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ABSTRACT
The notion of trends in social networks has emerged as an im-
portant problem attracting the attention of researchers as well as
the industry. Although, recent work has studied trends from vari-
ous perspectives such as its temporal and geospatial properties, the
structural properties of the network that creates such trends are ig-
nored in trend detection. In this work, we propose two novel struc-
tural trend definitions called correlated and uncorrelated trends
that leverage friendship information to detect interesting topics that
would not be detected using traditional trend definitions. We ex-
perimentally and analytically show that correlated trends are sig-
nificantly different from traditional trends whereas the difference
for uncorrelated trends, although corresponding to a useful vari-
ation, is less pronounced. We show that both correlated and un-
correlated trends identify interesting activities in social networks.
We also show that the new trend definitions can be used to detect
or filter suspicious activity in the network. Detection of structural
trends is inherently harder than traditional trend detection. There-
fore we propose a sampling technique that provides computational
gain while remaining within an acceptable error bound. Experi-
ments performed on a large-scale social network data of 41.7 mil-
lion nodes and 417 million posts show that even with a small sam-
pling rate of 0.005, the average precision lies above 0.93 for cor-
related trends while keeping a perfect average precision of 1 for
uncorrelated trends.

1. INTRODUCTION
Social networks provide large-scale information infrastructures

for people to discuss and exchange ideas about different topics.
Detecting trends of such topics is of significant interest for many
reasons. For one, it can be used to detect emergent or suspicious
behavior in the network. They can also be viewed as a reflection
of societal concerns or even as a consensus of collective decision
making. Understanding how a community decides that a topic is
trendy can help us better understand how ad-hoc communities are
formed and how decisions are made in such communities. In gen-
eral, constructing “useful” trend definitions and providing scalable
solutions for them will contribute towards a better understanding of
human interactions in the context of social media.
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Trends in social networks have recently been a major focus of in-
terest among researchers studying them from perspectives such as
temporal [24] and geographical dimensions [32, 30]. A similar in-
terest can be observed in industry. For instance, Twitter trends [37]
have been a testament to societal concerns, to such an extent that
when there was interest in Wikileaks and the hashtag #wikileaks
did not appear in the trends list in Twitter, there was substantial
discussion upon which Twitter had to make an official announce-
ment stating they have excluded #wikileaks from the trending top-
ics [40]. The large number of companies reporting trends in Twitter
is another testament to the importance of trends [37, 18, 19].

Although trends in social networks have been extensively stud-
ied, to our knowledge all the published work in this area ignores
the structural properties of the social network that created these
trends. In today’s social networks where users are highly influ-
enced by their friends, trend definitions that reach beyond simple
heavy-hitters approaches to integrate the importance of such flow
of influence can be of great benefit. The main purpose of this paper
is to define two such trend definitions, emphasize their significance
and provide efficient online solutions for them. Since information
diffusion on a social network is a substantial part of the process that
creates the information trends, properties that are defined in this
context are of significant interest. For example, consider a group
of friends in a large social network like Facebook discussing an at-
tack. Detecting this new interest of this specific group on “attacks”
can be of great importance. We aim to address this problem us-
ing structural trends. In essence, a structural trend is a topic that is
“hot” within structural subgroups of the network. The challenges
are to formally define the notions of a structural subgroup and to
develop techniques to detect structural trends.

As a starting point, we consider the problem of identifying the
number of connected pairs of users in a social network that are dis-
cussing a specific topic. We refer to this as detecting correlated
trends. This trendiness definition will bias topics that are discussed
among clustered nodes in the network. Alternatively, one might be
interested in the number of unrelated people interested in a spe-
cific topic and in trends that results from this interest. We call these
uncorrelated trends. This definition of trendiness can be used to
capture the notion of the trustworthiness of a trend. In this case the
trendiness of a topic will not be biased by a discussion amongst a
small clustered group. Large-scale online social networks such as
Twitter and Facebook provide tools for millions of people to share
information. Although current trend definitions used by the indus-
try such as trending topics of Twitter are good at detecting trends at
global scale, their shortcomings such as their vulnerability to spam-
mers or inability to detect interesting activity in different commu-
nities make them less valuable from an analytical perspective [38].
The new trend definitions introduced in this paper provide meth-



ods for a deeper analysis of activity in social networks. We will
demonstrate the value of structural trends by identifying the types
of topics detected using this new definitions that would otherwise
be undetected. Although, structural trends enable a deeper analysis
of information shared in social networks, their detection is harder to
identify than the traditional heavy hitter-based definition of trends
since the counting scheme needed for structural trends calls for
new, graph-oriented solutions. Considering both the large scale of
social networks as well as the sheer volume of information shared,
we introduce a sampling based technique that provides efficiency
while still remaining within an acceptable error bound.

To our knowledge, this is the first work that incorporates the
structure of a graph and the connections between agents that create
trends to the definition of trends. We introduce two new definitions
of trendiness based on the structure of the network and study the
significance of these new definitions. We experimentally and ana-
lytically show that correlated trends are significantly different from
traditional trends whereas uncorrelated trends tend to be more sim-
ilar to traditional trends while filtering out “spammy” topics from
trends. We show that structural trends identify interesting activi-
ties in social networks. In Section 2 we will first start with a brief
overview of related work. In Section 3, we will formally define the
notions of correlated and uncorrelated trend. Later in Section 4 we
will demonstrate the significance of these definitions by identifying
the types of topics they detect as structurally significant. Section 5
provides sampling-based solutions for correlated and uncorrelated
trends. In Section 5, we experimentally study the accuracy and effi-
ciency of the solutions provided which show that a high accuracy of
over 0.93 can be achieved even with a small sampling probability
of 0.005. Finally Section 6 concludes the paper.

2. RELATED WORK
Trends in social networks have recently been a focus of interest

for many researchers. Kwak et al. [23] study information spread
on Twitter to detect trending topics and compare trending topics in
Twitter with those in other media, namely, Google Trends and CNN
headlines. The results show that the majority (over 85%) of topics
are headline news or persistent news in nature. The way they iden-
tify trends is substantially different than what we propose in this pa-
per. They use the traditional counting mechanism on time slices by
considering a trending topic inactive if there is no tweet on the topic
for 24 hours. Leskovec et al. [24] also study temporal properties
of information shared in social networks using blogosphere data.
They focus on tracking new topics, ideas, and “memes” across the
web and studying their temporal properties by developing scalable
algorithms for clustering textual variants of “memes”. Some other
works that identify topics over time are [1, 16].

Another important characteristic of news or discussions in social
networks is the spatial properties of the agents that are involved in
the discussion or the source of the news. A recent work by Teitler et
al. [32] collects, analyzes, and displays news stories on a map inter-
face, thus leveraging their implicit geographic context. A follow-up
study performs similar techniques to identify geographical infor-
mation in news in Twitter [30]. Although these works that focus
on temporal and spatial characteristics of trends are important for a
better understanding of the notion of trends, they are orthogonal to
the approaches introduced in this study. Unlike earlier studies, we
focus on structural properties of the network that create trends.

