
UNIVERSITY OF CALIFORNIA
Santa Barbara

Data and Application Management in an Open
Cloud Platform

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

by

Navraj Chohan

Committee in Charge:

Professor Chandra Krintz, Chair

Professor Divy Agrawal

Professor P. Michael Melliar-Smith

Professor Louise Moser

December 2012
UCSB Technical Report 2012-01

The Dissertation of
Navraj Chohan is approved:

Professor Divy Agrawal

Professor P. Michael Melliar-Smith

Professor Louise Moser

Professor Chandra Krintz, Committee Chairperson

December 2012

Data and Application Management in an Open Cloud Platform

Copyright © 2012

UCSB Technical Report 2012-01

by

Navraj Chohan

iii

Dedication and Gratitude

I would like to dedicate this dissertation to my beloved family: my mother, Kamal

Kaur, my father, Harminder Chohan, my sister, Navneet, and mybrother, Jovan. They

have supported me throughout my life and continue to do so with unconditional love.

To my late grandfather, Darshan Chohan, who said, ”Navraj is going to be a doctor”

while I was still a child, I want to say I did it, and while it wasprobably not the kind of

doctor you meant it’s still pretty close.

Chandra Krintz has been my adviser and mentor since my undergraduate days, and I

would not be where I am today without all of her support, encouragement, and guid-

ance.

I would like to thank Divy Agrawal, P. Michael Melliar-Smith, and Louise Moser for

serving on my Ph.D. committee.

I am grateful to Chris Bunch for being my good friend and collaborator throughout my

graduate career. I would like to thank Rich Wolski, Selim Gurun, and Ye Wen for their

mentorship during my early graduate career.

Lastly, my fellow graduate students from the RaceLab have made my stay most enjoy-

able, and for this I am deeply grateful.

iv

Acknowledgements

The contents of Chapters3–8 is a partial reprint of the content as it appears in the con-

ference proceedings listed below.

Chapter 3: Publication [22] in the ICST International Conference on Cloud Com-

puting (CloudComp 2009) and Book Chapter [55] in Open Source Cloud Computing

Systems

Chapter 4: Publication [11] in the IEEE International Conference on Cloud Com-

puting (IEEE CLOUD 2010), Publication [20] in the IEEE International Conference

on Cloud Computing (IEEE CLOUD 2011), and Publication [19] in Journal of GRID

Computing.

Chapter 6: Publication [24] in the USENIX Conference on Web Applications (We-

bApps 2012).

Chapter 7: Publication [23] in the USENIX Workshop on Hot Topics in Cloud Com-

puting (HotCloud2010).

Chapter 8: Publication [25] in the USENIX Workshop on Hot Topics in Cloud Com-

puting (HotCloud2012).

v

Curriculum Vitæ

Navraj Chohan

Education

2012 Doctor of Philosophy in Computer Engineering,

University of California, Santa Barbara.

2008 Master of Science in Computer Engineering,

University of California, Santa Barbara.

2005 Bachelor of Science in Computer Engineering,

University of California, Santa Barbara.

Experience

2006 – 2012 Graduate Research Assistant,

University of California, Santa Barbara.

2012 – present Co-Founder,

AppScale Systems, Santa Barbara, CA.

2011 Research Intern,

Lawrence Livermore National Lab, Livermore, CA.

2010 Research Intern,

IBM, T.J. Watson Research Center, Hawthrone, NY.

vi

2005 – 2006 Software Engineer,

Applied Signal Technologies (Acquired by Raytheon), Sunny-

vale, CA.

Publications

C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hegde, and A. Srivastava, A Pluggable
Autoscaling Service for Open Cloud PaaS Systems, IEEE/ACM International Confer-
ence on Utility and Cloud Computing, to appear: November, 2012.

Navraj Chohan et al. North by Northwest: Infrastructure Agnostic and Datastore Ag-
nostic Live Migration of Private Cloud Platforms.In the Proceedings of USENIX Hot-
Cloud (2012), Boston, MA, USA.

Navraj Chohan et al. Hybrid Cloud Support for Large Scale Analytics and Web Pro-
cessing.In the Proceedings of USENIX WebApps (2012), Boston, MA, USA.

C. Bunch, B. Drawart, N. Chohan, C. Krintz, L. Petzold, and K. Shams, Language and
Runtime Support for Automatic Configuration and Deployment ofScientific Comput-
ing Software over Cloud Fabrics, Journal of Grid Computing, Special Issue on Data
Intensive Computing in the Clouds, Mar, 2012.

C. Bunch , N. Chohan, and C. Krintz, Supporting Placement and DataConsistency
Strategies Using Hybrid Clouds, IEEE Aerospace Conference, March, 2012.

C. Krintz, C. Bunch, and N. Chohan, AppScale: Open-Source Platform-As-A-Service,
in Open Source Cloud Computing Systems: Practices and Paradigms, IGI Global, Luis
Vaquero, Juan Ciceres, and Juan Hierro, Eds., ISBN-13: 978-1466600980, January,
2012.

Navraj Chohan et al. Datastore-Agnostic Transaction Support for Cloud Infrastruc-
tures.In the Proceedings of IEEE Cloud (2011), Washington DC, USA.

C. Bunch , N. Chohan, C. Krintz, and Khawaja Shams (JPL), Neptune:A Domain
Specic Language for Deploying HPC Software on Cloud Platforms, ACM Science-
Cloud Workshop, June, 2011

vii

Chris Bunch, Navraj Chohan, et. al. Neptune: A Domain Specific Language for De-
ploying HPC Software on Cloud Platforms.In the Proceedings of ACM ScienceCloud
(2011), San Jose, CA, USA.

Navraj Chohan, et al. See Spot Run: Using Spot Instances for MapReduce Workflows.
In the Proceedings of Proceedings of the 2nd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 2010), Boston, MA, USA.

Chris Bunch, Navraj Chohan, et. al. Key-Value Datastore Comparison in AppScale.In
the Proceedings of IEEE Cloud (2010), Miami, Florida, USA.

Navraj Chohan, et al. AppScale: Scalable and Open AppEngine Application Develop-
ment and Deployment.In the Proceedings of CloudComp (2009), Munich Germany.

Ye Wen, Wei Zhang, Rich Wolski, and Navraj Chohan. Simulation-Based Augmented
Reality for Sensor Network Development.In the Proceedings of the 5th ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys 2007), Sydney, Australia.

Ye Wen, Selim Gurun, Navraj Chohan, Rich Wolski and Chandra Krintz. Accurate
and Scalable Simulation of Network of Heterogeneous SensorDevices.The Journal of
VLSI Signal Processing Systems for Signal, Image, and VideoTechnology, 2007.

Ye Wen, S. Gurun , N. Chohan , R. Wolski and C.Krintz. Full-System, Cycle-Close
Simulation of the Stargate Sensor Network Intermediate Node. In the Proceedings of
the IEEE International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS-VI 2006), Samos, Greece.

Field of Study: Computer Engineering

viii

Abstract

Data and Application Management in an Open Cloud
Platform

Navraj Chohan

Cloud computing has had tremendous uptake in the global market and is expected to

grow well into the future. The commoditization of computational and storage resources

has given massive capabilities to individuals and companies to acquire such resources

on demand, and to relinquish them when no longer required, without the need to budget

for additional hardware and management.

Platform-as-a-Service (PaaS) architectures have arisen in the past years to allevi-

ate the burdens of resource management for developers who may now focus strictly

on application development. This faster time-to-value hasincreased productivity for

both developers and their respective organizations. Developers no longer have to worry

about lower level details such as CPU consumption, bandwidthlimitations, memory

consumption, and disk usage, as it has been common in the past. The scaling of ap-

plications is now the burden of the platform system. PaaS systems have become the

operating systems of the datacenter.

Our research has been focused on developing a PaaS system which can give the

aforementioned attributes in an open and pluggable way. We emulate the Google App

ix

Engine PaaS system as it was one of the first to come to market and offered the promise

of infinite scalability at the front end of application servers and the backend of large

data storage, all powered by Google’s robust infrastructure.

We call our PaaS solution AppScale. AppScale is an open cloudplatform capable

of transparently executing Google App Engine applicationsat scale and without mod-

ification. AppScale is a cloud-based web framework which provides multiple services

that provide cloud infrastructure control, data persistence, caching and a number of

other common application technologies. AppScale both simplifies and facilitates the

benchmarking of the execution of scalable cloud technologies using real applications.

This Ph.D. thesis discusses the design, implementation, and evaluation of App-

Scale. It considers the many components of AppScale with a focus on the data man-

agement layer for scalable storage, transaction semantics, scalable queries, analysis of

”Big Data”, and live migration support.

x

Contents

Acknowledgements v

Curriculum Vitæ vi

Abstract ix

List of Figures xv

List of Tables xviii

1 Introduction 1
1.1 Thesis Question. 6
1.2 Dissertation Organization. 9

2 Background 11
2.0.1 History. 16
2.0.2 Application Building Blocks. 18

3 AppScale 21
3.1 Background . 23
3.2 AppScale. 24

3.2.1 ZooKeeper (ZK). 26
3.2.2 AppController (AC) . 27
3.2.3 AppLoadBalancer (ALB). 28
3.2.4 AppServer (AS). 28
3.2.5 Data Management. 30
3.2.6 AppScale Tools. 31
3.2.7 Tolerating Failures. 32

xi

3.3 API Support . 34
3.4 Evaluation . 41

3.4.1 Methodology . 42
3.5 Summary. 47

4 A Database-Agnostic Cloud Platform with Transaction Support 49
4.1 Background . 53
4.2 The AppScale Database Support and Portability Layer. 54
4.3 Database-Agnostic Distributed
Transaction Support. 58

4.3.1 DAT Design . 59
4.3.2 DAT Semantics . 62

4.4 DAT Implementation. 64
4.4.1 Distributed Transaction Coordinator (DTC). 65
4.4.2 ZooKeeper Configuration of the DTC. 71
4.4.3 Scalable Entity Keys. 72
4.4.4 Garbage Collection. 73
4.4.5 Fault Tolerance . 74

4.5 Methodology. 76
4.5.1 Benchmarking Application. 76

4.6 Results. 77
4.6.1 Discussion. 80

4.7 Summary. 82

5 Scalable Queries with Indexing Support 96
5.1 Background . 100

5.1.1 Google Query Language. 101
5.1.2 AppScale . 102
5.1.3 Related Work . 102

5.2 Design and Implementation. 104
5.2.1 Filters, Orders, and Cusors. 104
5.2.2 Query System. 105
5.2.3 AppScale DB API. 105
5.2.4 Automatic Deployment. 107
5.2.5 Table and Key Layout. 108
5.2.6 ID Allocation . 109
5.2.7 Put and Deletes. 110
5.2.8 Ancestor and Kindless Queries. 110
5.2.9 Single Property Queries. 112
5.2.10 Composite Queries. 113

xii

5.3 Evaluation . 114
5.3.1 Results. 116
5.3.2 Discussion. 120

5.4 Evaluation . 121
5.4.1 Results. 124
5.4.2 Discussion. 129

5.5 Summary. 130

6 Hybrid Cloud Support for Large Scale Analytics and Web Processing 133
6.1 Background . 135

6.1.1 App Engine Analytics Libraries. 136
6.1.2 Related Work . 140

6.2 Hybrid PaaS Support for Web Application Data Analysis. 142
6.2.1 Cross-Cloud Data Synchronization. 143
6.2.2 Analytics Processing Engine within AppScale. 146

6.3 Evaluation . 152
6.3.1 Cross Cloud Data Transfer. 152
6.3.2 Benchmarks. 157
6.3.3 Google App Engine Analytics. 157
6.3.4 AppScale Library Support. 160
6.3.5 AppScale Hive Analytics. 161
6.3.6 Monetary Cost. 162

6.4 Summary. 164

7 Spot Instances for MapReduce Workflows 168
7.1 Background . 171
7.2 Data Analytic Cloud. 173
7.3 Analysis . 174

7.3.1 Spot Instance Characterization. 175
7.3.2 Cost of Termination. 180
7.3.3 Evaluation. 181

7.4 Discussion. 187
7.5 Summary. 189

8 Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms 190
8.1 Background . 193
8.2 Design and Implementation. 195

8.2.1 Migration Initialization . 195
8.2.2 Metadata Synchronization. 196

xiii

8.2.3 Memcache Warm-up. 197
8.2.4 Data Synchronization. 197
8.2.5 Traffic Handover. 199
8.2.6 Fault Tolerance . 200

8.3 Evaluation . 200
8.3.1 ZooKeeper Synchronization. 201
8.3.2 Memcache. 201
8.3.3 Datastore Performance. 202
8.3.4 Traffic Handover. 204

8.4 Summary. 204

9 Conclusion 205
9.0.1 Impact. 209
9.0.2 Future Work. 210

Bibliography 213

xiv

List of Figures

2.1 Cloud layers. 12

3.1 Components in AppScale. 24
3.2 API Support . 34
3.3 Memcache Service. 37
3.4 Blobstore Service. 38
3.5 Guestbook application latency. 43
3.6 Guestbook application time series. 43
3.7 Guestbook application throughput. 44
3.8 Shell application latency. 44
3.9 Shell application timeseries. 45
3.10 Shell application throughput. 45
3.11 Sieves application latency. 46
3.12 Sieves application timeseries. 46
3.13 Sieves application throughput. 47

4.1 AppScale software stack. 55
4.2 Transaction sequence example for two puts.. 69
4.3 Structure of transaction metadata in ZooKeeper nodes.. 70
4.4 Cassandra latency as the number of machines increases.. 84
4.5 Cassandra results as the number of machines increases.. 85
4.6 HBase latency as the number of machines increases.. 86
4.7 HBase throughput as the number of machines increases.. 87
4.8 Hypertable latency as the number of machines increases.. 88
4.9 Hypertable results as the number of machines increases.. 89
4.10 Redis latency as the number of machines increases.. 90
4.11 Redis throughput as the number of machines increases.. 91
4.12 MySQL results as the number of machines increases.. 92

xv

4.13 Latency CDFs for Cassandra 12 nodes for reads and writes.. 93
4.14 Time breakdown of an entityput. 94
4.15 Google App Engine results with auto-scaling.. 95

5.1 Top level design of the query system.. 105
5.2 Ascending property table and entity tables for a Greeting kind. 109
5.3 Cassandra ancestor query response time.. 116
5.4 Cassandra ancestor query throughput.. 116
5.5 Cassandra kindless query response time.. 117
5.6 Cassandra kindless query throughput.. 117
5.7 Cassandra single query response time.. 118
5.8 Cassandra single query throughput.. 118
5.9 Cassandra composite query response time.. 119
5.10 Cassandra composite query throughput.. 119
5.11 HBase ancestor query response time.. 120
5.12 HBase ancestor query throughput.. 120
5.13 HBase kindless query response time.. 121
5.14 HBase kindless query throughput.. 121
5.15 Hypertable ancestor query response time.. 122
5.16 Hypertable ancestor query throughput.. 122
5.17 Hypertable single query response time.. 123
5.18 Hypertable single query throughput.. 123
5.19 Hypertable 80:20 read to write ratio response times.. 124
5.20 Cassandra ancestor query response time.. 125
5.21 Cassandra ancestor query throughput.. 125
5.22 Cassandra kindless query response time.. 126
5.23 Cassandra kindless query throughput.. 126
5.24 Cassandra single query response time.. 127
5.25 Cassandra single query throughput.. 127
5.26 Cassandra composite query response time.. 128
5.27 Cassandra composite query throughput.. 128
5.28 HBase ancestor query response time.. 129
5.29 HBase ancestor query throughput.. 129
5.30 HBase kindless query response time.. 130
5.31 HBase kindless query throughput.. 130
5.32 Hypertable ancestor query response time.. 131
5.33 Hypertable ancestor query throughput.. 131
5.34 Hypertable single query response time.. 132
5.35 Hypertable single query throughput.. 132
5.36 Hypertable 80:20 read to write ratio response times.. 132

xvi

6.1 An example state machine in Fantasm.. 138
6.2 Code example of Pipeline parallellizing work.. 139
6.3 Overview of RabbitMQ implementation in AppScale.. 148
6.4 Experimental setup to measure RTT and Bandwidth to a GAE Appli-
cation . 153
6.5 Round-trip Time Per Different Packet Size.. 154
6.6 Round-trip Time and Bandwidth Between a GAE Application andDif-
ferent EC2 Regions.. 154
6.7 Round-trip time from multiple regions to a deployed GAE application
with task queue delay.. 156
6.8 GAE benchmark variability. 159

7.1 VM operational probability . 178
7.2 Pricing and lifetime model of a small VM instance. 179
7.3 Speedup per Additional SIs. 182
7.4 Cost of Speedup. 183
7.5 MR Benchmarks with faults. 186

8.1 Live migration in AppScale. 192
8.2 Timeline of the migration process.. 195
8.3 CDF of migration latency. 202

xvii

List of Tables

6.1 EC2 Regions for Amazon Web Services.. 152
6.2 Execution time in seconds for the benchmarks in GAE.. 166
6.3 Pipeline benchmarks with RabbitMQ Task Queue on AppScale. . . . 167
6.4 Pipeline benchmarks on AppScale with SDK Task Queue. 167
6.5 Hive benchmarks on AppScale. 167

7.1 VM prices on EC2 West. 176

8.1 Lock synchronization of ZooKeeper. 201
8.2 Migration overhead of copy on write. 202
8.3 Entity load times. 203

xviii

Chapter 1

Introduction

Cloud computing has revolutionized the means of which corporations, both large

and small, maintain and operate their IT departments and infrastructure. The availabil-

ity of compute and storage resources has increased tremendously for organizations as

large cloud providers such as Amazon [2] and Rackspace [80] have servicized access of

these resources via well defined APIs and web consoles. Individuals and corporations

can now provide web services without the need to set up in-house resources. Customers

can outsource their IT infrastructure to specialized cloudproviders who have been able

to consolidate and streamline processes to drive down costs, allowing them to focus on

their core competencies.

Providers of cloud services make their resources availableto the general public with

certain characteristics which are indicative of cloud computing: scalability, elasticity,

and fault tolerance. The amount of resources which can be attained on-demand are

virtually unlimited. The on-demand nature of access to these resources gives users the

1

Chapter 1. Introduction

flexibility to grow and shrink based on their workloads–having them pay for only what

they use. Faults to the underlying physical resources are generally hidden from users

with access abstractions.

There are multiple layers in cloud computing, with many public and private com-

mercial offerings throughout the cloud stack. The lowest level offering is Infrastructure-

as-a-Service (IaaS) which provides virtualized machines,with Amazon Web Services

being a prime example and an early leader in dictating the public IaaS market. More-

over, there is a market for private cloud implementations ofIaaS for the self service of

IT resources within an organization. There are many privatecloud implementations of

AWS’s IaaS Elastic Compute Cloud (EC2) API including Eucalyptus, OpenStack, and

CloudStack.

Additionally, Platform-as-a-Service, a higher level abstraction than IaaS, has many

public and private offerings. Public offerings includes Heroku, Microsoft Azure, Google

App Engine (GAE), Amazon Elastic Beanstalk, and many others,while private cloud

PaaS offerings include AppScale, CloudFoundry, and OpenShift. These services and

products abstract away the IaaS layer and provide a fully managed application stack

which allows for simple deployment and ideally no maintenance for the developer.

The cost model for PaaS is based on metered usage with the capability to scale in

and out as required by the workload. Customers of such a platform pay for the usage

of APIs which interfaces with the infrastructure. Moreover, the provider will either

2

Chapter 1. Introduction

automatically scale up or down an application for any of the required services (i.e.,

GAE), allow the developer to dictate scaling rules (i.e., Azure), or give an easy-to-use

web console for manual scaling (i.e., Heroku). The APIs for differing IaaS and PaaS

offerings are similar in nature but are not easily interchangeable and readily portable.

Cloud architectures, IaaS and PaaS, have been designed and optimized for web ser-

vices, or also referred to as Software-as-a-Service (SaaS), the most common application

domain. This paradigm shifts the application hosting from the client (native binaries)

to a remote service which is accessible via a web browser or through a REST interface.

As the popularity of REST and service oriented architecture (SOA) has risen, the

support by high level languages has populated many offerings for web frameworks such

as Ruby on Rails (RoR), Django for Python, and Node.js for JavaScript. Developers

can use these mature frameworks which have a common set of reusable libraries on top

of a service provider who then takes care of server maintenance, backup, and scaling,

where scaling is a key concern due to the possiblity of attaing a large user base.

With the increase in internet usage and the proliferation ofweb enabled devices,

online services such as Gmail, Facebook, and Salesforce.com see tremendous traffic–

traffic which is logged in detail resulting in terabytes to petabytes of data. These logs

provide insight on how users are utilizing the service and other business critical infor-

mation such as fraud and anomaly detection.

3

Chapter 1. Introduction

Data sets at such sizes must be distributed across a collection of machines, and

as the datasets grow, existing relational technologies have shown themselves to slow

down to fulfill sophisticated SQL queries requiring a new setof technologies built for

large data. NoSQL datastores have been adopted to handle these data sets, providing

replication, fault tolerance, and high availability.

There are multiple public and private storage offerings forNoSQL. Amazon pro-

vides Simple Storage Service (S3), a highly scalable, highly reliable, and highly avail-

able key/value storage service. GAE offers Google’s BigTable technology, a highly

scalable column-oriented key/value store [16], as an API for web applications. Since

the publication of the BigTable technology, many open sourceoptions have arisen in-

cluding HBase, Hypertable, and Cassandra [45, 49, 14]. These open source technolo-

gies are currently deployed in companies such as Facebook, Reddit, and Baidu.

Many common relational features have been removed from NoSQL datastores to

attain the feature set of high availability, high throughput, and fault tolerance. These

features include full SQL and transaction support which cancause bottlenecks, high

latency response times, and even system failure when dealing with extremely large

datasets.

Because NoSQL datastores do not have a built-in fully expressive query language,

additional technologies and adapters have been added to analyze data. The most preva-

lent technology is MapReduce, made popular by Google’s paperin 2004 [30]. MapRe-

4

Chapter 1. Introduction

duce and open source implementations, such as Hadoop, are able to run mappers and

reducers on a data set which spans across multiple machines while automatically han-

dling faults. Higher level tools such as Pig and Hive [74, 67] were created to abstract

away the need to write mappers and reducers and supply a familiar SQL interface to

access the data. These tools can take large volumes of data and facilitate ad-hoc ana-

lytically queries.

Developers now face multiple challenges when selecting a NoSQL datastore to rely

on, as there has been a proliferation of NoSQL technologies.Any particular technol-

ogy has an API locking-in an application and hence moving from one technology to

another requires an expensive porting effort. Any porting effort requires the user to

learn the installation process, the procedure to start a distributed deployment, the API

to interface with the datastore, how to add and remove nodes,maintenance procedures,

backup methods, and how to correctly bring down or restart the system. This can be

a costly engineering endeavor. Furthermore, because thesetechnologies are in their

infancy compared to SQL offerings, there are new releases ofthe software often, and

this requires porting from one version to another to get bug fixes, new features, and

performance improvements.

Businesses also face challenges related to the multitude of choices for NoSQL tech-

nologies. In particular, there is no easy way for developersto compare and contrast

different offerings without having to become an expert in a set of datastores; there is

5

Chapter 1. Introduction

no simple way to move between datastores as the creators of such datastores are not in-

centivized to provide migration tools; there are lacking features developers have come

to expect such as transactions and an expressive query language. Applications which

are written for high scale may find that there is no one best-for-all-scenarios datas-

tore, and that different applications get better performance using a particular datastore.

Moreover, portions of an application may require features such as transactions, at the

expense of extreme scale.

1.1 Thesis Question

The primary research question that we explore in this dissertation can be stated as

follows:

How can we facilitate the portability and development of data-intensive
applications across cloud infrastructures and storage systems while ex-
panding functionality for analytics and migration via novel hybrid cloud
techniques?

To answer this question, we investigate novel support for the most commonly used

component of these types of applications: the datastore layer. In particular, we inves-

tigate the design and implementation of a datastore-agnostic software layer for cloud

platforms. The layer separates and buffers applications from the implementation of the

underlying datastore. There are currently over 150 NoSQL datastores today [72] that

6

Chapter 1. Introduction

can be plugged in our datastore layer, which currently include Cassandra, Hypertable,

HBase, Voldemort, Redis, MongoDB, and others.

Each datastore implementation requires a one time port to a unifying datastore API,

installation procedure, and deployment process. Our system then automatically does

installation, configuration, and starting of processes on adistributed system. Applica-

tions which run using our unifying datastore API are then able to change the underlying

technology underneath without modification. We outline this process in Chapter4.

We then export this level of indirection that this layer imparts in three unique ways

to enable a wider range of datastore functionality that is lacking for most NoSQL op-

tions today:

• Expanded NoSQL FeaturesImplement a common support infrastructure to pro-

vide application critical features including a limited form of ACID transactions

and secondary indexing, outline and detailed in Chapter4 and Chapter5, respec-

tively.

• Analytics Implement a hybrid cloud offline analysis system where we asyn-

chronously replicate data from an online transactional system cloud deployment.

The offline system provides expanded functionality which isrestricted by the

cloud platform. The data replication also lends itself for disaster recovery, capa-

ble of swap-over upon system failures (cf. Chapter6).

7

Chapter 1. Introduction

• Live Application Migration Implement the ability to move applications and

their data between cloud deployments where the underlying software stack is

updated or modified with minimal to no downtime (cf. Chapter8).

To investigate the design and implementation of these contributions, we have de-

veloped the first open source cloud platform. This platform-as-a-service technology

is called AppScale (cf. Chapter3). AppScale is API compatible with GAE, and thus

any application written for GAE can also be run on AppScale without modification.

AppScale is infrastructure agnostic, i.e., it executes over virtualized systems as well as

public and private cloud infrastructures. This facilitates application portability across

cloud and non-cloud clusters.

In summary, with this dissertation, we investigate new approaches to supporting

data-intensive cloud applications that simplify and facilitate portable use of emerging

storage and analytics tools (NoSQL datastores and MapReducetechnologies) and that

employ multiple clouds in concert (hybrid cloud computing)to do so. In particular, we

contribute the following with this dissertation:

• An open source PaaS for the research community to use and extend

• A datastore abstraction layer for plug and play interchangeability of datastores

• A datastore agnostic transaction support for NoSQL stores

• A datastore agnostic secondary indexing support for NoSQL stores

8

Chapter 1. Introduction

• Live migration of cloud applications

• A hybrid cloud system for data analytics and disaster recovery

The result we believe is a system with which the research community can investigate

new approaches to cloud computing as well as new techniques and technologies in

the areas of distributed storage, application development, service management, and a

hybrid cloud use, among others.

1.2 Dissertation Organization

This dissertation is organized as follows. I first provide a background on related

cloud technologies in Chapter2, which discusses the three layers of cloud computing–

SaaS, PaaS, and IaaS, and cloud technologies relevant to this thesis. Chapter3 gives

an overview of AppScale, the first open source PaaS. In Chapter4 I show the ability to

compare and contrast different datastores while also adding datastore-agnostic ACID

transactions support. Chapter5 gives another extension to the datastore-agnostic layer,

providing secondary indexing support for expanded querying capabilities. I connect

AppScale and GAE to form a hybrid cloud in Chapter6 to provide offline analytics and

show general methods using spot instances to reduce the costof data analytics platform

in Chapter7. Chapter8 shows the design and implementation of live migration support

9

Chapter 1. Introduction

within AppScale. I conclude in Chapter9 with related work, impact of of my thesis,

and future work.

10

Chapter 2

Background

In this chapter, we provide background on and survey the state-of-the-art in cloud

computing fabrics. Cloud computing has been standardized bythe NIST to have three

distinct layers in the cloud software stack: Software-as-a-Service (SaaS), Platform-as-

a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) [70]. Each layer has different

levels of abstraction from the physical hardware from whichthe software runs on top

of. We first consider each of the different levels shown in Figure2.1.

• Software-as-a-ServiceDynamic services on the internet which are accessible

via a browser can be classified as a SaaS product. Through a mixture of HTML,

JavaScript, CSS, and other technologies, websites are becoming more dynamic

with the capabilities of native applications which were previously only available

by installation on the local operating system. State has shifted from the local-

host to remote storage whose physical location can be unknown but addressable

11

Chapter 2. Background

Figure 2.1: Cloud computing software layers.

through a domain name or IP. Updates to state can be administered through HTTP

POST request via HTML or through JavaScript.

SaaS products have alleviated many problems software developers used to face

when required to ship shrink-wrapped software. Software development iteration

cycles can now be much quicker because updates can be server side rather than

client side. A user can get the latest version of the service by refreshing a web

page. Portability is provided by devices that run standardized browsers removing

worries such as whether the machine the client is using is big-endian or little-

endian or what operating system is running. Moreover, application intellectual

property is protected by having core code on the servers rather than the client

machine (although HTML, CSS, and JavaScript are visible to the client).

