UCSB Computer Science Technical Report 2011-03.

From a Virtualized Computing Nucleus to a Cloud
Computing Universe: A Case for Dynamic Clouds

Divyakant Agrawal

Sudipto Das

Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106 - 5110, USA

{agrawal, sudipto, amr}@cs.ucsb.edu

ABSTRACT

The current model of the cloud consists of a static set of data cen-
ters (or cloud cores) which drive the computation and storage needs
of large numbers of applications. We envision a new paradigm
where the cloud will be comprised of a large dynamic collection
of cloud cores along with a static set of cores, the nucleus, to create
a cloud computing universe with a capacity much larger than the
nucleus and a cost much smaller than owning the entire infrastruc-
ture. This model is rooted by the observation that a tremendous
amount of computation exists outside the core that can potentially
augment the nucleus’ capacity. An example of this surplus capacity
are enterprizes with diurnal trends in usage behavior that join the
cloud during predicted periods of usage troughs. We propose to
leverage this elastic and dynamic infrastructure to create a unified
cloud service. A number of challenges, at all levels of the software
stack, need to be addressed for these futuristic architectures to be-
come a reality. We focus on the challenge of an elastic and agile
data management infrastructure to deal with the dynamics associ-
ated with this novel paradigm.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design

Keywords

Dynamic clouds, database systems, elasticity, fault-tolerance, reli-
ability

1. INTRODUCTION

Current cloud infrastructures are limited to a small set of geo-
graphically separated large data centers, cloud cores, representing
a closely knit nucleus, supporting the computation and data storage
requirements of large numbers of applications. These huge cloud
cores are custom built to provide the economies of scale for opera-
tion and management—a major contributing factor to the success of
the cloud. However, limiting computation to the nucleus prevents
the cloud from leveraging the huge pool of resources available out-
side the nucleus. We envision a new trend in the cloud infrastruc-
ture which deviates from this model of a small static collection of
computing cores to many (and often heterogenous) loosely coupled
cloud cores, a paradigm we call dynamic clouds.

This new trend originates from the possibility of exploiting large
amounts of computation and storage resources that exist outside the
nucleus. For instance, some Wall Street financial companies have

expressed the intent of “renting out” their resources which are idle
during non-business hours [13]]. Such diurnal usage trends, com-
prising periods of high usage followed by periods of zero or low
usage, is also observed in other financial sector companies across
the globe, as well as in infrastructures that serve businesses that
do not operate 24 x 7. These companies need to own such huge
infrastructures to sustain their core businesses, but lay idle dur-
ing non-business hours. This presents the case for dynamic clouds,
i.e. a cloud infrastructure with a small number of static cores (the
nucleus) and a dynamic collection of cores that coalesce into the
cloud for certain periods, while being unavailable for other peri-
ods. This paradigm leverages the predictable pattern of cores join-
ing and leaving the cloud (churn) to constitute the dynamic cloud
infrastructure.

This dynamic clouds model provides economic incentives for
both the cloud providers and the companies renting the infrastruc-
ture (cloud lessors). The cloud providers can rent the dynamic
cores at a fraction of the cost of owning and maintaining them,
thus allowing them to increase their profit margins. On the other
hand, the cloud lessors gain revenue for resources which they have
to maintain for their core businesses, but lay idle outside their busi-
ness hours. This creates a trade between the two involved entities.
Our vision is to integrate the static cloud nucleus and a large pool
of dynamic cloud cores to create a cloud computing universe with
a capacity much larger than the nucleus and a cost much smaller
than owning the entire infrastructure.

Transition through time epochs
1

1:00am ‘ 9:00am

\ /
\
Nucleus

A Cloud Computing Universe

Figure 1: A dynamic cloud formed as a collation of a static nu-
cleus (enclosed in the ellipse) and a dynamic collection of cores
that together form the cloud.

Figure [[provides an illustration where a nucleus combines with
a dynamic collection of cores to form the cloud service. The static
nucleus coordinates and synchronizes the dynamic cores, while the
dynamic cores augment the capacity of the system. This paradigm



D. Agrawal et al., From a Virtualized Computing Nucleus to a Cloud Computing Universe: A Case for Dynamic Clouds

also presents the potential for small sized cloud providers to estab-
lish a large cloud service without owning a large infrastructure. In
the years to come, dynamic clouds will present a radically different
paradigm for cloud computing and will pose new challenges.

A large number of challenges at different levels of the software
stack must be addressed to provide a common uniform infrastruc-

ture and automated integration of these dynamic cores into the cloud.