Studying trends from a structural point of view requires using
efficient solutions that can handle the large scale of the social net-
works. More often than not, this requires developing approxima-
tion algorithms. Since trends are time-sensitive, offline solutions
that require a non-constant number of passes on data are impracti-

cal. In this setting, one needs to employ some sort of a streaming
solution. A simple definition of trendy topics can be the frequent
items throughout the entire stream of user activities. The problem,
defined this way, is simply to find the frequent items in a stream
of data, also referred to as heavy hitters. The frequent elements
problem is well studied and several scalable, online solutions have
been proposed [11, 12, 28, 25, 13]. Unlike solutions based on such
techniques, the solution provided in this work is not oblivious to
the graph structure that creates the stream.

Lately, a number of works have studied structural properties of
graphs in a streaming or semi-streaming fashion. A type of prob-
lem that is significantly related to the problem studied in this paper
is counting triangles in a graph stream. There are three types of
solutions to this problem: exact counting [3], streaming [4, 9, 21]
and semi-streaming algorithms [5, 35]. Although streaming algo-
rithms [4, 9, 21] provide efficient solutions, they solve the global
triangle counting problem, which counts all the triangles in a graph
whereas structural trendiness requires solutions closer to local tri-
angle counting (i.e., compute score per topic rather than score of all
topics combined). In that sense, problems studied in [4, 9, 21] are
closer to the problem studied in this paper. However, these works
provide a semi-streaming solution. Detecting trends requires online
solutions and therefore such techniques are not applicable.

3. PROBLEM DEFINITION
L Consider a directed graph G = (N,E) representing a social

network consisting of nodes N and edges E. A node ni is a neighbor
of n j if and only if there is an edge e j,i from n j to ni in E. Nodes
can choose to (or not) share a certain piece of information which
is subsequently visible to their neighbors. Each such information
belongs to one or more topics which can be identified. Therefore,
each piece of information shared by node ni on a specific topic Tx
can be modeled as a tuple �ni,Tx�. Note that, topic extraction is a
hard problem in its own right and we will not be focusing on this
problem in this paper.

In order to identify trendiness of a topic Tx in a conventional
manner, one could count the total number of times Tx is discussed.
Namely. traditional trendiness of a topic Tx can be computed as:

f (Tx) = ∑
ni∈N

Ci,x (1)

where Ci,x represents the number of tuples of the form �ni,Tx�.
This trend definition is completely oblivious to the structure of the
network graph. We propose two new alternative trend definitions,
namely correlated and uncorrelated trends, to capture trending top-
ics of different nature that incorporate the network structure. The
trendiness of a topic Tx using correlated trends definition captures
the number of connected pairs of nodes in graph G talking about Tx.
Equation 2 provides the value (or score) of a specific topic under
this new trend paradigm. The score function defined in Equation 2
is meant to capture all possible forms of influence propagation be-
tween any two neighboring nodes. Consider a stream of broadcasts:
... b1:�n1,Tx�,...,b2:�n1,Tx�, b3:�n2,Tx�,...,b4:�n2,Tx�,...b5:�n1,Tx�...
where n1 and n2 are neighbors and bi are a subset of broadcasts in
the broadcast stream. In this setting b1 and b2 might have influ-
enced node n2 to share b3 and b4 broadcasts since b1 and b2 precede
b3 and b4. Similarly b3 and b4 might have influenced n1 to share
b5. All the pairs of possible flow of influence sum up to 6 in this
example. In general, Equation 2 captures this characteristic for ar-
bitrary topics and arbitrary undirected graphs. For directed graphs,
although correlated trend score does not correspond directly to this
notion, it can still be seen as capturing a similar behavior. Also,
with a small change to the score definition to count pairs only in



Figure 1: Black nodes represent nodes
talking about topic Tx, whereas white
nodes represent the nodes that are not

forward time can capture the same behavior for directed graphs.
The proofs of approximation of the sampling method can be shown
to hold for that case as well, though the explanation of approxima-
tion bounds is more complicated for that setting. For simplicity,
Equation 2 simply counts pairs of nodes discussing a topic.

g(Tx) = ∑
ni∈N

(Ci,x ∑
nk∈Ni

Ck,x) (2)

where Ni = {nk|ei,k ∈ E}. This function assigns high scores to top-
ics that are discussed heavily in a cluster of tightly connected nodes.
Consider the two graphs in Figure 1. The black nodes correspond to
people that are talking about a specific topic Tx and white nodes are
people who are not talking about Tx. Even though both graphs have
the same number of people talking about Tx, in the graph on the
right, the people talking about Tx are a part of a more clustered sub-
graph, giving the topic a higher structural significance. g(Tx) = 6
for the graph on the right whereas, g(Tx) = 0 for the graph on the
left as there are no connected pairs talking about it.

In comparison, uncorrelated trends aim to capture the behavior
at the other extreme, i.e., where we are interested in the number
of unrelated people interested in a specific topic and in trends that
results from these unrelated people:

h(Tx) = ∑
ni∈N

(Ci,x ∑
nk∈(N−ni−Ni)

Ck,x) (3)

This definition favors topics that a large number of unrelated peo-
ple are interested in. Going back to our example of two graphs in
Figure 1, for the graph on the left h(Tx) = 6, whereas h(Tx) = 0
for the graph on the right. As discussed before, this definition of
trendiness can be used to capture the notion of the trustworthiness
of a trend. In this case the trendiness of a topic is not biased by a
discussion in a small clustered group.

We denote top-k topics w.r.t. their f , g, h scores as traditional,
correlated and uncorrelated trends respectively. We refer to the
combined class of correlated and uncorrelated trends as structural
trends. In the following sections, we will demonstrate the useful-
ness of structural trends and provide solutions for detecting them.

4. STRUCTURAL TRENDS SIGNIFICANCE
In this section, we will demonstrate the value proposition of

structural trends by identifying the “interesting activity” automat-
ically detected using such new trend definitions. We will demon-
strate the significance of the structural trends defined in Equations
2 and 3 by addressing the following questions: 1) Are the structural
trends different from traditional trends? 2) What is the nature of
structural trends? Are there interesting characteristics that can be
identified using parameters of the network or the information dif-
fusion process?

We make use of two different methods to answer these questions.
First, we develop a model of diffusion of an arbitrary number of in-
formation campaigns in a social network. The importance of struc-
tural trends is then identified with respect to the parameters of this
model. Second, we analyze data from Twitter, a large-scale on-
line social network and identify the types of topics identified using
structural trends and focus on their significance.

4.1 Model-Based Value Proposition
In order to systematically evaluate the significance of structural

trends, we need to identify characteristics of social networks or

topics that validate the value proposition of such definitions. To
this end, we need to model the process that creates trends in a social
network. Although there are a number of models of diffusion of one
information campaign [22], there is little research on modeling of
concurrent information campaigns with the exception of [8, 7, 10]
which study diffusion of two concurrent campaigns. We introduce
a natural extension of widely used Independent Cascade model [22]
that models diffusion of an arbitrary number of campaigns. We call
this model the Independent Trend Formation Model (ITFM) as the
diffusion of topics are modeled to be independent of each other.

ITFM captures nodes as entities that are influenced by their neigh-
bors as well as external entities such as news media. We model a
social network as a directed graph. There are a set of m topics
T = {T1, ...,Tm}. Information diffusion proceeds in discrete time
steps. At each step, nodes share information about zero or more
topics with its friends. As we would like to model the different
types of influence, we assign two types of probabilities to each node
ni: pi,x and qi, j,x that denote the probability that ni will share in-
formation about topic Tx independently from any of its neighbors
(external influence such as news media) and the probability that ni
will re-share some information about a topic Tx that its neighbor
n j shared in the earlier discrete time step (peer influence). If for a
topic Tx the p probabilities are high, Tx spreads mostly through the
news media channels, whereas if the q probabilities are high, this
means Tx is viral, spreading through peer influence.