12

Chapter 2. Background

SaaS describes systems in which high-level functionality (e.g., SalesForce.com [83],

which provides customer relationship management softwareas an on-demand

service) is hosted by the cloud and exported to thin clients via the network. The

main feature of SaaS systems is that the API offered to the cloud client is for a

complete software service and not programming abstractions or resources. Com-

mercial SaaS systems typically charge according to the number of users and ap-

plication features. Other popular examples of SaaS includeHotmail, Facebook,

and Google Apps. It is not uncommon for services to have a freetier (freemium

model) and for the service to have a professional tier as wellwhere a user can

pay for additional storage or features.

• Infrastructure-as-a-ServiceHardware virtualization has given the ability to cre-

ate virtual machines (VMs) that run on physical hardware (with a guest operating

system) and have them share resources between different VM instances. With

hypervisors, such as Xen and KVM, VMs can be started by booting a disk image

on the host operating system. These guest VMs can be allocated a maximum

amount of memory, disk space, CPU cores, and network bandwidth.

The ability to rent and use resources in an on-demand nature was driven by the

outgrowth of virtualization in datacenters. Virtual machines can now be multi-

plexed on physical machines with resource isolation to allow for multitenancy.

13

Chapter 2. Background

Excess capacity can be sold to third parties who no longer have to to pay for

upfront costs of hardware acquisition. The provider is ableto achieve higher

utilization of their resources by selling off spare capacity, recouping system ad-

ministrator costs as well as power costs.

Customers of these services benefit from the elasticity of being able to grow and

shrink based on demand, where they can acquire a fully functional machine in

minutes or less. In the past, a machine would have required the installation of an

operating system which can take up to 30 or more minutes, granted a machine

was available on hand. Furthermore, VMs can be customized and have their

image saved to be repeatedly launched, saving the time required to build the

entire runtime software stack.

Customers of these resources are able to outsource their IT infrastructure and

administration costs and no longer have to worry about provisioning hardware

resources. Because resources are now rented on a fixed time granularity (usually

on a per-hour-basis), resource consumption can be elastic,growing and shrinking

entirely on a need basis. Moreover, the self-serve nature ofIaaS allows for less

overhead, as developers can request resources without involvement of system

administrators.

14

Chapter 2. Background

Providers of public IaaS have become very specialized at IT infrastructure that is

fault tolerant, highly available, and fast to provision. Yet, there is also a need to

bring these benefits to large datacenters which want the flexibility and elasticity

of the public cloud behind their firewall. We refer to this as aprivate cloud.

There are many software systems which enable IaaS for private clouds including

Eucalyptus, OpenStack, and CloudStack. These software systems are agnostic to

the virtualization layer, being able to provision and manage virtual machines on

demand regardless of whether the underlying technology is Xen, KVM, or some

proprietary software such as VMWare.

• Platform-as-a-ServiceHigher up the stack from IaaS there is the PaaS layer

which abstracts away the infrastructure and OS details. Theplatform allows de-

velopers to focus strictly on application development rather than VM or physical

machine management. Concerns about CPUs, memory, and disk areunder auto-

matic management and provisioning. The PaaS provider may provide a few op-

tions into how things are managed and scheduled (i.e., trading latency for lower

cost), but this is generally for more advance users of the system. The cloud

provider will provide the full run-time stack and may also restrict how resources

can be accessed via well defined APIs. However, some vendors will allow lower

level access via SSH to the virtual machine itself for advance users to optimize,

debug, and tinker with the run-time.

15

Chapter 2. Background

Some popular public PaaS offerings include Microsoft’s Azure, Google App En-

gine, Heroku, Salesforce, and EngineYard. Any developer can sign up and use

these public resources and start within the free tier. When their service requires

more resources, the customer can provide a credit card to scale beyond the free

quota. Different providers will charge for different metrics, but general ones in-

clude data storage, bandwidth, and front end server hours.

Much like IaaS, there is a desire to get the same capabilitiesof PaaS behind the

firewall. Centralization and automation of application hosting can provide cost

savings in infrastructure by consolidating resources, rather than forcing a pro-

grammer or IT staff to provision isolated resources for eachweb service or prod-

uct that needs to be developed. Developers no longer have to block on resource

allocation, as it becomes self service, allowing for quicker time to development.

2.0.1 History

Remote access to compute and storage resources has been around since the advent

of the internet, yet the emergence of Web 2.0 and the commodization of compute and

storage resources has proliferated the amount of web services available to internet users.

Additionally, service-oriented architectures (SOA), where services are loosely-coupled

and interoperable, has allowed for legacy systems to interface with web services, and

for new services to leverage existing ones.

16

Chapter 2. Background

One of the first movers in this industry of IaaS was Amazon’s Elastic Compute

Cloud (EC2) in August of 2006. Users could use a set of command line tools or a web

interface to start up virtual machines in a self service fashion and be charged on a per

hour basis. Other charges include the amount of bandwidth used and the storage of

each customized VM image.

Rackspace Cloud was another early service provider for a public IaaS with its initial

release in March of 2006. Since then many other companies have entered the market to

provide public IaaS cloud including Microsoft, Linode, Google, HP, IBM, and Cisco.

Heroku is a PaaS which first supported the Ruby-on-Rails (RoR) framework, and

has since added support for other languages including Java and Node.js. EngineYard,

another public PaaS supports RoR and PHP, while Amazon’s Elastic Beanstalk provides

Java, .NET, and PHP. Microsoft released Azure, a .NET cloud framework supporting

Visual Basic and C#. Google’s initial cloud service was GoogleApp Engine (GAE)

supporting the Python programming language, and then adding Java and Go in subse-

quent releases.

The IaaS and PaaS technologies mentioned are all public services, meaning any user

can sign up and use the service in a self service model. Yet, these same technologies

with their ability to scale, be fault tolerant, and self-service model, are very appealing

to owners of privately operated datacenters and owners of compute clusters.

17

Chapter 2. Background

Private IaaS software packages include Eucalyptus, which emulates the EC2 API,

the current market share leader in IaaS. Eucalyptus allows for any applications which

were written for EC2, to also run in local clusters without theneed to port. This is

also appealing in that it eliminates vendor lock-in. CloudStack also emulates the EC2

API, while OpenStack emulates the Rackspace Cloud API. Private cloud technologies

for PaaS give the same benefits of the public option yet behindan organization’s fire-

wall. CloudFoundry and OpenShift are two open source PaaS solutions currently in the

market.

2.0.2 Application Building Blocks

API support for PaaS solutions provide a wide range of capabilities. Some of these

include:

• Datastore

• Memcache

• Background Tasks

• Data Processing

• Monitoring

• User Management

18

Chapter 2. Background

• Blobstore

• Authentication

These APIs give access to scalable services which are charged on a usage basis,

and allow developers to quickly prototype and build new services without having to

reinvent commonly required services. Many PaaS offerings build upon well known

frameworks such as RoR, Django, and Spring to attract existingdevelopers familiar

with such technologies.

Of these APIs, the most commonly used is the datastore which allows applications

to persist their data. The most commonly used interface is SQL-based technologies for

datasets that can fit within a single node. For applications that require high throughput

and very large datasets (too large to fit on one machine), applications can use NoSQL

technologies that are designed for larger scale at the cost of feature sets.

The technologies which first brought NoSQL storage to the forefront was Google’s

BigTable [16] in 2006 and Amazon’s Dynamo [31] in 2007. BigTable provides storage

and access structured data in a sorted multi-dimensional map, while Dynamo provides

key/value access with high availability and eventual consistency. Both are designed for

very large datasets (terabytes to petabytes). These technologies inspired open source

implementations such as HBase [46], Hypertable [50], and Accumulo [1], which are

19

Chapter 2. Background

all BigTable clones, while Cassandra [14] is a BigTable and Dynamo hybrid using the

column-oriented data model and peer-to-peer architecture.

We target the PaaS cloud layer and the management of data for applications that run

on top of a PaaS for this thesis work. Much of the inspiration of this work comes from

the design of the Google App Engine cloud platform, from which we have emulated the

API in an open source platform called AppScale. AppScale is aprivate cloud option we

have built and maintained at UC Santa Barbara. We detail both AppScale and Google

App Engine in Chapter3.

20

Chapter 3

AppScale

In this chapter, we detail the AppScale cloud platform whichwe developed to en-

able our disseration research as well as the research of others into the next generation

of cloud systems and applications. AppScale is a software infrastructure that simpli-

fies the deployment of network-accessible programs over distributed cluster resources

by exporting the runtime platform “as a service”. AppScale is open source, fully dis-

tributed, scalable, fault resilient and executes over virtualized cluster resource including

on-premise (private virtualized clusters or on-premise IaaS systems) and public cloud

infrastructures (public IaaS systems). AppScale is uniquefrom other cloud offerings in

that the APIs it exports and implements are the same as those for Google App Engine.

That is, AppScale is API-compatible with Google App Engine.

Google App Engine is a public cloud PaaS that exports scalable and elastic web

service technologies via well-defined APIs. These APIs implement messaging, key-

value data storage, map-reduce, mail, and user authentication, among other services.

21

Chapter 3. AppScale

The platform facilitates easy asynchronous multi-tasking, web server support, elastic-

ity, and resource management. The most important of the APIsis the datastore which

persists data. GAE builds this API on top of two technologies: BigTable [16] and Mega-

store [6]. BigTable provides scalable storage with the capability todo range queries

based on keys. Megastore builds on top of BigTable, adding transaction support and

high availability.

App Engine applications developers debug and test their programs using an open-

source software development kit (SDK) provided by Google that implements non-

scalable versions of the APIs. Developers then upload theircode and data to Google

clusters and use Google cluster resources and services on a free (up to some fixed set

of per-resource quotas) and pay-per-use (resource rental)basis.

AppScale implements the APIs of App Engine by replacing the SDK implementa-

tions with distributed, scalable, and fault tolerant versions. Like App Engine, AppScale

implements multiple language runtimes – Java, Python, and Go – (via elastic applica-

tion servers). We employ a wide range of open source technologies for their imple-

mentations. We overview the APIs and their implementation techologies for both App

Engine and

By providing API-compatibility, any application that executes over Google App

Engine also executes over AppScale without modification. Since AppScale executes

over any virtualized cluster resources, users can deploy anAppScale cloud (a platform

22

Chapter 3. AppScale

that emulates Google App Engine) on-premise using cluster or IaaS resources or over

a public IaaS system. Currently, AppScale provides support for automatic deployment

over Eucalyptus and Amazon EC2. AppScale is not a replacementfor Google App

Engine or any other public cloud technology however. In particular, AppScale is only

as scalable as its underlying physical resource pool. Instead, AppScale is a robust

and extensible research infrastructure and private cloud platform that provisions the

available resources across multiple applications.

This chapter details the design and implementation of AppScale from a high level

and defines key terms which are used throughout this dissertation. Futuremore, it show-

cases the APIs supported by AppScale and their implementations. Lastly, it gives initial

experiments given real applications along with an evaluation analyzing the results.

3.1 Background

The open-source offering most similar to AppScale is Typhoonae [86] which came

out six months after our initial release. Typhoonae runs GAEpython applications and

does so with more scalable components than the SDK provides.

There are multiple differences between AppScale and Typhoonae. First, Typhoonae

(and any GAE applications that execute using it) is hosted entirely using a single

guestVM image, which places significant limitations on IaaSusage/accounting, per-

formance, scalability, and fault tolerance. AppScale is able to be deployed on many

23

Chapter 3. AppScale

machines and has been run up to as many as 96 nodes. Our API implementations are

meant for a distributed system whereas Typhoonae has a single point of failure for all

APIs. Moreover, AppScale has cloud support for IaaS software such as EC2, Eucalyp-

tus, and OpenStack or the vast selection of datastores.

3.2 AppScale

Figure 3.1: Overview of the AppScale design. The AppScale cloud consists of an
AppLoadBalancer (ALB), a Database Master (DBM), one or more Database Slaves
(DBS), one or more ZooKeepers (ZK), and one or more AppServers(ASs). Users
of GAE applications interact with ASs or indirectly throughthe load balancer; the
developer deploys AppScale and her GAE applications through the head node (i.e. the
node on which the ALB is located) using the AppScale Tools. AppControllers (ACs)
on each node interact with the other nodes in the system; ASs interact with the DBM
via HTTP or HTTPS.

24

Chapter 3. AppScale

To provide a platform for GAE application execution using local and private cluster

resources, to investigate novel cloud services, and to facilitate research for the next-

generation of cloud software and applications, we have implemented AppScale. App-

Scale is a multi-language, multi-component framework for executing GAE applica-

tions. Figure3.1 overviews the AppScale design and its high level roles and compo-

nents.

AppScale consists of a toolset (the AppScale Tools), three primary components, the

AppServer (ASs), the database management system, and the AppLoadBalancer (ALB),

and an AppController (AC) for inter-component communication. AppServers are the

execution engines for GAE applications which interact witha Database Master (DBM)

via HTTP for data storage and access. Database Slaves (DBSs) facilitate distributed,

scalable, and fault tolerant data management. The AppController is responsible for

setup, initialization, and tear down of AppScale instances, as well as cross component

interaction. In addition, the AppController facilitates deployment of and authentication

for GAE applications. The ALB serves as the head node of an AppScale deployment

and initiates connections to GAE applications running in ASs. The AC of the head

node also monitors and manages the resource use and availability of the deployment.

All communications across the system are encrypted via the secure socket layer (SSL).

A GAE application developer interacts with an AppScale instance (cloud) remotely

using the AppScale Tools. Developers use these tools to deploy AppScale, to submit

25

Chapter 3. AppScale

GAE applications to deployed AppScale instances, and to interact with and administer

AppScale instances and deployed GAE applications. We distinguish developers from

users; users are the clients/users of individual GAE applications.

An AppScale deployment consists of one or more virtualized operating system in-

stances (guestVMs). GuestVMs are Linux systems (nodes) that execute over the Xen

virtual machine monitor, the Kernel Virtual Machine (KVM) [57] or IaaS systems such

as Amazon’s EC2 and Eucalyptus For each AppScale deployment,there is a single

AppLoadBalancer (ALB) which we consider the head node, one or more AppServers

(AS), one Database Master (DBM) and one or more Database Slaves (DBSs). A node

can implement any individual component as well as any combination of these compo-

nents; the AppScale configuration can be specified by the developer via command line

options of an AppScale tool.

We next detail the implementation of each of these components. To facilitate this

implementation we employ and extend a number of existing, successful, web service

technologies and language frameworks.

3.2.1 ZooKeeper (ZK)

Roles of components of nodes is stored in ZooKeeper (ZK), which is fault tolerant

and fast locking system to handle distributed coordination. ZK nodes use the Paxos

algorithm to keep data synchronized between nodes. All roles must register with ZK

26

Chapter 3. AppScale

before proceeding with normal operation, and they must periodically check ZK to make

sure they correctly registered. ZK is also used by the transaction system explained in

the following chapter.

3.2.2 AppController (AC)

The AppController (AC) is a SOAP client/server daemon writtenin Ruby. The

AC executes on every node and starts automatically when the guestVM boots. The

AC on the head node starts the ALB first and initiates deployment and boot of any

other guestVM. This AC then contacts the ACs on the other guestVMs and spawns the

components on each node. The head node AC first spawns the DBM (which then starts

the DBSs) and then spawns the AppServers, configuring each with the IP of the DBM

(to enable access to the database via HTTP or HTTPS).

The AC on the head node also monitors the AppScale deploymentfor failed nodes

and for opportunities to grow and shrink the AppScale deployment according to sys-

tem demand and developer preferences. The AC periodically polls (currently every 10

seconds) the AC of every other node for a “heartbeat” and to collect per-application

behavior and resource use (e.g. CPU and memory load). When a component fails, the

AC restarts the component with the use of the Ruby process ’god’.

Although in this chapter we evaluate the static default deployment of AppScale,

we can also use this feedback mechanism to spawn and kill individual nodes of a de-

27

Chapter 3. AppScale

ployment to respond to system load and performance. Killingnodes reduces resource

consumption (and cost of resources are being paid for) and consists of stopping the

components within a node and destroying the guestVM. We spawn nodes to add more

AppServers, LoadBalancers, or Database Slaves to the system.

3.2.3 AppLoadBalancer (ALB)

The AppLoadBalancer is a Ruby on Rails [82] application that employs a sim-

ple HTTP server (nginx [71]) to select between three replicated Mongrel application

servers [66] (for head-node load balancing). The ALB distributes initial requests from

users to the AppServers (ASs) of GAE applications. Users initially contact the ALB

to request a login to a GAE application. The ALB provides and/or authenticates this

login and then selects an AS randomly. It then redirects the user request to the selected

AS. The user, once redirected, continues to use the AppServer to which she was routed

and does not interact further with the ALB unless she logs outor the AppServer she is

using becomes unreachable. We also have support for the ALB to act as a full proxy

rather than a reverse proxy.

3.2.4 AppServer (AS)

An AppServer is an extension to the development server distributed freely as part

of the Google AppEngine SDK for GAE application execution for the Python, Java,

28

Chapter 3. AppScale

and Go languages. Our extensions to the development server enable fully automated

execution of GAE applications on any virtualized cluster towhich the developer has

access, including EC2, Eucalyptus, and OpenStack. Our extensions provide a generic

datastore interface through which any database technologycan be used. We have im-

plemented this interface to HBase, and Hypertable, open-source implementations of

Google’s BigTable that execute over the distributed Hadoop File System (HDFS) [41].

We also have plugins for MySQL Cluster [68], Cassandra [14], Voldemort [88], and

more.

We intercept the protocol buffer requests from the application and route them over

HTTP to/from the DBM front-end called thePBServer. The PBServer implements the

interface to every datastore available and routes the requests to the appropriate data-

store. The interaction is simple but fully supported by a number of different error

conditions, and includes:

• Put: add a new item into the table (create table if non-existent)

• Get: retrieve an item by ID number or unique name

• Query: limited SQL query semantics

• Delete: delete an item by ID number or unique name

Chapter4 does into further details of this datastore interface.

29

Chapter 3. AppScale

Our other extensions facilitate automatic invocation of ASs and authentication of

GAE users. The AC of the node sets the location of the datastore (passed in from a

request from the head node AC), upon AS start. The AS also stores and verifies the

cookie secret that we use to authenticate users and direct the component to authenticate

using the local AppController (AC).

An AS executes a single GAE application at time. To host multiple GAE applica-

tions, AppScale uses additional ASs (one or more per GAE application) that it isolates

within their own AppScale nodes or that it co-locates withinother nodes containing

other AppScale components.

3.2.5 Data Management

In front of the Database Master (DBM) sits the The PBServer is the front-end of

the DBM. This Python program processes protocol buffers froma GAE application

and makes requests on its behalf to read and write data to the datastore. As men-

tioned previously, AppScale currently supports HBase and Hypertable datastores. Both

execute over HDFS within AppScale which performs replication, fault tolerance, and

provides reliable service using distributed Database Slaves. The PBServer interfaces

with HBase, Hypertable, Cassandra, and Voldemort using Thrift for cross-language

interoperation.

30

Chapter 3. AppScale

The AC on the DBM node provides access to the datastore via these interfaces to

the other ACs and the ALB of an AppScale system. The ALB stores uploaded GAE

applications as well as user credentials in the database to authenticate the developer and

users of GAE applications.

3.2.6 AppScale Tools

The developer employs the AppScale tools to setup an AppScale instance and to

deploy GAE applications over AppScale. The toolset consists of a small number of

Ruby scripts that we named in the spirit of Amazon’s EC2 tools for AWS. The tools

facilitate AppScale deployment on Xen-based clusters as well as IaaS infrastructures.

The latter two systems require credentials and service-level agreements (SLAs) for the

use, allocation (killing and spawning of instances) of resources on behalf of a devel-

oper; the EC2 tools (for either IaaS system) generate, manage, distribute (to deployed

instances), and authenticate the credentials throughout the cluster. The AppScale tools

sit above these commands and make use of them for credential management in IaaS

settings. In a Xen-only setting, no credential management is necessary; the tools em-

ploy ssh keys for cluster management. The tools enable developers to start an AppScale

system, to deploy and tear down GAE applications, to query the state and performance

of an AppScale deployment or application, and to manipulatethe AppScale configura-

31

Chapter 3. AppScale

tion and state. There is currently a limit of 10 on the number of applications that can be

uploaded, yet this number can be arbitrarily changed.

3.2.7 Tolerating Failures

There are multiple ways in which AppScale is fault tolerant.One component which

is fault tolerant is the AppController which executes on all nodes. If the AC fails on

a node with an AS, that AS can no longer authenticate users fora particular GAE

application but authenticated users proceed unimpeded. Users that contact an ALB to

re-authenticate (acquire a cookie) are redirected to a nodewith a functioning AS/AC

to continue accessing the application. If the AC fails on thenode with the ALB, no

new users can reach any GAE applications deployed in the AppScale instance and the

developer is not able to upload additional GAE applications; extant users however, are

unaffected. This scenario (AC on the ALB node failure) is similar to AC failure on

the DBM node. In this scenario (AC on the DBM node failure), ASs and users are

unaffected.

The database system continues to function as long as at leastone DBS is available

with a replica. Similarly, the system is tolerant to failureof the PBServer (DBM front-

end). If the PBServer fails on the DBM, the ASs will temporarilybe unable to reach

the database until the AC on the node restarts the PBServer. The ASs are not able to

continue to execute (GAE applications will fail) if the DBM goes down or becomes

32

Chapter 3. AppScale

unreachable. In this scenario, the ALB will restart the DBM component but unless the

data from the original DBM is available to restore, the restart is similar to restarting

AppScale.

Although, coupling multiple components per node reduces the number of nodes

(resource requirements) and potentially better utilizes underlying resources, it also in-

creases the likelihood of failure. For example, if all components are located in a single

node, node failure equals system failure–a single point of failure. If the node containing

the ALB and DBM fails, the system fails. In these scenarios, component failure does

not equal node failure however; the AC in the head node will attempt to restart com-

ponents with god. The DBM issues 3 replicas by default of tables for DBSs to store,

thus user data is available on failure of any individual DBS component. The Ruby god

process will automatically start up a process if it crashes for whatever reason, and will

also monitor a process and kill and restart it if it takes morethan a threshold of memory.

We distribute AppScale as a single Linux image and the AppScale Toolset. The

image contains the code for the implementation of all of the components and a 64-

bit Linux kernel and Ubuntu distribution. The system is available fromhttp://

appscale.cs.ucsb.edu/; all new programs that we have contributed carry the

Berkeley Software Distribution (BSD) License.

33

http://appscale.cs.ucsb.edu/
http://appscale.cs.ucsb.edu/

Chapter 3. AppScale

3.3 API Support

This section enumerates the many GAE APIs available for developers to use easing

their development process. Each API is scalable and some arebuilt upon others. All

APIs must have identical interfaces and side effects so as the applications which run

on top of them do not know whether they are running on Google’sinfrastructure or on

AppScale.

Figure 3.2: APIs in AppScale.

Datastore The Datastore API allows for the persistence of applicationdata. The

API provides both a key/value interface along with query support. The Google Query

Language (GQL) is similar to and is a subset of SQL; fundamentally, it lacks relational

34

Chapter 3. AppScale

operations such as JOIN and MERGE to enable scale and elasticity. An example of

such a query for an application where users sign a guestbook is as such:

SELECT * FROM Greetings ORDER BY date DESC LIMIT 10")

which states to get ten greetings sorted by descending date.

AppScale initially employed in-memory filters for GQL statements while later sup-

porting property indexing for scalable queries (detailed in Chapter5), emulating Google

App Engine’s use of BigTable and Megastore for data persistence.

AppScale implements transactional semantics (multi-row/key atomic updates) us-

ing the same semantics as Google App Engine. Transactions can only be performed

within an entity group. Entity groups are programmatic structures that describe rela-

tionships between datastore elements. Similarly, transactions are expressed within a

program via application functions passed to the Google App Engine run as transaction

function. All AppScale datastore operations within a transaction are ACID-compliant

with READ-COMMITTED isolation. Transaction support is expanded on in Chapter4

along with the capability of allowing for the pluggability of different NoSQL datastore

options.

This chapter uses the Cassandra plug in for its evaluation, while the subsequent

chapter evaluate a wider range of datastore technologies for the given API support with

and without transactions.

35

Chapter 3. AppScale

Namespace The Namespace API implements the ability to segregate data into dif-

ferent namespaces. For example, developers can test their application in production

without tampering with live production data. The NamespaceAPI can also be used

with the Memcache and Task Queue APIs.

It is implemented by appending the given namespace to the entity kind for table

naming, separated by a delimiter. This provides isolation between namespaces.

Memcache The Memcache API permits applications to store their frequently used

data in a distributed memory grid via a key/value API. This can serve as a cache to

prevent relatively expensive re-computations or databaseaccesses. Developers must be

aware that it is possible that entries may be evacuated to create space for new updates.

The Memcache API is implemented in AppScale using memcached, an open source,

distributed memory object caching system. AppScale placesa memcache role on each

machine which is running the same node as an AS. The keys have the application name

preprended to provide isolation between applications.

Blobstore Google App Engine’s Blobstore API is the primary method of storing large

objects. There are two methods of getting blobs uploaded, one is the Files API, in

which you directly supply a large binary object programmatically, and the other is via

an HTML form.

36

Chapter 3. AppScale

Figure 3.3: Memcache is distributed on multiple nodes and is shared state between
different ASes. ASes by themselves are stateless and can be started and stopped as
needed.

The Blobstore service in AppScale uses a server solely responsible for uploading

data into the datastore. This server is a python tornado server which handles request

from all applications. Figure3.4shows the flow for uploading blobs.

1. The user requests a web page which has an upload file form

2. The application will create a blobstore session and storethe session info into the

datastore to prevent unauthorized uploads and then return aunique path to the

blobstore server

3. The action path of the HTML form contains the path from the previous step

37

Chapter 3. AppScale

Figure 3.4: Blobstore allows for the uploading of large files which are stored in the
datastore in 1MB chunks.

4. When the user submits the form it goes to the blobstore server

5. The blobstore server interacts with the datastore by verifying the session, storing

blob information, storing the file in 1MB chunks, and the removing the session

6. A POST is done to the successful path (stored as meta data) and all form elements

are forwarded

7. The successful path handler does a redirect

8. The redirect is forwarded to the user client

XMPP The XMPP API gives user the ability to receive and send messages using

a valid XMPP account. Google App Engine leverages the GoogleTalk infrastructure

38

Chapter 3. AppScale

while AppScale employs Ejabberd, an instant messaging software written in Erlang and

highly scalable.

Channel The Channel API allows for the pushing of messages to a client’s JavaScript

code. AppScale’s scalable implementation is built using Ejabberd and StropheJS, two

open source projects.

There are two sets of APIs for the developer. First is the API which consists of

createchannel(appclient id) andsendmessage(appclient id, message). The create

channel API uses the XMPP service implementation of AppScale. We are able to lever-

age Ejabberd to take care of the distribution and sending of messages. We must create

temporary accounts with each new channel created. This requires garbage collection of

channels which live on longer than a prescribe period of time.

The second set of APIs is for the JavaScript client which can be included into the

developer’s code by adding an import statement within the header of the user’s HTML

code.

This API allows for the creation of connections using StropheJS. Strophejs is a ro-

bust and open source project that enabled BOSH connections toEjabberd. The creation

of a channel socket uses StropheJS’s connections, as well asits message callbacks. The

functions have the same name and functionality to preserve the API, but the implemen-

39

Chapter 3. AppScale

tation is different, where Google’s implementation uses Google Talk and their internal

XMPP service.

Users The Users API provides authentication for web applicationsthrough the use of

HTTP cookies. Google App Engine’s implementation leverages the Google Accounts

infrastructure, so users with a Google Account can use it to access App Engine apps.

Since AppScale does not have access to this infrastructure,it requires that users create

an account through an AppScale portal URL. Alternatively, AppScale can be extended

to employ other authentication services, e.g. those provided by the Eucalyptus open

source cloud infrastructure or via LDAP. The AppScale implementation of this API

distinguishes between regular users, application administrators, and cloud administra-

tors (the latter categories possessing greater privileges).

Mail AppScale allows for outgoing mail using the Unix commandsendmail, whereas

Google leverages their GMail infrastructure. AppScale does not, however, currently

support incoming mail.

Images The Images API facilitates programmatic manipulation of images. Popular

functions in this API include the ability to generate thumbnails, perform rotations, com-

position, conversion between formats, and cropping images. AppScale is able to use

the SDK implementation.

40

Chapter 3. AppScale

URL Fetch An application can perform POST and GET requests on remote resources

using the URL Fetch API. In addition, the application can access REST APIs from third

parties using this API. Certain outgoing ports are limited for security reasons. The SDK

implementation is used, but modified to also allow for asynchronous fetches.