These challenges include, and are not limited to, the need for elas-
tic and agile data and application platforms, application traffic and
load management amongst heterogenous infrastructures connected
through wide area networks, tools for monitoring and autonomous
management, ensuring privacy and security of data, efficient inter
data center state synchronization, as well as other non-technical
challenges such as legal and policy issues pertaining to data own-
ership or region specific statutory jurisdictions.

Our focus is the challenge of providing an elastic, agile, scal-
able, and fault-tolerant data management infrastructure for this new
cloud paradigm. We discuss the design principles and suggest the
design of some of the main building blocks of the infrastructure.
Our proposed design separates the critical meta information of the
system (called system state) from the application specific data and
information (called application state). We propose the use of strong
consistency protocol [12] for system state maintenance within a
single cloud core, while using causal consistency for loose
coupling and synchronization between cloud cores.

This paper intends to start the discussion on the set of techniques
and abstractions for this novel paradigm of dynamic clouds. A se-
ries of technological innovations are necessary to realize this trans-
formation from a virtualized computing nucleus to a cloud comput-
ing universe; this paper takes the first steps in that direction.

2. DYNAMIC CLOUDS

We ground our discussion on dynamic clouds on some assump-
tions about the system model which will focus our presentation,
but can be relaxed in the future: (¢) we focus on the platform as
a service (PaaS) abstraction where the cloud provider manages the
tenant’s data and application state and is responsible for load bal-
ancing and on-demand scaling; (i7) we assume a shared cloud data
platform where each application’s database (tenant) is being served
from a single data center; (4i7) we consider OLTP workloads char-
acterized by short transactions with variable distribution of reads
and writes; (iv) we assume that the availability periods of the dy-
namic cores are predictable or known in advance; (v) we assume
that appropriate virtualization technologies can efficiently switch
the resources of the dynamic cores from their regular business role
to the role of being part of the cloud infrastructure; and (vi) we
assume that the dynamic cores have state persistence so that when
a dynamic core joins the cloud, it remembers its state from the last
period it was part of the cloud.

2.1 Design Principles

In [, we analyzed a number of scalable data management sys-
tems (such as Bigtable [3]) to identify important design principles
that can be carried over to other scalable and elastic cloud database
systems. This paper uses two of these design principles.

Separate System and Application State. The system state is the
system metadata (such as catalog information or constituent nodes
in a large loosely couple distributed system) critical to ensure the
correct operation of the system. On the other hand, application
specific data stored by the system is called the application state.
The system state is typically multiple orders of magnitude smaller
than the application state and has more stringent consistency and
durability requirements compared to application state. Therefore, a

clean separation allows using different sets of protocols for manag-
ing the different types of states.

Decouple Data Control from Data Storage. Control refers to the
exclusive rights to access and update data. Our design leverages a
clean separation between the data control layer and the data stor-
age layer. Separating the physical data storage from the access
logic has multiple benefits. First, the data storage layer can inde-
pendently make data placement and replication decisions thus pro-
viding a fault-tolerant distributed network addressable storage ab-
straction. Second, the data control layer and the storage layer can
independently scale depending on the requirements at each layer.
Third, the data control layer can perform lightweight transfer of
ownership to allow effective migration.

2.2 Technical Challenges

We now discuss some critical technical challenges that must be
addressed to manage a cloud substrate across a collection of dy-
namic cores.

A uniform namespace for the dynamic cores. To provide a uni-
form view of a cloud service spanning a dynamic collection of
cloud cores, a namespace spanning the cores is essential. This
namespace comprises the system state for this dynamic cloud. Main-
taining this state across all the cores and providing consistency
guarantees for efficient and safe operation is critical.

Consistency models and abstractions. Ensuring data consistency
is crucial for the correctness of the system. Strong consistency is
expensive and eventual consistency is hard to reason about. In such
a scenario, a challenge remains on devising appropriate consistency
models that allows scaling to large numbers of nodes and cores, ef-
ficiently handles the underlying dynamics, while providing abstrac-
tions to allow the applications to reason about correctness.
Efficient integration of surplus capacity. The software substrate
of a dynamic cloud consists of a number of layers. Techniques to
efficiently synchronize and integrate these layers across the multi-
ple cloud cores is essential. This synchronization allows cores to
dynamically join and leave the cloud without affecting the opera-
tion of the larger cloud.

Effective load and data migration techniques. A major enabling
feature of this dynamic cloud paradigm is elasticity and ability of
the software layers to leverage the elasticity and dynamics in the
underlying hardware layer. Effective techniques to balance load
across the available cores, migrate application and data as man-
dated by the load balancing policies, and elastic data management
are therefore critical.