Our goal is to study the significance of structural trends using
ITFM. To this end, we performed experiments on synthetic power-
law graphs. Since social networks have power-law degree distribu-
tion [29], the synthetic data sets should have this property. There
are various models of network formation that result in a power-law
graph of degree distribution. We refer the reader to [29] for an ex-
tensive list. In this study we used the Nearest Neighbor model as
it is shown to accurately capture various statistical metrics of real
social network graphs [29]. There are two important parameters
for Nearest Neighbor Model, u, i.e. the probability two nodes with
a distance of two are connected at a time step and k, i.e. the num-
ber of pairs of existing nodes connected at a time step. We used
u = 0.8 and k = 1 since it is stated in [29] these settings fit a real
social network, namely Facebook Monterey Bay Network. The ex-
periments explained in this section were all performed on a 500
node power-law graph with a set of 50 possible topics.

Question 1: Are traditional trends a good representative of
structural trends? The first set of experiments were aimed at an-
swering the question: Do structural trends provide extra informa-
tion that could not be obtained otherwise? Or in other words, how
similar are structural and traditional trends? To measure similarity
we used Spearman correlation coefficient [27]:

ρ = 1− 6∑dx
2

n(n2−1)
(4)

where dx is the difference between the ranks of topic Tx under the
two trend definitions. Spearman correlation assesses how well the
relationship between two variables can be described using a mono-
tonic function. A perfect Spearman correlation of +1 (or -1) oc-
curs when the variables are perfect monotonically increasing (or
decreasing) functions of the other. We measured the Spearman
correlation coefficient of traditional trends with correlated and un-
correlated trends using three experiments with different q settings
(0.1, 0.3, 0.5), with all other variables fixed. Left two columns in
Table 1 show that as the social network exhibits an increasingly
viral behavior with increasing q values, both correlated and uncor-
related trends diverge from the traditional trends. The divergence
is faster for correlated trends than that of uncorrelated trends.



Table 1: Model Similarity Statistics
q ρtrad−corr ρtrad−uncorr APcorr APuncorr

0.1 0.762 0.988 0.140 0.569
0.3 0.640 0.976 0.095 0.466
0.5 0.600 0.965 0.083 0.398

Equation 4 represents how similar the rankings of all the top-
ics are under the two trend definitions. However, in most cases
the rankings of unpopular topics is of little significance. Our goal
is to identify structural trends, i.e. top-k correlated (top–kcorr)
and uncorrelated (top–kuncorr) topics. Therefore it is more impor-
tant to observe the similarity between top–kcorr (or top–kuncorr)
and top–ktrad , i.e. traditional trends. In order to evaluate how
good top–ktrad topics are at mimicking or detecting top–kcorr (or
top–kuncorr), we use average precision, an IR technique used to
evaluate score of a ranked list of documents for a query. Average
precision incorporates precision and recall values while evaluating
a detection algorithm and can be computed as:

AP =
∑|D|

i=1 Prec(Ri)
|D| (5)

where D = {d1,d2, ...,dm} is the set of relevant documents, R is
the ranked set of documents retrieved by the detection algorithm
and Ri is the set of ranked documents in R until document di is
reached [26]. If di is not detected at all by the detection algorithm,
Prec(Ri) = 0. We performed tests evaluating the average precision
of top–5trad topics w.r.t. the relevant document set of top–5corr (or
top–5uncorr) topics. The results are given in Table 1 in columns
APcorr and APuncorr respectively and reflect similar results obtained
using Spearman correlation coefficient on the entire topic list. Sim-
ilar experiments where all parameters except p values are fixed re-
veal that with increasing p values, similarity between traditional
and uncorrelated trends increases. This adheres to the intuition
that, as p values dominate q values resulting in a setting where
peer influence becomes less important, there is a smaller number
of “spammy” topics for uncorrelated trends to filter out. For com-
pleteness purposes, we give the summary of the findings for this set
of experiments in Section C in the Appendix.

Question 2: What is the nature of topics detected using struc-
tural trends? The second set of experiments evaluates the value of
structural trends. As we demonstrated earlier, structural trends tend
to be different from traditional trends. But what do such differences
corresponds to? In the earlier set of experiments, the p and q val-
ues for each node and topic were chosen uniformly randomly from
one distribution. Therefore, all the topics had similar nature. In the
second set of experiments, half of the topics were chosen uniformly
randomly from one distribution (q = p = 0.1) while the second set
of topics are chosen from another distribution.

Consider a network G and a set of topics T . W.l.o.g. let T � de-
note the set of topics in T with q� = 0.1 and p� = 0.1, and the rest
T −T � topics be denoted T ��. Setting q < 0.1 for a specific topic
Tx would result in Tx spreading less significantly through social ties
and setting p > 0.1 would balance this shortcoming by spreading
through external influences (such as news media). Therefore, for
the set T ��, there can be another distribution that has q�� < 0.1 and
p�� > 0.1 (or q�� > 0.1 and p�� < 0.1) values such that the average
traditional ranking of T � and T �� are very similar. Next we test,
how do topics in the subset T �� rank compared to T � w.r.t. their cor-
related and uncorrelated scores. Let us denote AvgRtrad , AvgRcorr
and AvgRuncorr of T � (or T ��) as the average ranking of topics that
belong to T � (or T ��) w.r.t. the score function defined in Equation
1, 2 and 3 respectively. As the data set of this experiment consists
of 50 topics, the topics rank from the highest score of 0 to 49. As

Table 2: Various Ranking Statistics
AvgRtrad AvgRcorr AvgRuncorr

p� = 0.1, q� = 0.1 T � 24.44 36.52 18.56
p�� = 0.032, q�� = 0.15 T �� 24.56 12.48 30.44

p� = 0.1, q� = 0.1 T � 24.64 12 34.68
p�� = 0.2, q�� = 0.054 T �� 24.36 37 14.32

could be expected, Table 2, shows that when q�� < 0.1 and p�� > 0.1,
the correlated significance of topics in set T �� is much lower than
T �, while uncorrelated significance is higher. The opposite behav-
ior is observed when the settings are q�� > 0.1 and p�� < 0.1. For
instance, an average of 12 among 25 topics in T �� indicate that all
the topics in T �� rank in top-25 correlated trends.