Task Queue The Task Queue API facilitates asynchronous computation (tasks) by

applications. Such background computation is important for applications that perform

operations other than those in response to a web request. In AppScale, cloud admin-

istrators can set both the (inline) computation duration limit and asynchronous task

duration limit if desired. Moreover, tasks can be chained sothat one task can pick up

where a previous one left off. The implementation is discussed in detail in Chapter6.

3.4 Evaluation

We next present the basic performance characteristics of AppScale default deploy-

ment of four nodes using a full proxy at the ALB. We note that this study presents a

baseline from which we will work to improve the performance and scalability of the

system over time and serves as a snapshot in time. Our goal with AppScale to provide

a research framework for the community, thus, we and others will likely identify ways

to improve its performance over time. We simply provide a framework with which to

41

Chapter 3. AppScale

investigate existing open source GAE applications, services, and execution characteris-

tics using local cluster resources.

3.4.1 Methodology

We use the Multi-Mech framework capable to simulating multiple concurrent users.

We use the configuration of a max of 60 concurrent threads for arun time of 300

seconds. Threads are ramped up evenly over the course of the experiment until all 60

threads are operating, simulating organic growth. For eachexperiment, we investigate

throughput (number of transactions per second) and latency. Numbers are calculated

and put into 30 second buckets.

Our testbed uses Eucalyptus 3.0. We acquired 4 VMs of m1.large with the charac-

teristics of 4 cores with 7500 MB of RAM and 20 GB of instance disk space.

Our benchmarks consist of real applications that run on the GAE framework. Here

we look at three different applications: guestbook, shell,and sieves. The guestbook

application allows for users to sign a post. Of our test users, half either request to see

the signing, or sign the guestbook themselves. The shell application allows for python

commands to be run on a shell-like setting. Our test users allrun the command ”a =

5; b = 2; a + b;”. The sieves application prints out the first 1000 prime numbers, and,

unlike the other two applications, does not access the datastore.

42

Chapter 3. AppScale

(a) AppScale (b) Google

Figure 3.5: Points of latency of request over time as users are ramped up over time for
the guestbook application.

(a) AppScale (b) Google

Figure 3.6: Time series of latency of request over time showing the 80th percentile,
90th percentile, and average as users are ramped up over timefor the guestbook appli-
cation.

The guestbook application consists of two database accesses. The first is a query for

the last ten items posted on the site. The other is a posting tothe site. Figure3.5shows

the plotting of all latencies for each request. We see that inAppScale the latency grad-

ually increases as more and more users enter the system, while Google maintains some

consistency before getting more sporadic results. Figure3.6 shows the average of the

points as well as the 80th and 80th percentile. Here we see while AppScale increases in

its latency, Google maintains consistency latency until the 220 second mark. Figure3.7

has the number of transactions per second achieved by AppScale and Google, and it

43

Chapter 3. AppScale

(a) AppScale (b) Google

Figure 3.7: Throughput over time as the number of users are ramped up overtime for
the guestbook application.

(a) AppScale (b) Google

Figure 3.8: Points of latency of request over time as users are ramped up over time for
the shell application.

can be seen that throughput drops over time for AppScale, while Google is able to scale

well with its virtually unlimited resources.

The primary reason for the inadequate performance by AppScale is because query

support brings the entire table into the memory before beingfiltered. Hence, there is not

only additional load as users are posting but also adding to the amount of data which

must be filtered in memory. This inefficiency is addressed in Chapter5 in which range

query support is used to get O(1) timing much like how Google is able to achieve with

its BigTable/Megastore storage layer.

44

Chapter 3. AppScale

(a) AppScale (b) Google

Figure 3.9: Time series of latency of request over time showing the 80th percentile,
90th percentile, and average as users are ramped up over timefor the shell application.

(a) AppScale (b) Google

Figure 3.10: Throughput over time as the number of users are ramped up overtime for
the shell application.

The shell application sees better performance compared to guestbook. Here each

operation does writes and reads to the datastore to store thevariables given by the user

in the command line. Figure3.8 shows slower growth in latency but also shows a bi-

modal latency where a majority of latencies are less than onesecond, but there are

also segments of latencies after the 140 second mark of higher than 3 seconds, which

explains the temporary drop in throughput shown in Figure3.10(a). Google’s respon-

siveness is more variable compared to AppScale’s in the first150 seconds. AppScale

is able to achieve higher throughput more quickly, but kneels over after the 110 second

mark. Google gets to the 80 transactions per second mark right before the end of the

45

Chapter 3. AppScale

(a) AppScale (b) Google

Figure 3.11: Points of latency of request over time as users are ramped up over time
for the sieves application.

(a) AppScale (b) Google

Figure 3.12: Time series of latency of request over time showing the 80th percentile,
90th percentile, and average as users are ramped up over timefor the sieves application.

experiment, but it should be noted that our load generator machine was in the same

subnet as that of AppScale, whereas Google suffered a higherlevel of latency due to

round trip time which we measured at 51ms. We also see higher variance at the end of

the experiment for Google where the throughput tapered off.

The sieves application is only computational, and does not access the datastore.

Here in Figure3.11(a)and Figure3.12(a)we see that AppScale has two levels of re-

sponsiveness, one which is under two seconds in latency, andthe other which grows as

the number of users grows. By comparison, Figure3.11(b)and Figure3.12(b)has much

higher variability in its responsiveness. AppScale maintains a much higher level of

46

Chapter 3. AppScale

(a) AppScale (b) Google

Figure 3.13: Throughput over time as the number of users are ramped up overtime for
the sieves application.

transactions per second for the sieves application at 12 persecond, compared to Google

which ranges between 1.0 and 3.0 per second (Figure3.13(a)and Figure3.13(b), re-

spectively).

3.5 Summary

We present AppScale, an open source PaaS cloud computing research framework

that emulates the Google AppEngine-based cloud offering. AppScale is easy to use

and to extend and automatically deploys itself and GAE applications over Xen-based

cluster resources and IaaS clouds such as Amazon EC2 and Eucalyptus. AppScale

implements a number of different components that facilitate deployment of GAE appli-

cations using local (non-proprietary resources). Moreover, AppScale provides a frame-

work with which cloud researchers and application developers can investigate new tech-

niques (services, tools, schedulers, optimizations), andthe performance and behavior

of these techniques, and for real (GAE) applications.

47

Chapter 3. AppScale

This chapter gave an overview of the research platform that is central to the the

dissertation thesis. AppScale provides the framework for which the subsequent chap-

ters are based off of where real GAE application can run. Later chapters expand on

AppScale on thesis topics related to scalable data management, including transaction

support for NoSQL datastores and big data analytics. The next chapter looks to ex-

tend AppScale by supplying a pluggable interface for datastores and the means for a

middleware for supplemental feature sets such as transactions.

48

Chapter 4

A Database-Agnostic Cloud Platform
with Transaction Support

Given the availability of vast compute and storage resources available on-demand,

along with virtually infinite amounts of information (financial, scientific, social) via

the Internet, applications have become increasingly data-centric and our data resources

and products have grown explosively in both number and size.One prominent way

in which a wide range of applications access such data is via well-defined structures

that facilitate data processing, manipulation, and communication. Structured data ac-

cess (via database/datastore systems) is a mature technology in wide-spread use that

provides programmatic and web-based access to vast amountsof data efficiently.

Public and private cloud providers increasingly employ specialized databases, called

key-value stores (or datastores) [17, 28, 31, 16, 46, 14, 81, 88, 64, 50]. These systems

support structured data access over warehouse-scale resource pools, by large numbers

of concurrent users and applications, and with elasticity (dynamic growing and shrink-

49

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

ing of resource and table use). Examples of public cloud datastores include Google’s

BigTable, Amazon Web Services (AWS) SimpleDB, and Microsoft’sAzure Table Stor-

age. Examples of private or internal cloud use of datastoresinclude Amazon’s Dy-

namo [31], and customized versions of open source systems (e.g. HBase[46], Hyper-

table [50], Cassandra [14], etc.) is in use by Facebook, Baidu, SourceForge, LinkedIn,

Twitter, Reddit, and others.

To enable high scalability and dynamism, key-value stores differ significantly from

more traditional database technologies (e.g. relational systems) in that they are much

simpler (entities are accessed via a single key) and excludesupport for multi-table

queries (e.g. joins, unions, differencing, merges, etc.) and other features such as multi-

row (multi-key) atomic transaction support. Extant datastore offerings differ in query

language, topology (master/slave vs peer-to-peer), data consistency policy, replication

policy, programming interfaces, and implementations in different programming lan-

guages. Moreover, each system has a unique methodology for configuring and deploy-

ing the system in a distributed environment.

In this chapter, we address two growing challenges brought up by the thesis ques-

tions with the use of cloud-based datastore technologies. The first is the vast diversity

of offerings: applications written to use one datastore must be modified and ported to

use another. Moreover, it is difficult to ”test drive” publicofferings extensively without

paying for such use, and challenging to configure and deploy distributed open source

50

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

technologies in a private setting. The second challenge is the lack of support for atomic

transactions across multiple keys in a table. Most datastores offer atomic updates at

the row (key) level only which are important for applications where eventually consis-

tent data can be hard to reason about in application logic. The lack of all-or-nothing

updates to multiple data entities concurrently precludes many business, financial, and

data-analytic applications and significantly limits datastore utility for all but very sim-

ple applications.

To address these issues, we present the design and implementation of a database-

agnostic, portability layer for cloud platforms. This layer consists of a well-defined

API for key-value-based structured storage, a plug-in model for integrating different

database/datastore technologies into the platform, and a set of components that auto-

matically configures and deploys any datastore that is plugged into the layer. This layer

decouples the API that applications use to access a datastore from its implementation

(to enable program portability across datastore systems) and automates distributed de-

ployment of these systems (to make it easy to configure and deploy the systems). De-

velopers write their application to use our datastore API and their applications execute

using any datastore that plugs into the platform, without modification. This support

enables us to compare and contrast the different systems fordifferent applications and

usage models and enables users to select across different datastore technologies with

less effort and learning curve.

51

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

To address the second challenge, we extend this layer to provide distributed trans-

actional semantics for the datastore plug-ins. Such semantics increase the range of

applications that can make use of cloud systems. Our approach emulates and extends

the limited transaction semantics of the Google App Engine cloud platform to pro-

vide atomic, consistent, isolated, and durable (ACID) updates to multiple rows at a

time for any datastore that provides row-level atomicity. To enable this, we rely on

ZooKeeper [94], an open-source distributed directory service that maintains consistent

and highly available access to metadata using a variant of the Paxos algorithm [59, 15].

We implement this database-agnostic software layer withinthe open source App-

Scale cloud platform and integrate a number of different popular open source and pro-

prietary database and datastore systems. These plug-ins include Cassandra, HBase,

Hypertable, and MySQL cluster [69] (which we employ as a key-value store), among

others. Moreover, since AppScale executes over different infrastructure-as-a-service

(IaaS) cloud systems (Amazon EC2 [2] and Eucalyptus [73, 34]) and emulates Google

App Engine functionality, developers are given the freedomto choose the infrastructure

on which their application runs on, providing far reaching application portability.

In the sections that follow, we present related work and thendescribe the design and

implementation of the abstract database layer that decouples the AppScale datastore

API from the plug-ins (implementations of the API). We describe how we extend this

layer with ACID transaction semantics in a database-agnostic fashion in Section4.3.

52

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

We then present an evaluation of the system using different datastores in Section4.6,

and conclude in Section4.7.

4.1 Background

Distributed transactions, two-phase locking, and multi-version concurrency control

(MVCC) have been employed in a multitude of distributed systems since the distributed

transaction process was defined in [8]. Our design is based on MVCC and uses ver-

sioning of data entities. Google App Engine’s implementation of transactions uses

optimistic currency control [90], which was first presented by Kung et al. in 1981 [56].

There are two systems closely related to our work that provide a software layer

implementing transactional semantics over top of distributed datastore systems. They

are Google’s Percolator [76] and Megastore [7]. Percolator is a system, proprietary to

Google, that provides distributed transaction support forthe BigTable datastore. The

system is used by Google to enable incremental processing ofweb indexes. Megastore

is the most similar to our system as it is used directly by Google App Engine for trans-

actions and for secondary indexing. Our approach is database agnostic and not tied

to any particular datastore. Prior approaches tightly couple transaction support to the

database. DAT can be used for any key/value store and, with AppScale, provide scale,

fault tolerance, and reliability with an open source solution. Moreover, our system is

platform agnostic as well (running in/on Eucalyptus, OpenStack [75], EC2, VMWare,

53

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

Xen [92], and KVM [57]) while automatically installing and configuring a datastore

and the DAT layer for any given number of nodes.

Cloud TPS [89] provides transactional semantics over key spaces in datastores such

as HBase. Cloud TPS achieves high throughput because its design is based heavily in

in-memory storage. Replication is done across nodes in memory, and the system will

periodically flush the data to a persistence layer such as S3 or another cloud storage.

DAT differs from Cloud TPS providing higher durability because DAT requires each

write to be written to disk. In the case of system wide outages, it is possible to lose all

transactions which have not been persisted with Cloud TPS, while in DAT all writes are

written to a journal which is replicated on disk at multiple nodes.

In [53] Kossman et al. compared different clouds and datastores, one of which is

GAE. GAE has improved over time so the results, while valid atthat point in time, are

no longer valid. The same can be said for the other clouds which were benchmarked,

as each system has evolved over time. Likewise, any results given in this thesis is also

a snapshot in time for any given technology.

4.2 The AppScale Database Support and Portability Layer

In this chapter, we investigate a database-agnostic software layer for cloud plat-

forms that decouples the datastore interface from its implementation(s) and automates

distributed deployment of datastore systems. We design andimplement this layer as

54

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

Figure 4.1: The AppScale Software Stack. This chapter presents the design and im-
plementation of the database software layer and its extensions in support of distributed,
database-agnostic, multi-key transactional semantics.

part of the AppScale cloud platform and then extend it to support database-agnostic

distributed transaction support.

Figure4.1 shows the AppScale software stack. At the top of the stack arethe ap-

plication servers that serve Python, Java, and Go applications. The AppScale APIs that

the applications employ leverage existing open source software such as eJabberD [32]

and memcacheD [63], or custom services (e.g. blobstore) that we provide, for their im-

plementations. AppScale uses Nginx [71] and HAProxy [44] to route and load balance

requests to the application servers. Nginx provides SSL connections, and HAProxy

55

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

performs health checks on servers, routing only to responsive application servers. A

background service on each node in AppScale restarts any service that stops function-

ing correctly. An AppScale cloud consists of a set of virtualmachine instances (nodes)

working together in a distributed system, each of which implement this software stack.

The AppController is a software layer in the stack that is in charge of service initi-

ation, configuration, and heart beat monitoring, cloud-wide. Below the AppController

is the database-agnostic software layer (to which we refer to as the datastore support

layer in the figure).

Our new datastore support layer decouples application access to structured data

from its implementation. It is this layer we extend with ACID transaction semantics in

the next section. This layer exports a simple yet universal key-value programming in-

terface that we implement using a wide range of available datastore technologies. This

layer provides portability for applications across datastores, i.e. applications written to

access this datastore interface will work with any datastore that implements this inter-

face, without modification. The interface provides full GAEfunctionality and consists

of:

• Put(table, key, value)

• Get(table, key)

• Delete(table, key)

56

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

• Query(table, q)

Put stores the value given the key and creates a table if one does not already exist.

If a Get or Query is performed on a table which does not exist, nothing is returned.

A Delete on a key which does exist results in an exception.Queryuses the Google

Query Language (a subset of SQL) syntax and semantics.

The data values that AppScale stores in the datastore are called entities (data ob-

jects) and are similar to those defined by GAE [90]. Each entity has a key object;

AppScale stores each entity according to its key as a serialized protocol buffer [78].

We implement the datastore API in AppScale using popular open source, distributed

datastore systems. These include HBase [46], Hypertable [50], Cassandra [14], Re-

dis [81], Voldemort [88], MongoDB [65], SimpleDB [84], and MySQL Cluster [69].

HBase and Hypertable both rely on HDFS [42] for their distributed file system imple-

mentations, as does the Map-Reduce API which integrates Hadoop MapReduce [43]

support.

Each AppScale cloud deployment implements a single datastore (cloud-wide). The

AppController in the system interacts with a template that configures and deploys each

datastore dynamically upon cloud instantiation. The set ofscripts configure, start, stop,

and test an instantiated datastore using the following API:

• start db master()

57

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

• start db slave()

• setupdb config files(masterip, slaveips, creds)

• stopdb master()

• stopdb slave()

Each datastore must implement these calls. To set up the configuration files, the App-

Controller provides template files and inserts node names as appropriate. The ”creds”

argument is a dictionary in which additional, potentially datastore-specific, arguments

are passed, e.g. the number of replicas to use for fault tolerance.

4.3 Database-Agnostic Distributed

Transaction Support

We next extend the datastore support layer in the cloud platform with ACID trans-

action semantics. We refer to this extension as database-agnostic transactions (DAT).

Such support is key for a wide range of applications that require atomic updates to

multiple keys at a time. Thus, we provide it in a database-agnostic fashion that is in-

dependent of any datastore but that can be used by all datastores that plug into the

database support layer.

58

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

4.3.1 DAT Design

To enable DAT, we extend the AppScale datastore API with support for specifying

the boundaries of a transaction programmatically. To ensure GAE compatibility, we

use the GAE syntax for this API:

run_in_transaction

which defines the transaction block.

We make three key assumptions in the design of DAT. First, we assume that each

of the underlying datastores provide strong consistency. Most extant datastores provide

strong consistency either by default (e.g. HBase, Hypertable, MySQL-cluster) or as a

command-line option (e.g. Cassandra). Second, we assume that any datastore that plugs

into the DAT layer provides row-level atomicity. All the datastores we have evaluated

provide row-level atomicity, where any row update providesall-or-nothing semantics

across the row’s columns. Third, we assume that there are no global or table-level

transactions; instead, transactions can be performed across a set of related entities. We

impose this restriction for scalability purposes, specifically to avoid slow, coarse-grain

locking across large sections or tables of the datastore.

To enable multi-entity transactional semantics, we employthe notion of entity groups

as implemented in GAE [90]. Entity groups consist of one or more entities, all of whom

59

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

share the same ancestor. This relationship is specified programmatically. For example,

the Python code for an application that specifies such a relationship looks as follows:

class Parent(db.Model):

balance = db.IntegerProperty()

class Child(db.Model):

balance = db.IntegerProperty()

p = Parent(key_name="Alice")

c = Child(parent=p, key_name="Bob")

A class is a model that defines akind, an instance of a kind is an entity, and an entity

group consists of a set of entities that share the same root entity (an entity without a

parent) or ancestor. In addition, entity groups can consistof multiplekinds. An entity

group defines the transactional boundary between entities.

The keys for each of these entities are:

app id\Parent:Alice

and

app id\Parent:Alice\Child:Bob

for p (Alice) andc (Bob), respectively. Alice is a root entity with attributes type (kind),

key name (a reserved attribute), and balance. The key of a non-root entity, such as

Bob, contains the name of the application and the entire path of its ancestors, which for

this example, consists of only Alice. It is possible to have adeeper hierarchy of entities

60

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

as well. AppScale prepends the application ID to each key to enable multitenancy for

datastores which do not support dynamic table creation and thus share one key space.

A transactional work-flow in which a program transfers some monetary amount

from the parent entity to the child entity is specified programmatically as:

def give_allowance(src, dest, amount):

def tx()

p = Parent.get_by_key_name(src)

c = Child.get_by_key_name(dest)

p.balance = p.account - amount

p.put()

c.balance = c.balance + amount

c.put()

db.run_in_transaction(tx)

A transaction may composegets, puts, deletesandquerieswithin a single entity

group. Any entity without a parent entity is a root entity; a root entity without child

entities is alone in an entity group. Once entity relationships are specified they cannot

be changed.

61

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

4.3.2 DAT Semantics

DAT enforces ACID (atomicity, consistency, isolation, and durability) semantics for

each transaction. To enable this, we use multi-version concurrent control (MVCC) [8].

When a transaction completes successfully, the system attempts to commit any changes

that the transaction procedure made and updates thevalid version number(the last com-

mitted value) of the entity in the system. The operationsput or deleteoutside of a pro-

grammatic transaction are transparently implemented as transactions. If a transaction

cannot complete due to either a program error or lock timeout, the system rolls back

any modifications that have been made, i.e., DAT restores thelast valid version of the

entity.

A read (get) outside of a programmatic transaction accesses the valid version of the

entity, i.e., reads have “read committed” isolation. Within a transaction, all operations

have serialized isolation semantics, i.e., they see the effects of all prior operations. Op-

erations outside of transactions and other transactions see only the latest valid version

of the entity.

The implementation of transaction semantics GAE and AppScale differ, each hav-

ing their own set of trade-offs. GAE implements transactions using optimistic concur-

rency control [9]. If a transaction is running, and another one begins on the same entity

group, the prior transaction will discover its changes havebeen disrupted, forcing a

retry. An entity group will experience a drop in throughput as contention on a group

62

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

grows. The rate of serial updates on a single root entity, or an entity group depends on

the update latency and contention, and ranges from 1 to 20 updates per second [7].

We instead associate each entity group with a lock. DAT attempts to acquire the

lock for each transaction on the group. DAT will retry three times (a default, config-

urable setting) and then throw an exception if unsuccessful. In contrast to GAE, we

provide a fixed amount of throughput regardless of contention depending on the length

of time the lock is held before being released. A rollback foran active transaction for

an entity group does not get triggered when a new transactionattempts to commence

for that same entity group as it does for GAE, but a transaction must acquire the lock in

DAT before moving forward, a restriction GAE does not have. In practice, our locking

mechanism is simple, works well, and provides sufficient throughput in private cloud

settings which always consist of orders of magnitude fewer machines than Google’s

public cloud.

We also have designed DAT to handle faults at multiple levels, although we do

not handle Byzantine faults. Failure at the application level is detected by a timeout

mechanism. We reset this timeout each time the application attempts to modify the

datastore state to avoid prolonged stalls. We also prevent silent updates and failures at

the database support layer and describe this further in the next section.

63

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

4.4 DAT Implementation

To implement DAT within AppScale, we provide support for entities, an implemen-

tation of the programmatic datastore interface for transactions (run in transaction), and

multi-version consistency control and distributed transaction coordination (global state

maintenance and locking service). To support entities, we extend the AppScale key-

assignment mechanism with hierarchical entity naming and implement entity groups.

Each application that runs in AppScale owns multiple entitytables, one for each en-

tity kind it implements. We create each entity table dynamically whena put is first

invoked for a new entity type. In contrast, GAE designates a table for all entity types,

across all applications. We chose to create tables for each entity kind to provide addi-

tional isolation between applications.

We implement an adaptation of multi-version consistency control to manage con-

current transactions. Typically timestamps on updates areused to distinguish ver-

sions [8]. However, not all datastores implement timestamp functionality. We thus

employ a different, database agnostic, approach to maintaining version consistency.

First, with each entity, we assign and record a version number. This version number is

updated each time the entity is updated. We refer to this version number as thetrans-

action ID since an update is associated with a transaction. We maintain transaction

64

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

IDs using a counter per application. Each entry in an entity table contains a serialized

protocol buffer and transaction ID.

To enable multiple concurrent versions of an entity, we use asingle table, which we

call the journal, to store previous versions of an entity. AppScale applications do not

have direct access to this table. We append the transaction ID (version number) to the

entity row key (in AppScale it is the application ID and the entity row key) which we

use to index the journal.

4.4.1 Distributed Transaction Coordinator (DTC)

To enable distributed, concurrent, and fault tolerant transactions, DAT implements

a Distributed Transaction Coordinator (DTC). The DTC provides global and atomic

counters, locking across entity groups, transaction blacklisting support, and a verifica-

tion service to guarantee that accesses to entities are madeon the correct versions.

The DTC enables this through the use of ZooKeeper [94], an open source, dis-

tributed locking service that maintains consistent copiesof data in a distributed setting

via the Paxos algorithm [59, 15]. ZooKeeper is the open source equivalent to Google’s

Chubby locking service [13] which is fault tolerant and provides strong consistency for

the data it stores. The directory service allows for the DTC to create arbitrary paths, on

which both leaves and branches can hold values.

The API for the DTC is

65

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

• txn id getTransactionID(app id)

• bool acquireLock(app id, txn id,

root key)

• void notifyFailedTransaction(app id,

txn id)

• txn id getValidTransactionID(app id,

previous txn id, row key)

• bool registerUpdateKey(app id,

current txn id, target txn id,

entity key)

• bool releaseLock(app id, txn id)

• block range generateIDBlock(app id,

root entity key)

DAT intercepts and implements each transaction made by an application (put, delete,

or programmatic transaction) as a series of interactions with the DTC via this API.

A transaction is first assigned a transaction ID by the DTC (getTransactionID)

which returns an ID with which all operations that make up thetransaction are per-

formed. Second, DAT obtains a lock from the DTC (acquireLock) for the entity

66

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

group over which the operation is being performed. For each operation, DAT verifies

that all entities accessed have valid versions (getValidTransactionID). For each

putor deleteoperation, DAT registers the operation with the DTC. This allows the DTC

to track of which entities within the group are being modified, and, in the case where

the application forces a rollback (applications can throw arollback exception within

the transaction function) or any type of failure, the DTC cansuccessfully know what

the current correct versions of an entity are. The API call ofregisterUpdateKey

is how previously valid states are registered. This call takes as arguments the current

valid transaction number, the transaction number which is attempting to apply changes,

and the root entity key to specify the entity group.

When a transaction completes successfully or a rollback occurs (due to an error dur-

ing a transaction, application exception, or lock timeout), DAT notifies the DTC which

releases the lock on that entity group, and the layer notifiesthe application appropri-

ately. We set the default lock timeout to be 30 seconds (it is configurable). DAT notifies

the application via an exception.

Transactions that start, modify an entity in the entity table, and then fail to commit

or rollback due to either a failure, thrown exception, or a timeout, areblacklistedby

the system. If an application attempts to perform an operation that is part of a black-

listed transaction, the operation fails and DAT returns an exception to the application.

Application servers that issue operations for a blacklisted transaction must retry their

67

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

transaction under a new transaction ID. Any operations which were executed under a

failed transaction are rolled back to the previous valid state.

Every operation employs the DTC for version verification. Aget operation will

fetch from an entity table which returns the entity and a transaction ID number. DAT

checks with the DTC whether the version is valid (i.e., is noton the blacklist and is

not part of an uncommitted, on-going transaction). If the version is not valid, the DTC

returns the valid transaction ID for the entity and DAT uses this ID with the original

key to read the entity from the journal.Getoperations outside of a transaction are read-

committed as a result of this verification (we do not allow fordirty reads). The result

of a query must follow this step for each returned entity. BothGAE and AppScale

recommend that applications keep entity groups small as possible to enable scaling

(parallelizing access across entity groups) and to reduce bottlenecks.

Lone putsanddeletesare handled as if they were individually wrapped program-

matic transactions. For aput or deletethe previous version must be retrieved from the

entity table. The version returned could potentially not exist because the entry was pre-

viously never written to and thus we assign it zero. The version number is checked to

see if it is valid, if it is not, the DTC returns the current valid number. The valid version

number is used for registration to enable rollbacks if needed.

Either using the original version (transaction ID) or the transaction ID returned

from the DTC due to invalidation, DAT creates a new journal key and journal entry

68

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

Figure 4.2: Transaction sequence example for two puts.

69

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

Figure 4.3: Structure of transaction metadata in ZooKeeper nodes.

(journal keys are guaranteed to be unique), registers the journal key with the DTC,

and in parallel performs an update on the entity table. We overview these steps with

an example in Figure4.2 and show the DTC API being used during the lifetime of a

transaction where twoput operations take place. It illustrates the transaction starting

where a transaction ID is attained; aput request then triggers the acquisition of a lock,

version validation, key registration for rollback, and entity updates. The secondput

repeats the same steps sans lock acquisition. Lastly, the transaction is committed.

DAT does not perform explicitdeletes. Instead, we convert alldeletesinto putsand

use atombstonevalue to signify that the entry has been deleted. We place thetombstone

in the journal as well to maintain a record of the current valid version. Any entries with

tombstones which are no longer live are garbage collected periodically.

70

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

4.4.2 ZooKeeper Configuration of the DTC

We present the DTC implementation using the ZooKeeper node structure prefix tree

(trie) in Figure4.3. We store either a key name as a string (for locks and the blacklist)

or use the node directly as an atomically updated counter (e.g., for transaction IDs).

State of ZooKeeper is shared among clients, showing a strongly consistent view. The

tree structure is as follows:

• /appscale/apps/appid/ids: counter for next available transaction IDs for rootor

child entities.