Efficient state replication and replica placement. Since all dy-
namic cores are not available at all times, replication of system and
application state is essential for both fault-tolerance and high avail-
ability. Using synchronous replication across geographically sep-
arated data centers will be prohibitively expensive. It is therefore
critical to design consistency models for asynchronous replication.
Furthermore, intelligent replica placement techniques are also im-
portant to handle the churn while ensuring high data availability
and minimizing the amount of data transfer.

Large scale monitoring and system modeling. Monitoring the re-
sources at the different cores, collecting usage statistics, and mod-
eling behavior of the overall system form a critical component.
A system controller uses these statistics and models to determine
which tenants are hosted on which cores, and which tenants must
be migrated as new capacity become available.

Data security and privacy. Like any shared infrastructure, a major
challenge is to ensure data security and privacy, both for the cloud
lessors as well as the tenants served by the cloud provider. In ad-
dition to the economic incentives, proven security guarantees are



UCSB Computer Science Technical Report 2011-03.

critical to provide confidence to the lessors to rent out their infras-
tructure without compromising its integrity.

3. BUILDING BLOCKS
3.1 System Architecture

We propose that the software substrate for the data management
system for a dynamic cloud consist of four layers: the system mon-
itoring and control layer, the metadata management layer, the data
control layer (for instance the database engines serving the data),
and the data storage abstraction. Each cloud core has a local
instance of the layers with a loose coupling of the layers across
the cores. Considering the scale of tens of geographically sepa-
rated cloud cores, interesting tradeoffs between consistency, per-
formance, and availability arise. A single consistency model is not
enough to characterize the different layers of a dynamic cloud. We
therefore use a collection of consistency models for different layers
of the system. This allows reasoning about its correctness, while
minimizing the impact on performance and availability.

3.1.1 System Monitoring and Control Layer

The system controller is responsible for meta level control op-
erations. At every core, the system controller’s major responsibil-
ities include monitoring system and recovering from server fail-
ures, gathering usage statistics and modeling load and system be-
havior, coordinating state synchronization to facilitate joining of a
new core into the cloud, replica placement decisions, load balanc-
ing and tenant migration decisions both at the data control and data
storage layers, and facilitating a core’s departure and checkpointing
its state. The controller uses its local view of the global metadata
for its decisions.

3.1.2 Metadata Management Layer

The metadata manager, or the naming service, provides a unified
view of the dynamic cloud and maintains the system state. This
information is critical for correct operation of the system and is
therefore replicated. Within a core, system state requires strong
consistency. We propose to use the Paxos protocol to consis-
tently maintain this metadata within a core. Across cores, we pro-
pose a global naming service as a collection of these local naming
services which merges the local metadata views. Straightforward
merging of all the local views can give rise to inconsistencies, espe-
cially in an asynchronous environment where the communication
sub-system can reorder the messages. On the other hand, strong
consistency of global metadata is expensive, both in terms of per-
formance and in terms of availability in the presence of failures.

We propose to create a global view over multiple local views by
drawing upon the classical notion of causality that has been
studied extensively in distributed systems. In particular, we pro-
pose to maintain the local states as a distributed dictionary [2[ZJ18].
Each core maintains time tables corresponding to its knowledge
about the system state of other cores. These time tables are ex-
changed during message transfers between the metadata managers
at the different cores, and are in turn used to merge the states. This
establishes a causal relationship and ensures that applications ob-
serve the state of the system which is causally consistent. When
we combine the fact that no conflicting and competing decisions
will be made by the local metadata manager at the different cores,
causal consistency of the global metadata view is enough to guar-
antee consistent metadata maintenance. We underscore the relative
elegance of our design since the notion of causal consistency is a
natural notion of correctness in distributed systems as we transi-
tion from a synchronous environment to an asynchronous environ-

ment. Furthermore, implementations such as ISIS [2] have demon-
strated that causality introduces relatively low performance over-
head. Considering the similarity of dynamic clouds with P2P sys-
tems, techniques from P2P literature [16] might also present inter-
esting approaches for metadata management.

3.1.3 Data Control Layer

The data control layer is responsible for handling the requests for
accessing the tenant databases. It is essentially a database engine
executing the tenant’s transactions. The metadata layer is used as
a catalog to direct a tenant’s request to the server currently serv-
ing the tenant’s data. One of the major requirements is that the
data control layer must be lightweight and agile to allow inexpen-
sive tenant migration. We propose an extension of the design of
ElasTraS [3], a multitenant transactional database for the cloud. It
consists of a collection of transaction managers (TM), where each
tenant is exclusively served by a single TM, and each TM serves
multiple tenants. A rich literature of efficient transaction process-
ing techniques can be used to execute transactions at the TMs [17].
Fault tolerance and high availability is guaranteed by storing the
entire application state, including the transaction logs, in the data
storage layer.

