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Abstract. Homomorphic encryption has been used for supporting sim-
ple aggregations, numeric calculations on encrypted data as well as for
private information retrieval. Recently, theoretical breakthroughs on ho-
momorphic encryption resulted in fully homomorphic encryption, which
is able to compute arbitrary functions on encrypted data. As a result, ho-
momorphic encryption is generally believed to be the holy grail for solv-
ing database queries on encrypted data. However, there has not been a
systematic study that analyzes the use of fully homomorphic encryption
for solving database queries beyond simple aggregations and numeric cal-
culations, such as selection, range and join queries. Our paper fills this
gap by identifying what fully homomorphic encryption can do and what
it cannot do well for supporting general database queries at a conceptual
level. We show that using a fully homomorphic encryption scheme that
supports addition, multiplication, AND and XOR on ciphertexts, it is
possible to process a complex selection, range, join or aggregation query
on encrypted data on the server side, and to return the encrypted match-
ing answers in a result buffer. For queries without fixed answer sizes, it is
however not guaranteed all matching answers will be correctly construct-
ed from the result buffer, instead the answers can be constructed from
the result buffer with overwhelming probability.

1 Introduction

The outsourcing of data storage and computation has been popularized
with recent advances in computing technologies represented by cloud com-
puting. Despite the desirable features of no up-front cost for deployment,
pay-per-use, scalability and elasticity of resources in the cloud, concerns
about the security of sensitive data stored in the cloud and over the priva-
cy of accessing data via the cloud remain the roadblocks to the widespread
adoption of the cloud for data management and query processing tasks.
Encrypting the data in the cloud seems like an obvious solution.
Nevertheless, making use of the encrypted data in the cloud, i.e. pro-
cessing database queries on encrypted data, while maintaining complete



data confidentiality and access privacy, is a difficult task. The techniques
enabling keyword search on encrypted data [1, 2] preserve complete data
confidentiality, but reveal the positions that match the search words. A
large body of previous proposals reveal partial information about the da-
ta to allow the cloud to evaluate complex predicates on encrypted data,
i.e. for supporting range queries [3, 4, 5, 6]. Some other encrypted index
based proposals offload predicates evaluation to the client side so as to
not lose data confidentiality in the cloud [7, 8, 9], but they still need cau-
tious protection for the privacy of index accesses [10]. In addition, it is not
clear how many of the above approaches can support complex database
queries involving multiple tables and attributes.

Recently, homomorphic encryption has gained increasing attention be-
cause of the theoretical breakthrough in constructing fully homomorphic
encryption that is able to compute arbitrary functions over encrypted
data [11, 12] without the need for decryption. Despite the fact that the
performance of homomorphic encryption needs to be improved for it to
be practically useful, it is generally believed that fully homomorphic en-
cryption can solve the problem of querying encrypted data and the dream
of data security in the cloud will become reality [13, 14]. Homomorphic
encryption has been used for calculating simple aggregations [15], statisti-
cal functions on encrypted data [16] as well as for preserving the privacy
of data access and retrieval [17, 18]. It is however not clear how fully
homomorphic encryption can solve general database queries such as se-
lection, range and join queries beyond simple aggregations and numerical
calculations.

The goal of this paper is to analyze what fully homomorphic encryp-
tion can do and what it cannot do well for supporting general database
queries, i.e. selection, range, join and complex aggregation queries, on en-
crypted data. Our analysis is based on the theoretical properties of (fully)
homomorphic encryption that allow addition, multiplication, XOR, and
AND operations on ciphertexts which have the same effect as applying
these operations to the underlying plaintext data [11, 12, 16]. We show
that by representing a predicate condition statement as a circuit con-
sisting of these operations, it is possible to directly evaluate the predicate
on encrypted data in the cloud, thus enabling selection, range, join and
group-by queries on encrypted data. For the query initiator client to suc-
cessfully retrieve the query answers (especially a set of answers), however,
the client is required to estimate a number of answers for the cloud to
allocate a fixed size result buffer. When the result buffer is returned to
the client, most of the query answers will be correctly recovered from



the result buffer with overwhelming probability, while it is not guaran-
teed that all the query answers can be recovered. The query processing
achieves complete data confidentiality and strong access privacy. The on-
ly information revealed are a rough result size, the types of queries and
the involved attributes. The actual query contents, such as the predicate
conditions and the matching answers are not revealed at all.