• /appscale/apps/appid/txids: current live transactions.

• /appscale/apps/appid/txids/blacklist: invalid transaction ID list.

• /appscale/apps/appid/validlist: valid transaction ID list.

• /appscale/apps/appid/locks: transaction entity groups.

The blacklist contains the transaction IDs that have faileddue to a timeout, an ap-

plication error, an exception, or an explicit rollback. Thevalid list contains the valid

transaction IDs for blacklisted entities (so that we can find/retrieve valid entities).

Transactions implemented by DAT provide transactional semantics at the entity

group level. We implement a lock subtree that is responsiblefor mapping a transac-

tion ID to the entity group it is operating on. The name of the lock is the root entity

71

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

key and it stores the transaction ID. We store the locking node path in a child node of

the transaction named ”lockpath”. Any new transaction thatattempts to acquire a lock

on the same entity group will see that this file exists which will cause the acquisition to

fail. This lock node is removed when a transaction completes(via successful commit

or rollback).

4.4.3 Scalable Entity Keys

We employ ZooKeeper sequential nodes to implement entity counters (these should

not be confused with transaction IDs). When entities are created without specifying a

key name, IDs are assigned in an incremental fashion. We ensure low overhead on key

assignment by allocating blocks of 1000 entity IDs at a time to reduce the overhead

of counter access. The block of IDs is cached by the instance of the call handler in

the database support layer. Keys are provisioned on a first-come-first-serve basis to

new entities which do not have a key name. There is no guarantee that entity IDs are

ordered.

Entity IDs use two types of counters for concurrent access. One counter is for

root keys of a specific entity type, while another counter is created for each child of

a root key. Entity IDs are stored under the inner node upon creation and are removed

once committed. The node structure holds values for each entity group as seen in the

72

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

/appscale/apps/app1/idspath. The ”ids” node contains the next batch value for all root

keys, whilekey03 andkey04 nodes hold values for the next batch of child keys.

4.4.4 Garbage Collection

In some cases (application error, response time degradation, service failure, network

partition, etc.), a transaction may be held for a long periodof time or indefinitely.

We place a maximum of 30 seconds on each lock lease acquired byapplications. We

update the value dynamically as needed. Furthermore, for performance reasons we

use ZooKeeper’s asynchronous calls where it does not break ACID semantics (i.e.,

removing nodes after completion of a transaction).

In the background, DAT implements a garbage collection (GC) service. The ser-

vice scans the transaction list to identify expired transaction locks (we record the time

when the lock is acquired). The service adds any expired transaction to the blacklist

and releases the lock. For correct operation with timeouts,the system is coordinated

using NTP. Nodes which were not successfully removed by an asynchronous call to

ZooKeeper are garbage collected during the next iteration of the GC.

The GC service also cleans up entities and all related metadata that have been

deleted (tombstoned) within a committed transaction. In addition, journal entries that

contain entities older than the current valid version of an entity are also collected. We

do not remove nodes in the valid version list at this time.

73

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

We perform garbage collection every thirty seconds. There is one master garbage

collector and multiple slaves checking to make sure the global ”gclock” has not expired.

If the lock has expired (it has been over 60 seconds since lastbeing updated), a slave

will take over as the master, and will now be in charge of periodically updating the

”gclock”. When a lock has expired, the master will receive a call back from ZooKeeper.

At this point the master can try to refresh the lock, or if the lock has been taken, step

down to a slave role.

4.4.5 Fault Tolerance

DAT handles certain kinds of failures, excluding byzantinefaults. Our implementa-

tion of the DTC ensures that the worst case timing scenario does not leave the datastore

in an inconsistent state (”Heisenbugs”) [52].

A race condition can occur due to the distributed and shared nature of the access to

the datastore. Take for example the following scenario:

• The DTC acquires a lock on an entity group

• It becomes slow or unresponsive

• The lock expires

• It perform an update to the entity table

• The DTC node silently dies

74

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

In this case, we must ensure that the entity is not updated (overwritten with an invalid

version). We detect and prevent such silent faults using thetransaction blacklist and

valid versions are retrieved from the journal.

We address other types of failures using the lock leases. Locks which are held by a

faulty service in the cloud will be released by the GC. We have considered employing

an adaptive timeout on an application or service basis for applications/services that

repeatedly timeout. That is, reduce the timeout value for the application/service – or

for individual entity groups – in such cases to reduce the potential of delayed update

access. Additional state would be required that would add overhead to lookup each

timeout value per entity group or application. Currently, the timeout is configurable

upon cloud deployment.

Our system is designed to handle complete system failures (power outages) in ad-

dition to single/multi node failures. All writes and deletes are issued to the datastore,

each write persists on disk before acknowledgment. No transaction which has been

committed is lost attaining full durability (granted at least one replica survived). Meta

state is also replicated in ZooKeeper for full recovery as well as the transaction journal.

Replication factor is also configurable upon cloud deployment.

75

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

4.5 Methodology

In this section, we overview our benchmarks and experimental methodology. For

our experiments, AppScale employs Hadoop 0.20.2-cdh3u3, HBase 0.90.4-cdh3u3,

Hypertable 0.9.5.5, MySQL ndb-7.0.9, Redis 2.2.11, and Cassandra 1.0.7. We ex-

ecute AppScale using a private cluster via the Eucalyptus cloud infrastructure. Our

Eucalyptus private cloud consists of 12 virtual machines with 4 cores, and 7.5 GB of

RAM. We also employ our benchmark on Google App Engine, where the infrastructure

is abstracted away. We synchronize the clocks using the Linux tool ntpdate for our

Eucalyptus cluster.

4.5.1 Benchmarking Application

Our benchmark measures reads and writes of each datastore where transactions are

enabled as well as disabled, the difference of which gives usthe overhead imposed

by the DAT layer. AppScale is configured to have the head node act as a full proxy,

randomly distributing request across application servers. The benchmark is run for a

single node deployment (it acts as both a load balancer and runs application servers),

the default four node deployment, and a 12 node deployment.

We use the Apache Benchmark tool as our load generator, which targets a URL

at the head node. The datastore is first primed with 1000 entries, for which random

76

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

reads are done on. The writes use random keys, but each key always starts with the

application name for isolation and lexicographical entityplacement.

The Apache Benchmark tool is used with three different load levels: 10, 100, and

1000 concurrent requests. The tool measures latency and throughput for these different

loads. Reported numbers are averages of 10 trials.

Each server runs ten process instances of the benchmark application. We set the

replication factor to one for these experiments for all datastores, which was the common

factor given our one node deployment. For GAE, Google uses its own scheduling and

replication policy to enable the scaling of applications, and it is unknown how many

physical servers are being employed.

4.6 Results

Figures4.4and4.5show measurements for the Cassandra datastore with a varying

number of machines, for writes and reads of a concurrency level of 10, 100, and 1000,

with and without transaction support. Figure4.4(a)and Figure4.4(b)chart latency of

requests with and without transactions enabled. For all sizes of clusters we see addi-

tional latency for writes, regardless of the concurrency level when transactions are en-

abled. However, reads see no statistically significant overhead when enabled. Latency

for reads and writes are in close range to each other when transactions are disabled, but

77

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

the overhead of transactions for writes causes asymmetrical latency. Moreover, latency

drops as more nodes are added to the cluster with and without transactions.

Figure4.5(a)has throughput of requests, while Figure4.5(b)has the same but with

transactions disabled. Writes have less throughput when transactions are enabled, while

read throughput is unchanged. With the lower latency of additional nodes the through-

put rises.

HBase latency is shown in Figure4.6(a)and Figure4.6(b), for transactions enabled

and disabled, respectively. Compared to Cassandra, HBase performs similarly for la-

tency, yet for the 12 node case, Cassandra is able to get higherthroughput for reads

and writes as seen in Figures4.7(a)and4.7(b). Both datastores see similar drop offs

in throughput due to the overhead of transaction support, yet Cassandra sees more than

100 more request per second in throughput compared to HBase when transactions are

disabled.

Hypertable has slightly more latency for the single node case for both reads and

writes as presented in Figures4.8(a)and4.8(b), yet for higher node counts it is compa-

rable to HBase. Hypertable achieves high throughput for reads with over 1000 requests

per second as seen in Figure4.9(a)and Figure4.9(b). Hypertable, compared to HBase,

gets more read and write throughput, where for high load it isover 1000 requests per

second. .

78

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

Redis performance numbers are presented in Figures4.10and4.11, where we see

some deviation from the previously presented datastores. Redis stores data in memory

(asynchronously writing to disk which loosens our consistency guarantees for ACID

semantics) and does so in the master node which handles all requests. Slaves store

copies of the master, yet in these experiments we set replication to one. Where the

previous datastores are able to have clients and scale with larger deployments, Redis

does not benefit because all request go to a single node causing saturation of the node

more quickly, and hence the lower performance in throughput.

The MySQL Cluster deployment does not use the DAT layer for transaction support,

but rather its own native implementation. Figure4.12(a)shows latency numbers for

reads and writes. The latency is much higher than previous datastores, along with

higher variance. As more nodes are added, the latency does drop, but even at 12 nodes

it is over 10 seconds for writes. Reads scale much better for 12nodes, but with high

variance.

Figure4.13(b)shows a CDF of latency of writes and reads for transactions disabled

for Cassandra on a 12 node deployment, while Figure4.13(a)shows the same with

transactions enabled. The overhead can be seen with 1000 writes, where latency is

much higher. Reads do no see the same overhead, where the latency stays the same.

When transactions are disabled, writes are faster than readsuntil the 90th percentile,

where writes have a longer tail for latency.

79

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

The breakdown of an entityput for Cassandra is presented in Figure4.14. Each

operation which is a part of the transaction adds some amountof overhead, where the

”Puts” are parallel writes to the entity table and journal table. The majority of overhead

comes from checking to see if the current key exists and, if itdoes, to register that

transaction value for any required rollback. This figure measures it for the case where

the key did not exist before, which for Cassandra is a higher latency operation than

looking for a key which does exist. It should be noted that this is the highest amount of

relative overhead because this looks at only a singleput. If the transaction had multiple

reads and writes, then much of the overhead associated with starting a transaction,

getting a lock, releasing it, and committing is amortized.

For comparison purposes we also ran the benchmark on GAE. Figure4.15(a)has the

latency of gets and writes for different concurrency levels. Figure4.15(b)has through-

put for the same experiment, showing much less throughput than our scalable datas-

tores, yet in these cases the round trip time is much higher (aping averaged 27ms to

our application hosted by Google) as our load generator is local to our private cluster.

Round trip time for our local tests, by comparison, where sub 1ms.

4.6.1 Discussion

We find that Cassandra, HBase, and Hypertable were the most scalable, all being

BigTable clones. Cassandra performed best in our study, followed by Hypertable, and

80

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

then HBase. Although Cassandra is able to do placement using random partitioning

for range query support it requires lexicographical partitioning. Because data is placed

based on key names, we see that data is stored on a single node until a tablet server is

split and stored on another node. If the data set is based out of one tablet we see certain

nodes can become hotspots causing slowdown if the number of clients becomes very

large. Larger scale deployments were attempted, but due to the aforementioned place-

ment of data, we found additional nodes saw no improvement interms of throughput.

MySQL Cluster had much higher latency and lower throughput than the NoSQL

stores. MySQL is at a disadvantage as it is not aware of the entity group abstraction.

Hence, it uses course grain locks which limit the throughputof updates.

Throughput of transactions forputs does drop by as much as 50% compared to

transactions being disabled. AppScale allows developers who do not require transaction

semantics, and hence the required overhead, to disable themby the use of namespaces.

Any namespace which preprendsnotranswill give direct access to the datastore, where

access to DAT is circumvented. Any application which uses transaction semantics will

still work although no ACID correctness guarantees are given.

Read throughput remains unchanged when transactions are enabled, as the only

overhead associated with the read is to check to make sure theversion of the entity is

not from an on going transaction, or a black listed transaction. Many systems and work-

loads are read heavy, one example of which comes from the Megastore paper [7] which

81

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

used 20:1 read to write ratios for their evaluations similarto what they see internally at

Google.

4.7 Summary

In this chapter, we investigate the trade offs of providing cloud platform support

for multiple distributed datastores automatically and portably. To enable this we de-

sign and implement a database support layer, i.e. a cloud datastore portability layer,

that decouples the datastore interface from its implementation(s), load-balances across

datastore entry points in the system, and automates distributed deployment of popular

datastore systems. Developers write their application to use our datastore API and their

applications execute using any datastore that plugs into the platform, without modifi-

cation, precluding lock-in to any one public cloud vendor. This support enables us to

compare and contrast the different systems for different applications and usage models

and enables users to select across different datastore technologies with less effort and

learning curve.

We extend this layer to provide distributed ACID transactionsemantics to appli-

cations, independent and agnostic of any particular datastore system and that does not

require any modifications to the datastore systems that pluginto our cloud portability

layer. These semantics allow applications to update atomically multiple key-value pairs

programmatically. We refer to this extension as DAT for database-agnostic transactions.

82

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

Since no open source datastore today provide such semantics, this layer facilitates their

use by new applications and application domains including those from the business,

financial, and data analytic communities, that depend upon such semantics. We im-

plement this layer within the open source AppScale cloud platform. The next chapter

further extends our datastore middleware by adding secondary index support to provide

developers an SQL-like query language to access their data.

83

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Latency for Cassandra with transactions enabled.

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Latency for Cassandra with transactions disabled.

Figure 4.4: Cassandra latency as the number of machines increases.

84

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Throughput for Cassandra with transactions enabled.

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Throughput for Cassandra with transactions disabled.

Figure 4.5: Cassandra results as the number of machines increases.

85

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 10

 20

 30

 40

 50

 60

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Latency for HBase‘with transactions enabled.

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Latency for HBase with transactions disabled.

Figure 4.6: HBase latency as the number of machines increases.

86

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Throughput for HBase with transactions enabled.

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Throughput for HBase with transactions disabled.

Figure 4.7: HBase throughput as the number of machines increases.

87

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Latency for Hypertable‘with transactions enabled.

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Latency for Hypertable with transactions disabled.

Figure 4.8: Hypertable latency as the number of machines increases.

88

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Throughput for Hypertable with transactions enabled.

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Throughput for Hypertable with transactions disabled.

Figure 4.9: Hypertable results as the number of machines increases.

89

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Latency for Redis‘with transactions enabled.

 0

 5

 10

 15

 20

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Latency for Redis with transactions disabled.

Figure 4.10: Redis latency as the number of machines increases.

90

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Throughput for Redis with transactions enabled.

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Throughput for Redis with transactions disabled.

Figure 4.11: Redis throughput as the number of machines increases.

91

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 10

 20

 30

 40

 50

 60

01 04 12

La
te

nc
y

(s
ec

)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Latency for MySQL with native transactions.

 0

 200

 400

 600

 800

 1000

 1200

01 04 12

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of Machines

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Throughput for MySQL with native transactions.

Figure 4.12: MySQL results as the number of machines increases.

92

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Percentage

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Transactions enabled.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Percentage

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Transaction disabled.

Figure 4.13: Latency CDFs for Cassandra 12 nodes for reads and writes.

93

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

0.017

0.019

0.021

Puts

L
a
te

n
c
y
 (

s
e
c
o

n
d

s
)

Commit

Puts

RegKey

CheckKey

AcquireLock

BeginTrans

Figure 4.14: Time breakdown of an entityput.

94

Chapter 4. A Database-Agnostic Cloud Platform with Transaction Support

 0

 5

 10

 15

 20

 25

 30

 35

 40

Google

La
te

nc
y

(s
ec

)

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(a) Latency for Google App Engine.

 0

 50

 100

 150

 200

 250

 300

Google

T
hr

ou
gh

pu
t (

re
q/

se
c)

10 reads
10 writes

100 reads
100 writes

1000 reads
1000 writes

(b) Throughput for Google App Engine.

Figure 4.15: Google App Engine results with auto-scaling.

95

Chapter 5

Scalable Queries with Indexing
Support

With the advent of cloud computing and the growing popularity of software-as-

a-service (SaaS) offerings (the ability to access applications via remote resources),

datasets have exploded in size and number. Public cloud providers increasingly pro-

vide pay-per-use and on-demand data management services that scale both in terms of

the amount of data that can be stored, as well as the rate with which they are accessed,

and which facilitate access via simple and portable REST interfaces.

Many popular public storage services are available such as Amazon’s Simple Stor-

age Service (S3) which provides four 9’s availability with eleven 9’s durability and

Amazon’s Reduced Redundancy Storage (RRS) which also provides the same service

with less reliability. Microsoft offers its Table service which can store large amount of

unstructured data with access through a REST interface, while Rackspace has Cloud

96

Chapter 5. Scalable Queries with Indexing Support

Files for on-demand storage and content delivery [80, 4, 2]. Services such as these

provide a simple key/value interface for storing and retrieving data.

Google’s storage system is BigTable [17], a column-oriented key/value store, which

runs many internal large-scale applications. Since BigTable’s publication in 2006, there

have been open source implementations emulating its data model. These projects in-

clude HBase [46], Hypertable [50], and Accumulo [1]. Cassandra, a project initially

developed at Facebook, provides a data model similar to BigTable but employs an peer-

to-peer architecture similar to Amazon’s Dynamo datastore[14]. In addition, other

highly scalable datastores have emerged that provide alternative data modules such

as document stores (MongoDB), key/value stores (Voldemort), and graph databases

(Neo4J). Currently there are over 122 different offerings [72], each with their own API,

options, deployment requirements, and idiosyncrasies. These non-relational datastores

are referred to by the community as ”NoSQL” datastores.

These cloud-based NoSQL datastores offer an alternative tomore traditional rela-

tional databases which provide a very expressive query language, but are not designed

for the same use cases and scale (concurrent use, large volumes of data, offline ana-

lytics) as NoSQL datastores. Scaling relational databasesrequires that users manually

shard their datasets. NoSQL datastores, on the other hand, have the capability to dis-

tribute large amounts of data automatically, but lack extensive query capabilities of

relational databases. NoSQL datastores as a result rely on data processing frameworks

97

Chapter 5. Scalable Queries with Indexing Support

such as MapReduce, and higher level languages such as Hive or Pig to generate to

MapReduce jobs. These MapReduce jobs are appropriate for offline analytics, but their

high latency make them ill-suited for real-time processing.

Each of the BigTable clones mentioned before do have a limitedquery language

which allows access to a dataset. Yet, each language is different for each datastore, and

each provides different feature sets. Developers who use one datastore must rewrite

their datastore application code if they decide to switch toa different datastore for per-

formance or feature reasons – even when the underlying functionality is similar (but

different APIs are exported). Such a lack of easy portability precludes direct compar-

isons between datastores using real application workloads.

To address this limitation (lack of portability), and the thesis question on how

we can provide additional functionality for cloud developers, we investigate the use

of a unifying datastore API and programming model which allows for the simplified

use and extensibility of any datastore that plugs into the open source AppScale cloud

platform [22]. In particular, we target the design and implementation ofa portability

layer that provides generic indexing and query support across a wide range of disparate

NoSQL datastore offerings (any key/value store with range query support and atomic

row updates). We employ the Google App Engine (GAE) datastore API and query

language (GQL) as the mechanisms with which developers access the datastores. By

adopting the GAE datastore API, not only are we able to run theover 1 million applica-

98

Chapter 5. Scalable Queries with Indexing Support

tions [36] that exist today, but we also gain access to the analytic anddatastore libraries

written for the GAE environment [24].

Our goal is to enhance the programmability of a varying number of NoSQL data-

stores by providing a universal interface that expands existing query capabilities and

removed the need to reimplement these features (i.e., secondary indexes) by the appli-

cation developer. Moreover, we simplify the mapping of application datastore models

to multiple datastores, allowing for application portability, code reuseability, and fea-

ture extendability, without the requirement that the application developer be an expert

in any given datastore.

We use our systems to compare three BigTable clones: HBase, Hypertable, and

Cassandra. We use a GAE benchmarking application and show theperformance char-

acteristics of each datastore. Our experimentation reveals an interesting degradation

impact of soft deletions on query performance. Our experiments also consider the pro-

prietary datastore implemented by the GAE public cloud.

In the sections that follow, we first discuss background information and related

work, followed by the design and implementation of the system. We give an evaluation

in Section5.4, and conclude in Section5.5.

99

Chapter 5. Scalable Queries with Indexing Support

5.1 Background

Google App Engine (GAE), a PaaS for web applications writtenin the Python, Java,

and Go programming languages, can autoscale applications from the load balancer, ap-

plication server, and datastore layers, removing the burdens of technically challenging

aspects of application hosting from the developer. To enable virtual unlimited scale for

applications, some restrictions are enforced by the GAE runtime. Front-end request can

only last for 60 seconds. Any request that must run for some indefinite amount of time

must use a background process. For Python applications, only approved libraries or li-

braries which are pure-Python are allowed, and for Java onlylibraries which are white

listed are allowed. Moreover, no file access is allowed and data should be persisted via

the datastore API.

This chapter focuses on the datastore backend API which is powered by BigTable

and Megastore, two technologies internal to Google [17, 6]. Applications which use

App Engine are able to scale their data as needed, and are monetarily charged based on

the total volume of data stored and amount of times accessed.GAE provides applica-

tions with a 99.95% uptime SLA, powered by their high replication datastore [37].

100

Chapter 5. Scalable Queries with Indexing Support

5.1.1 Google Query Language

The datastore API for GAE provides a key/value interface forstoring entities (ob-

jects), along with a SQL-like query language called GQL. It lacks the full-SQL stan-

dard, missing operations such as JOIN, MERGE, and queries which modify the datas-

tore. However, it has useful semantics for retrieving entities based on properties/attributes

of entities.

There are four different types of queries possible: kindless, ancestor, single prop-

erty, and composite. The kindless query allows for the retrieval of entities across entity

kinds (a kind is a table coming from the relational database model). Ancestor queries

are based on entity relationships, where parent entities are assigned to child entities, and

the ancestor is the root entity which has no parent of its own.Single property queries

allow for the comparison between a property value using the following operators: ==,

!=, <, <=, >, >=. Composite queries allow for the same but with a combinationof

properties, with limitations such that only one property may use an inequality filter.

The following is an example of a composite query:

SELECT * FROM KIND WHERE

PROPERTY1 >= VALUE1

AND PROPERTY2 == VALUE2

ORDER BY PROPERTY1 DESC

101

Chapter 5. Scalable Queries with Indexing Support

Here we set the inequality filter for the first property and an equality filter for the second.

The descending ordering has the restriction that it must be done on the property which

had the inequality filter.

5.1.2 AppScale

In 2009, soon after the release of GAE, AppScale, the open source implementation

of GAE, was released. AppScale is a private cloud offering with GAE API compatibil-

ity (Table??) and able to run on a variety of Infrastructure-as-a-Service (IaaS) layers

such as AWS, Eucalyptus, and OpenStack. This chapter takes AppScale and expands

its query support enabling the GAE datastore API with datastore-agnostic secondary

index support.

5.1.3 Related Work

The previous implementation of AppScale’s datastore API support was lacking in

that all queries required pulling all the data for a given kind (all data from a table), and

applying the filters in memory. This has two adverse affects:queries became slower

as more data was stored in a given table, and second, once the table size was too big

a query could potentially bring down a node due to a lack of memory. This chapter

addresses these issues by translating GQL queries directlyto the datastore. Moreover,

102

Chapter 5. Scalable Queries with Indexing Support

we add kindless query support which was previously lacking due to the design and

implementation from previous work [11, 20].

Previous work which inspired the current design and implementation comes from

Megastore and BigTable, which currently power GAE. Our primary distinction from the

GAE implementation is that we are providing the API and GQL support across different

NoSQL technologies, with the capability to run on a multitude of IaaS layers, whereas

GAE is tied only to their closed source implementation and only runs on Google infras-

tructure. We take Google’s lead however in that they spurredon the NoSQL movement

with BigTable, and have given an excellent query language to emulate on top of such

technologies.

In [62], the authors present how the unification of databases came together with

the standardization of SQL, and present the dual of SQL for NoSQL datastores they

call coSQL. In 2011, Couchbase and SQLite announced a standardization of a NoSQL

query language called UnQL [87], but the project has since become defunct.

YCSB allows for the comparison of different NoSQL technologies and we are simi-

lar in that regard, yet we allow so with real GAE applicationsand we contrast in that we

provide expanded query support on top of these technologiesto enable ease of porta-

bility and programming.

103

Chapter 5. Scalable Queries with Indexing Support

5.2 Design and Implementation

To support GQL within AppScale, we must provide four different types of queries:

ancestor, kindless, single property, and composite. Queries are supplied by an applica-

tion and checked at runtime for validity. Each query is converted to a set of filters and

order operators by the application server handling the requested query.

5.2.1 Filters, Orders, and Cusors

A filter is a data structure with fields property name, property value, and operator

kind (i.e., greater than). Each filter only applies to a single property and contains a

single operator, and although a query can be comprised of multiple filters as in the case

for a composite query, only one property can have an inequality filter.

An order, either ascending or descending, gives the direction entities should be

sorted. A given query can have multiple orders allowing for sorting on multiple prop-

erties. In the case of multiple orders, the property which has an inequality filter must

come first.

A cursor can be supplied with any query except for any that usethe ”!=” filter, as

that does not map directly to a single range query, but rathertwo separate range queries.

A cursor tells the query engine what the starting key should be, which typically means

the previously results have already been seen and need to be skipped.

104

Chapter 5. Scalable Queries with Indexing Support

5.2.2 Query System

Figure 5.1: Top level design of the query system.

Figure5.1shows the top level design of the query system. The highest level is the

query supplied by the application. The query can come in two forms, either as a GQL

string, or as user created filters and order operators. If it is a GQL string, it will be

converted to a set of filters, orders, and if given, a cursor. These items are then passed

onto a datastore mapper which translates each query to the AppScale DB API.

5.2.3 AppScale DB API

The AppScale DB API is an abstraction from any datastore which implements the

interface. The API consists of the following:

create_table(table, columns)

105

Chapter 5. Scalable Queries with Indexing Support

delete_table(table)

get_batch(table, key_list, columns)

put_batch(table, key_list, cell_values,

columns)

delete_batch(table, key_list)

range_query(table,

start_key,

end_key,

limit,

offset,

start_inclusive,

end_inclusive)

Gets return a dictionary of mappings of keys to column names and values. Range

queries return an ordered list of mappings of the same. Gets,puts, and deletes can

all be done in batches to minimize multiple trips (somethingthe previous version of

AppScale did not have).

Range queries take a start key and an end key. If a start key is not supplied then the

query starts at the very top of the table. Likewise, if an end key is not supplied then it

will scan until the end of the table. Both keys have flags which tell if the start and end

keys should be inclusive in the scan. A limit can be supplied to ensure that only that

106

Chapter 5. Scalable Queries with Indexing Support

prescribe amount is returned. The runtime of a query with grow O(n) in runtime if that

subset of keys grows and is left unchecked via thelimit argument. Lastly, an offset can

be supplied to jump ahead a set amount of entities from a datastore range query result.

We have two restrictions as to which datastore can implementthis API:

• Batch capabilities for gets, puts, and deletes

• Range queries between a start and end key

Given these two requirements, a datastore can be ported to have support for our system.

For this chapter we have implemented Cassandra, Hypertable,and HBase. However,

NoSQL datastores which lack these features can still be ported with performance degra-

dation due to emulation of said feature.

5.2.4 Automatic Deployment

Each datastore is automatically configured and deployed. This is done on a vari-

able number of machines, and does not require the user any knowledge of the datastore

they’ve chosen to launch upon initiation of AppScale. AppScale will take template con-

figuration files, and fill them in with the correct parameters based on the infrastructure

being used. It will then launch the processes with the correct arguments and temporal

procedure (i.e., master process before slave process).

107

Chapter 5. Scalable Queries with Indexing Support

5.2.5 Table and Key Layout

The AppScale design uses a set of tables which are shared between applications.

Isolation is provided by the system between applications with each key prepended with

the application ID and any particular namespace that application may be using. The

tables are as follows:

ENTITY(value)

ASCENDING_PROPERTY(reference)

DESCENDING_PROPERTY(reference)

KIND(reference)

IDS(sequence)

The ENTITY table stores the entities in a serialized format.The key to an entity

includes the application ID, namespace, and full path, where the full path of an entity is

comprised of an entity’s ancestors. The ASCENDINGPROPERTY and DESCEND-

ING PROPERTY table store references to the ENTITY table. The keys to the property

tables include the application ID, namespace, property name, property value, and the

full path. The property value in the descending table is lexicographically flipped to

accommodate reverse ordering. Each entry also requires thefull path because it is pos-

sible to have multiple entities which have the same value, hence this provides a unique

108

Chapter 5. Scalable Queries with Indexing Support

key. The KIND table also has a reference to the ENTITY table, but the path is reversed

giving the child first and root last.