3.1.4 Data Storage Layer

The data storage layer provides an abstraction of a fault-tolerant
storage with block level access granularity. Such a storage abstrac-
tion is common in current clouds (e.g. the Google file system [9]])
and supports strongly consistent access within a cloud core. But in
the model for dynamic clouds, this unified storage layer conceptu-
ally spans multiple cloud cores. Therefore, strong replica consis-
tency in the storage layer is not feasible. In our model, at any instant
of time, a tenant is served from a single cloud core. Replication is
therefore primarily used for fault-tolerance and to aid tenant migra-
tion between cloud cores. In such a scenario, the major benefit of
strong replica consistency is that the permanent failure of the pri-
mary does not lead to data loss; but this benefit does not outweigh
the performance penalty of strong consistency. We therefore pro-
pose timeline consistency [4] for the data storage layer with a time-
line per tenant. Timeline consistency ensures that all replicas of a
tenant’s data see all updates in the same order. PNUTS [4] demon-
strates the use of a guaranteed delivery publish-subscribe system
for low cost cross-data center replication at web-scale. The primary
replica commits the updates to the pub-sub system and the replicas
subscribe to the updates. We propose a similar design to repli-
cate data across the cloud cores. Metadata of the storage layer (i.e.
mapping of the blocks to the cloud cores and the servers) is man-
aged by the metadata management layer. Control decisions such as
replica placement, re-balancing, and data migration are handled by
the controller.

3.2 Agility and Elasticity

Agility and elasticity are the two most critical features for the
effective use of a dynamic cloud infrastructure. The efficient han-
dling of churn and effective migration and load balancing to use
the surplus capacity and tolerate the churn are its two important
components.
Handling churn. In the dynamic cloud model, churn of cores is
predictable. Therefore, the system takes special measures to han-
dle cores joining and leaving the cloud. Recall that the dynamic
cores have persistent storage remembering its state. Let C; denote
the core leaving the cloud. C;’s controller initiates migrating access
control for its share of tenants to other active cores. Once migration
in the access layer is complete, C; is now only responsible for the



D. Agrawal et al., From a Virtualized Computing Nucleus to a Cloud Computing Universe: A Case for Dynamic Clouds

application state in the storage layer. The controller checkpoints
the metadata and the state of the data layer (stores a per tenant
log sequence number for the last update seen). This checkpoint is
used to facilitate the core rejoining the cloud and is replicated to
a set of active cores. An almost reverse process is initiated when
a core rejoins the cloud. Let C; denote the core which is rejoin-
ing. C;’s controller uses its checkpoint prior to leaving to deter-
mine the incremental updates since previous checkpoint that must
be transferred to synchronize the storage and metadata layers. The
per-tenant timelines and the log based replication used in the data
storage layer allows efficient synchronization. This synchroniza-
tion is followed by migration of data ownership and access rights
of some tenant applications to core Cj. The cost of a core leaving
and rejoining the cloud is amortized over the time the core remains
a part of the cloud.

Load balancing and elasticity. Migrating tenant applications and
databases is an important primitive for effective load balancing and
elasticity. The data storage layer replicates a tenant’s data across
multiple cloud cores. The controller selects which tenant to migrate
and the destination core. Though the controller can select any core,
selecting a core with a local copy minimizes data movement across
cores. We propose the use of extensions to existing techniques for
live database migration [6]. We leverage the causal communica-
tion in the metadata layer to coordinate this migration. To migrate
control of a tenant 7" from core C,, to core C, C,’s controller in-
serts a transfer(T, Cq, Cp) event in the local metadata view of C',
and sends this message to the controller at C'. C, stops processing
any application requests against 7. Advanced techniques, as dis-
cussed in [6], can be used to minimize the availability window of
T'. A handover protocol is executed to ensure correct control trans-
fer. CY starts serving 7" on successful completion of the handover
phase. The migration process terminates with the receipt of the
ACK (transfer(T, Ca, Cy)) event at Cy. Other cores know about
this migration through causal message transfers from C, and Cj.
The correctness of application level operations can be established
since transfer events across multiple clouds are causally consistent.

3.3 Data Placement

Since all cores are not available at all time periods, prudent replica
placement is essential to ensure high availability of a tenant’s data.
If n denotes the total number of cores, £ denote the minimum num-
ber of active replicas (k < n), then the controller selects k" cores
(k < k' < n) to replicate a tenant’s data. Selection of the appro-
priate cores is determined by a model that accounts for the churn
and load behavior. The overall goal of the placement algorithm is
to minimize data movement across cores.