Possible use case of structural trends: detecting or filtering
Sybil activity: In a social network, in addition to topics having var-
ious characteristics, the nodes of the network can also vary w.r.t.
their behaviors. A subset of the users can be interested in a set
of topics while others are interested in different topics. Similarly,
some nodes might be more influenced by their neighbors while oth-
ers are more influenced by external entities such as news media.
One usefulness of structural trends would be if malicious activity
by a subset of users can be detected or filtered out using the new
trend definitions in an automated way. We study one such malicious
behavior: A malicious user in an online community can launch a
Sybil attack [14] by creating a large number of virtual identities.
These identities can then work together to provide the owner with
some unfair advantage, by outvoting legitimate users in the net-
work. Such Sybil users tend to be connected to many other Sybil
users while having a small number of connections to the rest of the
network. Given that trends in social networks are highly influen-
tial, for instance many companies or individuals invest heavily to
get their hashtags into the trending topics in Twitter [33], it is im-
portant that the trending topics reported are not biased by the spam
of a small number of Sybil nodes. At the other extreme one might
be interested in automatically detecting topics that are hot among
a clustered community so that suspicious activity can be detected.
We claim that using structural trends, one of the gains is to identify
or filter topics bolstered by malicious users in a Sybil setting. We
note however that, this is not meant as a generic solution for every
spam behavior in social networks. Spam in social networks is an
important problem that attracted attention of many researchers [6,
20, 41, 39, 15]. Such studies show that malicious behavior in social
networks today is not limited to Sybil attacks. The effectiveness of
structural trends in detecting or filtering spam under these differ-
ent models is an open problem we plan to investigate in the future.
Though, we would still like to stress that spam detection is a nice
side effect rather than a main goal of structural trend analysis.

In order to validate these propositions, we used the 500-node
synthetic graph and identified a set of nodes as Sybil by randomly
selecting a seed and performing a breadth-first search until a num-
ber of attack edges are reached. This method of testing Sybil be-
havior is based on the technique in [42]. Let the set of Sybil nodes
be denoted Ssybil . Assume that this set of Sybil nodes are inter-
ested in a topic Ty and have little interest in other topics whereas
the interests of the other users are uniform among all the topics.

We evaluated the relative importance of topic Ty, i.e. point of
interest of Sybil nodes, as a traditional, correlated or uncorrelated
trend with varying sizes of |Ssybil |. W.l.o.g. we set topic T1 as the
topic of interest of the Sybil nodes. We answer two questions: 1)
For a fixed size of Sybil nodes, how do the p and q values of Sybil
nodes for T1 effect the relative trendiness of T1 as a traditional, cor-
related and uncorrelated trend? 2) How does the size of Sybil nodes
affect the same metric? In order to answer the former question, a



(a) Effect of Sybil p, q values (b) Effect of # of Sybil nodes

Figure 2: General Influence Spread

set of experiments with increasing p and q values of Sybil nodes for
T1 were performed where the Sybil attack size was set to 10 nodes.
The results are presented in Figure 2(a) where the X-axis denotes
the setting of the p and q values of Sybil nodes for topic T1 and Y-
axis denotes the importance of T1 as a traditional, correlated and
uncorrelated trend. “Importance” refers to the number of topics
T1 outranks (including T1 itself). So when T1 is the highest rank-
ing topic, its importance is 50 as there are 50 possible topics in the
data set. As it can be seen from Figure 2(a) with changing p and q
values, correlated score of T1 is consistently higher than traditional
score and traditional score is higher than that of the uncorrelated
score. It is also worthwhile to point out that, even with small val-
ues of p and q, we can see a breakpoint upon which T1 becomes
significantly more trendy under correlated trendiness, whereas this
breakpoint is much later for the other two definitions.

A similar effect is observed in Figure 2(b) where the effect of the
number of Sybil nodes in the trendiness of T1 is given. The X-axis
refers to the number of Sybil nodes while the Y-axis demonstrates
the same notion as the Y-axis in Figure 2(a). This set of experi-
ments, for a fixed setting of p and q values (For Sybil nodes:pi,1 =
qi, j,1 = 0.9 and pi,k = qi, j,k = 0.01 for ni ∈ Ssybil , Tk ∈ T −T1 and
n j ∈N. As for non-sybil nodes: pi,k = qi, j,k = 0.0.03 for ni /∈ Ssybil ,
Tk ∈ T and ni ∈ N), tests the importance of the number of Sybil
nodes and shows correlated trendiness of T1 is consistently higher
than its traditional and uncorrelated trendiness. Also, the jump in
correlated importance of T1, which is useful for detecting the sus-
picious activity, can be observed with a small set of Sybil nodes
whereas this jump is seen much later with the other definitions.

4.2 Analysis-Based Value Proposition
Although using the methods introduced in Section 4.1, the value

of structural trend definitions can be systematically studied, a ver-
ification using real data sets is crucial. We use a large real world
data set obtained from Twitter. Leskovec et al. [31] published a
data set of 467 million Twitter posts from 20 million users span-
ning a 7 month period. Author, time and content is available for
each tweet. Using the Twitter social network graph published by
Kwak et al.[23], we obtained the connections between the users
sharing these tweets. We used hashtags to identify topics of tweets.
We observed that there were many hashtags that were very similar
except for some punctuation details or case differences. We cate-
gorize such hashtags under one topic. Although there are over 10
million different hashtags in the Twitter data set, using this tech-
nique, we were able to reduce this number to approximately 3.4
million. The social network graph consists of approximately 41.7
million users among those 2.7 million have at least one tweet that
includes at least one hashtag. Such nodes have 230 million edges
between them whereas the number of edges in the original Twitter
social network are 1.47 billion. We now summarize the key find-
ings based on the analysis of this data set.

Question 1: Are traditional trends a good representative of

structural trends? Similar to the model-based verification, the
Spearman’s correlation coefficient and average precision values
were computed to observe how similar structural trends are with
traditional trends. As it can be observed from Table 3, spearman
correlation of traditional trends and correlated trends is very low
indicating that for the entire set of topics their traditional trendiness
counts are not a good representative of their correlated trendiness.
However, we are mostly interested in the similarity of trends, i.e.
topics that have a large g score in Equation 2. In order to study the
similarity of the trends rather than the similarity of the ranking of
the entire set of topics, we calculated average precision values for
the top-10, 1, 0.1, 0.01 percentile traditional topics in detecting the
top-10, 1, 0.1, 0.01 percentile correlated topics. Top-10, top-1, top-
0.1 and top-0.01 percentile correspond to 34633, 3463, 346 and 34
topics accordingly. These values are presented in rows AP(34633),
AP(3463), AP(346) and AP(34) and demonstrate that correlated
trends are substantially different from traditional trends. Likewise,
uncorrelated trends show significant differences from traditional
trends. Interestingly, adhering to the results obtained in Section
4.1, uncorrelated trends are more similar to traditional trends than
that of correlated trends.

Question 2: What is the nature of topics detected using struc-
tural trends? Unfortunately, it is very hard to identify why a cer-
tain Twitter user decides to share a piece of information. It is possi-
ble that the user is influenced by any of its neighbors as well as ex-
ternal influences such as news media. Therefore, we cannot analyze
the Twitter data w.r.t. p and q values. However, we study the struc-
tural ties between nodes participating in a trend. The results give
interesting insights. As the goal is to detect interesting topics using
structural trends that would be undetected otherwise, we identified
a set of topics in Twitter data set that have a sizable number of men-
tions though still not ranking as high to be detected as a traditional
trend (ranking 60th to 100th). Of those topics we identified top-
ics that have a high structural significance compared to their tradi-
tional significance, i.e., top-10 topics sorted by Rcorr(x)−Rtrad(x)
(or Runcorr(x)−Rtrad(x)) where Rtrad(x), Rcorr(x) and Runcorr(x)
corresponds to the traditional, correlated and uncorrelated rank-
ing of a topic Tx respectively. We observe that, the correlated
trends result from broadcasts of a relatively small number of users
(7125 on average) with a very large number of connections between
them (220292 on average), whereas uncorrelated trends result from
broadcasts from a large number of distinct users (21987 on average)
with small number of ties (205764 on average). The details of these
topics are provided in Tables 7 and 8 in Section C.

