in
(to avoid re-locking by the same thread) as well as owner ID the interpreted mode in the meantime. The CoLoRS-aware
(VM ID plus thread ID). methods use fast upcalls to C to handle shared pointers
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(CoLoRS is implemented in C). If fast upcalls fail (e.g. be- (so there is no reference counts in shared object headers).
cause class loading is needed), we bail out to the interprete The cost of one level of indirection is fully compensated by
In CoLoRS-safe methods, we combine null checks with the fact that we do not need to perform type mapping on each
shared-border checks. Assuming that shared memory areahared object access — proxy objects have their private type
is at lower virtual addresses than the private area, check-computed once. All proxy objects have the same size and are
ing if a pointer is below the border detects both NULL bucket-allocated in a dedicated memory region (for fast bor
pointers and shared pointers. If the check passes, we trapder checks). Deallocation takes place once a reference coun
to the interpreter, which finds the actual cause of a traffitse dropsto zero. Thus, the number of proxies never exceeds the
(the trap cost is not a problem as it is the uncommon casenumber of private-to-shared pointers. Finding sharedsroot
path). In CoLoRS-aware methods we guard virtual method in such a setting is fast and amounts to a linear scan of the
calls to prevent calling into a CoLoRS-safe method with a proxy object region.
shared receiver (such calls need a trap). CoLoRS-safe meth- Proxy objects also simplify Python runtime virtualiza-
ods must translate user-provided null checks into nulland tion, as the Python interpreter dispatches basic opegmation
border checks to avoid eliding border checks along with null such as field access, method call, and operator evaluation,
checks. based on object type (note that proxies already have the
We also perform approximate data flow analysis which proper private type set). We provide a new private type for
conservatively computes all methods which can operate oneach builtin shared type, and the interpreter automayioal|
a pointer to a shared object. The analysis exploits the factvokes the right implementation (shared/private). Pythdh V
that shared pointers can only be produced by the meth-allocates only one global TLAB because the interpreter is
ods from the CoLoRS API. We dynamically and incre- single-threaded and simulates multi-threading by context
mentally build the call graph as classes are loaded. In theswitching between program threads. The Python runtime
graph, nodes represent methods and there is an edge froncomponent most complex to virtualize are standard libsarie
node m to n, if method m can pass/return a reference and builtin types, which provide rich, complex interfaces
to methodn. In case of interface methods, we have ad- (e.g. for sorting, set algebra, etc).
ditional edges leading to all implementors of a particular
method. We d|v_|de all loaded methods into two classes: pri- 5. Related Work
vate and potentially-shared. Private methods can nevelhrea
shared objects. If any potentially-shared method conthims ~ COLORS is unique in that it is the first system to sup-
putstatic bytecode, then we assume all methods containing Port type-safe, transparent, and direct object sharing via
the getstatic bytecode to be potentially-shared. Otherwise, shared memory between managed runtimes of different
if a method is reachable from a potentially-shared method object-oriented languages. To enable this, we design a new
in the call graph, that method is also considered poteptiall language-neutral object and class model, memory model
shared. Potentially-shared methods are compiled as eithesupporting monitor synchronization, and a new parallel and
CoLoRS-aware or CoLoRS-safe, depending on the profiling concurrent, pause-free GC system.
data. Private methods do not contain any instrumentation.| ~ COLORS takes a top-down approach to object sharing be-
class loading makes a previously-private method potéptial ~ tween runtimes for high-level languages. That is, we assume
shared, we make the method non-entrant and recompile it. fullisolation between the runtimes via operating systeos pr
CoLoRS intercepts all bytecode instructions that accessCess semantics and provide a new mechanism for object
objects in the heap (both fields and object header): put- sharing within this context. Several previous systems 6, 1
field, getfield, arrayload, arraystore, invoke, monitdated 23] took a bottom-up approach by executing multiple appli-
ones, arraylength, and objectclass. We extend the HotSpotations in a single OS process and providing software-based
template interpreter and the server compiler (both tangeti  isolation between them.
amd64). In addition we virtualize the HotSpot runtime writ- ~ Note that although one can use CoLoRS to implement an
tenin C (biased locking, GC, class loading, NI, JVM, JMM,  efficient cross-language RPC for the co-located case gimil
JVMTI). Several internal classes are not allowed to be in in- in spirit to LRPC [7]), CoLoRS is more general than RPC
stantiated in shared memory (e.g. Thread, ClassLoader) —systems and it focuses mainly on transparent object sharing

they are VM-specific and do not make sense in the context (s opposed to message passing). COLORS is the first system
of other VMs. to enable type-safe, transparent, shared memory across OO