Our contribution is to show the conceptual level usability of homomor-
phic encryption in outsourcing database services in a secure and private
manner. We do not target to solve the practicality issue of homomor-
phic encryption, which may need a few years to solve. However, knowing
that homomorphic encryption can be used for secure processing of gen-
eral queries in outsourcing database services allows us to put efforts on
improving its performance in the future research.

In the rest of the paper, we review relevant work of query processing
on encrypted data in Section 2, and describe homomorphic encryption
in details in Section 3. We then construct a basic framework for query
predicate evaluation and result retrieval in Section 4 for supporting gen-
eral database queries on encrypted data in Section 5. Towards the end in
Section 6, we also discuss the limitations of homomorphic encryption for
practical database applications.

2 Related Work

There are multiple issues to consider when using a technique for process-
ing database queries on encrypted data stored on cloud servers, such as
functionality, performance, degrees of data confidentiality and data ac-
cess privacy provided. We focus on functionality, data confidentiality and
access privacy in the paper, because the performance of a technique may
be improved with the relevant theoretical and technology advances, e.g.
achieving smaller ciphertext sizes for homomorphic encryption [19].

The study of encrypted data processing originally focused on keyword
search on encrypted texts [1, 2]. The proposed techniques rely on symmet-
ric encryption and stream ciphers to provide complete data confidentiali-
ty, but reveal positions of matching answers when scanning the encrypted
words and the indices built on the encrypted words. Compared to keyword
search and equality condition queries, range queries on encrypted data are
more difficult, and many techniques even have to compromise partial data
confidentiality in order to evaluate range predicates on the server side. For
example, the methods that attach range labels to bucketized encrypted
data [3, 4] reveal the underlying data distributions. Methods relying on



order preserving encryption [5, 20] reveal the data order. These techniques
are vulnerable to attacks based on statistical analysis on encrypted data.
A recent work, CryptDB [6], processes different types of database queries
using layers of different encryption schemes, and removes layers of encryp-
tion by decrypting to an appropriate layer for solving a specific query, i.e.
deterministic encryption for equality condition queries, order-preserving
encryption for range queries, and homomorphic encryption for aggrega-
tion queries. In such a way, CryptDB does not support the same levels of
data confidentiality during query processing, and in the long run it down-
grades to the lowest level of data confidentiality provided by the weakest
encryption scheme. Instead of processing encrypted data directly, one al-
ternative is to use an encrypted index on the cloud server and retrieve a
small number of index nodes onto the client for decryption and predicate
evaluation [7, 8, 9]. The index accesses, however, should be protected, as
otherwise they might reveal the underlying data distribution [21]. Query
processing, however, still must be done at the client side, thus eventually
leveraging the cloud for storage but rendering it useless for computation.
Moreover, it is still not clear how to use the index approach to support
complex queries involving multiple predicates on different attributes or
range aggregations, group-by queries while preserving strong privacy. An-
other alternative is to use a secure co-processor on the cloud server side
and to put the database engine and all sensitive data processing inside
the secure co-processor [22]. That apparently requires all the clients to
trust the secure co-processor with their sensitive data.

Homomorphic encryption has been used for evaluating simple aggre-
gations such as SUM, AVG [15], and for evaluating other numerical func-
tions such as statistical functions on encrypted data [16]. Its ability to
directly perform addition and multiplication on ciphertexts without the
need for an index or other helper information allows it to achieve complete
data confidentiality. Even for predicates evaluation of other queries which
are shown later in the paper, as long as the query processing touches the
entire data, strong access privacy is also achieved. These nice properties
make homomorphic encryption of recent research interest with the hope
of solving arbitraries queries on encrypted data.

3 Preliminaries

3.1 Homomorphic Encryption

In this section, we describe (fully) homomorphic encryption at an abstract
level instead of based on a concrete realization. The concrete realization



of different (fully) homomorphic encryption schemes can be found in [11,
12, 16].

We consider a homomorphic encryption scheme as an asymmetric en-
cryption scheme. It has the following four algorithms:

— KeyGen()). Given a security parameter A, generates a public encryp-
tion key pk which is available to the servers in the cloud settings, and
a secret decryption key sk which is only known to the client or the
data owner.

— Encrypt(pk,m), abbreviated as Enc(m). ¢ < Enc(m), encrypts a
plaintext message m into a ciphertext c¢. m is an integer in a finite
field.