Table 4 demonstrates the results using three topics; #design, #nev-
ertrust, #hhrs. The columns of the table correspond to the hash-
tag, traditional, correlated and uncorrelated ranking of the hashtag,
number of distinct users that used the hashtag and the number of
edges between such users respectively. Of those three topics that
have similar traditional scores, #nevertrust has a very high uncor-
related score, #hhrs has a very high correlated score and #design is
less significant both as a correlated and uncorrelated trend. We can
observe that the correlated trend #hhrs originate from a small num-
ber of nodes with a large number of edges between them whereas
the uncorrelated trend #nevertrust originate from a large number
of distinct users with a much smaller ratio of edges between them.
We also give a visual presentation that demonstrates the difference
between the trends detected using correlated, uncorrelated and tra-
ditional trends. Next we present some visualization results that
demonstrate a similar characteristic. We visualize nodes partici-
pating in a hashtag and edges between such nodes. Size of the
node is proportional to log2 of number of tweets that node has on
that particular hashtag. We use Prefuse, an open-source software



Table 3: Twitter Similarity Statistics
Correlated Uncorrelated

ρ 0.14 0.53
AP(34633) 0.52 0.9
AP(3463) 0.41 0.84
AP(346) 0.36 0.61

Table 4: Three Topics From Twitter
hashtag Rtrad Rcorr Runcorr #users #edges
#design 68 91 164045 15795 280509
#hhrs 75 8 24 5681 381425

#nevertrust 71 779 1 31114 134019

[17], to visualize subgraphs of the Twitter data set, consisting of
only nodes that participated in particular hashtags. Unfortunately
hashtags mentioned in Table 4 involved too many nodes to be vi-
sualized with the current software and memory restrictions. There-
fore we provide visualization results for hashtag #pawpawty and
#mafiawars which have a total mention between 40000 and 20000,
having similar traditional scores. Hashtag #pawpawty ranks 289th

while #mafiawars ranks 212th. However, #pawpawty has a high
correlated importance, ranking 24th, while #mafiawars does not.
As we can see from Figure 3, the two trends have completely differ-
ent behaviors. Unfortunately, due to memory limitation, we were
not able to visualize hashtags involving a large number of nodes.
Prefuse software started crashing for over 5000 nodes, this is why
Figure 3(b) is in fact a combination of 3 subgraphs. The top and
bottom parts consist of nodes that have no in or out edges, the mid-
dle part consists of nodes that have at least one in or out edge. We
can see that #mafiawars has a large number of unconnected nodes,
while the opposite is true for #pawpawty. We also note that #paw-
pawty is a hashtag commonly used to raise money for animal rescue
organizations, whereas #mafiawars is commonly used by gamers.
This takes us to our next question: Do hashtags with different cat-
egorical characteristics have consistently lower or higher structural
importance.

In order to answer this question, we analyze 500 hashtags that are
categorized into 7 different topics; political, technology, celebrity,
games, idioms, movies, music and none. These hashtags and their
categories were obtained from a recent study by [?]. The authors
categorized the top 500 hashtags (defined in terms of number of
distinct people tweeting about them) for their data set which over-
laps with the data set we use in our study. Therefore these hashtags,
though not necessarily top 500 for our data, exist and have signif-
icant importance. Our analysis provides some interesting insight
as to how people use Twitter to share information. Figure 4(a)
demonstrates the CDF of ranking of topics of political category
under correlated, uncorrelated and traditional trends. We see that
using correlated trends definition, the importance of political hash-
tags are bolstered. Figure 4(a) also indicates that political hashtags
have a high correlated importance indicating that people tend to
re-share information shared by their friends, (or simply that ho-
mophily leads users to be friends with people with similar political
views). However for other categories, such as idioms as demon-
strated in Figure 4(b), this is not the case. This phenomenon could
have been facilitated by the unique nature of Twitter, which broad-
casts tweets of every user. If a user is interested in a specific topic,
one can easily obtain the list of tweets under that hashtag. So usage
of Twitter might be more centric to the use of this feature rather
than social friend following. A different behavior possibly can be
observed in other social networks.

(a) Visualization of #pawpawty

(b) Visualization of #mafiawars

Figure 3: Visualization of two hashtags of similar traditional
importance in Twitter

5. STRUCTURAL TREND DETECTION
In this section, we provide efficient methods for both correlated

and uncorrelated trend detection. In Section 5.1, we will first give
details about the solution for correlated trends. Later in Section
5.2, we will provide the details for uncorrelated trend detection.

5.1 Correlated Trend Detection
In the following sections, we will first describe the naive solu-

tion to the correlated trend detection, i.e. computing Equation 2
for each topic. Since this solution is expensive for large social
networks with high traffic of information sharing, we next explore
ways to gain efficiency. To this end, we propose a sampling based
solution in Section 5.1.2. We show that a simple sampling method
can be used while still guaranteeing high accuracy, especially for
popular topics. In order to demonstrate the use of this sampling
technique, we reduce the problem of evaluating the importance of
each topic with respect to the correlated trendiness notion to a prob-
lem of counting local triangles, i.e., counting the number of trian-
gles incident at a given node in a graph G.

5.1.1 Incremental Counting Algorithm
As our main goal is to detect trends, it is crucial to provide incre-



(a) CDF of political hashtag
rankings

(b) CDF of idiom hashtag rank-
ings

Figure 4: CDF of ranking of topics of different topics

mental solutions. Therefore algorithms based on the entire data set
such as semi-streaming methods [35, 5] are not applicable. In these
approaches the data has to be traversed a non-constant number of
times. Updates such as receipt of a small number of broadcasts,
would necessitate the repetition of the whole process to find new
“trends”. Instead, we propose using an incremental approach. The
approach introduced in this section finds exact values and therefore
can be computationally expensive, but using the sampling method
described in Section 5.1.2, the complexity can be reduced.

Consider the actions need to be taken upon receiving a new tuple
�nl ,Tx�. Assume that until this point the exact value of Ci,x for each
Tx ∈ T and ni ∈ N and the exact value for Equation 2 for each Tx
are known. Upon the receipt of �nl ,Tx�, Cl,x has to be incremented
by 1. The score of Tx should also be updated as:

g�(Tx) = g(Tx)+ ∑
ni∈Nl

�
Ci,x + ∑

ni∈Nl

Ci,x (6)

where g(Tx) is the correlated score of Tx before receipt of �nl ,Tx�,
g�(Tx) is its score afterwards, Ni = {n j|ei, j ∈E} and Ni

� = {n j|e j,i ∈
E}. The proof of the correctness of this equation can be found in
the Appendix. As is evident from this computation, after receiv-
ing tuple �nl ,Tx�, the “trendiness score” of Tx has to be increased
by the sum of all Cj,x such that n j is a neighbor of nl and Cm,x
such that nl is a neighbor of nm. This requires in the worst case
O(n) reads. However, in social networks, only a small fraction of
nodes are connected to a large number of nodes. Therefore, in most
cases this operation requires a small number of reads. The solution
requires using two adjacency lists per node ni, one to keep track
of edges ei, j and another to keep track of edges of the form e j,i.
Fast access to Ci,x for each i and x is needed as well. Therefore a
hashtable per topic is used to keep track of the counts of broadcasts
per node (ni being the key to the hashtable Hx for count Ci,x).