Figure 5.2: Ascending property table and entity tables for a Greeting kind.

5.2.6 ID Allocation

Entities can have either a name or an ID. If a name or an ID is notassigned during

creation, then a unique ID is assigned by the system. Unique IDs are attained from an

ID table, where each row is per application. Each datastore server attains a block of

IDs which are assigned first-come first-serve. IDs are not guaranteed to be in order due

to the distributed allocation of each datastore server.

109

Chapter 5. Scalable Queries with Indexing Support

5.2.7 Put and Deletes

Each Put operation requires updating indexes into the kind and property tables. Take

for example the following entity class:

class Greeting(Model.db):

date = db.DateTimeProperty()

content = db.StringProperty()

Any updates requires two separate indexes for a Greeting kind: data and content. The

following steps are required for the successful insertion of update of an entity:

• Get the previous entity from the entity table if it exists

• Delete all the indexes from the ascending and descending table

• Insert the new indexes into the ascending and descending table

• Insert a reference to the entity table into the kind table

• Insert the entity into the entity table

5.2.8 Ancestor and Kindless Queries

Ancestor queries require a range query over the entity table. Take for example the

following keys to a set of entities:

110

Chapter 5. Scalable Queries with Indexing Support

app_id/ns/Parent:Bill!

app_id/ns/Parent:Bill!Child:Alice!

app_id/ns/Parent:Bill!Child:Jim!

app_id/ns/Parent:Sally!

app_id/ns/Parent:Sally!Child:Alice!

app_id/ns/Parent:Sally!Child:Jim!

app_id/ns/Parent:Zack!

app_id/ns/Parent:Zack!Child:Dave!

app_id/ns/Parent:Zack!Child:Chris!

Here if we want to get all entities which have the root entity of Bill we will have a start

key and end key of

start: app_id/ns/Parent:Bill!

end: app_id/ns/Parent:Bill!<tstr>

where thetstr is a series of the ASCII 255 character. Here we would get 3 entities

returned with this range query which are the first three listed entities, Bill, Alice, and

Jim. It should be noted that entities can have the same name orID so long as it has

a different ancestry, as shown with the children of Sally whoalso has children named

Alice and Jim. Moreover, an ancestry can go deeper with multiple hierarchies, and they

can be of any kind, whether they be the same or different.

111

Chapter 5. Scalable Queries with Indexing Support

Kindless queries operate on the entity table as well taking akey from which to start

the range query from, and optionally take an ancestor to determine the end key. Without

an ancestor, the query will span across different kinds of anapplication and a particular

namespace.

5.2.9 Single Property Queries

Single property queries do a range query on either the ascending or descending

property table, where the direction is given by an ordering in the query (default is

ascending). The filter dictates which property is scanned and which operator is used.

For an equality filter we use the following start and end key:

start: app_id/ns/kind/prop/val/

end: app_id/ns/kind/prop/val/<tstr>

For greater than:

start: app_id/ns/kind/prop/val/<tstr>

end: app_id/ns/Kind/prop/<tstr>

For greater than or equal to:

start: app_id/ns/kind/prop/val/

end: app_id/ns/kind/prop/<tstr>

112

Chapter 5. Scalable Queries with Indexing Support

For less than:

start: app_id/ns/kind/prop/

end: app_id/ns/kind/pop/val/

For less than or equal to:

start: app_id/ns/kind/prop/

end: app_id/ns/kind/prop/val/<tstr>

A not equal to query will run two queries–first a less than query, and then a greater than

query.

Each of these scans will return references to the entity table. These references are

used in a batch get and returned in the order requested in the query.

5.2.10 Composite Queries

A composite query consists of having two or more filters, and one or more order-

ings. There may only be one property for which inequality filters (<, <=, >, >=) may

be used and other filters on different properties may only usethe equality operator.

Composite queries use the ascending and descending tables. The filter with the

inequality is applied first within a set window size, and the other filters are applied in

memory. The filter will be applied until the limit amount is reached.

113

Chapter 5. Scalable Queries with Indexing Support

Multiple orderings are applied in memory after the propertywhich had the inequal-

ity filter. An example of multiple orderings is where the firstproperty is last name, and

then first name, followed by birth date.

5.3 Evaluation

We evaluate our query system against three different datastores: Cassandra (1.0.7),

Hypertable (0.9.5.5), and HBase (0.90.4-cdh3u3). A 12 node deployment on Eucalyp-

tus 3.0 is deployed with VMs consisting of 14GBs of RAM and 4 CPU cores. The

deployment has 6 nodes dedicated to web servers and six dedicated to being database

nodes. Four different queries are evaluated for 100K entities: kindless, ancestor, single

property, and composite. Moreover, we evaluate a mixed workload of puts and gets

workloads and well as analyze the time taken for larger put batch operations. The same

benchmark application is used on GAE with a higher workload for comparison pur-

poses. We use an optimization in our implementation where wedo not do references to

the entity, but rather store the entity itself in our secondary indexes. This removed the

overhead of doing batch gets which can add significant overhead. The tradeoff is the

additional replication of the entity per index.

114

Chapter 5. Scalable Queries with Indexing Support

Upon creation of the dataset, a set of parent entities are created with each parent

then having 100 child entities. Each entity has two integer properties. The first one

ranges between 1 and 1,000,000 while the second ranges between 1 and 10.

Ancestor queries pick a random parent entity to query on, limiting the number to

100 (the amount of children each parent has). Kindless queries pick a parent as the last

key to start the query from. Single property queries select entities which have the first

property value greater than some random number between 1 and1,000,000. Finally,

composite queries do the same as single property queries, but also require the second

property to be equal to some random value between 1 and 10. Allqueries have a limit

of 100.

Our benchmark driver uses Multi-Mechanize, a Python based performance testing

framework. The test lasts for 300 seconds and has users ramp up from 0 to 1500 within

that time frame. The tool reports latency per request as wellas throughput in 10 second

intervals.

We also look at gets/puts with a read to write ratio of 80:20. For this experiment,

we create 1000 entities in the datastore. If the request probability dictates that it is a

read than one of the 1000 entities are chosen at random. If therequest is write, than a

new entity is created in the datastore.

115

Chapter 5. Scalable Queries with Indexing Support

Figure 5.3: Cassandra ancestor query response time.

Figure 5.4: Cassandra ancestor query throughput.

5.3.1 Results

We first look at queries for Cassandra. Figure5.20shows ancestor queries response

time. The response time stays below five seconds for the first 140 seconds as traffic

is being increased. We find that there is a drop in throughput (Figure5.21) after the

140 second mark. The reason for this drop is connection timeouts and retries by the

cassandra interface. As more and more connections are used there is instability.

Kindless queries had a similar graph to ancestor queries, and therefore not shown.

Single queries (Figure5.24and5.25show interesting behavior in that it achieves very

116

Chapter 5. Scalable Queries with Indexing Support

Figure 5.5: Cassandra kindless query response time.

Figure 5.6: Cassandra kindless query throughput.

high throughput initially, but as users increase there is temporal spacing between re-

quests due to connection timeouts.

Composite queries do much more work outside of the datastore because only one

property is queried on within the range scan. Hence, much of the latency comes from

filtering entities within memory. There is generally high latency here and under high

load we hit the 60 second cutoff set forth by the front end loadbalancer.

Ancestor queries for HBase are much more stable compared to Cassandra. HBase

has similar results for ancestor and single queries, although single property indexes did

not show the brief lapses of time where no responses came through as shown in Fig-

117

Chapter 5. Scalable Queries with Indexing Support

Figure 5.7: Cassandra single query response time.

Figure 5.8: Cassandra single query throughput.

ure5.28. Kindless queries for HBase get the best performance with throughput fluctu-

ating around 100 request per second (Figure5.31). Figure5.30shows the individual

request response time and have peculiar behavior with threemodes of responsiveness,

less than 5 second, between 5-10, and a steady increase towards 25 seconds, all while

maintaining approximately 100 requests per second.

Hypertable gets the best performance and stability in queries with over 150 request

per second in ancestor queries as seen in Figures5.32and5.33. As more load is added

to the system, latency per request increases and does so in a steady yet undulating

manner. Single property queries see a wider spread of response times, and achieves

118

Chapter 5. Scalable Queries with Indexing Support

Figure 5.9: Cassandra composite query response time.

Figure 5.10: Cassandra composite query throughput.

between 75 to 95 request per second (Figures5.34 and5.35). Kindless queries saw

similar performance to single property queries.

Lastly, we look at a mixture of reads to writes, as our query support does mod-

ify our write procedure with the requirement of updating indexes. Figure5.36has an

experiment where we ramp up users to our experimental AppScale deployment. We

can achieve high throughput with over 850 request per second(Figure not shown), and

then drops towards zero. Response times show that request were being retried in three

second intervals, which is the standard for TCP backoff. Our head node is being over-

whelmed with traffic and forces our load generating client tobackoff at the transport

119

Chapter 5. Scalable Queries with Indexing Support

Figure 5.11: HBase ancestor query response time.

Figure 5.12: HBase ancestor query throughput.

layer. Throughput increases as the underlying TCP layer no longer is throttling traffic,

yet the same pattern repeats. We see a similar result with Cassandra an HBase. Future

work includes methods to alleviate this issue within AppScale.

5.3.2 Discussion

There are certain differences in the API which can lead to additional overhead when

shoehorning to our common datastore API. Hypertable has thelimitation of truncating

strings that have the null terminating character, and therefore require encoding and de-

coding of the key. HBase does not include the last key in a rangequery and requires

120

Chapter 5. Scalable Queries with Indexing Support

Figure 5.13: HBase kindless query response time.

Figure 5.14: HBase kindless query throughput.

additional overhead of fetching the key if the flag for inclusivity is enabled. This over-

head is more if the key does not exist, as non-existent keys are much more expensive

than existing keys.

5.4 Evaluation

We evaluate our query system against three different datastores: Cassandra (1.0.7),

Hypertable (0.9.5.5), and HBase (0.90.4-cdh3u3). A 12 node deployment on Eucalyp-

tus 3.0 is deployed with VMs consisting of 14GBs of RAM and 4 CPU cores. The

deployment has 6 nodes dedicated to web servers and six dedicated to being database

121

Chapter 5. Scalable Queries with Indexing Support

Figure 5.15: Hypertable ancestor query response time.

Figure 5.16: Hypertable ancestor query throughput.

nodes. Four different queries are evaluated for 100K entities: kindless, ancestor, single

property, and composite. Moreover, we evaluate a mixed workload of puts and gets

workloads and well as analyze the time taken for larger put batch operations. The same

benchmark application is used on GAE with a higher workload for comparison pur-

poses. We use an optimization in our implementation where wedo not do references to

the entity, but rather store the entity itself in our secondary indexes. This removed the

overhead of doing batch gets which can add significant overhead. The tradeoff is the

additional replication of the entity per index.

122

Chapter 5. Scalable Queries with Indexing Support

Figure 5.17: Hypertable single query response time.

Figure 5.18: Hypertable single query throughput.

Upon creation of the dataset, a set of parent entities are created with each parent

then having 100 child entities. Each entity has two integer properties. The first one

ranges between 1 and 1,000,000 while the second ranges between 1 and 10.

Ancestor queries pick a random parent entity to query on, limiting the number to

100 (the amount of children each parent has). Kindless queries pick a parent as the last

key to start the query from. Single property queries select entities which have the first

property value greater than some random number between 1 and1,000,000. Finally,

composite queries do the same as single property queries, but also require the second

123

Chapter 5. Scalable Queries with Indexing Support

Figure 5.19: Hypertable 80:20 read to write ratio response times.

property to be equal to some random value between 1 and 10. Allqueries have a limit

of 100.

Our benchmark driver uses Multi-Mechanize, a Python based performance testing

framework. The test lasts for 300 seconds and has users ramp up from 0 to 1500 within

that time frame. The tool reports latency per request as wellas throughput in 10 second

intervals.

We also look at gets/puts with a read to write ratio of 80:20. For this experiment,

we create 1000 entities in the datastore. If the request probability dictates that it is a

read than one of the 1000 entities are chosen at random. If therequest is write, than a

new entity is created in the datastore.

5.4.1 Results

We first look at queries for Cassandra. Figure5.20shows ancestor queries response

time. The response time stays below five seconds for the first 140 seconds as traffic

124

Chapter 5. Scalable Queries with Indexing Support

Figure 5.20: Cassandra ancestor query response time.

Figure 5.21: Cassandra ancestor query throughput.

is being increased. We find that there is a drop in throughput (Figure5.21) after the

140 second mark. The reason for this drop is connection timeouts and retries by the

cassandra interface. As more and more connections are used there is instability.

Kindless queries had a similar graph to ancestor queries, and therefore not shown.

Single queries (Figure5.24and5.25show interesting behavior in that it achieves very

high throughput initially, but as users increase there is temporal spacing between re-

quests due to connection timeouts.

Composite queries do much more work outside of the datastore because only one

property is queried on within the range scan. Hence, much of the latency comes from

125

Chapter 5. Scalable Queries with Indexing Support

Figure 5.22: Cassandra kindless query response time.

Figure 5.23: Cassandra kindless query throughput.

filtering entities within memory. There is generally high latency here and under high

load we hit the 60 second cutoff set forth by the front end loadbalancer.

Ancestor queries for HBase are much more stable compared to Cassandra. HBase

has similar results for ancestor and single queries, although single property indexes did

not show the brief lapses of time where no responses came through as shown in Fig-

ure5.28. Kindless queries for HBase get the best performance with throughput fluctu-

ating around 100 request per second (Figure5.31). Figure5.30shows the individual

request response time and have peculiar behavior with threemodes of responsiveness,

126

Chapter 5. Scalable Queries with Indexing Support

Figure 5.24: Cassandra single query response time.

Figure 5.25: Cassandra single query throughput.

less than 5 second, between 5-10, and a steady increase towards 25 seconds, all while

maintaining approximately 100 requests per second.

Hypertable gets the best performance and stability in queries with over 150 request

per second in ancestor queries as seen in Figures5.32and5.33. As more load is added

to the system, latency per request increases and does so in a steady yet undulating

manner. Single property queries see a wider spread of response times, and achieves

between 75 to 95 request per second (Figures5.34 and5.35). Kindless queries saw

similar performance to single property queries.

127

Chapter 5. Scalable Queries with Indexing Support

Figure 5.26: Cassandra composite query response time.

Figure 5.27: Cassandra composite query throughput.

Lastly, we look at a mixture of reads to writes, as our query support does mod-

ify our write procedure with the requirement of updating indexes. Figure5.36has an

experiment where we ramp up users to our experimental AppScale deployment. We

can achieve high throughput with over 850 request per second(Figure not shown), and

then drops towards zero. Response times show that request were being retried in three

second intervals, which is the standard for TCP backoff. Our head node is being over-

whelmed with traffic and forces our load generating client tobackoff at the transport

layer. Throughput increases as the underlying TCP layer no longer is throttling traffic,

128

Chapter 5. Scalable Queries with Indexing Support

Figure 5.28: HBase ancestor query response time.

Figure 5.29: HBase ancestor query throughput.

yet the same pattern repeats. We see a similar result with Cassandra an HBase. Future

work includes methods to alleviate this issue within AppScale.

5.4.2 Discussion

There are certain differences in the API which can lead to additional overhead when

shoehorning to our common datastore API. Hypertable has thelimitation of truncating

strings that have the null terminating character, and therefore require encoding and de-

coding of the key. HBase does not include the last key in a rangequery and requires

additional overhead of fetching the key if the flag for inclusivity is enabled. This over-

129

Chapter 5. Scalable Queries with Indexing Support

Figure 5.30: HBase kindless query response time.

Figure 5.31: HBase kindless query throughput.

head is more if the key does not exist, as non-existent keys are much more expensive

than existing keys.

5.5 Summary

In this chapter we have presented a design, implementation,and evaluation of a

middleware that provides secondary index support. This support allows developers to

use a SQL-like language, GQL, to query their large scale datain real-time. Our system

supports four main types of queries: ancestor, kindless, single property and composite

130

Chapter 5. Scalable Queries with Indexing Support

Figure 5.32: Hypertable ancestor query response time.

Figure 5.33: Hypertable ancestor query throughput.

queries. We provide these queries on NoSQL datastores in a datastore-agnostic way, in

which we only require range query support by the underlying datastore.

131

Chapter 5. Scalable Queries with Indexing Support

Figure 5.34: Hypertable single query response time.

Figure 5.35: Hypertable single query throughput.

Figure 5.36: Hypertable 80:20 read to write ratio response times.

132

Chapter 6

Hybrid Cloud Support for Large Scale
Analytics and Web Processing

Platform-as-a-service (PaaS) offerings, such as Microsoft Azure [4] and Google

App Engine [37], automate configuration, deployment, monitoring, and elasticity by

abstracting away the infrastructure through well-defined APIs and a higher-level pro-

gramming model. PaaS providers restrict the behavior and operations (libraries, func-

tionality, and quota-limit execution) of hosted applications, both to simplify cloud ap-

plication deployment, and to facilitate scalable use of theplatform by very large num-

bers of concurrent users and applications. Google App Engine (GAE), the system we

focus on herein, currently supports over 7.5 billion page views per day across over

1,00,000 active applications [36] as a result of their platform’s design. As is the case

for public IaaS systems, public PaaS users pay only for the resources and services they

use.

133

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

A key functionality lacking from the original design of PaaSsystems is online ana-

lytics processing (OLAP). OLAP enables application developers to model, analyze, and

identify patterns in their online web applications as usersaccess them. Such analysis

helps developers target specific user behavior with software enhancements (code/data

optimization, improved user interfaces, bug fixes, etc.) aswell as applying said analy-

sis for commercial purposes (e.g. marketing and advertising). These improvements and

adaptations are crucial to building a customer base, facilitating application longevity,

and ultimately commercial success for a wide range of companies. In recognition of

this need, PaaS systems are increasingly offering new services that facilitate OLAP ex-

ecution models by and for applications that execute over them [38, 77, 5]. However,

such support is still in its infancy and is limited in flexibility, posing questions as to

what can be done within quota limits and how the service connects with the online

applications they analyze.

In this chapter, we investigate the emerging support of OLAPfor GAE, identify its

limitations, and its impact on the cost and performance of applications in this setting.

We propose an alternate approach to OLAP, in the form of a hybrid cloud consisting

of a public cloud executing the live web application or service and a remote analytics

cloud which shares application data. We build upon and extend AppScale to enable

analytic processing for web developers and address the portion of the thesis question

which concerns helping developers do so for large data.

134

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Portability gives developers the freedom and flexibility toexplore, research, and

tinker with the system level details of cloud platforms [20, 22, 54]. Our hybrid OLAP

solution provides multiple options for data transfer between the two clouds, facilitates

deployment of the analytics cloud over Amazon’s EC2 public cloud or an on-premise

cluster, and integrates the popular Hive distributed data warehousing technology to

enable a wide range of complex analytics applications to be performed over live GAE

datasets. By using a remote AppScale cloud for analytics of live data, we are able to

specialize it for this execution model and avoid the quotas and restrictions of GAE,

while maintaining the ease of use and familiarity of the GAE platform.

In the sections that follow, we first provide background on GAE and AppScale. We

then describe the design and implementation of our hybrid OLAP system. We follow

this with an evaluation of existing solutions for analytics, our Hive processing, and

an analysis of the cost and overhead of cross-cloud data synchronization. Finally, we

present related work and conclude.

6.1 Background

Google App Engine was released in 2008, with the goal of allowing developers

to run applications on Google’s infrastructure via a fully managed and automatically

scaled system. While the first release only supported the Python programming lan-

135

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

guage, the GAE team has since introduced support for the Javaand Go languages. Ap-

plication developers can access a variety of different services via a set of well-defined

APIs. The API implementations in the GAE public cloud are optimized for scalabil-

ity, shared use, and fault tolerance. The APIs that we focus on in this chapter are the

Datastore (for data persistence), URL Fetch (for communication), and Task Queues (for

background processing).

AppScale implements the GAE APIs using a combination of opensource technolo-

gies and custom software. It provides a database-agnostic layer, which multiple dis-

parate database/datastore technologies (e.g. Cassandra, HBase, Hypertable, MySQL

cluster, and others) can plug into [11]. It implements the Task Queue API by executing

a task on a background thread in the same application server as the application instance

that makes the request. This support, though simple, is inherently inefficient and not

scalable, because it is neither distributed nor load-balanced. Moreover, it does not share

state between application servers, which leads to incorrect application behavior when

more than one application server is present. We replace thisAPI implementation as

part of this work, addressing this limitation.

6.1.1 App Engine Analytics Libraries

The Task Queue API facilitates the use of multiple, independent user-defined queues,

each with a rate limit of 100 tasks per second (which can be increased in some cases [37])

136

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

in GAE. A task consists of an application URL, which is called by the system upon task

dequeue. A 200 HTTP response code (OK) indicates that the task completes success-

fully. Other HTTP codes cause re-enqueuing of the task for additional execution at-

tempts. The number of retries, a time delay, and a task name can be optionally specified

by developers as part of the task when it is enqueued. Use of task names is important to

prevent the same task from being enqueued multiple times (the lack of such measures

can result in a task fork bomb, in which a task is infinitely enqueued). One way to

circumvent the 10 minute time limit for a task is to chain tasks, in which the initial task

performs a portion of the work, and enqueuing another task toresume where it has left

off. Tasks should be idempotent, or only perform side effects (e.g., updating shared,

persistent data) as the final operation – since any failure ofa previous statement will

cause the task to be re-enqueued (potentially updating shared state incorrectly).

GAE application developers are responsible for program/task correctness when fail-

ures occur. This requires that developers make proper use oftask names and chaining,

and implement tasks that are idempotent. Doing so for all butthe most trivial of appli-

cations can be a challenging undertaking for all but expert developers. To address this

limitation, there are libraries that provide a layer of abstraction over the GAE task queue

interface and implementation. These libraries are Fantasm[35], GAE Pipeline [77], and

GAE MapReduce [38]. Each automates naming and failure handling by saving inter-

mediate state via the Memcache and the Datastore APIs.

137

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Figure 6.1: An example state machine in Fantasm.

Fantasm, based on [40], employs a programming model that is based on finite state

machines (FSM). A programmer describes a state machine via the YAML markup lan-

guage by identifying states, events, and actions. The initial state typically starts with a

query to the datastore, to gather input data for analysis. Fantasm steps through the query

and constructs a task for each entity (datastore element) that the query processes in each

state. Optionally, there can be a fan-in state, which takes multiple previous states and

combines them via a reduction method. Figure6.1 shows an example FSM. A limita-

tion of Fantasm is how it iterates through data. It does not shard datasets, but instead,

pages through a query serially, leading to inefficient execution of state machines.

138

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

class WCUrl(pipeline.Pipeline):
def run(self, url):

r = urlfetch.fetch(url)
return len(r.data.split())

class Sum(pipeline.Pipeline):
def run(self, *values):

return sum(values)

class MySearchEngine(pipeline.Pipeline):
def run(self, *urls):

results = []
for u in urls:
Do word count on each URL
results.append((yield WCUrl(u)))

yield Sum(*results) # Barrier waits

Figure 6.2: Code example of Pipeline parallellizing work.
The GAE Pipeline library facilitates chaining of tasks intoa workflow. Pipeline

stages (tasks) yield for barrier synchronization, at whichpoint the output is unioned

and passed onto the next stage in the pipeline. Figure6.2shows an example of parallel

processing via Pipeline that counts the number of unique words on multiple web pages.

Theyieldoperator spawns background tasks, whose results are combined and passed to

theSumoperation. Implementing similar code via just the Task Queue API is possible,

but is more complicated for users.

The GAE MapReduce library performs parallel processing and reductions across

datasets. Mapper functions operate on a particular kind of entity and reducer functions

operate on the output of mappers. Alternative input readers(e.g. for use of Blobstore

files) and sharding support is also available. The GAE MapReduce library uses the Task

139

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Queue API for its implementation, as opposed to using Google’s internal MapReduce

infrastructure or Hadoop, an open source implementation. Both are more flexible than

GAE MapReduce, and allow for a wider range of analytics processing than this library.

Currently, a key limitation of GAE MapReduce is that all entities in the Datastore are

processed, even when they are not of interest to the analysis.

Each of these abstractions for background processing and data analytics in GAE

introduce a new programming model with its own learning curve. Moreover, analytics

processing on the dataset is intertwined with the application, (that users use to pro-

duce/access the dataset) which combines concerns, can introduce bugs, and can have

adverse affects on programmer productivity, user experience, and monetary cost of

public cloud use. To address these limitations, we investigate an alternate approach to

performing online data analytics for applications executing within GAE that employs a

combination of GAE and AppScale concurrently.

6.1.2 Related Work

OLAP and data warehousing systems have been around since the1970s [18], yet

there is no system available for GAE which is currently focused providing OLAP for

executing web applications. AppScale, with its API compatibility and our extensions

herein, brings OLAP capabilities (as well as its testing anddebugging) to this domain.

140

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

TyphoonAE is the only other framework which is capable of running GAE appli-

cations outside of GAE. TyphoonAE however is a more efficientversion of the SDK

(executes the system serially) and only supports the Pythonlanguage. AppScale and

our work supports Python, Java, and Go languages and is distributed and scalable.

TyphoonAE does not have the same facility as AppScale to run analytics, as it does

not support datastores capable of Hive support. Private PaaS offerings such as Cloud

Foundry [26] offer an open source alternative to many proprietary products and offer

automatic deployment and scaling of applications, yet do not support GAE APIs.

There are many cloud platforms which allows for analytics tobe run on large scale

datasets. Amazon’s Elastic MapReduce is one such service, where machines are au-

tomatically setup to run jobs, along with customized interfaces for tracking jobs [61].

The Mesos framework is another cloud platform which can run avariety of processing

tools such as Hadoop and MPI, and does so with a dynamically shared set of nodes [47].

Helios is yet another framework that simplifies the application deployment process.

In [53], the authors measured data-intensive applications in multiple clouds includ-

ing GAE, AWS, and Azure. Their application was a variant of theTPC-W benchmark,

similar to an online bookstore. Our benchmarks, by comparison, are analytics driven

rather than online processing. Furthermore, since the timeof publication Google–as

well as the other cloud providers–have continuously improved functionality and added

141

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

features. Our work provides a new snapshot in time of the current system, which has

since come out of preview and become a fully supported service.

Data replication across datacenters is a common method for prevention of data loss

and to enable disaster recovery if needed. Currently GAE implements three-plus times

replication across datacenters using a variant of the Paxosalgorithm [6]. Extant solu-

tions, such as [91], however, are not applicable because of the restrictions imposed by

the GAE runtime. To overcome this limitation, we provide a library wrapper around de-

structive datastore operations, to asynchronously updateour remote AppScale analytic

platform. As part of future work, we are investigating how toprovide disaster recovery

using our hybrid system.

6.2 Hybrid PaaS Support for Web Application Data Anal-

ysis

In this work, we investigate how to combine two PaaS systems together into a hybrid

cloud platform that facilitates the simple and efficient execution of large-scale analysis

of live web application data. Our hybrid model executes the web application on the

GAE public cloud platform, synchronizes the data between this application/platform

and a remote AppScale cloud, and facilitates analysis of thelive application data us-

ing the GAE analytics libraries, as well as other popular data processing engines (e.g.

142

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Hadoop/Hive) using AppScale. Users can deploy AppScale on alocal, on-premise clus-

ter, or over Amazon EC2. In this section, we overview the two primary components of

our hybrid cloud system: the data synchronization support and the analytics processing

engine. We then discuss our design decisions and how our solution works within the

restrictions of the GAE platform.

6.2.1 Cross-Cloud Data Synchronization

The key to our approach to analytics of live web applicationsis the combined use of

GAE and AppScale. Since the two cloud platforms share a common API, applications

that execute on one can also do so on the other, without modification. This portability

also extends to the data model. That is, given the compatibility between AppScale and

GAE, we can move data between the two different platforms forthe same application.

We note that for vast datasets such an approach may not be feasible. However, it is

feasible for a large number of GAE applications today. The cross-platform portability

facilitates and simplifies our data synchronization support, and makes it easier for de-

velopers to write application and analytics code, because the runtime, APIs, and code

deployment process is similar and familiar.

We consider two approaches to data synchronization: bulk and incremental data

transfer. For bulk transfer, GAE currently provides tools as part of its software devel-

opment kit (SDK) to upload and download data into and out of the GAE datastore en

143

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

masse. We have extended AppScale with similar functionality. Our extensions pro-

vide the necessary authentication and data ingress/egresssupport, as well as support

for the GAE Remote API [37], which enables remote access to an application’s data in

the datastore. The latter must be employed by any application for which hybrid ana-

lytics will be used. Using the Remote API, a developer can specify what data can be

downloaded (the default is all). Bulk download from, and upload to, is subject to GAE

monetary charges for public cloud use.