— Decrypt(sk, c), abbreviated as Dec(c). m < Dec(c), decrypts a ci-
phertext ¢ into a plaintext m.

— Fvaluate(pk, f,c1, ..., ¢t ), abbreviated as f*(ci, ..., ¢). For ciphertext
message ¢; < Enc(m;), ¢ < f*(c1, ..., ¢¢) such that Dec(c) = f(my,...,my),
evaluates function f on ciphertexts ¢y, ..., ¢; without the need for de-
crypting each individual ciphertext ¢; and then evaluating f on plain-
texts m;. f* can be the same as f, e.g. in the ElGamal cryptosys-
tem [23], f* is also a multiplication function when f represents a
multiplication function. f* can also be different from f, e.g. in the
Paillier cryptosystem [24], f* is a multiplication function when f rep-
resents an addition function. For simplicity of the discussion in the
paper, we assume f* is the same as f.

Before Gentry’s fully homomorphic encryption proposal [11], homo-
morphic encryption schemes could not support both arbitrary addition-
s and multiplications on ciphertexts, e.g. the Paillier cryptosystem [24]
cannot perform multiplication in ciphertexts, and Boneh’s scheme [25]
supports only one multiplication.

Definition 3.11 A homomorphic encryption scheme is fully homomor-
phic if it can handle all functions, represented by addition and multipli-
cation in finite fields.

Addition and multiplication are basic functions based on which other
functions can be constructed. For example, subtraction can be easily rep-
resented using addition and multiplication. In modulo 2 field, addition
and subtraction are XOR, and multiplication is AND. For a,b € {0,1},
omitting mod 2 on the right side of equations without loss of generality, we
have a®b=a+b=a—b,aAb=ab, @ = 1®a, aVb=aA b, which means
that f can be any circuit constructed from XOR, AND, NOT, and OR



gates in the binary field. Since homomorphic encryption is probabilistic,
operations on ciphertexts would result in noise. We need to pay attention
to make sure that the noise introduced by functions like multiplications
does not increase beyond an error bound for successful decryption [12],
e.g. by controlling the number of consecutive multiplications.

There are two constraints with a homomorphic encryption scheme
which will also affect our use of homomorphic encryption for database
queries. First, as we consider f as a circuit, its output is usually fixed
in advance. However for many database queries such as range and join
queries, the result sets are not of fixed sizes and could be very large. We
solve the difficulty of representing and retrieving such query results in
Section 4. Second, f needs to scan all the input ciphertexts cy, ..., ¢ for
complete privacy, otherwise revealing that only some ciphertexts, i.e. the
ciphertexts accessed, are relevant to the evaluation of f. Similarly for a
database search with complete access privacy, the evaluation on ciphertext
data needs to scan all encrypted database records. This is unavoidable,
although for performance consideration, we could scan partial records for
partial access privacy [18].

3.2 Data Model

Consider a data table DT with d attributes, Ay, ..., A4. For simplicity
of discussion, assume that the values of every attribute A; are mapped
to a finite integer field and they are encrypted by a fully homomorphic
encryption scheme. An attribute value A;.val, or val when A; is clear in
the context, has its binary representation as an (n + 1)-bit string A;.bval
or bval with the first (leftmost) bit as the sign bit (0 when Aj;.val is
positive and 1 when A;.val is negative). Correspondingly, each value of
attribute A; has two encrypted values stored on cloud servers, Enc(val)
and Enc(bval), in which Enc(bval) is bit-wise encryption of bval and con-
sists of (n+ 1) ciphertexts [Enc(bval)]; corresponding to bit [bval]; (1 <
j <n+1). Let the number of tuples in DT be N. Then an attribute A;
of DT has (Enc(valy ), Enc(bvaly)), ..., (Enc(valy ), Enc(bvaly)) consecu-
tively stored (not ordered) in the cloud. According to [16], we assume the
availability of a technique to pack the bit-wise encryption (n + 1) cipher-
texts Enc(bval) into a single integer ciphertext Enc(val), Enc(val) <
pack(Enc(bval)).

We are not concerned about data access control for different user
roles in this paper, although we admit that this is an important issue for
databases and should be paid special attention along with the advances
of fully homomorphic encryption. We assume that all user clients of DT



have the same complete accesses to the data in DT, and they all have the
same secret decryption key sk.