As our ultimate goal is to give an ordered list of top-k correlated
topics at each point in time, in addition to accurately reporting cor-
related scores per topic we need to provide a sorted representation
of the list of top-k topics sorted w.r.t. their scores. Therefore, a
simple solution uses a sorted structure to keep track of top-k top-
ics. In this case the receipt of a new tuple �nl ,Tx� might require an
update to this structure as well. The naive implementation provides
a good solution for small networks with a small number of broad-
casts per seconds since it is an O(n + k) solution that is practically
even faster because of the power-law properties of social networks.
However, the sheer volume of information shared on online social
networks today still poses a scalability challenge. A recent report
from Twitter announced 3283 tweets per second [34]. Data flow at
this scale calls for solutions that sacrifice accuracy for efficiency.
We propose a solution based on sampling that provides computa-
tional gain while still providing a good level of accuracy.
5.1.2 Counting Local Triangles and Sampling

In this section, we propose our sampling based solution to the
scalability challenge of correlated trend detection. As it is much
easier to communicate the correctness of the solution in a graph-
oriented manner, we will show that the problem of finding cor-
related trends is equivalent to counting local triangles in a multi-
graph. Later, we will prove that using sampling this specific prob-
lem can be made more efficient.

Consider a social network graph G = (N,E), a set of all topics T
and stream of tuples S, where each tuple is in the form: �ni,Tx�
s.t. ni ∈ N and Tx ∈ T . Let us create a directed multi-graph
G� = (N�,E �) s.t. N� = N ∪T and E � = {(u,v)|(u,v) ∈ E ∧�u,v� ∈
S∧ �v,u� ∈ S}. The nodes of the network can be categorized into
two categories: topic nodes Tx ∈ T and user nodes ni ∈ N. Let
us call the edges of the form (ni,Tx) (or (Tx,ni)) as topic edges
and denote this set as Et . Similarly, edges of the form (ni,n j) are
friendship edges and are denoted by E f . Clearly E � = Et ∪E f . In a
multi-graph two vertices may be connected by more than one edge.
By construction of G�, there can be at most one friendship edge
from a node ni to n j. However, there can be an arbitrary number of
topic edges from a node ni to Tx (or from Tx to ni). Any three nodes
u, v and w s.t. (u,v) ∈ E � ∧ (v,w) ∈ E � ∧ (w,u) ∈ E � form a triangle
in G�. g(Tx) score of a topic Tx given in Equation 2 is simply the
number of triangles incident to node Tx in G�. Figure 5 gives an
example of one such reduction. Note that nodes T1,n2,n3 induce
two triangles whereas T1,n3,n4 induce only one triangle due to the
fact that (n2,n3) is a bidirectional edge whereas (n3,n4) is unidirec-
tional. Also T1,n1,n2 induce two triangles precisely because there
are two topic edges between T1 and n1.

(a) A graph G and stream of
topic-node tuples S

(b) The multigraph created us-
ing G and S

Figure 5: General Influence Spread

After this reduction, the stream of �ni,Tx� tuples can be observed
as the incoming topic edges of G�. Next, we will demonstrate that
given the entire graph G is available and only Et , the topic edges
are sampled, correlated trendiness for topics can be accurately pre-
dicted. The procedure is straightforward and the sampling method
resembles of the one introduced in [36]: Create a directed multi-
graph G�� = (N��,E ��) s.t. N�� = N� and E �� = {(u,v)|(u,v) ∈ E}.
For each incoming tuple �ni,Tx�, which corresponds to topic edges
(ni,Tx) and (Tx,ni) in G�, flip a coin with bias ps. With ps prob-
ability, we keep both (ni,Tx) and (Tx,ni) edges by setting E �� =
E �� ∪ (ni,Tx)∪ (Tx,ni) and discard them both otherwise. Number of
triangles involving Tx in G� can be estimated as Xx = Countx/ps

2,
where Countx denotes the number of triangles involving Tx in G��.
We can guarantee that the number of triangles calculated based on
the sampled data is a good approximation of the actual number of
triangles. Specifically, the probability that the prediction Xx is off



by ε∆x is upper-bounded by the following equation:

Pr(|Xx −∆x| ≥ ε∆x)≤
Var(Xx)

ε2∆x
2 ≤ (ps

2− ps
4)

ps4ε2∆x
+2αx

(ps
3− ps

4)
ps4ε2∆x

2

(7)
where ∆x is the actual number of triangles involving Tx, αx is the
number of pairs of triangles that involve Tx and are not edge dis-
joint and ps is the rate of sampling. The proof of correctness of
Equation 7 is provided in Section A. As is evident from Equation
7 the quality of the estimate depends on the number of triangles
as well as the number of edge-disjoint triangles. Since the num-
ber of multi-edges has a big effect on this property, the quality of
the estimate depends on number of times a specific user mentions
a specific topic. As this number gets increasingly large, the quality
of the estimate degrades. However the estimate gets quadratically
better with increasing ∆x and getting only linearly worse with the
αx which is smaller so the estimate is still better for “trendy” topics.

5.2 Uncorrelated Trend Detection
Similar to correlated trends, uncorrelated trends can be reduced

to counting local triangles in a multi-graph. Consider a social net-
work graph G = (N,E), a set of all topics T and stream of tuples S,
where each tuple is in the form: �ni,Tx� s.t. ni ∈ N and Tx ∈ T .
Let us create a multi-graph G� = (N�,E �) s.t. N� = N ∪ T and
E � = {(u,v)|(u,v) /∈ E ∧ (u,v) ∈ S}. h(Tx) score of a topic Tx, is
simply the number of triangles incident to node Tx in G�. In this
setting, the tuples �ni,Tx� that are being streamed can be seen as
the edges of the multi-graph G�. As demonstrated in Section 5.1.2,
this problem can be efficiently approximated by sampling.

Since an online algorithm is a requirement, the uncorrelated trendi-
ness score of topics should be incrementally updated and reported.
The exact increase can be calculated in the following way:

h�(Tx) = h(Tx)+ ∑
ni∈(N−nl−Nl)

Ci,x + ∑
ni∈(N−nl−Nl

�)
Ci,x (8)

where h(Tx) is the uncorrelated score of Tx before receipt of the
new tuple �nl ,Tx�, h�(Tx) is its score after the receipt of the tu-
ple, Ni = {n j|ei, j ∈ E}and Ni

� = {n j|e j,i ∈ E}. Upon receiving
tuple �nl ,Tx�, the uncorrelated trendiness score of Tx has to be in-
creased by the sum of all Cj,x such that n j is not a neighbor of nl
and Cm,x such that nl is not a neighbor of nm. This requires in the
worst case O(n) reads. Unfortunately unlike the computation nec-
essary correlated trendiness, this operation in most cases requires
close to n reads. However, a simple realization results in an ef-
ficient solution that would make use of the solution provided for
correlated trends. By keeping track of traditional trendiness score,
f (Tx), for each topic Tx, the update on h(Tx) can be computed as:
2∗ f (Tx)−∑n j∈Ni Cj,x −∑n j∈Ni

� Cj,x. This way, one can still make
use of the power-law degree distribution of social networks which
means a small number of reads per update operation.