_ language runtimes. Thus, CoLoRS differs significantly from
4.3 cPython Runtime RPC systems (such as LRPC) in terms of both architecture
We virtualize shared objects via private proxy objectsheac and programming model.
containing a forwarding pointer to a shared objectand anor-  State-of-the-art systems that support type-safe, cross-
mal Python header (comprising private type and a referencelanguage communication for OO languages, such as OMG
count). This design choice is dictated by the fact that Rytho CORBA [13], Apache Thrift[34], Google Protocol Buffers [31
uses reference counting GC and CoLoRS uses tracing GCSOAP, and REST, target distributed systems and rely on
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message-passing and data serialization. CoLoRS differs6. Experimental Evaluation

from these systems in that it targets co-location and shared,, important practical use case for COLORS is improving

memory (as opposed to message passing). COLORS is COMgqmynication performance of RPC in the co-located case.

plementary to RPC frameworks as it can be used to optimize g ey a1uate CoLoRS in this context because there are cross-
RPC in the co-located case. Note, however, that CoLoRS IS|anguage RPC frameworks, such as CORBA, Thrift, Proto-
not an RF?C system and its primary goal is type-safe, trans- | Buffers, and REST, to which we can compare. CoLoRS,
parent object sharing. _ ) ) however, provides significantly more functionality over ex

The XMem system by Wegiel and Krintz [36] is mOSt 5+ ¢ross-language RPC systems by enabling direct, type-
related to ours. XMem provides direct object sharing be- ¢ ¢ 414 transparent object sharing.

tween JVMs. XMem also takes a top—dovi/n and transpar- s compare CoLoRS-based RPC against extant RPC
ent approach, but does not support sharing between hety.,meworks in terms of communication performance (i.e.
erogeneous Ianguag_es and requires global SynChronlzatIOrl‘atency and throughput). We also evaluate end-to-endiserve
across runtimes (which CoLoRS avoids) for such opera- gjient performance (response time and transaction rate) fo
tions as garbage collection, class loading, shared memoryy, appjications: Cassandra and HDFS. Finally, we measure
attach/detach, and communication ch.annel estabhshment. the overhead of CoLoRS in programs that do not employ
Systems supporting communication between isolated gp4r6q memory, using standard community benchmarks for
tasks within a single-language, single-process runtime in j,, - 2nq Python.
clude Erlang [3], KaffeOS [6], MVM [16], Alta [5], GVM [5],
and J-Kernel [35]. These systems take a bottom-up approach
which provides weaker isolation (i.e. weaker protection
guarantees than the CoLoRS approach) and is more com—6'1 Methodology
plex to implement. Unlike CoLoRS, they replicate operating Our experimental platform is a dedicated machine with a
system (OS) mechanisms within a single OS process insteadfuad-core Intel Xeon and 8GB main memory. Each core
of |everaging existing () inter-process isolation. is clocked at 2.66GHz and has 6MB cache. We run 64-bit
Language-based operating systems also provide mechalbuntu Linux 8.04 (Hardy) with the 2.6.24 SMP kernel.
nisms for communication and interoperation between pro- ~We use HotSpot JVM from OpenJDK 6 build 16 (April
cesses [8, 21, 23, 25, 27-29, 33, 37]. Such systems typically2009) compiled with GCC 4.2.4 in the 64-bit mode. Our con-
implement support for light-weight processes that share afiguration employs the server (C2) compiler, biased locking
single address space and provide compiler support to guar-a2nd parallel GC (copying in young generation and compact-
antee type and control safety within and between processesing in old). For the Python runtime we use the open-source
To facilitate the latter, these systems require that thepzem ~ CPython 3.1.1 (released August 2009) compiled with GCC
nents (processes/tasks) be written in the same safe/diiecka 4.2.4 in the 64-bit mode.
language. In addition, since CoLORS is not an operating sys- 10 measure CoLoRS overhead in Java, we use Da-
tem, it is significantly simpler. Capo’08 and SPECjbb ('00 and '05). We set the heap size to
Some concurrent |anguage5 provide direct Support for 3.5x the live data size so that GC activity does not dominate
inter-process communication between light-weight pro- performance and so that we capture all sources of overhead.
cesses [4, 14, 21] written in the same language. The keyWe use the default input for DaCapo and 5 warehouses, with
difference between these systems and CoLoRS is that theyP0s runs, for SPECjbb.
employ share-nothing semantics for message-based commu- In Python, we evaluate CoLoRS overhead using PyBench
nication whereas CoLoRS provides support for direct object (a collection of tests that provides a standardized way to
sharing when runtimes are co-located on the same physicameasure the performance of Python implementations), a set
machine. of Shootout cPython benchmarks (from [1]), and PyStone (a
CoLoRS is also distinct from distributed shared mem- standard synthetic Python benchmark).
ory and single system image runtimes for clusters such as In all experiments, we repeat each measurement a min-
MultiJav [11], cJVM [2], JESSICA [30], Split-C [15], and  imum of seven times. For experiments that employ shared
UPC [22]. In contrast to them, COLORS provides a uni- memory, we perform sufficient iterations to guarantee that
form cost for accessing all objects (private and shared) andGC is performed by CoLoRS. We report average values. The
does not target distributed computing. These systems pro-standard deviation is below 5% in all cases.
vide sharing between code written in the same language, COLORS reserves 256MB in shared memory for objects
and focus on guaranteeing memory consistency and cachénd 64MB for classes. We use 32KB TLABs, and 2 parallel
coherence for concurrent access to objects across multipleGC threads. In each experiment, we employ two co-located
machines. runtimes: Python and Java. Whenever running an unmodi-
fied (CoLoRS-unaware) JVM, we set its heap size to 300MB
so that its private memory is comparable in size to the shared
memory.
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Note that our results underestimate CoLoRS potenti = e 80 T
since we implement CoLoRS in Python 3.1 and comparei 7 ! e ; 70 1
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6.2 CoLoRSImpact on Communication Performance - i
Data Size