There are several limitations to bulk data transfer as a mechanism for data synchro-

nization between the two application instances. First, in its current incarnation, transfer

is all or nothing (of the entities specified). As such, we are able to only perform ana-

lytics off-line or postmortem if we are to copy the dataset once (the most inexpensive

approach). To perform analytics concurrently with web application execution, we are

forced to download the same data repeatedly over time (as theapplication changes it).

This can be both costly and slow. Finally, the data upload/download tools from GAE

are slow and error prone, with frequent interruptions and data loss.

To address these limitations, we investigate an alternative approach to synchroniz-

ing data between GAE and AppScale: incremental data transfer. To enable this, we have

developed a library for GAE applications that runs transparently in both GAE and App-

Scale. Our incremental data transfer library intercepts all destructive operations (writes

and deletes) and communicates them to the AppScale analytics cloud. In our current

144

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

prototype, we do not support the limited form of transactions that GAE applications

can perform [33]. As part of our on-going and future work, we are consideringhow

to reflect committed transactional updates in the AppScale analytics cloud. Developers

specify the location of the AppScale analytics cloud as partof their GAE application

configuration file. Since the library code executes as part ofthe application in GAE, it

must adhere to all of the GAE platform restrictions. Furthermore, communication to

the AppScale analytics cloud is subject to GAE charges for public cloud use.

Our goal with this library is to avoid interruption or impacton GAE web appli-

cation performance and scale, from the users’ perspective.We consider two forms of

synchronization with different consistency guarantees: eventual consistency (EC) and

best effort (BE). EC incremental transfer uses the Task QueueAPI to update the App-

Scale analytics cloud. Using this approach, the library enqueues a background task

in GAE upon each destructive datastore operation. The task then uses the URL Fetch

library to synchronously transmit the updated entity. In GAE, tasks are retried until

they complete without error. Thus, GAE and AppScale data replicas for the applica-

tion are eventually consistent, assuming that both the GAE and AppScale platforms are

available.

Our second approach, best effort (BE), for incremental transfer implements an asyn-

chronous URL Fetch call to the AppScale analytics cloud for the application upon each

destructive update. If this call fails, the GAE and AppScalereplicas will be inconsistent

145

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

until the next time the same entity is updated. The BE approachcan implement poten-

tially fewer transfers since failed transfers are not retried. This may impact the cost

of hybrid cloud analytics using our system. BE is useful for settings in which perfect

consistency is not needed.

To maintain causal ordering across updates we employ a logical clock (a Lamport

clock [58]), ensuring that only the latest value is reflected in the replicated dataset for

each entity. Using this approach, it is possible that at any single point in time there may

be an update missing (still in flight due to retries in EC or failed in BE) in the replicated

dataset. We transmit entity updates as Protocol Buffers, theGAE transfer format of

Datastore entities.

6.2.2 Analytics Processing Engine within AppScale

We next consider different implementations of the AppScaleanalytics processing

engine. We first extend AppScale to support each of the three analytics libraries that

GAE supports, described in Section6.1.1. We start by replacing the TaskQueue API

implementation in AppScale, from a simple, imbalanced approach, to a new software

layer, similar to that for the Datastore API implementationand transaction support [20],

that is implementation-agnostic and allows different taskqueue implementations to be

plugged in and experimented with.

The GAE Task Queue API includes the functions:

146

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

AddTask(name, url, parameters)

DeleteTask(name)

PurgeQueue()

We emulate the GAE behavior of this API (that we infer using the GAE SDK and by

observing the behavior of GAE applications) in our task queue software layer within

AppScale. Each task that is added to the queue specifies aurl that is a valid path (URL

route) defined in the application, to which a POST request canbe made using thepa-

rameters. Thenameargument ensures that a task is only enqueued once given a unique

identifier. If a name is not supplied, a unique name is assigned to it. ThePurgeQueue

operation will remove all tasks from a queue, resetting it toan initial, empty state,

whereasDeleteTaskwill remove a named task if it is still enqueued. Task execution

code is within the application itself (a relative path), or can be a fully remote loca-

tion (a full path). Successful execution of a task is indicated by a HTTP 200 response

code. The task queue implementation retries failed tasks upto a configurable number

of times, defaulting to ten attempts.

The AppScale Task Queue interface for plugging in new messaging systems is as

follows: This API includes the functions:

EnqueueTask(app_name, url, parameters)

LocateTask(app_name, task_name)

AddTask(app_name, task_name)

147

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

AckTask(app_name, task_name, reenqueue)

PurgeQueue(app_name)

The AddTaskfunction stores the given task name and state in the system-wide data-

store. Possible task states are ‘running’, ‘completed’, or‘failed’, and states can be

retrieved viaLocateTask). AckTasktells the messaging system whether the task should

be re-enqueued, and if it should be, the messaging system increments the retry count as-

sociated with that task. Each function requires the application name because AppScale

supports multiple applications per cloud deployment, isolating such communications.

Figure 6.3: Overview of RabbitMQ implementation in AppScale.

Using the AppScale task queue software layer, we plug-in theVMWare RabbitMQ [79]

technology and implement support for each of the GAE analytics libraries (GAE MapRe-

duce, GAE Pipeline, and Fantasm) described in Section6.1.1on top of the Task Queue

API. We have chosen to integrate RabbitMQ due to its widespread use and multiple

useful features within a distributed task queue implementation, including clustering,

high availability, durability, and elasticity. Figure6.3 shows the software architecture

of RabbitMQ as a task queue within AppScale (two nodes run a given application in

148

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

this figure). Each AppScale node that runs the application (load-balanced application

servers) runs a RabbitMQ server. Each application server hasa client that can enqueue

tasks or listen for assigned tasks (a callback thread) to or from the RabbitMQ server.

We store metadata about each task (name, state, etc.) in the system in the cloud data-

store. A worker thread consumes tasks from the server. Upon doing so, it issues a

POST request to its localhost or full path/route (if specified), which gets load-balanced

across application servers running on the nodes. Tasks are distributed to workers in a

round-robin basis, and are retried upon failure. RabbitMQ re-enqueues failed tasks and

is fault tolerant.

In addition to the Task Queue, MapReduce, Pipeline, and Fantasm APIs, we also

consider a processing engine that is popular for large-scale data analytics yet that is not

available in GAE. This processing engine employs a combination of MapReduce [30]

(not to be confused with GAE MapReduce, which exports different semantics and be-

havioral restrictions) and a query processing engine that maps SQL statements to a

workflow of MapReduce operations. In this work, we employ Hadoop, an open source

implementation of a fully featured MapReduce system, and Hive [85, 67, 48], an open

source query processing engine, similar in spirit to Pig andSawzall. This processing

engine (Hive/Hadoop) provides users with ad-hoc data querying capabilities that are

processed using Hadoop, without requiring any knowledge about how to write or chain

MapReduce jobs. Moreover, using this AppScale service, users can operate on data

149

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

using the familiar syntax of SQL and perform large-scale, complex data queries using

Hadoop.

AppScale integrates multiple datastore technologies, including Cassandra, Hyper-

table, and HBase [11, 12]. All of these datastores are distributed, scalable, fault-

tolerant, and provide column-oriented storage. Each datastore provides a limited query

language, with capabilities similar to the GAE Datastore access model: entities, stored

as Protocol Buffers, are accessed via keys and key ranges. We focus on the currently

best performing datastore in this work, Cassandra [20].

Our extensions swap out the Hadoop File System (HDFS) in AppScale and replace

it with CassandraFS [10], an HDFS-compatible storage layer, that interoperates directly

with Cassandra, with the added benefit of having no single points of failure within

its NameNode process. Above CassandraFS, we deploy Hadoop; above Hadoop, we

deploy Hive. Developers can issue Hive queries from the command line, a script issued

on any AppScale DB node [54], or via their applications through a library, similar to

the GAE MapReduce library implementation in AppScale.

To enable this, we modified the datastore layout of entities in the AppScale datas-

tore. Previously, we employed a single column-family (table) for all kinds of entities

in an applications dataset. We shared tables across multiple applications and we iso-

lated datasets using namespaces prepended to the key names.In this work, we store

column-families for each kind of entity. The serializationand deserialization between

150

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Hadoop, CassandraFS, and Cassandra happens through a custom interface, which en-

ables Hadoop mappers and reducers to read and write data fromCassandra. We ex-

tended the AppScale Datastore API with a layer that translates entities to/from Protocol

Buffers. Our extensions eliminate the extract-transform-load step of query processing

so that entities can be processed in place.

This support enables Hive queries to run SQL statements which are partitioned into

multiple mapper and reducer phases. Hive compiles SQL statements into a series of

connected map and reduce jobs. Analysts can perform queriesthat are automatically

translated to mappers and reducers, rather than manually writing these functions and

chaining them together. Take for example the task of gettingthe total count of entities

of a certain kind. A Hive query is as simple as:

SELECT COUNT(*) FROM appid_kind;

To to the same thing in GAE, the entities are paged through anda counter incre-

mented. Note that the Google Query Language for GAE applications limits the number

of entities in a single fetch operation to 1000. If the dataset is large enough, then the

developer must use a background task or manually implement task queue chaining.

Another alternative approach is to use sharded counters to keep a live count; multiple

counter entities are required if the increment must happen at a rate faster than once per

second. Both methods are foreign to many developers and are far more complex and

non-intuitive than simple SQL Hive statements.

151

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

us-east-1 Northern Virginia, USA
eu-west-1 Dublin, Ireland
ap-southeast-1 Singapore
ap-northeast-1 Tokyo, Japan
sa-east-1 Sao Paulo, Brazil
us-west-1 Oregon, USA
us-west-2 California, USA

Table 6.1: EC2 Regions for Amazon Web Services.

6.3 Evaluation

In this section, we evaluate multiple components of our hybrid web application and

analytics system. We first start with an evaluation of the cross-cloud connectivity within

a hybrid cloud deployment. For this, we analyze the round-trip time (RTT) between a

deployed GAE application in Google datacenters and virtualmachines deployed glob-

ally across multiple regions and availability zones of Amazon EC2. We next evaluate

the performance of the GAE libraries for analytics using theGAE public cloud. We

then evaluate the efficacy of our extensions to the AppScale TaskQueue implementa-

tion. Lastly, we show the efficiency of using the AppScale analytic solution running

Hive over Cassandra.

6.3.1 Cross Cloud Data Transfer

To evaluate the performance of cross-cloud data synchronization between GAE and

AppScale, we must first understand the connectivity rate between them for incremental

152

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Figure 6.4: Experimental Setup for Measuring Round-trip Time and Bandwidth Be-
tween a GAE Application and VMs in Multiple EC2 Regions.

data transfer (cf Section6.2.1). To measure this, we deploy an application in the GAE

public cloud that we access remotely from multiple Amazon EC2micro instances in 16

different availability zones, spanning seven regions. Figure6.1 shows the regions we

consider, and Figure6.4depicts our experimental setup.

Our experiment issues a HTTP POST request from the EC2 instances, each with a

data payload of a particular size, a destination URL location, a unique identifier, and the

type of hybrid data synchronization to employ: eventually consistent (EC) or best effort

(BE). The sizes we consider are 1KB, 10KB, 100KB, and 1MB (the maximum allowed

153

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Figure 6.5: Round-trip Time Per Different Packet Size.

Figure 6.6: Round-trip Time and Bandwidth Between a GAE Application and Differ-
ent EC2 Regions.

for GAE’s Datastore API). The EC2 instances host a web server,which receives the data

from the GAE application (either from a task via EC or from theapplication itself via

BE) and records the current time and request identifier. Figure 6.5 shows the average

RTT for different packet sizes, for each availability zone.The data indicates that it

is advantageous to batch updates when possible since there is not a linear relationship

between size and RTT, as sizes grow.

154

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

We next consider whether the geographical location of the AppScale cloud (dif-

ferent EC2 regions) makes a significant difference in the communication overhead on

data synchronization. To evaluate this, we consider the average round-trip time (RTT)

and bandwidth across payload sizes to the GAE application for the different regions

(Figure6.6). The US East region had the RTT with the highest bandwidth, by a factor

of two. Both US regions have the next best performing communication behavior. This

data suggests that our GAE application is hosted (geographically) in GAE in the East-

ern US. Locality to the application shows more than 2x the bandwidth for the US East

availability zone than other zones (130KB versus 50KB to 80KB for other zones). We

investigated this further and found via traceroutes and pings that the application was

located near or around New York. We also found with this experiment that bandwidth

over time is generally steady, with the exception of betweenthe hours of 16:00 and

22:00 (figure not shown). It may be possible to take advantageof such information to

place the AppScale cloud to enable more efficient data synchronization.

We next investigated the task queue delay in GAE. We are interested in whether

the delay changes over time or remains relatively consistent. We present this data in

Figure6.7, as points at each hour in the day (normalized to Eastern Standard Time) that

we connect using lines to help visualize the trends. The leftx-axis is RTT in seconds for

the region, and the right x-axis is the average queue delay (in seconds) for the region.

155

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

Figure 6.7: Round-trip time from multiple regions to a deployed GAE application with
task queue delay.

Queue delays do vary but this variance (impact on RTT) is mostperceptible during the

early evening hours in all regions.

Finally, we compare our two methods for synchronization: ECand BE. EC uses

a combination of the Task Queue API and synchronous URLFetch API; the use of

the former ensures that all failed tasks are retried until they are successful. BE uses

asynchronous URLFetch for all destructive updates and does not retry upon failures.

We ran the experiment for seven days and sent a total of 1195288 requests. Out

of the 597644 packets (half of the total packets) sent via theTaskQueue option, 11679

were duplicates (unnecessary transfers). The asynchronous URLFetch experienced 10

duplicate packets suggesting the URLFetch API will retry in some cases from within

the lower layers of the API implementation as needed. We experienced no update loss

using EC and 5 updates lost for BE.

156

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

6.3.2 Benchmarks

We next consider the performance of five different and popular analytics bench-

marks: wordcount, join, grep, aggregate, and subset aggregate. Wordcount counts the

number of times a unique word appears. Join takes two separate tables and combines

them based on a shared field. Grep searches for a unique stringfor a particular sub-

string. Aggregate gives the summation of a field across a kindof entity, while sub-

set aggregate does the same, but for a portion of the entire dataset (one percent for

this benchmark). We implemented each benchmark using the Fantasm, Pipeline, and

MapReduce GAE libraries, as well as a Hive query.

6.3.3 Google App Engine Analytics

For the experiments in this section, we execute each benchmark five times and

present the average execution time and standard deviation.We use the automatic GAE

scaling thresholds, and had billing enabled. We consideredexperiments with 100, 1000,

10000, and 100000 entities in the datastore. We attempted even higher numbers of en-

tities, but the running time for each trial became infeasible to get complete results.

The tables in6.2 shows the results for all of the benchmarks. The Fantasm imple-

mentation shows a large latency for a significant numbers of entities, and compared to

Pipeline, is 6X to 30X slower. This is due to the fact that Fantasm’s execution model

157

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

has a task for each entity, so it must do paging through the query1. Pipeline, by com-

parison, retrieves a maximum of 1000 entities at a time from the datastore, reducing

the amount of time spent querying the database. Pipeline does not see much latency

increases from 100 to 1000 entities, because both require only a single fetch from the

datastore, and the difference lays in the summation. MapReduce also deals in batches,

but the size of the batch depends on the number of shards. When the number of entities

went from 100 to 1000 for MapReduce, the growth in latency was over 5X because the

number of shards was one. 10000 entities, on the other hand, had 10 shards, and there-

fore did more work in parallel, seeing an increase in less than half the time. Pipeline

has an advantage because of its ability to combine multiple entity values before doing

a transactional update to the datastore, whereas both MapReduce and Fantasm are in-

crementing the datastore transactionally for each entity.For the implementation, the

counter was sharded to ensure that there was high write throughput for increments.

Pipeline shows less overhead for Grep as compared to Aggregate (100-1000) be-

cause it uses half as many Pipeline stages. In the aggregate Pipeline implementation,

there was an initial Pipeline which does the query fetches tothe datastore, and another

for incrementing the datastore in parallel after combiningvalues. Grep, by comparison,

does not need require combining or transactional updates, as required for the counter

update in aggregate. Counter updates require reading the current value, incrementing it,

1The Fantasm library, since the writing of this chapter, has added the ability to do batch fetches for
better performance.

158

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

and storing it back. Aggregate vs Grep MapReduce has a similarbehavior to Pipeline

because each mapper does not require transactional updates.

Figure 6.8: An identical benchmark run three times showing variabilityin run time.

The Join benchmark combines two different entity kinds to create a new table. The

Join results show similar trends as Aggregate and Grep. During the experiments for

Join, we experienced high variability in the performance ofboth the Pipeline and Fan-

tasm libraries. Figure6.8shows a snapshot of three separate trials for Fantasm, in which

noticeable differences in processing times occur. Multitenacy could be a primary reason

for the fluctuations, yet the exact reasons are unknown and requires further study.

The Subset benchmarks queries a Subset of the entities rather than the entire dataset.

Here we see that Fantasm does well, as this scenario was the primary reason for devel-

oping the library according to its developers [35]. Pipeline performs best, once again,

because of its ability to batch the separate entities, and tonot require separate web

requests to process individual entities as Fantasm does. MapReduce suffers the most

because it must map the entire dataset even though only a Subset is of interest.

159

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

For wordcount, MapReduce experiences its largest increase from 10000 to 100000

in this benchmark, which was due to several retries because of transaction collisions.

The optimistic transaction support in GAE allows for transactions to rollback if a newer

transaction begins before the previous one finishes. This isideal for very large scale

deployments, where failures can happen and locks could be left behind to be cleaned

up after a timeout has occurred. Yet it is also possible to bring the throughput of a

single entity to zero if there is too much contention. The performance of the wordcount

benchmark can be improved by using sharded counters per wordas opposed to the sim-

ple non-shared counter per word in our implementation. Built-in backoff mechanisms

in the MapReduce library alleviates the initial contention,allowing the job to complete.

6.3.4 AppScale Library Support

We next investigate the use of the GAE analytics libraries over AppScale using the

original Task Queue implementation in the GAE software development kit (SDK) and

our new implementation based on the RabbitMQ (RMQ) distributed messaging system.

We present only Pipeline results here for brevity (the relative differences between GAE

and AppScale are similar). Table6.3 shows the average time in seconds for the GAE

applications executing over a 3 node Xen VM AppScale deployment. Each VM had

7.5GBs of RAM and 4 cores, each clocked at 2.7GHz. Note, that forthe GAE num-

160

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

bers, we do not know the number of nodes/instances or the capability of the underlying

physical machines employed.

Table6.3 shows the RMQ execution time in seconds for each message size while

Table6.4 shows the SDK execution time in seconds for each message size. The SDK

implementation enqueues the tasks as a thread locally rather than spreading out load

between nodes. In addition, the SDK spawns a thread for each task which posts its

request to the localhost. Tasks which originate from the local host will never be run on

another node. RabbitMQ, on the other hand, spreads load between nodes, preventing

any single node from performing all tasks. We are unable to run the 100K jobs using

the SDK because the job fails each time from a lack of fault tolerance. If for any reason

the node which enqueues the task fails, that task is lost and not rerun again. RabbitMQ,

however, will assign a new client to handle the message, continuing on in the face of

client failures. For larger sized datasets we also see a speedup because of the load

distribution of tasks.

6.3.5 AppScale Hive Analytics

We next investigate the execution time of the GAE benchmarksusing the Hive/Hadoop

system. Figure6.5 presents the execution time for the previous benchmarks using the

Hive query language on a AppScale Cassandra deployment. There was no discernible

difference between the sizes of the datasets, but rather thenumber of stages, where grep

161

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

only needed a single mapper phase, while the rest had both mapper and reducer phases.

While slower for smaller sizes than the GAE library solutions, the Hive solution is con-

sistently faster when dealing with larger quantities of entities (although it has the same

issue as the MapReduce library when dealing with data subsets).

The Hive/Hadoop system in AppScale introduces a constant startup overhead for

each phase (map or reduce) of approximately 10s. This overhead is the dominant factor

in the performance. Once the startup has occurred, each benchmark completes very

quickly. The numbers in the table include this overhead. Each of the benchmarks

use a single mapper and reducer phase except for Grep. Our approach is significantly

more efficient (enabling much larger and more complex queries) than performing an-

alytics using GAE. Moreover, our approach significantly simplifies analytics program

development. Each of our GAE benchmarks requires approximately 100 lines each to

implement their functionality. Using our system, a developer can implement each of

these benchmarks using a single line with fewer than 50 characters.

6.3.6 Monetary Cost

The cost of transferring data in GAE is dependent on two primary metrics: band-

width out which is billed at .12 USD per gigabyte, and frontend instances, at .08 USD

per hour. For low traffic applications, these costs can be covered by the free quota. For

higher traffic, it is possible to adjust two metrics to keep cost down; the first is the max-

162

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

imum amount of time waiting before a new application server is started (where it will

be billed for a minimum of 15 minutes), and the second is the number of idle instances

that can exist (lowers latency to new requests in exchange for higher frontend cost).

We can compress data and work in batches to lower the bandwidth cost, seeing as

how the additional latency for sending updates is between 4 and 7 seconds on average

for the largest possible entity of 1MB. The compression execution time is added to

frontend hour cost, and the level of compression is very dependent on the application’s

data (images, for example, may already be highly compressed). The average daily cost

of the data transfer was 12.41 USD for frontend hours, 1.03 USD for datastore storage

(went up over time), 2.55 USD for bandwidth, and 15.63 USD fordatastore access.

As future work, we are leveraging our findings to improve our datastore wrapper to

minimize cost while still maintaining low latency overhead.

The cost for on-site analytics such as Fantasm and Pipeline is based on datastore

access, both for reading the data which is needed for operation, and metadata for track-

ing the current progress of a job. The other cost associated is the frontend instance

hours. The cost for running Pipeline for wordcount on 100000entities was 0.34 USD

(not accounting for the free quota), where 0.056 USD was frontend hours, 0.13 USD

was datastore writes, and 0.154 USD on datastore reads. The cost of datastore writes

is highly dependent on the number of indexed entities, and therefore if the entities have

more properties, the writes can multiply quickly as would cost (each index write counts

163

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

as a datastore write). In general, it is difficult to predict the cost of GAE analytics. Our

approach allows developers to perform analytics repeatedly without being charged at

the cost of data transfer.

Our other option for downloading the data is via bulk transfer using tools provided

by the SDK. We investigated the use of such tools but we ran into difficulties where ex-

ceptions arose and the connection would drop. Multiple attempts were needed, driving

cost up as much to 5 to 6 times the cost of a daily experimental run (from 15 USD to 86

USD) before being able to complete a full download of the data. It took 9520 seconds

on average for the three successful downloads of a dataset of202MB. This option is

clearly not acceptable for hybrid analytic clouds.

6.4 Summary

Cloud computing has seen tremendous growth and wide spread use recently. With

such growth comes the need to innovate new methods and techniques for which ex-

tant solutions do not exist. Online analytics processing systems are such an offering

for Google App Engine, where current technology has focusedon web application ex-

ecution at scale and with isolation, and existing solutionshave operated within the

restrictions imposed.

164

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

In this chapter we have described, implemented, and evaluated two systems for

running analytics on GAE application, running current libraries in AppScale through

the implementation of a distributed task queue, and the ability to run SQL statements

on cross-cloud replicated data. Future work will carry forward our findings to optimize

cross-cloud data synchronization as well apply our system to another use case: disaster

recovery.

165

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

100 1000 10000 100000
Fantasm 13.80± 1.61 110.29± 5.00 1148.24± 86.20 11334.59± 1047.57
Pipeline 2.46± 0.86 3.05± 0.32 11.08± 0.50 98.34± 3.82
MapReduce 9.34± 0.35 57.36± 8.96 104.56± 17.83 377.70± 63.35

Aggregate

100 1000 10000 100000
Fantasm 10.85± 0.77 121.21± 21.07 1819.86± 1175.19 10360.40± 396.56
Pipeline 2.40± 1.26 2.663± 0.51 9.77± 0.72 98.89± 13.76
MapReduce 2.73± 0.30 4.56± 0.09 24.05± 0.30 227.57± 20.76

Grep

100 1000 10000 100000
Fantasm 10.71± 1.22 109.83± 4.90 977.23± 80.34 10147.75± 1106.15
Pipeline 4.54± 2.34 14.48± 5.22 44.11± 12.57 159.96± 73.30
MapReduce 6.28± 1.43 40.18± 1.66 66.76± 10.92 256.40± 11.16

Join

100 1000 10000 100000
Fantasm 0.58± 0.30 3.54± 0.28 16.95± 1.34 78.28± 10.62
Pipeline 1.97± 0.05 2.04± 0.20 2.01± 0.09 3.81± 1.60
MapReduce 2.67± 0.24 5.42± 0.45 27.66± 1.74 237.75± 12.00

Subset

100 1000 10000 100000
Fantasm 12.22± 3.20 105.82± 8.45 1022.96± 72.85 10977.50± 1258.76
Pipeline 3.63± 0.74 4.97± 0.92 25.89± 8.92 222.14± 9.02
MapReduce 6.40± 0.96 42.70± 0.72 134.88± 9.59 840.71± 125.15

Wordcount

Table 6.2: Execution time in seconds for the benchmarks in GAE.

166

Chapter 6. Hybrid Cloud Support for Large Scale Analytics and Web Processing

100 RMQ 1000 RMQ 10000 RMQ 100000 RMQ
Aggregate 3.02 5.72 183.93 610.12
Grep 5.37 16.90 205.53 862.36
Join 2.72 5.16 165.03 455.31
Subset 2.45 3.12 12.61 786.53
Wordcount 7.41 11.43 311.52 635.28

Table 6.3: Execution time in seconds for benchmarks using the Pipelinelibrary on
AppScale with RabbitMQ (RMQ).

100 SDK 1000 SDK 10000 SDK
Aggregate 3.77 6.14 N/A
Grep 6.11 28.88 260.03
Join 3.78 5.90 305.82
Subset 2.55 3.20 12.11
Wordcount 8.38 17.40 411.12

Table 6.4: Execution time in seconds for benchmarks using the Pipelinelibrary with
the AppScale SDK implementation.

100 1000 10000 100000
Aggregate 20.59± 1.41 21.14± 0.55 20.30± 0.88 20.94± 0.59
Grep 11.90± 1.32 11.00± 0.58 11.17± 1.30 10.69± 0.44
Join 20.52± 1.01 20.71± 0.84 20.43± 0.57 23.41± 0.64
Subset 19.93± 0.54 20.07± 1.34 20.26± 0.86 20.66± 0.45
Wordcount 21.73± 1.50 22.13± 1.51 22.19± 0.96 21.54± 0.95

Table 6.5: Execution time in seconds for benchmarks using Hive.

167

Chapter 7

Spot Instances for MapReduce
Workflows

MapReduce is a general computational model that originated from the functional

programming paradigm for processing very large data sets inparallel. A scalable,

fault tolerant approach of MapReduce has been popularized and recently patented by

Google [30, 39]. This implementation operates on data in the form of key/value pairs

and simplifies how large-scale data reductions are expressed by programmers. The

system automatically partitions the input data, distributes computations across large

compute clusters, and handles hardware and software faultsthroughout the process.

Since the emergence, use, and popularity of MapReduce for a wide range of problems,

many other implementations of the process have emerged. Themost popular of which

is Hadoop [43], an open-source implementation of Google MapReduce. Hadoop is

currently in use by Yahoo!, Facebook, and Amazon, among other companies.

168

Chapter 7. Spot Instances for MapReduce Workflows

Given its ease of use and amenability to parallel processing, MapReduce is em-

ployed in many different ways within cloud computing frameworks. Google employs

its MapReduce system for data manipulation within its private compute cloud and App-

Scale, the open-source implementation of the Google App Engine (GAE) cloud plat-

form, exports Hadoop Streaming support to GAE applications[22]. The Amazon Web

Services cloud infrastructure makes Hadoop and Hadoop Streaming available as a web

service called Elastic Map Reduce [61].

In December of 2009, Amazon announced a new pricing model forAWS called

Spot Instances (SIs). SIs are ephemeral virtual machine instances for which users pay

for each completed runtime hour. A user defines a maximum bid price, which is the

maximum the user is willing to pay for a given hour. The marketprice is determined

by Amazon, which they claim is based on VM demand within theirinfrastructure.

If a VM is terminated by Amazon because the market price became higher or equal

to the maximum bid price, the user does not pay for any partialhour. However, if the

user terminates the VM, she will have to pay for the full hour.Furthermore, a user pays

the market price at the time the VM was created, given that it survives the next hour.

The cost of the hours that follow may differ depending on the market price at the start

of each consecutive hour.