3.4 Data Security and Privacy

Ensuring the security and privacy of data hosted in a shared
environment has been a long standing challenge [8]. In a static
cloud, there must be a mutual trust between the cloud provider and
the tenants to ensure that data is secure against various vulnera-
bilities [13]. Additionally, the research community has developed
techniques such as information dispersal [14] or query execution
on encrypted data [10]], and many proprietary technologies that pro-
tect the current cloud deployments. From the security perspective,
a dynamic cloud faces a set of challenges similar to that of a static
public and hybrid cloud infrastructures. Ensuring data privacy con-
tinues to remain an active field of research and the new paradigm
can leverage from the advances made in this area.

4. DISCUSSION AND FUTURE DIRECTIONS

We presented a preliminary design of a data management system

to enable effective use of dynamic clouds. A number of discussed
components present interesting directions for future work; we con-
clude with a discussion of a few other interesting directions.
Differential pricing. Depending on the availability and demand
of resources, a variable cost can be associated with the cloud re-
sources. For instance, a large number of cores might be available
during the weekends, thus allowing lower priced resources. This
allows the possibility of differential pricing and a marketplace for
resource usage following different economic models to maximize
profit. This differential pricing relates to Amazon’s spot instances.
Interplay of Service Level Agreements (SLLAs) and Cost of ser-
vice. Cloud and multitenant systems charge for the SLAs they pro-
vide. Interesting tradeoffs arise on the kind of SLAs that can be
supported in the dynamic cloud model. Can weaker SLA’s be used
to minimize the cost?

Supporting a diverse set of applications and workloads. We
only discuss techniques to support update intensive web-applications
and an OLTP database to drive these applications. For widespread
adoption and success of this model, it is important to be able to
support a wide variety of applications and workloads. A character-
ization of the feasible workloads and the challenges that arise for
dealing with a variety of workloads is also important.

Acknowledgments

The authors would like to thanks Aaron Elmore, Shoji Nishimura,
and Shiyuan Wang for their comments on earlier drafts of the paper.
This work is partly funded by NSF grants III 1018637 and CNS
1053594.

5. REFERENCES

[1] D. Agrawal, A. El Abbadi, S. Antony, and S. Das. Data
Management Challenges in Cloud Computing
Infrastructures. In DNIS, pages 1-10, 2010.

[2] K. P. Birman and T. A. Joseph. Reliable communication in
the presence of failures. ACM Trans. Comput. Syst.,
5(1):47-76, 1987.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. In OSDI, pages 205-218, 2006.

[4] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and

R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
Proc. VLDB Endow., 1(2):1277-1288, 2008.

S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi.
ElasTraS: An Elastic, Scalable, and Self Managing
Transactional Database for the Cloud. Technical Report
2010-04, CS, UCSB, 2010.

[6] S.Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Live
Database Migration for Elasticity in a Multitenant Database
for Cloud Platforms. Technical Report 2010-09, CS, UCSB,
2010.

[7]1 M. J. Fischer and A. Michael. Sacrificing Serializability to
Attain High Availability of Data in an Unreliable Network.
In PODS, pages 70-75, may 1982.

[8] M. Gertz and S. Jajodia. Handbook of Database Security:
Applications and Trends. Springer, 2007.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP, pages 29-43, 2003.

[10] H. Hacigiimiis, B. Iyer, C. Li, and S. Mehrotra. Executing sql
over encrypted data in the database-service-provider model.
In SIGMOD, pages 216-227, 2002.

[3

—

[5

—



UCSB Computer Science Technical Report 2011-03.

[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558-565, 1978.
L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133-169, 1998.

R. Miller. Wall street’s cloudy opportunity.
http://goo.gl/2I30, April 2010.

M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. J. ACM, 36:335-348,
April 1989.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In CCS, pages 199-212, 2009.
I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, pages
149-160, 2001.

G. Weikum and G. Vossen. Transactional information
systems: theory, algorithms, and the practice of concurrency
control and recovery. Morgan Kaufmann Publishers Inc.,
2001.

G. T. Wuu and A. J. Bernstein. Efficient solutions to the
replicated log and dictionary problems. In PODC, pages
233-242, 1984.


http://goo.gl/2I3o

	Introduction
	Dynamic Clouds
	Design Principles
	Technical Challenges

	Building Blocks
	System Architecture
	System Monitoring and Control Layer
	Metadata Management Layer
	Data Control Layer
	Data Storage Layer

	Agility and Elasticity
	Data Placement
	Data Security and Privacy

	Discussion and Future Directions
	References