1024
128
256
512 |

1024

Data Size

\éVe fgsltqpe\c/:alugte the perfqrmtgnce .potebnnalhof CkOLOI.Tr?' Figure 3. Average execution time (in seconds) for CoLORS
ase using communication microbenchmarks wi a(left) and CORBA (right) experiments.

range of message types and sizes. We implement equiva-
lent microbenchmarks using RPC frameworks for CORBA,
Thrift, Protocol Buffers, and REST. We compare RPC la-

ten'(::y ar;]d 'ghrolughput (gall ra]:te;]). icrobenchmark output field in the message object).
or the implementation of the microbenchmarks, we use g, ) experiments, we report throughput as the num-

aIPythorgcllenthandd a J,ar\]"”f‘ si:erver. Wher_1e\(er possﬁle WE EMper of calls per millisecond, and latency in millisecondge W
ploy RPC methods with fully symmetric input and output compute these values from the timings that we collect us-

(ie. retu_rnlng a data struciure _S|m|Iar to the data stmectu ing the methodology described in the previous subsection.
passgd inasan argument). This ensures that Fhe server anEBue to space constraints, we only present timings graphs tha
the c_Ilent exercise data structure (de-)serializationsgra- compare CORBA to CoLoRS. This data is shown in Fig-
metric way. . ure 3. The x-axis is message size and the y-axis is time in
To evaluate RPC throughput, we vary method input/output go 0y 4g This data is representative of all of the RPC exper-

size between 1 to 1024 units and measure mean t|m_e P€iments. We summarize the latency and throughput of each
method call. Next, we use least-squares linear regression t below.
compute throughput from the coefficients in the equation Table 2 shows throughput across all microbenchmarks

timi = latency + Sizeéthgoughp“”t'fwe cak_:ulats latency  5n4 RPC systems. We report both absolute values and rel-
as the mean time needed per call for unit inputioutput. We ;o improvement due to CoLoRS. Table 3 uses a similar

employ this methodology because we have observed that forformat but presents results for our latency measurements.
small input sizes the functiarime(size) is sometimes non-