SIs are an alternative to on-demand and reserve VM instancesin Amazon. On-

demand instances have a set price for each hour that does not change. Reserve instances

169

Chapter 7. Spot Instances for MapReduce Workflows

have a cheaper per-hour price than both on-demand instancesand SIs, but the user

must lease the VMs for long periods of time (1 or 3 year terms).SIs therefore provide

inexpensive computational power at the cost of reliability(variable and unknown VM

lifetime). The reliability is a function of the market priceand the users maximum bid

(limited by their hourly budget).

In this work, to address the analytics portion of the thesis question, we investigate

the use of SIs for MapReduce tasks. SIs fit well into the MapReduce paradigm due to

its fault tolerant features. We use SIs as accelerators of the MapReduce process and

find that by doing so we can significantly speed up overall MapReduce time. We find

that this speedup can exceed 200% for some workloads with an additional monetary

cost of 42%.

However, since SIs are less reliable and prone to termination, faults can significantly

impact overall completion time negatively depending on when the fault occurs. Our

experiments experience a slow down of up to 27% compared to the non-SI case, and

50% compared to an accelerated system in which the fault doesnot occur.

Since the likelihood of termination is dependent on the market price of the VM and

the user defined maximum bid price, we investigate the potential benefit and degrada-

tion (cost of termination) of using SIs for MapReduce given different prices. We also

use the pricing history of Amazon SIs to determine how much tobid as well as how

many machines to bid for. By using this characterization for agiven bid and market

170

Chapter 7. Spot Instances for MapReduce Workflows

price, we compute expected VM lifetimes for users. Such a tool enables users to best

determine when to employ SIs for MapReduce jobs.

7.1 Background

We first briefly overview the Hadoop MapReduce process. Using Hadoop, users

write two functions, a mapper and a reducer. The map phase takes as input a file from a

distributed file system, called the Hadoop Distributed FileSystem (HDFS), and assigns

blocks (splits) of the file as key-value pairs to mappers throughout the cluster. HDFS

employs replication of data for both fault tolerance and data locality for the mappers.

Mappers (map tasks) consume splits and produce intermediate key-value pairs which

the system sorts and makes available to the reducers. Reducers (reduce tasks) consume

all pairs for a particular key and perform the reduction. Reducers then store the resulting

output to HDFS. The result may be a final computation or may itself be an intermediate

set of values for another MapReduce tuple.

Each machine is configured with a maximum number of mapper andreducer tasks

slots. The number of slots depends upon the resources available (i.e. number of CPU

cores and memory) as well as the type of job being run (CPU-bound versus IO-bound).

The master runs a Job-Tracker process which assigns work to available worker slots.

Slave nodes run Task-Trackers which have their task slots assigned work as it becomes

171

Chapter 7. Spot Instances for MapReduce Workflows

available by the Job-Tracker. Each Task-Tracker can run a custom configuration. It can

be designated to run only mappers, only reducers, or, as is typical, some combination

of the two.

Hadoop tolerates failures of a machine through the use of replication. Output data

can be regenerated given there are live replicas of the inputsplits. The replication policy

for Hadoop is rack-aware and will place one copy on the same physical rack and the

second off-rack. Hadoop also tolerates bad records. Recordswhich cause exceptions

are retried a default of three times and then skipped to ensure the entire job is not halted

due to a single bad record. This issue can come about when buggy third-party software

is used.

Hadoop uses heart-beat messages to detect when a machine is no longer operable.

Data which was lost due to a failure is replicated to ensure that the configured number

of replicas exist.

The time for a MapReduce job in Hadoop is dependent on the longest running task.

Tasks that are few in number and those that continue execution once most others have

completed are called stragglers. The system can speculatively execute stragglers in

parallel using idle task slots in an attempt to reduce time tocompletion. The authors

in [93] provide details on the impact of stragglers in virtualizedenvironments.

172

Chapter 7. Spot Instances for MapReduce Workflows

7.2 Data Analytic Cloud

In this section we describe what we envision to be a data analytic cloud which uses

MapReduce for analyzing data and the cost associated with running such a service. The

scenario which this chapter focuses on relies on a provider to host their large data sets

in a public cloud. The data is stored in a distributed file system running on a subset

of leased VMs in the cloud. In addition, the provider may provision the data analytic

engine required for processing or querying the data. In thischapter we consider the

MapReduce framework as that engine, although this work also carries to using higher

level query languages such as Pig [74] and Hive [67]. Users submit MapReduce jobs,

and the provider charges the user an hourly rate, along with the option to speedup their

job at an additional cost. In order to maximize profit, the provider uses the cheapest

source of computation available. Amazon’s EC2 SI pricing is competitive in this area,

being as low as 29% of the cost of an EC2 on-demand instance.

Amazon’s Elastic MapReduce is another option available, giving users an easy and

cost effective way to analyze large data sets. Data, at the time of writing this chapter,

is free to upload into their Simple Storage Service (S3) and free to transfer within EC2,

but transferring out is $0.15 per GB and storage per month perGB is $0.15. A 1TB

set of data cost $150 per month to store, and $150 per transferout. There is also an

additional cost for PUT and GET request for S3 at $0.01 per 1000 requests. Elastic

173

Chapter 7. Spot Instances for MapReduce Workflows

MapReduce is spawned with a user defined number of instances. The user only pays

for the number of VM hours used at an additional 17.6% charge of the on-demand VM

instance price.

The minimum cost of hosting a 1TB data set in a Hadoop cluster (with a 3 year term)

using just local instance disk space, with three times replication, costs $194 dollars a

month (20 small instance VMs with 160GB each for a total of 3.2TB of distributed

storage). The Elastic MapReduce service with S3 is more affordable if the total amount

of cost for VM instances is less than $44 dollars a month, which affords 440 VM hours

a month or 22 hours of processing for 20 small VM instances. The disadvantages of

storing the data in S3 is that the MapReduce cluster loses the data locality a local HDFS

cluster provides.

7.3 Analysis

We next investigate how best to employ Hadoop within a cloud infrastructure for

which virtual machine instances are transient. Our goal is to investigate how best to do

so given the Spot Instance (SI) option offered by Amazon Web Services (AWS). SIs

offer a cost effective alternative to on-demand instances since the cost of their use is

dependent on market-based supply and demand of instances. We find that SIs can be

as low as 29% of the cost of on-demand instances. SIs trade offtermination control for

174

Chapter 7. Spot Instances for MapReduce Workflows

such cost savings. SIs are good for short running jobs that can tolerate termination, i.e.

faults in the execution process. MapReduce is an ideal candidate for SIs since we can

use additional nodes to accelerate the computation.

However, since the time to complete a MapReduce process is dependent upon how

many faults it encounters, we must also consider SI termination. Since SI termination

is dependent upon market price and maximum bid price, we are interested in using this

information to estimate the likelihood of termination.

To enable this, we consider bid prices independent of marketprices since there is

very limited information available from Amazon as to how they determine the market

price. Amazon does not reveal bids by users or the amount of demand. Table7.1shows

the pricing of different instance types in the western US region. The SI pricing is an

average of prices since they were first introduced in December of 2009 till March of

2010. The small instance type uses a 32-bit platform, while the rest are 64-bit. An EC2

compute unit is equivalent to a 1.0 to 1.2 GHz 2007 Xeon or Opteron processor [2].

7.3.1 Spot Instance Characterization

We model the SI lifetimes by building a Markov Chain with edgesbeing the proba-

bility of price transitions for each hour interval. Given the transitional probabilities we

175

Chapter 7. Spot Instances for MapReduce Workflows

Average On-Demand EC2 Compute Memory Storage
Instance Type Price StDev Price Units (GB) (GB)
m1.small $0.0399 0.001327 $0.095 1 1.7 160
c1.medium $0.0798 0.002551 $0.190 5 1.7 350
m1.large $0.1673 0.04163 $0.380 4 7.5 850
m2.xlarge $0.2397 0.007489 $0.570 6.5 17.1 420
m1.xlarge $0.3197 0.009045 $0.760 8 15 1690
c1.xlarge $0.3233 0.02469 $0.760 20 7 1690
m2.2xlarge $0.5593 0.01756 $1.340 13 34.2 850
m2.4xlarge $1.1164 0.03288 $5.08 26 68.4 1690

Table 7.1: Prices of different VM instances from the US west region. Instances labeled
with ”m1” are standard instances, ”m2” are high-memory instances, and ”c1” are high-
CPU instances. EC2 compute units are based on CPU cores and hardware threads. All
instances here are for the Linux operating system. Costs are obtained from [2].

can calculate n-step probability using a variant of the Chapman-Kolmogorov equation:

P (i, b, n) =
∑

j 6∈B

MijP (j, b, n− 1) (7.1)

where

p(i, b, 0) =

0 if i ∈ B

1 if i 6∈ B

(7.2)

The starting market price at the time of VM creation isi andn is the number of time

unit steps. The set of prices which are over the bid price,b, are in setB. Mij is

the probability matrix of a price point fromi to j. Pricing history was collected over

time using Amazon’s EC2 tools and can be attained from [27]. P (i, b, n) is solved

176

Chapter 7. Spot Instances for MapReduce Workflows

recursively, where each step depends on the previous one. The base case is a binary

function of whether or not the bid price is greater than the market price.

Figure7.1 shows the probability of a VM running forn hours. The figure has dif-

ferent maximum bid prices given the market price being $0.035 at the time of starting

the instance. As the maximum bid decreases, the probabilityof the SI staying up de-

creases as well. Some small increments in the bid price can give much larger returns

in probabilities as can be seen when incrementing the bid price from $0.041 to $0.043,

whereas other increments give very little return ($0.037 to$0.039). A SI in this case

has more than an 80% chance of making it past the first hour given the market price

was less than the bid price at the start of the VM. Bids that are less than or equal to the

market price at the start of the VM would stay at 0% probability ($0.035 for example

which is not viewable because it is directly overlaid on the x-axis).

Figure7.2 has two sets of data for comparison. The data set labeled ”A” is from

mid-January 2010 to mid-March 2010, while the data labeled ”B” is from mid-March

2010 to the end of May 2010. A comparison of the two models shows that the past

pricing model is a good indicator of future pricing. It should be noted that data prior

to mid-January was not used in building the model as shown in Figure7.1 because as

reported in [3] there was a bug in the pricing algorithm prior to this date which has

since been fixed. The bug’s impact can be seen in the pricing visualized in [27] where

177

Chapter 7. Spot Instances for MapReduce Workflows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

of
 O

pe
ra

tio
n

Number of Hours

0.035
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.043
0.044
0.045

Figure 7.1: The probability of a small VM instance staying operational over time given
a starting price of $0.035 with varying bids.

178

Chapter 7. Spot Instances for MapReduce Workflows

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

of
 O

pe
ra

tio
n

Number of Hours

A 0.038
A 0.039
A 0.040
A 0.041
A 0.042
B 0.038
B 0.039
B 0.040
B 0.041
B 0.042

Figure 7.2: A comparison for verifying the pricing and lifetime model ofa small VM
instance given a starting price of $0.038 and varying bids.

179

Chapter 7. Spot Instances for MapReduce Workflows

prices stabilized post January 15th. This explains the smaller range of prices between

Figure7.1and Figure7.2.

Using Equation7.1, we can calculate the expected lifetime,l, of a VM given a

starting market price,i, a given bid,b, and a max run time ofτ time units:

E(l) =
τ

∑

n=1

nP (i, b, n) (7.3)

We can determine the amount of expected work a VM should achieve given the

lifetime of a VM. This value can be used in the planning of backing up data and hence

reduce the impact of failure. Moreover, it can be used in bidding strategies to ensure

the greatest amount of SIs can be requested without fear of going over your maximum

allocated budget.

7.3.2 Cost of Termination

We define the cost of a termination as the amount of time lost compared to having

the set of machines stay up until completion of the job. The minimum cost is

δ + (fM/s)/(s− f) (7.4)

180

Chapter 7. Spot Instances for MapReduce Workflows

where the total time taken to complete the mappers isM . The total number of mappers

is a function of block size and the size of the input file. The total number of slaves is

s, the number of machines terminated isf , and the time spent waiting for a heart-beat

timeout to occur while useful work could be done isδ. Early termination of a machine

into the map phase allows for an overlap of when the termination is detected and the

rest of the cluster is doing useful map work (i.e. no map slot goes idle). Work is equally

divided given the machines are homogeneous.

Termination also results in the loss of reducer slots if thatmachine was configured

so. This may or may not be an additional cost of failure depending on the job configura-

tion which can specify the number of total reducers. This potential cost is not reflected

in Equation7.4due to its application specific and configuration specific nature. Termi-

nation after all the mappers have finished, sees the most expense of the fault detection,

forcing a re-execution of all mappers completed on the terminated machine, even those

which have been consumed by reducers and will not be consumedagain.

7.3.3 Evaluation

Our initial experiment consists of five small-sized on-demand instances on EC2

with one node as the master, and four as slaves. The slaves were configured with two

map slots and one reduce slot. Additional EC2 SIs which are added for speedup also

have the same configuration. Each data point is an average of five trials. The applica-

181

Chapter 7. Spot Instances for MapReduce Workflows

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5

S
pe

ed
up

Number of Spot Instances

WordCount
Sort

PiEstimator

Figure 7.3: This graph shows the speedup of three different applications. The x-axis
shows the number of SIs used in addition to the original HDFS cluster. Each data point
represents the average of 5 trial runs.

182

Chapter 7. Spot Instances for MapReduce Workflows

 0

 0.05

 0.1

 0.15

 0.2

 1 1.2 1.4 1.6 1.8 2 2.2

C
os

t (
$)

Speedup

PiEstimator
Sort

WordCount
Average

Figure 7.4: This graph shows the cost versus the speedup. The baseline hourly cost for
the HDFS cluster is $0.475 per hour. Each additional SI instance cost $0.040.

183

Chapter 7. Spot Instances for MapReduce Workflows

tions are wordcount, pi estimation, and sort. Wordcount counts the occurrence of each

word of an input file. Pi estimation uses a quasi-Monte Carlo procedure by generat-

ing points for a square with a circle superimposed within. The ratio of points inside

versus outside the circle is used to calculate the estimation. Sort uses the MapReduce

framework’s identity functions to sort an input file.

Figure7.3.3has the speedup of each job with the number of SIs varied. The speedup

is normalized to the original HDFS cluster configuration. Speedup is linear for all three

applications. The price for speedup is in Figure7.3.3where each additional SI cost

$0.04 per hour. Each job ran for less than one hour, thereforehad the job been running

for n hours, the y-axis would be a multiple ofn.

Our second experiment was using five machines as the HDFS cluster, and one ma-

chine as an accelerator. Figure7.5has the speedup breakdown of adding an accelerator

as well as the relative slowdown when the SI is terminated halfway through execution.

The detection of machine faults was set to 30 seconds to minimize δ for these experi-

ments, where the default is 10 minutes. The default delay is set sufficiently large for

the purpose of distinguishing between node failure and temporary network partitioning

and had our experiments used the default valueδ would have grown accordingly.

For Figure7.5 the mapper portion is from when the first mapper begins and the

last mapper ends. The shuffle period is where map output is fetched by reducers. This

phase runs in parallel with mappers until the last mapper output is fetched. Reducers

184

Chapter 7. Spot Instances for MapReduce Workflows

fetch and merge-sort the data as map output becomes available. They finish merge

sorting the remaining intermediate data and proceed to run the reduce procedure once

the shuffle phase is complete. The reduce procedure does not start until all map output

is accounted for.

As expected, we see speedup for all applications with the addition of an SI. Yet the

cost of losing the accelerator actually slows down the application sufficiently, to the

point where it was faster with the original setup. If the SI ran longer than an hour, it

would have cost the user money with no work to show for it. On the other hand, if

the SI was terminated before the first complete hour, no moneyis lost. The completion

time is hampered in both cases. Section7.4 presents the solution we are pursuing to

alleviate this problem.

The addition of SIs improves the completion time of the mappers, but may not im-

prove the completion time of the reduce phase. Many applications have a sole reducer

at the end of the map phase because it requires a holistic viewof the map output. Ad-

ditionally, the runtime of the reducer is dependent on the amount of intermediate data

generated. The amount of intermediate data is subject to theMapReduce application,

and the input data. The use of a combiner also reduces the amount of intermediate

data, which is invoked at the end of a mapper performing an aggregation of mapper

output. Our wordcount benchmark uses a combiner which essentially does the same

185

Chapter 7. Spot Instances for MapReduce Workflows

(a) Pi Estimator

(b) Word Count

(c) Sort

Figure 7.5: Completion time for three different applications showing runtime for
MapReduce on the original on-demand HDFS cluster, with one SI, and with an SI ter-
mination halfway through completion (85, 450, 940 seconds for Pi Estimation, Word
Count, and Sort, respectively).

186

Chapter 7. Spot Instances for MapReduce Workflows

job as the reducer at a local level. The aggregated map outputhelps to decrease the

reducer workload in both the amount of data which must be fetched and processed.

7.4 Discussion

Had we kept adding SIs to the system in our first experiment, wewould expect to

get a diminishing return in the amount of speedup an application sees. For each SI, data

must be streamed to it from the HDFS cluster which is hosting the input file. Moreover,

there may be a tipping point in which the HDFS cluster is overburdened with too many

out going data transfers, and the addition of an SI would result in a slowdown. We are

pursuing discovering where this breaking point is, and whatthe ratio of HDFS VMs to

SI VMs are for different applications.

We also ran experiments with accelerator nodes only runningmappers. Our first

notion was that mapper output which was consumed by a reducerwould not be re-

executed in case of a failure. This assumption was wrong. Allmappers are re-executed

on a machine regardless of whether it will be consumed again.Reducer output is al-

ready stored in HDFS with default replication of three. Check-pointing the map func-

tions can be done by replicating the intermediate data as done in [51]. Other meth-

ods include saving the intermediate data to Amazon’s S3 or EBS. The current Hadoop

187

Chapter 7. Spot Instances for MapReduce Workflows

framework can also be modified to use tracking data on which mappers have been con-

sumed to prevent re-execution during a fault.

Future work includes analyzing the cost-to-work ratio of different VM instance

types. SIs can be used as probes for determining the best configuration. But this is only

after fixing the availability of mapper output after termination, since we want to be able

to restart the Task-Trackers with the optimal discovered configuration. The optimal

configuration consists of having the most amount of mappers and reducers without

them hitting performance bottlenecks due to sharing CPU, disk, network, and memory

resources. Without the ability to save their intermediate data, the probes would become

liabilities for wasted computation. Furthermore, we plan on investigating the use of

heterogeneous configurations and instance types where a portion of the VMs only run

reducers or mappers.

Additional future work includes analyzing the effects of staggering max bid prices

across a set of SI VMs. In such a case it would be possible to only lose portions of

accelerators at a time, essentially giving some VMs priority.

The nature of SI billing also leads to an interesting discussion on how to maximize

utilization. An SI will be billed for the entire hour if terminated by the user even though

it was only used for a partial hour, while no billing results if the VM ran for a partial

hour and Amazon terminates the instance due to a rise in the current market price. Users

may want to terminate an instance after an hours time in orderto only pay for a full hour

188

Chapter 7. Spot Instances for MapReduce Workflows

usage rather than pay for a partial hour, but this is only wisewhen the framework can

recover from failure without significant adverse affects onthe completion time.

7.5 Summary

We have presented SIs as a means of attaining performance gains at low monetary

cost. We have characterized the EC2 SI pricing for informed decisions on making

bids given the current market price. Our work has shown that due to the nature of

spot instances and their reliability being a function of thebid price and market price,

MapReduce jobs may suffer a slowdown if intermediate data is not stored in a fault

tolerant manner. Moreover, a fault can cause a job’s completion time to be longer than

having not used additional SIs while potentially costing more.

189

Chapter 8

Infrastructure Agnostic and Datastore
Agnostic Live Migration of Private
Cloud Platforms

Companies with on-premise Infrastructure-as-a-Service (IaaS) and Platform-as-a-

Service (PaaS) systems employ private cloud technology, which provides the flexibility

and power of the public cloud, yet allows for the utilizationof on-premise resources

and infrastructure.

As more and more companies go towards private PaaS offerings, there is a critical

concern for providing high reliability and availability while also enabling the ability to

perform updates on the underlying hardware and software resources. At the OS level,

within individual VMs, security patches must be installed that may require the system

to be rebooted. At the PaaS level, user applications rely on amultitude of software

subsystems that may be frequently updated (e.g., load balancers, application servers,

190

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

and databases). Moreover, hardware updates can occur when moving to higher end

servers, or moving to higher performing storage options (such as solid state drives).

Open source PaaS technologies rely on a multitude of components, which them-

selves are comprised of open source solutions that are rapidly changing. These changes

come in response to getting community uptake or decline in popularity, for reasons such

as performance and reliability. The communities followingNoSQL datastore technolo-

gies, where there are well over 150 different options [72], are a prime example where

there are constant shifts between selections as technologies improve with better perfor-

mance and newer feature sets. Yet, while the capability to swap out a datastore should

be possible, developers of such technologies are not incentivized to create portable sys-

tems.

We address the thesis question and the requirement that realPaaS systems face

for frequent upgrades and the desire to swap out technologies with minimal downtime

by using a technique calledlive migration. With live migration, PaaS users can be

transplanted from one underlying technology to another, whether that technology is the

virtualization layer, the IaaS, or some component technology of the PaaS, with minimal

service disruption.

We do so by extending the AppScale PaaS framework. AppScale can Google App

Engine (GAE) applications and do so scalably while supporting multiple infrastructures

191

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

Figure 8.1: Live migration in AppScale.

and datastores. AppScale has plug-in capability for datastores, supporting datastores

such as Cassandra, HBase, Hypertable, and MySQL Cluster as detailed in Chapter4.

Figure8.1shows an example of a live migration of two different AppScale deploy-

ments, where the underlying IaaS system and datastore used are being updated. In this

chapter we address the need to be able to move applications and tenants from one PaaS

deployment to another, and to leverage the elasticity of private cloud infrastructures to

perform live migrations.

In the sections that follow, we first provide required background on AppScale and

its data model. We then describe the requirements, design, and implementation of our

live migration system and show an evaluation of our live migration support between

two deployments of AppScale, where we transition the datastore used from Cassandra

192

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

to Hypertable. Our evaluation looks at several components of the system, including

the synchronization of our distributed transaction manager, datastore performance, and

switchover time.

8.1 Background

AppScale provides GAE application portability as well as infrastructure and datas-

tore agnosticism. It provides this portability by implementing the GAE APIs, doing so

scalably and with fault tolerance. While there are many APIs supported by AppScale

for GAE compatibility, the only system state that requires migration is the datastore,

as the other APIs are stateless or have no impact on correctness if transferred to a sec-

ondary deployment. Yet, for performance reasons we also address the preloading of

memcache, a distributed memory caching system meant to alleviate load on the datas-

tore, as to prevent having a cold cache upon the traffic handover.

Infrastructure agnosticism comes by the way of how AppScaleis packaged as a vir-

tual machine image. Any virtualization technology capableof running a Ubuntu virtual

machine image can run AppScale (e.g., Xen, KVM), and any IaaSthat is EC2 compat-

ible (e.g., Eucalyptus, OpenStack) allows for AppScale to be automatically deployed

over a varying number of nodes at initialization.

AppScale employs an abstraction layer above the datastore,allowing for the plugging-

in of a variety of NoSQL technologies, which are automatically deployed at initializa-

193

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

tion. We contribute a unifying data migration layer that nowallows for the ability to

do rolling upgrades to new versions of the existing datastore or an entirely different

datastore, a feature that many NoSQL datastores do not currently support.

The datastore layer within AppScale was extended to provideACID transaction

support, regardless of the underlying datastore [20], via a distributed coordinator. Lock

granularity for transactions is at an “entity group” level,where entities that share a com-

mon root entity are within the same group. These groups are detailed by the developer

within their application, and cannot be changed thereafterwithout deleting the entities.

Moreover, the query support in GAE, and thus AppScale, is limited to only scalable

operations. There is no support for JOINs, MERGEs, or querieswhich can do IN-

SERTs, and hence all queries perform read-only operations.Since queries which can

be performed in GAE are derived from the ability to do range queries on the datastore,

certain queries are not allowed, such as inequality filters on multiple properties.

Related work includes Albatross [29], a migration technique for moving tenants in

a cloud system between deployments. While we can also provideper-tenant movement

between deployments, our data model allows for the capability to update the software

stack at multiple levels, all while maintaining backwards compatibility with running

applications. Furthermore, while much research has been done in VM migration [60],

it does not address the problem of performing software stackupgrades above the IaaS

layer or allow for per-tenant migration.

194

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

8.2 Design and Implementation

Live migration of data must adhere to certain requirements,such as high availability,

backward compatibility, a minimal number of failed transactions, and minimal perfor-

mance degradation. We have designed and implemented our PaaS migration techniques

within AppScale with these requirements and metrics in mind. To do so, we leverage

existing components, including the datastore-agnostic transaction support. Migration

requires multiple phases, in which state is synchronized between two separate deploy-

ments. Figure8.2shows the different stages required to make a full transition from the

current deployment to the next.

Figure 8.2: Timeline of the migration process.

8.2.1 Migration Initialization

The first steps in our migration process require the configuration and deployment of

a secondary AppScale instance (N2), initiated by the primary AppScale instance (N1).

195

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

N2’s firewall is opened up to allow access byN1 to controlN2’s network channels (such

as SOAP servers).

OnceN2 has been successfully initialized,N1 utilizes the AppScale command-line

tools (a toolset which cloud administrators can use to interact with AppScale deploy-

ments) to upload copies of the applications running inN1 to N2. At this point, no data

has transferred and the applications themselves, while running, are not being accessed

by users. We currently do not support the uploading of new applications toN1 while

the migration is taking place.

8.2.2 Metadata Synchronization

ZooKeeper is a distributed coordination system that AppScale employs to manage

state between different services within a deployment, as well as for locking to provide

transactional semantics, as explained in [20].

After the N2 ZooKeeper instances are up, nodes are automatically synchronized

with N1 for new updates, as a consensus is required via the Paxos algorithm once they

have joined the cluster. Existing data is then made available to the new ZooKeeper

nodes by doing the synchronization functionality in a depth-first search. ZooKeeper

nodes are decommissioned atN1 after the full migration is complete.

196

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

8.2.3 Memcache Warm-up

Our objective for memcache is to have a warm cache inN2 by the time the handover

takes place. For this we do not require full synchronizationbut a best effort to keep all

relevant and most recently used data in the cache. We achievethis by employing copy-

on-write (COW) and also copy-on-read (COR) for memcache updatestoN2. The local

read or write happens in parallel to the remote write to minimize overhead. We do not

do asynchronous updates as to adhere to cache coherency whenentries are invalidated.

This step is initiated as soon asN2’s memcache system is operational (not shown in

Figure8.2).

8.2.4 Data Synchronization

After synchronizing the metadata inN1, we can now synchronize application data.

The data access layer at each node has a REST interface that signals the stages of

migration the process should be in. Each datastore process on each node is sent a

message containing the IP address ofN2. Upon receiving this message, any writes or

deletes are forwarded toN2 in a copy-on-write manner.

It should be noted that because of the GAE Datastore API’s transaction semantics,

writes and deletes are always part of a transaction, even if the transaction is only a

single operation. Therefore, each operation requires thata lock be acquired and held

through ZooKeeper (which is shared state between deployments). Furthermore, COW

197

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

updates are done in parallel with local writes to the transaction journal and datastore,

to minimize latency.

Transactions must always verify that if it started during normal operation that it

did not transition into COW mode mid-transaction upon being committed. If so, the

transaction must be retried to ensure that its state is successfully synchronized with the

secondary deployment via COW. By default, failed transactions will retry up to three

times, before they permanently fail.

Once all datastore access layers acknowledge they are in COW mode, then the data-

store snapshot process can begin. COW updates start before the snapshot is started and

proceeds during and after, as to make sure no new updates are lost. The updates them-

selves are SOAP calls to a migration service running onN2 which uses the datastore

agnostic API.

A full snapshot of the datastore consists of serializing each table into a set of flat

files which are then compressed. Each independent file can be loaded intoN2 in parallel

as an optimization, yet we currently do it serially for simplicity.

The completed snapshot is then copied over toN2 where it is loaded into the datas-

tore via the datastore agnostic transaction layer [20]. Updates are done transactionally,

where the key is first checked to make sure no live updates weredone to the entry

before updating it. This is only possible because ZooKeeperstate is currently shared

between deployments. If an entry has been updated during a live datastore write, the

198

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

snapshot version is simply ignored, as it is stale data (a journaled version will still be

available if a rollback is required). Furthermore, it is notpossible for an entry to be

loaded intoN2’s datastore while an ongoing transaction is in place atN1. N2 will fail

to get the lock on the given entity group and will exponentially backoff until the lock

can be attained. After the lock has been acquired, it will then check to see if the given

entry already exists, where it will find an entry due to the aforementioned transaction,

and thus move onto the next entity to load.