5.3 Sampling on Twitter
Our goal is to provide a ranked list of top-k topics for both trend

definitions. Therefore, we performed experiments on the Twit-
ter data set introduced in Section 4.2 to compute average preci-
sion(AP) of sampled data for both correlated and uncorrelated top-
k lists for different values of sampling parameter ps (0.5,0,2,0.1,
0.01 and 0.005) and k. Figure 6, which provides the results for
correlated trends, shows that top-34 correlated trend detection is
largely robust to the sampling parameter, i.e. even for a small value
of p = 0.005 where approximately 1 out of 200 tuples is processed,
AP lies above 0.93. This is not the case for top-34633 topics where
AP degrades largely with decreasing ps. This is mostly due to the
large number of tail topics that are unpopular and have close-to-

Figure 6: Average Precision of sampling for correlated trends

zero values. This behavior therefore is to be expected considering
that sampling has low accuracy for unpopular topics as is shown in
Equation 7. Note, however, unpopular topics are of little interest
for trend detection. Results for uncorrelated trends are similar to
that of correlated trends and is provided in Appendix. Interestingly,
uncorrelated trend detection is more robust to sampling. That is to
be expected as the quality of sampling is higher for larger values
of exact number of triangles as given in Equation 7 and due to the
sparsity of social network graphs number of triangles induced from
uncorrelated trendiness tend to be larger than that of correlated
trendiness. As could be expected, a inear speed-up is observed w.r.t
1/ps. We refer the reader to Section C for the figures.

6. CONCLUSION
In this paper, we introduced new methods for analysis of trends

in social network that incorporate the structural properties of the
network. We propose two new structural trend definitions called
correlated and uncorrelated trends that leverage from the friend-
ship information to detect interesting topics that would be unde-
tected using traditional trend definitions. We introduced a novel
information diffusion model called Independent Trend Formation
Model (ITFM) that captures the diffusion of an arbitrary number
of topics in a social network. Using ITFM, we identified prop-
erties of structural trends that distinguish them from traditional
trends. We also show that this difference in nature corresponds to
interesting activity, including detection (or filtering) of Sybil ac-
tivity. We also performed experiments on a large scale real social
network data from Twitter with 41.7 million nodes and 417 mil-
lion posts. Results obtained from these experiments adhere to the
results obtained using the ITFM model which in addition to sup-
porting the value proposition of structural trends, also indicates the
ITFM model reflects real social network behavior.

Detection of structural trends is inherently harder than the tra-
ditional trend detection. Therefore we proposed a sampling tech-
nique that provides computational gain while still being within an
acceptable error bound. Experiments performed on the large-scale
Twitter data set show that even with a small sampling rate of 0.005,
the average precision lies above 0.93 for correlated trends while
keeping a perfect average precision of 1 for uncorrelated trends.
As future work, we will study more general structural trend defini-
tions that explore the space between the two extremes introduced
in this work, such as a group of c connected people discussing a
topic (or a group of people where every node is connected to at
least c other nodes). We also plan to investigate other methods of
approximation for the structural trend detection.
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Table 5: Definitions of symbols and Acronyms
Symbol Definition
G = (N,E) social network graph
S stream of node-topic tuples
T Topic nodes in G� (induced from the set of

all possible topics)
G� = (N�,E �) multi-graph induced using G, T and S
N� = N∪T
E � = E f ∪Et where E f is the set of friendship edges

and Et is the set of topic edges
G�� multi-graph after sampling
∆x number of triangles involving Tx in G�
δx, j indicator variable, δx, j = 1 if jth triangle of Tx

exists in G�� and δx, j = 0 otherwise ( j = 1, ...,∆x )
Xx estimate of number of triangles after sampling

(computed as Countx/p2, where Countx denotes
the number of triangles involving Tx in G��)

ps sampling probability, i.e. probability that a topic
edge in G� exists in G��

APPENDIX
A. PROOF OF QUALITY OF SAMPLING

In this section we provide the proof of Equation 7 which provides
guarantees for the error bound of sampling in identifying number
of local triangles in G� where a certain subset of the edges (Et )
are sampled. We refer the reader to Section 5.1.2 for construction
of G� and G�� and provide an overview of notations introduced in
Section 5.1.2 as a guideline since these notations will be used used
throughout the proof.

Here we will prove that given the entire set of N� and E f available
and only Et , i.e. topic edges are sampled, number of local triangles
involving a specific topic node Tx can be accurately estimated. We
start by studying the mean and variance of the number of triangles
detected on the sampled data and derive bounds on the expected
number of triangles detected with respect to the actual number of
triangles. Table 5 lists the symbols and acronyms used throughout
this section. We first show that the expected number of triangles
involving Tx in G�� is ∆x, i.e. the number of triangles with an end
node Tx in G�.

THEOREM A.1. The expected value of Xx in G�� is equal to the
actual number of triangles in G� (or equivalently the score of topic
Tx), i.e. E[Xx] = ∆x.

PROOF. Random Variable Xx is the sum of indicator variables
for topic Tx multiplied by (1/ps)2. Therefore, E[Xx] = E[∑∆x

j=0 δx, j/ps
2] =

∑∆x
j=0 E[δx, j/ps

2] = 1/ps
2 ∑∆x

j=0 E[δx, j] = 1/ps
2 ∑∆x

j=0 ps
2 = ∆x ✷

Using Chebyshev’s inequality that states Pr(|Xx −∆x| ≥ ε∆x) ≤
Var(Xx)

ε2∆x
2 , one can provide guarantees on the accuracy of Xx in pre-

dicting the actual ∆x values. In order to do so, we now study the
variance of variable Xx.

THEOREM A.2. The variance of Xx, the random variable de-
noting the estimate of triangles involving Tx based on the sampled
data, is equal to:

Var(Xx) =
∆x(ps

2− ps
4)+2αx(ps

3− ps
4)

ps4

Figure 7: Cases to be considered for variance

where αx is the number of pairs of triangles that involve Tx and are
not edge disjoint.

PROOF. Xx is a sum of indicators that a certain triangle involv-
ing Tx survives after sampling. These indicators are not indepen-
dently distributed. Consider two triangles denoted by indicator
variables δx, j and δx,l where j �= l ( jth and lth triangle involving
Tx). Such two triangles cannot share all three edges as they are dis-
tinct triangles. They can neither share two friendship edges since
two user nodes can have up-to 1 edge between them. They cannot
share two topic edges either since in this case the triangles again
would be identical as two triangles sharing two topic edges would
also have to share the friendship edge as there is up-to 1 edge be-
tween two user nodes. Eliminating such possibilities, there are four
possible cases to be considered: 1) They share one topic edge (δi,1
and δi,2 in Figure 7), 2) They share one friendship edge 3) They
share one friendship and one topic edge or 4) They share no edges
(δi,3 and δi,4 in Figure 7). Figure 7 lists these possible scenarios
of how two such indicators might (or not) be dependent. For case
2) and 4), the two indicators would be independent as friendship
edges are not sampled. For cases 1) and 3), the two indicator vari-
ables both are dependent on the topic edge “surviving”. Let number
of cases of the form 1) or 3) be αx for topic Tx. The variance of X
can be computed as:

Var(Xx) = Var(
1
p2

∆x

∑
j=1

δx, j) =
1
p4

∆x

∑
j=1

∆x

∑
l=1

Cov(δx, j,δx,l)

There are ∆x
2 terms in this summation. ∆x of these terms are the

variances of indicator variables. Since there are αx of cases where
two indicator variables are dependent on each other (share one topic
edge), the covariance for αx out of

�∆x
2
�

pairs of indicator variables
is: Cov(δx, j,δx,l) = ps

3 − ps
4. Cov(δx,m,δx,o) = ps

4 − ps
4 = 0 for

the rest
�∆x

2
�
−αx terms. Therefore the variance can be computed

as:

Var(Xx) =
1

ps4 (∆x(ps
2− ps

4)+2αx(ps
3− ps

4))

Therefore, using Chebyshev’s inequality [2] and substituting re-
sults from Theorem A.2, we can provide error bounds on the num-
ber of triangles detected on the sampled data in the following way:

Pr(|Xx −∆x| ≥ ε∆x)≤
Var(Xx)

ε2∆x
2 ≤ (ps

2− ps
4)

ps4ε2∆x
+2αx

(ps
3− ps

4)
ps4ε2∆x

2

This proves the correctness of Equation 7.