linear and approximating it by a line leads to an inaccurate CORBA. The Common Object Request Broker Archi-
latency estimation. tecture (CORBA) [13] standardizes object-oriented RPC
Each RPC method call takes a list as inpUt and returns across different p|atf0rmsy |anguagesy and network proto-
a list as output. List sizes vary between 1 and 1024. For cols. A client and a server use automatically-generatésstu
each list size we do 10 experiments and use their average ingnd skeletons to (de)marshall arguments and return values
the calculation above. We use several different objectisas | for methods specified in the Interface Definition Language
elements, including built-in primitive types (string, @der,  (IDL). To implement our CORBA benchmarks, we use the
float, and boolean) and user-defined types. For the latter Weorg.0mg.CORBA package and théilj compiler in Java
employ binary trees, the depth for which ranges between gnd the Frnorb module and thefnidl compiler in Python.
1 and 4 levels, and each node contains 4 primitive fields. oyr measurements indicate that, compared to CORBA,

This enables us to investigate both shallow- and deeply- CoLoRS achieves 11-27 times better throughput and 14—
linked data structures. The above choice is also dictated by19 times lower latency.

the limitations of extant RPC frameworks which support
a small set of builtins and do not support recursive data Thrift. Thriftis a framework originally developed at Face-
structures. (Note that CoLoRS provides a richer and more book for scalable cross-language RPC. Like CORBA, Thrift
flexible object model than these RPC systems.) requires a language-neutral interface specification from
We implement an RPC endpointin CoLORS as a messagewhich it generates client/server template code. However,
gueue on which a server waits for messages (call requests)Thrift is simpler and much more lightweight than CORBA.
Each message is an object encapsulating input and outputWe use Apache Thrift version 2008/04/11. Our experiments
A client issues a call by allocating a message object (and show that CoLoRS improves throughput by 8-17 times and
the associated input) in shared memory, enqueuing it, andlatency by 2—13 times, over Thrift. We also find that Thrift
notifying the server. The server removes the request fream th achieves much better performance for builtin types than for
gueue and generates the output in shared memory. Finallyuser-defined types.

the server natifies the client that the result is ready (as the
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Throughput in calls/ms; CoLoRS/RPC in parenthesis

bool int float string nodes:1 | nodes:2 | nodes:3 | nodes:4
CORBA | 173.22 (11)| 82.67 (26) | 83.20 (27) | 75.96 (15) | 14.67 (13)| 4.68 (15) | 1.83 (17)| 0.86 (17)
ProtoBuf | 31.73 (59) | 30.98 (70) | 34.32 (65) | 26.43 (43) | 2.85(68) | 0.88 (78)| 0.36 (85)| 0.17 (91)
REST 23.17 (81) | 22.45(97) | 21.89(102)| 22.94(50) | 8.73(22) | 2.66 (26)| 0.91 (34)| 0.31 (49)
Thrift 237.04 (8) | 283.23(8) | 274.37 (8) | 149.08 (8) | 15.38 (13)| 4.27 (16)| 1.80 (17)| 0.87 (17)
CoLoRS | 1876.08 (1)| 2175.32 (1)| 2231.45 (1)| 1144.87 (1)| 193.66 (1)| 68.61 (1)| 30.61 (1)| 15.08 (1)

Table 2. Throughput for Microbenchmark Programs. For each data, typeshow the throughput in calls per millisecond; in
parentheses, we show the CoLORS/RPC throughput ratites : n means the type is a binary tree of depth

Latency in msecs; RPC/CoLoRS in parenthesis
bool int float string nodes:1 | nodes:2 | nodes:3 | nodes:4
CORBA | 0.62(14)| 0.65(19) | 0.62(14)| 0.63 (14)| 0.68(17) | 0.82(15)| 1.13(17) | 1.92 (19)
ProtoBuf | 0.22(5) | 0.31(9) | 0.21(5) | 0.23(5) | 0.55(14) | 1.32(23) | 2.90(44) | 6.02 (58)
REST | 3.89(90)| 3.89 (113)| 4.00(89)| 3.92(90) | 4.07 (101) | 4.80 (85)| 7.35 (111)| 9.94 (96)
Thrift 0.09(2) | 010(3) | 0.11(3) | 0.12(3) | 0.19(5) | 0.35(6) | 0.74(11) | 1.38(13)
CoLoRS | 0.04(1) | 0.03(1) | 0.04(1) | 0.04(1) | 0.04(1) | 0.06(1) | 0.07(1) | 0.10(1)