3.3 Adversary Model

As it is common for secure query processing on outsourced data [3, 6], we
assume that the cloud is honest but curious. The cloud follows the query
processing procedures and does not alter query inputs nor answers, but
the cloud or any adversaries who can observe data and query execution
in the cloud try all means to infer the encrypted data, the query contents,
and users’ access patterns. However, we assume that the adversaries (in-
cluding the cloud) do not possess prior knowledge about the data nor
about the user interests on the data.

4 Framework for Selection Queries under Homomorphic
Encryption

Unconditioned aggregations and statistical functions on encrypted data
of an attribute A; can be realized by applying addition, subtraction and
multiplication to all the encrypted data values Enc(valy), ..., Enc(valy),
and then a single or a few ciphertext results (to avoid overflow of a cipher-
text) are returned to the client for decryption [15]. Selection and range
queries, however, need to evaluate predicates on each encrypted data val-
ue Enc(valj) (1 < j < N), and ideally only retrieve the encrypted values
that satisfy the predicates. This evaluation and processing should be per-
formed on the cloud servers. Returning to the client for evaluation of
predicates for each encrypted value is no better than returning all the
encrypted values for decryption and processing on the client side, and
both are not practical solutions.

This section considers using fully homomorphic encryption to solve
simple equality conditions and range queries on a single attribute, i.e. for
an attribute A; and a given pivot value z, find all values {val; |val; = z},
{val; |val; > x} or {wal;|val; < x}. We propose solutions for blind
predicate evaluation and retrieving matching answers below.

4.1 Blind Predicate Evaluation

Based on our discussion in Section 3.1, we assume that the following
properties hold for a fully homomorphic encryption scheme for any x,y in
a finite integer field and their binary representations bz, by. The functions



such as addition, subtraction and multiplication in properties P1-P6 are
concrete instances of f and f* in FEwaluate algorithm in Section 3.1.
The realization of these properties for a specific homomorphic encryption
scheme, i.e. f and f*, could be in different but similar formats.

— P1. Integer Addition. Enc(z) + Enc(y) = Enc(z + y).

— P2. Integer Multiplication. Enc(x) * Enc(y) = Enc(z x y).

— P3.A. Integer Subtraction. Enc(x) — Enc(y) = Enc(z — y).

— P3.B. Binary Subtraction. Enc(bx) — Enc(by) = Enc(bx — by).
— P4. Bitwise AND. Enc(bx) A Enc(by) = Enc(bx A by).

— P5. Bitwise OR. Enc(bx) V Enc(by) = Enc(bx V by).

— P6. Bitwise NOT. Enc(1) @ [Enc(bx)]; = Enc([bx];).

The above properties allow us to directly perform calculation on ci-
phertexts, resulting in a ciphertext that after decryption is the same as
the result of calculation on plaintext data, e.g. in P1, adding Enc(x) and
Enc(y) together and then decrypting gives us (z + y). In P3.B-P5, the
operations are performed on bit-wise encrypted ciphertexts, e.g. P3.B ac-
tually means [Enc(bx)]; — [Enc(by)]; = [Enc(bx—by)]; (1 <i<n+1). P6
uses the homomorphic property of XOR, Enc(1) ® [Enc(br)]; = Enc(1®
[bx];), and [bz]; = 1 & [bz);.

Based on the properties P1-P6, we design a solution for blind predi-
cate evaluation under homomorphic encryption. Assume the cloud creates
a sufficiently large result buffer, and only puts the encrypted values that
satisfy a predicate in the buffer. Given a set of values val;(1 < j < N),
we are trying to get all values such that (val; = x). This can be achieved
by initializing all the entries in the buffer as Enc(0), and multiplying
available Enc(0) entries with Enc(val;) such that val; = x, which is
Enc(valj) * ((Enc(val;) — Enc(z) == Enc(0)) ? Enc(1) : Enc(0)) apply-
ing property P3.A. After the multiplication, an Enc(0) entry becomes
Enc(valj) for val; such that val; = x, but is still Enc(0) for val; such
that val; # x, so the values that do not satisfy the predicate do not
materialize in the underlying plaintext answers of the result buffer.