B. INCREMENTAL CORRELATED AND UN-
CORRELATED SCORE UPDATES

In this section we prove the correctness of Equations 6 and 8
which identify how correlated and uncorrelated scores of a topic
Tx need to be update upon receipt of a tuple �nl ,Tx�.

B.1 Correlated Score Update
After receiving tuple �nl ,Tx�, the “trendiness score” of Tx has to

be increased by the sum of all Cj,x such that n j is a neighbor of
nl and Cm,x such that nl is a neighbor of nm as given Equation 6.
Now, we will prove the correctness of this statement. Let the counts
per node be denoted with C before receipt of the new tuple and C�

after receipt of the new tuple. Keeping in mind that the only C�

value changed is (Cl,x)�, the exact increase can be calculated in the
following way:

g�(Tx) = ∑
ni∈N
n j∈Ni

Ci,x
� ·Cj,x

�

= ∑
ni∈N−nl
n j∈Ni−nl

Ci,x
� ·Cj,x

�+ ∑
ni=nl
n j∈Ni

Ci,x
� ·Cj,x

�+ ∑
n j=nl
ni∈Nj �

Ci,x
� ·Cj,x

�

= ∑
ni∈N−nl
n j∈Ni−nl

Ci,x ·Cj,x + ∑
n j∈Nl

(Cl,x +1) ·Cj,x + ∑
ni∈Nl

�
Ci,x · (Cl,x +1)

= ∑
ni∈N
n j∈Ni

Ci,x ·Cj,x + ∑
ni∈Nl

�
Ci,x + ∑

ni∈Nl

Ci,x

= g(Tx)+ ∑
ni∈Nl

�
Ci,x + ∑

ni∈Nl

Ci,x

where g(Tx) is the correlated score of Tx before receipt of �nl ,Tx�,
g�(Tx) is its score afterwards, Ni = {n j|ei, j ∈E} and Ni

� = {n j|e j,i ∈
E}.

B.2 Uncorrelated Score Update
According to Equation 8, upon receiving tuple �nl ,Tx�, the un-

correlated trendiness score of Tx has to be increased by the sum of
all Cj,x such that n j is not a neighbor of nl and Cm,x such that nl is
not a neighbor of nm. Now we will prove this statement. Similar to
Section B.1, the counts per node are denoted with C before receipt
of the new tuple and C� after receipt of the new tuple.

h�(Tx) = ∑
ni∈N

n j∈Nic

Ci,x
� ·Cj,x

�

= ∑
ni∈(N−nl )

n j∈(Nic−nl )

Ci,x
� ·Cj,x

�+ ∑
ni=nl

n j∈Nic

Ci,x
� ·Cj,x

�+ ∑
n j=nl

ni∈Nj �
c

Ci,x
� ·Cj,x

�

= ∑
ni∈(N−nl )

n j∈(Nic−nl )

Ci,x ·Cj,x + ∑
n j∈Ni

c
(Cl,x +1) ·Cj,x + ∑

ni∈Nl
�c

Ci,x · (Cl,x +1)

= ∑
ni∈N

n j∈Nic

Ci,x ·Cj,x + ∑
ni∈(N−nl−Nl)

Ci,x + ∑
ni∈(N−nl−Nl

�)
Ci,x

= h(Tx)+ ∑
ni∈(N−nl−Nl)

Ci,x + ∑
ni∈(N−nl−Nl

�)
Ci,x

where h(Tx) is the uncorrelated score of Tx before receipt of the
new tuple �nl ,Tx�, h�(Tx) is its score after the receipt of the tuple,
Ni = {n j|ei, j ∈E}, Ni

� = {n j|e j,i ∈E}, Ni
c = N−ni−Ni and Ni

�c =
N−ni−Ni

�.

Table 6: Model Similarity Statistics
p ρtrad−corr ρtrad−uncorr APcorr APuncorr

0.1 0.763 0.988 0.144 0.571
0.3 0.518 0.993 0.079 0.672
0.5 0.401 0.996 0.062 0.737

Table 7: Uncorrelated trends in Twitter that are Traditionally
Insignificant

hashtag Runcorr Rtrad
#twitter 14 80

#wheniwaslittle 22 88
#5 11 79

#MLB 10 78
#rememberwhen 8 77

#photography 4 73
#hc09 5 74

#health 2 72
#nevertrust 1 71

C. FURTHER RESULTS OF EXPERIMENTS

(a) Speed-up of sampling technique for cor-
related trends

(b) Speed-up of sampling technique for un-
correlated trends

Figure 8: Speed-up of sampling

Here we provide Table 6 that demonstrates the effect of increas-
ing p values (probability that a node in the network discusses a
topic independent from its neighbors). The analysis in summary is
provided in Section 4.

We have provided the figures that summarize the results of ac-
curacy experiments for correlated trends on the Twitter data set
in Section 5.3. As we noted before, the behavior of uncorrelated
trends is similar to that of correlated trends. We also noted that
uncorrelated trends are more robust to sampling while providing
a possible reasoning for this behavior. In this section, we provide
the summary of the experiments for uncorrelated trends accuracy
in Figure 9 for completeness. Similar to Figure 6, the X-axis de-
notes the rate of sampling whereas the Y-axis denotes the average
precision for the given sampling ratio. Sampling ratio values used



Table 8: Correlated trends in Twitter that are Traditionally In-
significant

hashtag Rcorr Rtrad
#politics 58 85
#bb11 45 82
#ocra 43 87

#green 35 81
#freemediave 40 97

#nieuws 27 86
#TCOT 30 89
#digg 15 76
#hhrs 8 75

Figure 9: Average Precision of sampling technique for uncor-
related trends

were p = 0.5,0,2,0.,0.01 and 0.005. For top-34 topics, for all sam-
pling ratios, even for 0.005, we observe a perfect average precision
of 1 while this value degrades rapidly for top-34633 uncorrelated
topics.

As discussed in Section 5.3, sampling provides a linear speed-up.
For completeness here we provide the figures that summarize the
timing of experiments on the Twitter data set. Figure 8(a) provides
the results for correlated trends, whereas Figure 8(b) provides the
results for uncorrelated trends. For both figures, the X-axis denotes
the inverse of sampling ratio (1/ps) and Y-axis provides the speed-
up, i.e. the ratio of the time it takes for the exact solution to the
time it takes for sampling method to process the entire data set.