8.2.5 Traffic Handover

Once full data synchronization as been achieved we then switchN1 as a full proxy

for data access toN2, making it the primary replica for data access. This step is required

as we make the transition ontoN2 for the traffic handoff.

We have two stages of traffic switching. The first stage does permanent redirects

at the proxy routing layer (nginx), but because we cannot guarantee that all proxies

on all nodes force redirection at the same time we require thefull data-proxy stage to

make sure there is no case where a user who has not been routed over does not see

updates made by a user at the secondary deployment (independent updates atN2 are

not synchronized back toN1).

Second, we use DNS updates to make sure that the secondary deployment has sub-

sequent traffic from new users. DNS updates alone do not suffice, as many clients

cache the DNS entry and it may take ample time before it refreshes its entry. Amazon’s

199

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

Route 53 was the DNS service we used because of its high availability and scalability.

Modifications to the DNS was done using their RESTful API whichallows for dynamic

updates. Our updates consisted of updating the resource record field to point fromN1’s

IP toN2’s IP.

8.2.6 Fault Tolerance

In a distributed setting we are able to leverage AppScale’s current fault tolerant ca-

pabilities for live migration. If transactions fail duringa live migration the transaction

handler identifier is recorded into ZooKeeper which is shared state between deploy-

ments. Any reads of an entity that has a blacklisted transaction identifier is ignored,

and the correct version identifier, which is saved in ZooKeeper, is fetched from the

transaction journal. While data is currently checked with md5 hashes when transferred

across nodes to prevent data corruption, we do not handle Byzantine faults.

8.3 Evaluation

In this section we measure the overhead associated with livemigration between one

AppScale deployment to a secondary. We do so with two single node deployments of

VMs with 7.5GB of RAM and 4 CPU cores. The initial deployment hadCassandra

1.0.7 as its storage layer, while the secondary deployment had Hypertable 0.9.5.5. The

testing application was a GAE application with a RESTful interface. Reads and writes

were done based on parameters passed to this application perrequest.

200

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

Lock Count Min Mean Stdev Max
1000 4.44 4.49 ±0.03 4.53
5000 6.57 6.58 ±0.04 6.62
10000 8.35 8.47 ±0.07 8.53
50000 23.6 23.8 ±0.13 24.0
100000 42.8 43.0 ±0.22 43.4

Table 8.1: Time in milliseconds required for lock synchronization on anew ZooKeeper
node with a varying number of lock entries.

We first measure the time to synchronize our locking system with ZooKeeper. Next

we empirically evaluate the time taken to upload different sized entities from a snapshot.

Furthermore, we look at the overhead of updates to both the datastore and memcache

which occurred during live migration. Lastly, we quantify the latency associated with a

switch over using Amazon’s Route 53.

8.3.1 ZooKeeper Synchronization

Table8.1 shows the time taken for synchronizing a node given a different amount

of ZooKeeper nodes in which transactional lock states are stored. The number of root

entities signifies the number of locks required, and thus need to be synchronized. We

see that the time taken on average has sub-linear growth as the number of entries grow

while maintaining a relatively low standard deviation.

8.3.2 Memcache

We measured the time taken for migration of reads and writes to memcache and

measured the overhead compared to normal operation. For entity sizes of 5KB, we

201

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

State Read % Min Mean Stdev Max
N 20 46.4 107.2 ±23.6 240.2
N 50 44.5 100.2 ±24.5 223.9
N 80 44.3 94.0 ±24.1 348.1
M 20 43.7 115.8 ±32.4 536.5
M 50 45.7 103.3 ±27.1 274.5
M 80 47.0 94.2 ±23.0 233.1

Table 8.2: A comparison of time taken for request in milliseconds between normal
operation (N) and live migration (M) for different workloadpercentages of reads versus
writes.

Figure 8.3: CDF of latency of different work loads comparing normal operation to live
migration. The x-axis is latency in milliseconds.

found that COW added 0.17ms of overhead, while COR added 0.85ms, both adding

less than one percent overall overhead per user request whendoing both local and

remote updates in parallel. COR added slightly more over overhead because writes are

10.3 times longer compared to a local read.

8.3.3 Datastore Performance

Table8.2has a comparison of the average latency with different workloads, from a

20/80 read-to-write ratio, to an 80/20 ratio. We compare theinitial state (pre-migration)

202

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

Size Min Mean Stdev Max
100B 1.72 2.45 ±0.92 20.53
500B 1.71 2.29 ±0.80 19.08
1KB 1.70 2.43 ±0.97 17.03
5KB 1.78 2.62 ±0.75 12.53
10KB 1.79 2.71 ±1.09 18.26
50KB 1.82 2.88 ±1.03 20.02
100KB 2.17 3.18 ±1.00 24.45

Table 8.3: Time for transactionally loading entities of different sizes into Hypertable
through the datastore agnostic transactional layer. Timesare in milliseconds.

and during migration with 100,000 updates. Load is generated using the Apache Bench-

mark Tool with a concurrent setting of 10 requests which maxed out all the CPU cores.

Read heavy operations see the least amount of overhead as it does not require copy-

on-write operations with the secondary deployment. As Figure 8.3 shows that there

is more overhead associated with write heavy workloads, yetbecause updates to the

remote deployment are done in parallel with the local writesto the datastore, we mini-

mize the additional required latency. Overall we see the overhead at an average of 7.4%

with write heavy workloads, while being negligible for readheavy workloads at 0.2%.

The most write heavy workload also sees a longer tail past the95th percentile, from

170ms to 190ms. For both scenarios no failed requests were reported.

Table8.3presents the time taken for different entity sizes when loaded from a snap-

shot. For this experiment 10,000 updates of each size were loaded and measured. These

times include the time to acquire the lock, to check if the current key had an existing

203

Chapter 8. Infrastructure Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms

value, and to do the write. There were insertion times over 20ms as the max times show,

but these were well into the 95th percentile (CDF not shown).

8.3.4 Traffic Handover

We use the AWS REST-based API to dynamically update the resource record names

in Route 53. We measure the switchover time with the Apache Benchmark Tool which

continuously sends HTTP request to the initial deployment.The average time to switch

over was 46.4 seconds with a standard deviation of 0.97 with atotal of 10 trials. The

time measured is the difference between when the first HTTP request appears in the

access logs of the secondary deployment to the the initial time the API request was

sent.

8.4 Summary

In this chapter we have designed, implemented, and evaluated a PaaS live migra-

tion technique that provides minimal performance degradation and little to no service

disruption. As part of future work, we will evaluate different combinations of rolling

upgrades throughout the cloud stack, as well as migrations across WANs.

204

Chapter 9

Conclusion

This dissertation has laid the groundwork for a large scale hybrid cloud platform-

as-a-service and has leveraged it to investigate multiple useful and high impact facets of

cloud computing. First, it addresses the lack of tools to compare and contract different

NoSQL offerings, in which there are over 120 at the time of writing this thesis. Sec-

ond, it addresses the missing features of NoSQL datastores such as ACID transactions,

and secondary index support. Third, this dissertation has provided a valid and novel

use case for hybrid computing for emerging PaaS platforms, utilizing independent, dis-

parate cloud systems for offline data analytics. Moreover, we extended this research by

considering how certain cost models of cloud computing can be exploited to achieve

low cost analytics. Lastly, we have pursued platform support of live migration for ap-

plications, with the capability to swap out the underlying hardware and software by

leveraging the abstractions that cloud computing exposes.

205

Chapter 9. Conclusion

In Chapter3 we have presented AppScale, the first open source PaaS available to

the research community, filling a need which was previously unfulfilled. In order to

engender a vibrant developer community, we have emulated the Google App Engine

APIs, allowing any of 1 million-plus applications to be alsorun on our private cloud

platform. AppScale does not compete with App Engine, but it provides scale and flexi-

bility for application developers and cloud researchers alike given the cluster resources

it has been allocated. AppScale also addresses the problem of GAE lock-in since it en-

ables applications to move to different public IaaS providers and to and between private

clouds, without code modification. Finally, because the platform is open, developers

can turn off the restrictions that GAE imposes on applications (e.g. limited libraries

allowed, time restrictions on service use and request handling, sandboxed execution),

albeit at the potential cost of scalability and system stability.

Our work in Chapter4 has considered the benefits and trade offs of the cloud plat-

form from the perspective of large scale data management. Our advances facilitate

automatic deployment of distributed datastore technologies while providing applica-

tion portability across them via a common datastore API. Theportability layer of our

implementation has allowed for the plugging in of datastores and distributed load of

datastore requests across a distributed system. Applications can now be written using a

common datastore API and easily migrated to another datastore without any modifica-

tions to their applications.

206

Chapter 9. Conclusion

Because this layer provides a level of indirection between the application and the

datastore, we have been able to show that we can use it to implement datastore-agnostic

extensions to the underlying technologies. We prototype a limited form of distributed

ACID transaction semantics (Chapter4) and secondary index support (Chapter5) by

exploiting this layer. By doing so, we show that we can implement such support once

and benefit numerous technologies for which it is absent – as opposed to reimplement-

ing such support for each individually. For our limited transaction semantics, we require

only that the underlying datastore technologies provide atomic row access and strong

consistency across replicas. For secondary index support,we require only range query

support. We show that we can efficiently add such support independent of the datas-

tore technologies in this way by leveraging the extensible cloud platform that AppScale

provides.

Given efficient and portable support for large scale, key-value data management, we

next turn our attention to making use of such technology for analytics. Analytics is crit-

ical to both large and small businesses to make smart decisions about how best to satisfy

customers and grow. In Chapter6 we have described the first hybrid use case for PaaS

systems. We have contributed two methods for synchronization across cloud platforms

and have evaluated them using a range of metrics. Moreover, we have provided a high

level query language for developers to run analytics jobs ontop of their existing appli-

207

Chapter 9. Conclusion

cations data without any requiring them to perform extraction-transformation-loading

(ETL) manually.

In Chapter7, we have considered the monetary aspects of using an emerging cost

model exported by public cloud provider for large scale dataanalytics: market-based

pricing. We have focused on and modeled the Amazon EC2 implementation of such

pricing because of its mature and available implementation– but such a model can also

be used on-premise for any organization with auditing requirements. Specifically, we

have modeled a dataset of pricing of Amazon EC2 and have used itto make intelligent

bidding decisions for resource prices for MapReduce jobs. Furthermore, we have found

that this programming model, as it is implemented by the opensource Hadoop system,

suffers performance issues upon node failures due to intermediate data that must be

regenerated.

We next investigated a key building block for hybrid cloud that an open and exten-

sible platform like AppScale can provide. In particular, wehave considered support

for moving (migrating) an application between datastore, IaaS, and PaaS technologies

while it is executing, without modifying the application code. Our results have shown

that we are able to do so with little overhead, no lost updates, and with our limited

transaction semantics support, for read heavy workloads.

Our contributions address how to facilitate portability ofdata-intensive applications

across different cloud fabrics and internal storage systems. Our extensions to App-

208

Chapter 9. Conclusion

Scale facilitate comparison of disparate storage systems without the need to learn the

idiosyncrasies of any one datastore, while providing transaction support and secondary

indexes. Moreover, our advances enable cross cloud synchronization of data that facil-

itates offline analytics and live application migration.

9.0.1 Impact

Our research artifacts include multiple publications in top conference venues in-

cluding USENIX HotCloud, USENIX WebApps, and IEEE CLOUD. Additionally, we

have combined and extended two of our papers [11, 21] for a journal publication in the

Journal of GRID Computing [19]. We have also published a book chapter on the usage

of AppScale in [55], which has been downloaded and referenced by users over 5,000

times.

We have released all of our code as open source under the a modified BSD license.

Our releases began in April 2009 and we have released the system seven times since

then. Our system has had over 10,000 downloads and over 4,000starts in the last year,

by users all over the world and by researchers at organizations including NASA and

IBM. AppScale is the platform that Google representatives reference to address vendor

lock-in concerns by potential and extant App Engine customers. Our user community

(mailing list) which has over 320 members who consider the use of AppScale for both

research and production deployments.

209

Chapter 9. Conclusion

9.0.2 Future Work

The keys to the success and continued high impact of this dissertation work requires

that we maintain and continue high-fidelity and compatibility with Google App Engine

and that we support and integrate the updates made to the internal technologies that

AppScale integrates (e.g. the NoSQL datastores) that are under development by third

parties. To keep up with the release cycle of App Engine (monthly) we communicate

with the Google App Engine team. We prioritize advances and changes to APIs based

on application use. As part of future work we will continue topursue such evolutions

so that AppScale is as similar as possible to App Engine.

NoSQL datastores also have a fairly rapid release cycle, andupdating the datastores

requires a one-time effort. Most efforts are simple as the start up procedures and in-

terfaces have not changed, but we’ve experienced underlying APIs changing causing

porting time to increase. Yet, with developers leveraging AppScale, this porting effort

is abstracted away because the GAE datastore layer is consistent.

Additional work is required to extend our index support to include scalable support

for transactions. Our current limitation with pessimisticlocking is simple yet restricts

scalability and performance for batch updates of entities from different entity groups.

Also as part of future work, we are investigating the trade-offs of different implemen-

tations of indexing in order to provide the high scale of NoSQL and with limited trans-

action semantic support.

210

Chapter 9. Conclusion

Next, our application migration support currently works only for local area net-

works. As part of future work, we are extending this to the wide area. Since we rely

on the Zookeeper open source technology for distributed coordination, and it has been

used in the wide area, we are working on extending our contributions to provide limited

forms of migration functionality in the wide area. We will evaluate both the limitations

necessary and the trade offs required to scale and performance that such support across

disparate clouds requires. We would also like to leverage our dissertation technologies

to mirror data to facilitate such migration as well as to enable disaster recovery for

applications.

With our cloud platform there are many longer term advances that are also possible.

We find the switch over in the disaster recovery scenario can be trivial, but the fail-over

mechanisms required are very application-specific. Additional advances can provide a

more general solution for such scenarios.

Currently, our platform is ideal for a single application which can use the entire set

of resources allocated to it. While AppScale can also supportmultiple applications,

the resource utilization of individual applications can beimproved. Different applica-

tions have different workloads (CPU versus datastore access), which leads to difficult

scheduling and scaling problems. However, since AppScale can monitor and profile all

of the activities of the cloud through API call interception, this feedback can be used to

provide intelligent placement and elasticity support.

211

Chapter 9. Conclusion

Finally, we have found that it is possible to combine our research on using spot

instances with the automatic scaling of applications – since our application servers are

stateless. The scaling out of our datastore is more challenging however, as different

datastores behave differently when new nodes are added and removed. Moreover, dif-

ferent NoSQL technologies implement replication differently. Another potential long

term extension of our work is support for automatic elasticity of the AppScale NoSQL

plug-ins – in a way that is datastore agnostic (similar in spirit to our support for indexing

and limited transaction semantics in this work).

212

Bibliography

[1] Accumulo."http://accumulo.apache.org”.

[2] Amazon Web Services."http://aws.amazon.com/”.

[3] AWS Disscussion Forum. http://tinyurl.com/2dzp734.

[4] Microsoft Azure Service Platform."http://www.microsoft.com/azure/”.

[5] M. Azure. Business Analytics, 2011.http://www.windowsazure.com/
en-us/home/tour/business-analytics/.

[6] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J. Leon, Y. Li,
A. Lloyd, and V. Yushprakh. Megastore: Providing Scalable,Highly Available
Storage for Interactive Services. In5th Biennial Conference for Innovative Data
Systems Research, 2011.

[7] J. Baker, C. Bond, J. Corbett, J. Furman, A. K. J. Larson, J. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. InConference on Innovative Data Systems Research (CIDR),
pages 223–234, January 2011.

[8] P. A. Bernstein and N. Goodman. Concurrency control in distributed database
systems.ACM Comput. Surv., 13(2):185–221, 1981.

[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency control and recov-
ery in database systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

[10] Brisk Datastax."http://www.datastax.com”.

[11] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, P. Lakhina, Y. Li, and
Y. Nomura. An Evaluation of Distributed Datastores Using the AppScale Cloud
Platform. InIEEE International Conference on Cloud Computing, Jul. 2010.

213

"
"
"
http://www.windowsazure.com/en-us/home/tour/business-analytics/
http://www.windowsazure.com/en-us/home/tour/business-analytics/
"

Bibliography

[12] C. Bunch, J. Kupferman, and C. Krintz. Active Cloud DB: A RESTful Software-
as-a-Service for Language Agnostic Access to Dis tributed Datastores. InICST
International Conference on Cloud Computing, 2010.

[13] M. Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Sys-
tems. InOSDI’06: Seventh Symposium on Operating System Design and Imple-
mentation, 2006.

[14] Cassandra."http://cassandra.apache.org/”.

[15] T. Chandra, R. Griesemer, and J. Redstone. Paxos Made Live -An Engineering
Perspective. InPODC ’07: 26th ACM Symposium on Principles of Distributed
Computing, 2007.

[16] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber. Bigtable: A Distributed Storage System for Structured
Data.Proceedings of 7th Symposium on Operating System Design andImplemen-
tation(OSDI), page 205218, 2006.

[17] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber. Bigtable: A Distributed Storage System for Structured
Data. InSymposium on Operating System Design and Implementation, 2006.

[18] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technol-
ogy. SIGMOD Rec., 26:65–74, March 1997.

[19] N. Chohan, C. Bunch, C. Krintz, and N. Canumalla. Cloud platform datastore
support.Journal of Grid Computing, pages 1–19, 2012.

[20] N. Chohan, C. Bunch, C. Krintz, and Y. Nomura. Database-Agnostic Transaction
Support for Cloud Infrastructures. InIEEE International Conference on Cloud
Computing, July 2011.

[21] N. Chohan, C. Bunch, Y. Nomura, and C. Krintz. Database-Agnostic Transaction
Support for Cloud Infrastructures. InIEEE International Conference on Cloud
Computing, 2011.

[22] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman,and R. Wol-
ski. AppScale: Scalable and Open App Engine Application Development and
Deployment. InInternational Conference on Cloud Computing, Oct. 2009.

[23] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz. See
spot run: using spot instances for mapreduce workflows. InUSENIX Conference
on Hot Topics in Cloud Computing, 2010.

214

"

Bibliography

[24] N. Chohan, A. Gupta, C. Bunch, K. Prakasam, and C. Krintz. Hybrid cloud
support for large scale analytics and web processing. InWebApps USENIX Con-
ference. USENIX Association, June 2012.

[25] N. Chohan, A. Gupta, C. Bunch, S. Sundaram, and C. Krintz. Infrastructure
agnostic and datastore agnostic live migration of private cloud platforms. InHot-
Cloud USENIX Workshop. USENIX Association, June 2012.

[26] Cloud Foundry."http://cloudfoundry.com/”.

[27] CloudExchange. http://cloudexchange.org/.

[28] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-
A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted data
serving platform.Proc. VLDB Endow., 1(2):1277–1288, 2008.

[29] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: lightweight
elasticity in shared storage databases for the cloud using live data migration.Proc.
VLDB Endow., 4:494–505, May 2011.

[30] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters.Proceedings of 6th Symposium on Operating System Design andImple-
mentation(OSDI), pages 137–150, 2004.

[31] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-Value Store. InSymposium on Operating System Principles, 2007.

[32] ejabberd."http://ejabberd.im”.

[33] G. A. Engine. App Engine Transaction Semantics, 2010.http://
code.google.com/appengine/docs/python/datastore/
transactions.html.

[34] Eucalyptus home page.http://eucalyptus.cs.ucsb.edu/.

[35] Fantasm."http://code.google.com/p/fantasm/”.

[36] Google app engine blog."http://googleappengine.blogspot.com/2011/05/year-
ahead-for-google-app-engine.html”.

[37] Google App Engine.http://code.google.com/appengine/.

215

"
"
http://code.google.com/appengine/docs/python/datastore/transactions.html
http://code.google.com/appengine/docs/python/datastore/transactions.html
http://code.google.com/appengine/docs/python/datastore/transactions.html
http://eucalyptus.cs.ucsb.edu/
"
"
http://code.google.com/appengine/

Bibliography

[38] Google App Engine MapReduce. "http://code.google.com/p/appengine-
mapreduce/”.

[39] Google MapReduce Patent. http://tinyurl.com/yezbynq.

[40] J. V. Gurp and J. Bosch. On the implementation of finite state machines. Inin
Proceedings of the 3rd Annual IASTED International Conference Software Engi-
neering and Applications, IASTED/Acta, pages 172–178. Press, 1999.

[41] Hadoop.http://hadoop.apache.org/core/.

[42] Hadoop Distributed File System."http://hadoop.apache.org”.

[43] Hadoop MapReduce."http://hadoop.apache.org/”.

[44] HAProxy. "http://haproxy.1wt.eu”.

[45] HBase.http://hadoop.apache.org/hbase.

[46] HBase."http://hadoop.apache.org/hbase/”.

[47] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center. InNetworked Systems Design and Implementation, 2011.

[48] Hive. Hive Query Processing Engine, 2010.https://cwiki.apache.org/
confluence/display/Hive/Home.

[49] HyperTable.http://www.hypertable.org/.

[50] Hypertable."http://hypertable.org”.

[51] S. Ko, I. Hoque, B. Cho, and I. Gupta. On Availability of Intermediate Data in
Cloud Computations. InHotOS, 2009.

[52] G. Kola, T. Kosar, and M. Livny. Faults in large distributed systems and what we
can do about them.Lecture Notes in Computer Science, 3648:442–453, 2005.

[53] D. Kossmann, T. Kraska, and S. Loesing. An evaluation ofalternative archi-
tectures for transaction processing in the cloud. InInternational Conference on
Management of Data, pages 579–590, 2010.

[54] C. Krintz, C. Bunch, and N. Chohan. AppScale: Open-Source Platform-A s-A-
Service. Technical Report 2011-01, University of California, Santa Barbara, Jan.
2011.

216

"
http://hadoop.apache.org/core/
"
"
"
http://hadoop.apache.org/hbase
"
https://cwiki.apache.org/confluence/display/Hive/Home
https://cwiki.apache.org/confluence/display/Hive/Home
http://www.hypertable.org/
"

Bibliography

[55] C. Krintz, C. Bunch, and N. Chohan. Appscale: Open-source platform-as-a-
service. In L. Vaquero, J. Ciceres, and J. Hierro, editors,Open Source Cloud
Computing Systems: Practices and Paradigms, chapter 9. IGI Global, Jan. 2012.

[56] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, 1981.

[57] Kernel based virtual machine."http://www.linux-kvm.org/”.

[58] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7), 1978.

[59] L. Lamport. The Part-Time Parliament. InACM Transactions on Computer Sys-
tems, 1998.

[60] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual machine based
on full system trace and replay. InProceedings of the 18th ACM international
symposium on High performance distributed computing, HPDC ’09, pages 101–
110, New York, NY, USA, 2009. ACM.

[61] A. E. MapReduce. Amazon Elastic MapReduce.
"http://aws.amazon.com/elasticmapreduce”.

[62] E. Meijer and G. Bierman. A co-relational model of data for large shared data
banks.Commun. ACM, 54(4):49–58, Apr. 2011.

[63] ”memcached”."http://memcached.org”.

[64] MemcacheDB."http://memcachedb.org/”.

[65] MongoDB."http://mongodb.org/”.

[66] Mongrel."http://mongrel.rubyforge.org”.

[67] R. Murthy and N. Jain. Talk at ICDE 2010. Hive–A Petabyte Scale Data Ware-
house Using Hadoop., Mar. 2010.

[68] MySQL. "http://www.mysql.com”.

[69] MySQL Cluster."http://www.mysql.com/cluster”.

[70] National Institute of Standards and Technology."http://www.nist.gov/”.

[71] Nginx. "http://www.nginx.net”.

217

"
"
"
"
"
"
"
"
"
"

Bibliography

[72] Nosql databases."http://nosql-databases.org”.

[73] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source cloud-computing system. In”9th
IEEE/ACM International Symposium on Cluster Computing and theGrid (CC-
GRID)” , May 2009.

[74] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A
Not-So-Foreign Language for Data Processing. InACM SIGMOD, 2008.

[75] OpenStack."http://openstack.org”.

[76] D. Peng and F. Dabek. Large-scale Incremental Processing Using Distributed
Transactions and Notifications. InSymposium on Operating System Design and
Implementation, 2010.

[77] Google App Engine Pipeline."http://code.google.com/p/appengine-pipeline/”.

[78] Protocol Buffers. Google’s Data Interchange Format.
"http://code.google.com/p/protobuf”.

[79] RabbitMQ."http://www.rabbitmq.com”.

[80] Rackspace Inc.http://www.rackspace.com/.

[81] Redis."http://redis.io”.

[82] Ruby on Rails."http://www.rubyonrails.org”.

[83] Salesforce Customer Relationships Management (CRM) System.
"http://www.salesforce.com/”.

[84] SimpleDB."http://aws.amazon.com/simpledb/”.

[85] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyck-
off, and R. Murthy. Hive- a warehousing solution over a map-reduce framework.
In VLDB, pages 1626–1629, 2009.

[86] TyphoonAE."http://code.google.com/typhoonae”.

[87] UnQL Query Language Unveiled by Counchbase and SQLite.
"http://www.couchbase.com/press-releases/unql-query-language”.

[88] Voldemort."http://project-voldemort.com/”.

218

"
"
"
"
"
http://www.rackspace.com/
"
"
"
"
"
"
"

Bibliography

[89] Z. Wei, G. Pierre, and C.-H. Chi. Scalable transactions for web applica-
tions in the cloud. InProceedings of the Euro-Par Conference, Delft, The
Netherlands, Aug. 2009. http://www.globule.org/publi/STWAC_
europar2009.html.

[90] What is Google App Engine?"http://code.google.com/appengine/docs/whatisgoogleappengine.html”

[91] T. Wood, H. A. Lagar-Cavilla, K. K. Ramakrishnan, P. Shenoy, and J. Van der
Merwe. Pipecloud: using causality to overcome speed-of-light delays in cloud-
based disaster recovery. InProceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 17:1–17:13, New York, NY, USA, 2011. ACM.

[92] XenSource."http://www.xensource.com/”.

[93] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Improving MapRe-
duce Performance in Heterogeneous Environments. InOSDI, 2008.

[94] ZooKeeper."http://hadoop.apache.org/zookeeper”.

219

http://www.globule.org/publi/STWAC_europar2009.html
http://www.globule.org/publi/STWAC_europar2009.html
"
"
"

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis Question
	Dissertation Organization

	Background
	History
	Application Building Blocks

	AppScale
	Background
	AppScale
	ZooKeeper (ZK)
	AppController (AC)
	AppLoadBalancer (ALB)
	AppServer (AS)
	Data Management
	AppScale Tools
	Tolerating Failures

	API Support
	Evaluation
	Methodology

	Summary

	A Database-Agnostic Cloud Platform with Transaction Support
	Background
	The AppScale Database Support and Portability Layer
	Database-Agnostic DistributedTransaction Support
	DAT Design
	DAT Semantics

	DAT Implementation
	Distributed Transaction Coordinator (DTC)
	ZooKeeper Configuration of the DTC
	Scalable Entity Keys
	Garbage Collection
	Fault Tolerance

	Methodology
	Benchmarking Application

	Results
	Discussion

	Summary

	Scalable Queries with Indexing Support
	Background
	Google Query Language
	AppScale
	Related Work

	Design and Implementation
	Filters, Orders, and Cusors
	Query System
	AppScale DB API
	Automatic Deployment
	Table and Key Layout
	ID Allocation
	Put and Deletes
	Ancestor and Kindless Queries
	Single Property Queries
	Composite Queries

	Evaluation
	Results
	Discussion

	Evaluation
	Results
	Discussion

	Summary

	Hybrid Cloud Support for Large Scale Analytics and Web Processing
	Background
	App Engine Analytics Libraries
	Related Work

	Hybrid PaaS Support for Web Application Data Analysis
	Cross-Cloud Data Synchronization
	Analytics Processing Engine within AppScale

	Evaluation
	Cross Cloud Data Transfer
	Benchmarks
	Google App Engine Analytics
	AppScale Library Support
	AppScale Hive Analytics
	Monetary Cost

	Summary

	Spot Instances for MapReduce Workflows
	Background
	Data Analytic Cloud
	Analysis
	Spot Instance Characterization
	Cost of Termination
	Evaluation

	Discussion
	Summary

	Infrastructure Agnostic and Datastore Agnostic Live Migration of Private Cloud Platforms
	Background
	Design and Implementation
	Migration Initialization
	Metadata Synchronization
	Memcache Warm-up
	Data Synchronization
	Traffic Handover
	Fault Tolerance

	Evaluation
	ZooKeeper Synchronization
	Memcache
	Datastore Performance
	Traffic Handover

	Summary

	Conclusion
	Impact
	Future Work

	Bibliography