The problem is now evaluating ((Enc(valj)—Enc(z) == Enc(0)) ? Enc(1) :
Enc(0)) on cloud servers. With the encrypted binary representation-
s Enc(bvalj) and Enc(bz) for Enc(val;) and Enc(z) respectively, e-
valuating (Enc(val;) — Enc(xz) == Enc(0)) is the same as evaluating
(Enc(bvalj) — Enc(bx) == Enc(0)). Applying property P3.B, we know
that after performing Enc(bvalj) — Enc(bx) in the latter evaluation, we
just need to check if the second to the (n + 1)th bit-wise encryption ci-
phertexts of (Enc(bval;) — Enc(bx)) are all Enc(0), since the first bit
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Fig. 1. Evaluation of Predicate as Circuit

is a sign bit and it does not need to be evaluated. Thus ((Enc(bval;) —
Enc(bx) == Enc(0))? Enc(1) : Enc(0)) can be represented as a bina-
ry circuit ATH Enc(1) @ ([Enc(bval;)]; — [Enc(bz)];) The binary circuit
for the condition statement ((Enc(valj) — Enc(x) == Enc(0)) ? Enc(1) :
Enc(0)) is then

N (Bne(1) @ ([Enc(bual,)]; — [Enc(b)];)) (1)

Similarly, for evaluating a typical range query condition (val; < x), we
construct the following circuit for the condition statement ((Enc(val;) —
Enc(z) < Enc(0))? Enc(1) : Enc(0)),

[Enc(bval;)]i — [Enc(bz)) (2)

If (val; < x) holds, the value (val; — x) should be negative and the sign
bit (first bit) of its binary representation should be 1, thus [Enc(bval;)], —
[Enc(bx)]; should be Enc(1). For evaluating another typical range query
condition (val; > z), we construct the following circuit for the condition
statement ((Enc(val;) — Enc(z) > Enc(0)) 7 Enc(1) : Enc(0)),

Enc(1) @ ([Enc(bval;)]i — [Enc(bx)]r) (3)

If (val; > x) holds, the value (val; —x) should be positive and the sign bit
of its binary representation should be 0, thus [Enc(bval;)]1 — [Enc(bx)]y
should be Enc(0) and [Enc(bval;)]y — [Enc(bx)]; should be Enc(1).

A similar circuit can be constructed on the binary representation of an
encrypted value Enc(val;), Enc(bvalj), for blindly evaluating a predicate
p on Enc(valj). Let such a circuit for predicate p be p-circuit and the re-
sult of applying the circuit function to Enc(bval;) be p-circuit(Enc(bvalj)),
as shown in Fig. 1. To be multiplied with Enc(val;), the ciphertext result
of such a binary circuit has to be packed to a single ciphertext in the
same finite field as Enc(val;j). The blind evaluation of a predicate p for
each encrypted value Enc(valj) is therefore

Enc(val;) * pack(p-circuit(Enc(bval;))) (4)
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4.2 Retrieving Matching Answers

From the above, we know that the cloud is able to record the ciphertext
of a value val; that satisfies a predicate p by multiplying Enc(val;) *
pack(p-circuit(Enc(bval;))) to an available Enc(0) entry in the result
buffer. However, the cloud does not know which entries are Enc(0). The
cloud cannot decide the size of the result buffer, or the entries to multiply
Enc(val;)*pack(p-circuit(Enc(bval;))). A naive way to retrieve matching
answers for a selection or range query is to create a result buffer which
is as big as the number of attribute values IV, to initialize every entry
corresponding to each attribute value val; to Enc(0), and to multiply
Enc(valy) * pack(p-circuit(Enc(bval;))) to each corresponding entry at
the jth position. Then the communication and client computation costs
would be O(N), which are very expensive and are waste of resources when
the number of actual answers M < N. We do not attempt to reduce
server computation cost to ensure strong privacy for users, but our goal,
however, is to keep communication cost and computation cost at the client
small. Basically, we want to realize the benefit of cloud computing where
a user query initiated at a client is processed in the cloud and the client
receives the final answer without significant post-processing work.