Table 3. Latency for Microbenchmark Programs. For each data typeshee the latency in milliseconds; in parentheses, we
show the RPC/CoLoRS latency ratimdes : n means the type is a binary tree of depth

Protocol Buffers. Protocol Buffers (PB) are a language- the highest latency among all of the RPC technologies that
neutral, platform-neutral, extensible mechanism foraderi  we investigate.

izing structured data developed by Google engineers as a

more efficient alternative to XML [31]. To use PB, develop- 6.3 CoLoRSGC

ers specify message types ipaoto file, and a PB compiler e gathered basic GC statistics for our Java-Python mi-
generates data access classes that allow to parse/encode opropenchmarks. The results are similar across all the pay-
jects into a bytes buffer/stream. We use PB version 2.2.0, |pads that we use (described in the previous Section). Below
which includes message parsers and builders but does nojye discuss the experimental data obtained for 4-level inar
support RPC. Therefore, we implement RPC on top of PB trees.
by using PB serialization and communication over TCP/IP  \ye set the GC triggering threshold to 70%. Average time
sockets. Each message that we send from a client to apetween subsequent GC cycles is 1458ms while average GC
server, contains a method tag, message length, and PBrycle time is 325ms (GC is active 18% of the time). Note
serialized data structure (method input). COLORS improves that GC runs concurrently in a separate process. The ctparin
the throughput of PB-RPC by 43-91 times and latency by phase takes 94ms on average (29% GC cycle). The root
5-58 times. dump phase was 1.2ms on average (below 0.4% GC cycle).
In the HotSpot JVM, each root dump request causes a STW

REST. REpresentational State Transfer (REST) [24] is a Pause which averages at 0.8ms (with the maximum pause of
client-server architecture based on HTTP/1.0 where régues 2-9mS). In cPython there is no pauses. The marking phase
and responses are built around the transfer of represemgati  takes 116ms on average (36% GC cycle). Two object graph
of resources. REST provides stateful RPC by exchangingScanning iterations suffice on average (the maximum is 3).
documents that capture the current or intended state of alhe sweep phase averages at 113ms (35% GC cycle). The
resource. Individual resources are identified in requegts b dominating GC phases are marking, sweeping, and clearing,
URIs. In our benchmarks, we define a single resource storedéach taking around 1/3 of each GC cycle.

on a server and identified biyttp://localhost:8080/
db/items. A representation of this resource is an XM
document containing all stored items. Clients s€n8T To lend insight into the CoLoRS potential when used by
requests to the resource URI, and parse the resulting XML actual applications, we investigate two popular servée-si
document. This document contains a varying number of software systems: Cassandra [10] version 0.4.1 and HDHS [26
items (1-1024), where each item is either a primitive or a version 0.20.1. Cassandra is a highly scalable, eventu-
user-defined object. We employ the Pythamst ful_lib to ally consistent, distributed, structured, peer-to-péewy-
implement the client and the Jawestlet (version 1.1.6) for value store developed by Facebook engineers. HDFS is the
the server. Relative to REST, CoLoRS throughputis 22—-102 Hadoop Distributed File System — a file system server that
times higher and latency is 85-113 times lower. REST has provides replicated, reliable storage of files across etust

L 64 ColLoRSImpact on End-to-End Performance
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resources. Both of these systems are employed for a wi 13 -

range of web applications, e.g. MapReduce, HBase (ope 1 L g /'
source BigTable implementation), email search, etc. T L 5 45 H
) . o assandra-Cache " T === = HOFS-Cache f
Cassandra and HDFS both expose Thrift-based inte £ » — ___ 7 E g - worscors
. . ) S Lol [}
faces. These interfaces provide a set of query/update me g 1o - :’ g 5 !
ods which use relatively complex data structures (e.g. jnap g s - s §w }
Query methods are natural candidates for in-memory res & s - 7 b 30 L
. . H / 5
caching, recently a common approach to scaling up servez 4 - o 2 A
. . ’
(e.g. MemchacheD, MySQL cache). If caching is used, the 2 por— 10 7
. . . ] e —— -
in the common case (i.e. on cache hit), server processi ¢ 0 =
is minimal and therefore communication constitutes a larg i o i e | T
Data Size Data Size

portion of the end-to-end performance. - — -
In systems with in-memory caching, CoLORS can im- Figure 4. Average execution time (in seconds) for Cassan-

prove performance in two ways. First, it can reduce RPC dra (Ieft) and HDFS (right) vs. CoLoRS .