We thus turn to a probabilistic solution, i.e. to create a fixed size
result buffer B, and to save matching answers with overwhelming prob-
ability. We require that a client provides an estimated upper bound
of the number of matching answers M’, and a parameter to control
search quality, v. The cloud creates a ciphertext result buffer B whose
size is proportional to yM’, initializes each entry of B to Enc(0). For
each encrypted attribute value Enc(val;) (1 < j < N), the cloud mul-
tiplies Enc(val;j) * pack(p-circuit(Enc(bvalj))) to ~ entries at random
into the buffer, as shown in Fig. 2. In this way, non-matching answers
would be saved in the buffer B with probability 0, because Enc(val;) *
pack(p-circuit(Enc(bvaly))) = Enc(valj) * Enc(0) = Enc(0). For match-
ing answers, if only one matching answer Enc(val;) is at one entry, the
client can decrypt the ciphertext at the entry and recover the matching
answer valj, which we call a survival. However if more than one matching
answers are multiplied to one entry, which we call a collision, none of
them can be recovered at the client. Therefore, a matching answer can be
successfully retrieved by the client if its ciphertext survives (not in colli-
sion) at one of the « entries it is multiplied to. The server computation
cost of query processing using this solution is still O(N), i.e. the server
needs to process each encrypted attribute value Enc(val;) (1 < j < N),
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Fig. 2. Probabilistic Solution to Store Answers

but its communication cost and client computation cost are only O(yM").

The above probabilistic solution is similar to the private filter con-
struction in private stream search [17]. Since the correctness of the solu-
tion is proved in [17], we just present the correctness statement without
proving it again. Here neg(y) means a fractional number which is in (0, 1)
and negligible in ~.

Theorem 4.21 If the number of matching answers is less than M', the
probability that all matching answers are saved in B is larger than 1 —
neg(y). If the number of matching answers is larger than M', the prob-
ability that a subset of matching answers are saved in B is larger than

1~ neg(7).

To differentiate a valid entry which stores a recoverable matching
answer from a collision entry, we use a probabilistic method from [17].
Append to each encrypted value Enc(val;) h bits which are partitioned
into h/3 triples of bits, and randomly assign one bit in each triple to 1
and the other two bits as 0. A buffer entry is valid if exactly one bit in
each triple of appended bits is 1.

4.3 Discussion

Sofar we see that we can construct circuits to perform blind predicate
evaluation directly in the cloud, but cannot provide the guarantee to
recover all matching answers when the answer size for a database query
such as a range query varies.

Because a homomorphic encryption is semantically secure, we ensure
complete data confidentiality. Because we perform all predicate evalua-
tions blindly on all the encrypted values, we ensure strong access privacy
for querying clients. The only information revealed are an estimated up-
per bound number of matching answers, M’, the attribute with the query
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predicate, A;, and the type of the query predicate (indicated by the cir-
cuit). However, this information does not give any details about the actual
contents of a query, i.e. x, or about the underlying data encrypted.

5 Supporting General Database Queries

Using the basic framework presented in Section 4, we now explore if this
framework can be extended to support a variety of database queries on
encrypted data rather than simple equality condition and range queries.
For processing each type of query, we look at (1) how to represent its
predicates into binary circuits that can be evaluated on the ciphertext
values, and (2) how to store the projection attribute values in the result
buffer (or how to update the aggregates). We do not repeat below but
from Section 4 we know that for queries whose result sizes are not fixed,
the matching answers can be recovered from the result buffer only with
high probability.

5.1 Complex Selection and Range Queries

In Section 4 we process simple selection and range queries with predicate
and projection on only one attribute. Now we consider how to solve the
following general selection and range queries with predicates and projec-
tions on multiple attributes.

SELECT Agi, ..., Agg

FROM DT
WHERE A5 [=|>|<]n

[AND|OR] ...
[AND|OR] Ay =1>]|<]a

Predicate Evaluation. Following equations (1), (2) and (3) in Section 4,
the predicates on attributes A;i,...A4; can be represented as binary cir-
cuits on the ciphertexts of binary representation of the attributes’ val-
ues, p-circuit(Enc(Ai .bvaly)), ..., p-circuit(Enc(Ay.bual;)) (1 < j < N).
Evaluating these predicates together on the jth tuple, we get circuit
p-circuit(Enc(As.bualy)) [AV] ... [A|V] p-circuit(Enc(Aj.bvaly)).
Results Storage and Retrieval. The ciphertext values of projec-
tion attributes Ay, ..., Ay for which the corresponding tuples satisfy the
predicates should be put in the result buffer. This can be achieved by
allocating a result buffer whose size is proportional to gyM’ and which
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consists of O(yM') groups of g consecutive entries with each group be-
ing initialized as g Enc(0)s, and then for each tuple at the jth position,
multiplying Enc(Aj1.val;) *pack(p-circuit(Enc(Az .bvaly)) [AV] ... [A|V]
p-circuit(Enc(A;.bvaly))), ..., Enc(Ag.val;)*pack(p-circuit(Enc(A; .bval;))
IAV] .. [AV] p-circuit(Enc(Aj.bvalj))) to the g entries of randomly se-
lected ~ groups into the buffer. Upon receiving the result buffer, a client
decrypts a set of g group entries from groups that are not collisions or
Enc(0)s to retrieve the attribute values of matching tuples to the query.

During the above query processing, the only information revealed
are an estimated upper bound number of matching answers M’, the
projection attributes Agq,..., Agg, the attributes with query predicates,
A, ..., Ay and their (AND, OR) relationships. This information gives
few details about the actual query, i.e. x1, ..., 27, or about the underlying
data.

5.2 Joins

Without loss of generality, consider the following two table join without
additional selection and range predicates.

SELECT DTi.A;q, ..., DTl.Akg, DTQ.Aql, ceey DTQ.Aql
FROM DTy, DT
WHERE DT1.A;1 = DT Ajo

Join query processing is easier if the join keys of the two tables, DT}.A;;
and DT,.A;5, are ordered (indexed) or hashed. However, that approach
bears the same vulnerabilities of order-preserving encryption [5], i.e. re-
vealing the data order, and of data bucketization [3, 4], i.e. revealing the
data distribution. We therefore only consider using block nested loop to
solve join queries on encrypted data.

Predicate Evaluation. Specifically, the cloud needs to perform Ny x
N blind evaluations to check if DT7.A4;1.valj1 — DT5.Ajg.valjp ==0 (1 <
j1 < Np,1 <52 < Nj), where Ny, No are the number of tuples in the two
tables DT} and DT> respectively. This can be achieved by constructing
an equality condition circuit following equation (1), and multiplying the
ciphertext result Enc(1l) (matching) or Enc(0) (not matching) to the ci-
phertexts of projection attribute values Enc(DT1.Ag1), ..., Enc(DT1.Agg),
Enc(DTy.Aq), ..., Enc(DTy.Ay) respectively.

Results Storage and Retrieval. Allocating a result buffer whose
size is proportional to (g + [)yM’ and which consists of O(yM’) groups
of (g + 1) consecutive entries with each group being initialized as (g + 1)
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Enc(0)s, the (¢ + ) multiplication results for one pair of DT} and DTs
tuples are multiplied to the (g + () entries of randomly selected v groups
into the buffer. Upon receiving the result buffer, a client decrypts a set
of (g + 1) group entries from groups that are not collisions or Enc(0)s to
retrieve the attribute values of joining tuples.

During the above query processing, the only information revealed
are an estimated upper bound number of matching answers M’, the
projection attributes DT7. Ay, ..., DT1.Agg, D15.Ag1, ..., DT3. Ay and the
join keys DTi.A;1, DT5.A;o. This information gives few details about the
query, i.e. which pair of tuples can be joined, or about the underlying
data.

5.3 Range Aggregations

Without loss of generality, consider the following simple range aggregation
which only returns a single aggregate value per attribute.

SELECT AVG(Ag1), ..., SUM(Agg)

FROM DT
WHERE An =1>1<]z

[AND|OR] ...

[AND|OR] Ail =1>1<lx

From the above processing of complex selection and range queries, we
know that the range predicates can be represented as a circuit to be
evaluated on each tuple (say the jth tuple), p-circuit(Enc(A;i.bval;))
AIV] ... [A|V] p-circuit(Enc(Aj.bual;)). Then a range aggregation query
such as a SUM can be processed by initializing a ciphertext enc-sum
as Enc(0) for each attribute to aggregate on, and then keeping adding
the multiplication result of the encrypted attribute value with the circuit
evaluation result.