cost by avoiding serialization. Second, part of the in-mgmo
cache can be kept in shared memory — immutable objects

such as strings can be shared by multiple clients without the Throughput Latency
risk of interference. As a result, CoLoRS can provide copy Server | queries| CoLoRS|| in App/
semantics without actually copying data. To investigat# bo Application | perms| /App ms | CoLoRS
these scenarios, we extend Cassandra and HDFS with in- Cassandra| 249.50 19 0.12 3
memory caches for particular queries and evaluate the effi- HDFS 12.03 20 0.19 3
cacy of using CoLoRS for these queries, on end-to-end per-

Table 4. End-to-End Performance for Cassandra and HDFS
with Caching. The third and fifth Column show number

of times improvement due to CoLoRS for throughput and
latency, respectively.

formance.

For Cassandra, we implement caching forghe key _range
query (parameterized by table name, column family, start
value, end value, maximum keys count, and consistency
level). The query returns a list of keys matching the given
criteria. Updaters, such as insert and remove, detect confli
ing modifications and invalidate the cache accordingly. The and reduces response “me by 3 timesl For Cache_enab'ed
cache is kept on the server and maps inputs (serialized to a4pFs, CoLoRS improves transaction rate by 20 times and
string) to responses. Cached responses are partiallyiecsha decreases response time by 3 times.
memory (strings are immutable). Thus, CoLoRS has the po-
tential for improving performance by avoiding serializati 65 Col oRS Overhead
and reducing copying overhead.

For HDFS, we imp|ement an in-memory cache for the To implement CoLOoRS, we virtualize components of Java
listStatus call, which, given a directory name, generates a and Python runtimes. This includes standard libraries, ob-
list of FileStatus objects, each describing file attributes, ject field access, synchronization, method dispatch, -inter
name, owner, permissions, length, and modification time. preter, dynamic compiler, allocation, and GC. Doing so pro-

The cache is a map from path name to responses, which wevides transparency, but introduces execution time overhea
partia”y store in shared memory. Cache invalidation hap- To evaluate this overhead, we compare unmodified release

pens on conflicting file system operations: create, append,versions of Python 3.1 and Java 1.6 with their CoLoRS coun-

write, rm, rename, mkdirs, chmod, and chown. terparts.

Figure 4 presents the timing data for Cassandra and CoL-  Table 5 shows Python results. In Column 2, we report
ORS (left graph) and HDFS and CoLoRS (right graph). The per-benchmark execution times for unmodified Python 3.1.
x-axis is message size and the y-axis is time in seconds. WeNext, in Column 3, we present the CoLoRS overhead —
use this data to compute latency and throughput, which we percentage increase in execution times relative to Column
summarize in Table 4. Columns 2-3 show transaction rate 2. Across our benchmarks, the average CoLoRS overhead
(per millisecond) while Columns 4-5 present response time is 4%. Note that scripting languages are not concerned with
(in ms). We use one cache warmup iteration followed by 10 enabling high-performance (they are interpreted and much
iterations during each of which we vary the query result size slower than statically compiled code).
between 1 and 1024 entries. In each Column group, we re- Table 6 shows the Java results. For each benchmark, we
port measurements for the server without CoLoRS and the reportits heap size and execution time (for DaCapo - the top
relative improvement due to CoLoRS. For cache-enabled 11 benchmarks) or throughput (for SPECjbb), and percent-

Cassandra, CoLoRS improves transaction rate by 19 times@ge CoLORS overhead (Column 4). Across the benchmarks,
the average CoLoRS overhead is 5%.
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Bench- Python 3.1| CoLoRS 3.1| Python 2.6 We observe that Thrift over LSTx attains better through-

mark time (s) % OHead % Impr put — the improvement ranges from 1.7x (for the integer
binary-trees 6.79 3.39 -0.44 payload) to 3.2x (for 4-level binary trees) and averages at
fannkuch 1.97 4.57 24.68 2.7x. At the same time, Thrift over SMTx has lower latency
mandelbrot 15.32 7.18 66.52 for small messages (up to 29% for the integer payload) and
meteor-contest 2.25 1.78 32.35

higher latency for larger payloads (up to 0.8x for 4-level bi

n-body 8.67 2.08 7.04 nary trees), while averaging at 9% lower latency than Thrift
spectral-norm 14.31 5.73 18.85 over LSTx

| pybench | 392 | 520 | 118 | Thrift/LSTx achieves better communication performance

| pystone | 409 | 587 | 1298 | than ThrifySMTx because of the zero-copy network-stack