For example to obtain SUM (A,), at each tuple (the jth tuple), the
cloud performs multiplication Enc(Ayg.val;j)*pack(p-circuit(Enc(A .bvalj))
IAV] .. [ANV] p-circuit(Enc(Aj.bvaly))), and adds the ciphertext multi-
plication result to enc-sum. Note that enc-sum may overflow if the num-
ber of attribute values satisfying the predicates is too large. This prob-
lem can be solved by breaking enc-sum into several enc-sums as in [15],
which we do not repeat here. For AV G aggregations such as AVG(Agy),
the cloud needs to maintain a ciphertext counter enc-count in addition
to enc-sum, and after the summation on all the attribute values has been
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performed, to perform a division enc-sum/enc-count. Division on cipher-
texts can be implemented as in [12]. Initialize enc-count as Enc(0), and
for each tuple (say jth tuple), the cloud performs multiplication Enc(1)
pack(p-circuit(Enc(Aii .bval;)) [AIV] ... [A|V] p-circuit(Enc(Aj.bualy))),
and adds the ciphertext multiplication result to enc-count.

During the above query processing, the only information revealed
are the attributes to aggregate on, Ay, ..., Ayg, their aggregation types,
the attributes with query predicates, A;1,..., A; and their (AND, OR)
relationships. These information gives few details about the query, i.e.
Z1,..., 2], or about the underlying data.

5.4 Group-By Queries

Group-by queries are complicated to implement given that the encrypted
attribute values are not ordered or hashed. Consider a typical group-by
query as follows.

SELECT Ay, ..., SUM(Ay,)
FROM DT
GROUP BY A, ..., Ay

By replicating table DT as DT’ and joining DT and DT’ on attributes
A, ..., Ay, pairs of tuples with equal A;q, ..., A; values can be found, but
the tuples of equal A;q1, ..., A;; values still need to be grouped together. We
solve this problem by performing (N —1) rounds of range and aggregation
queries. At the jth round (1 < j < N), the cloud chooses the jth tuple
as the pivot tuple, compares all (j + 1)th to Nth tuples with this pivot
tuple on Ajq, ..., A;, keeps and aggregates on Ay, ..., Ay, values for the
tuples which satisfy the equal condition with the pivot tuple values. The
query for each round is like below.

SELECT Agy, ..., SUM (Agg)

FROM DT
WHERE A = Aji.val;

AND ...
AND Ay = Aj.valj

The client needs to decrypt results from each round and to merge the
results together to form the final answers to the group-by query.

During the above query processing, the only information revealed are
the projection attributes and the attributes to aggregate on, Ay, ..., Aig,
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their aggregation types, the group attributes A;1, ..., A;. These informa-
tion gives few details about the query, i.e. the group information, or about
the underlying data.

5.5 Discussion on General Database Queries

A real database query is just a composition of the above simplified queries,
and can be solved based on the processing of the above queries. As we see
from the above, because the circuits constructed and the tables, attributes
involved for different types of queries are different, although the query
evaluation in the cloud is totally blind, it is not avoidable to reveal some
information about the types of queries being processed. However, the
actual query contents, i.e. predicates, or the answers are not revealed at
all. In that sense, our query processing using homomorphic encryption
achieves strong privacy for processing different types of queries compared
to previous proposals for processing (usually limited) queries on encrypted
data [3, 4, 5, 6, 21].

6 Conclusion

With the recent development of fully homomorphic encryption, homomor-
phic encryption has received great interests and expectations for solving
arbitrary queries on encrypted data. However from the existing work it
is not clear how homomorphic encryption processes complex database
queries such as range and join queries beyond simple aggregations and
statistical function calculations. To the best of our knowledge, this paper
has conducted a first systematic study on how to use the powerful primi-
tives of fully homomorphic encryption to solve general database queries on
encrypted data while preserving complete data confidentiality and strong
access privacy. We have shown that it is possible to perform blind evalua-
tions on encrypted data for a variety of database queries, while for queries
without fixed answer sizes, such as range and join queries, most but not
all answers are guaranteed to be successfully retrieved by the querying
client.

Despite demonstrating the ability of fully homomorphic encryption
for solving different types of database queries on encrypted data, we are
also aware of the limitations of the current fully homomorphic encryption
schemes, which need to be solved before these schemes can be used in
practical database applications. Performance of homomorphic encryption
operations is one of the biggest issues. Lack of schemes to support differ-
ent data access control needs is another issue. To enable arbitrary query
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operations on encrypted data, all the data have to be encrypted using
the same public key, making it inconvenient to enforce different levels
of data access control. In our future work, we will explore using paral-
lel computing and hardware acceleration to optimize the performance of
homomorphic encryption operations, and design alternative schemes to
solve the access control problem of homomorphic encryption.
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