[ Average | 717 ] 448 | 2040 | optimizations in the Linux kernel as well as faster synchro-

nization (kernel vs. user-land POSIX). Based on this exper-
iment, we can conclude that CoLoRS improves throughput
and latency because it avoids serialization and not be¢ause
uses shared memory instead of sockets.

Table 5. The overhead of CoLoRS support for Python (and
for the use of Python v3.1 over v2.6). Column 2 is execution
time in seconds. Column 3 shows the percent degradation
due to CoLoRS. Column 4 shows the percent improvement
in performance when we use Python 2.6 (over 3.1).

6.7 Summary
CoLoRS can improve communication performance sig-
Bench- | Heap| ET CoLoRS Support nificantly yvher? runtimes executing interoperating compo-
mark | Size | or TP % OHead nents (written in different languages) are co-located @n th
antr 7 240 8.4 same physical system, compared to extant type-safe cross-
bloat 28 6.34 6.3 language RPCs (latency 2—113 times and throughput 8-102
chart 42 6.19 6.1 times). In systems with short request processing times (e.g
eclipse | 115 | 24.54 4.7 servers with caches) this improvement can translate telarg
fop 28 2.11 7.7 end-to-end performance gains (19-20x for transactiors rate
hsgldb | 280 3.35 3.6 and 3x for response times). As more and more components
jython 3 8.35 4.5 are co-located on multi-cores and caches become preva-
luindex | 7 7.50 9.0 lent in servers, object sharing systems like CoLoRS have
lusearch| 45 4.25 1.4 a growing potential for increasing performance of multi-
pmd 56 6.92 8.6 component, multi-language systems.
xalan 105 5.97 -0.6
jbb’00 900 | 112726 5.3 :
jbb’05 900 54066 1.3 7. Conclusions

We have presented the design and implementation of CoL-
OoRS, the first system supporting cross-language, type-safe
shared memory for co-located VMs. CoLoRS contributes a
new language-neutral object/class/memory model forcstati
and dynamic OO languages, as well as a novel pause-free
concurrent GC and monitor synchronization mechanism.

We implement and evaluate CoLoRS within runtimes for
6.6 Socketsvs. Shared Memory Python and Java. CoLoRS imposes low overhead when there
We also investigate the relative performance of shared-is no use of shared memory (4% for Python and 5% Java)
memory-based transport (SMTx) and local-socket-baseddue to virtualization of runtime services and libraries.
transport (LSTx). This enables us to determine how much  An important use case for CoLORS is improving the per-
performance improvement is due to the use of shared mem-formance of RPC protocols in the co-located case. We have
ory versus of sockets and due to avoiding object serializa- found that for microbenchmarks CoLoRS increases through-
tion. put by 8-102 times and reduces latency by 2-113 times.

In this experiment, we extend the Thrift RPC framework CoLoRS improves the performance for the cache-enabled
for Java with SMTx and compared it with the LSTx built Cassandra database and HDFS by 19-20 times for through-
into Thrift using our microbenchmarks (described in Sec- put and 3 times for latency.
tion 6.2). We have implemented the Thrift transport layer  In summary, CoLoRS enables type-safe, object sharing
on top of a bidirectional FIFO channel based on a sharedacross OO languages in a transparent and efficient way. As
memory segment and POSIX mutexes/conditions. We focuspart of future work, we are extending name support to other
on Java and Thrift here because of their high-performanceOO languages (C++ and Ruby) and are investigating its
characteristics. use within multi-language distributed cloud systems such a

Table6. The overhead of CoLORS runtime support for Java.
Column 3 is execution time (ET) in seconds for all but jbb’00
and jbb’05 for which we report throughput (TP). Column 4
shows the percent degradation due to CoLoRS.
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AppScale [12] for which components migrate dynamically

(co-location is intermittent).
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