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1 Introduction

Many Ordinary Differential Equations (ODE’s) arising from real-world systems display the phe-
nomenon of stiffness [15]. One such class is that belonging to chemical reaction systems in various
fields such as biochemistry and fuel combustion kinetics. Chemical systems often consist of a large
number of species, whose concentrations vary as various reactions occur simultaneously. Using the
theory of chemical kinetics, it is possible to represent the chemical system as an ODE system of
species concentrations. In case of chemical systems, stiffness arises due to the presence of both
fast chemical reactions that go quickly to chemical equilibrium and extremely slow reactions. In
the case of reaction-diffusion systems, diffusion is an additional source of stiffness. Due to this
stiffness, extremely small time-steps are required to meet the stability requirements, increasing the
computational workload.

To address the stiffness problem, model reduction techniques may be employed. Some of these
techniques involve replacing the system by a reduced model that removes the stiff portions of the
system. A number of existing approaches for model reduction of chemical systems can be found in
the literature. Bhattacharjee et al. [5] and Okino et al. [21] discuss the extreme stiffness present
in systems such as the modeling of pollutants and byproducts in chemical reactions. Bhattachar-
jee et al. provide an optimization-based reduction strategy to split the entire system and solve
locally-accurate reduced kinetic models. Similarly, a paper by Petzold and Zhu [22] presents an
optimization-based reduction approach that reduces the number of reactions in stiff chemical kinetic
models.

To reduce the number of time-steps in simulation of stiff systems, implicit numerical methods
are used. The most computationally intensive part of solving a ODE system with an implicit
method involves solution of a linear system in the Newton iteration. In this report, we investigate
model reduction strategies that speed up the linear solver process, by approximating the linear
system with a system that might be faster to solve. An important advantage of large chemical
systems is that the matrices in these linear systems are extremely sparse. We can therefore use a
sparse linear solver to improve the simulation time. We investigate the degree to which reductions
together with sparse strategies can speed up the simulation.

2 Chemical Models

For the experiments, we considered three models in the field of biochemistry, which involve sparse
linear systems.

1. Heat Shock Model: The Heat Shock model was proposed by Kurata et al. [19] to represent
the dynamical nature of the heat-shock response in Escherichia Coli. The system consists of
28 species and 61 reactions. The iteration matrix contains 116 non-zero elements. The model
is run for 500 seconds of simulated time.

2. Coagulation Model: This model was proposed by Luan et al. [20] to represent the co-
agulation cascade in the human body. This is a much larger system of 193 species and 301
reactions. The iteration matrix has 938 non-zero elements. The model exhibits better spar-
sity than the Heat Shock model. The model is run for 700 seconds of simulated time.

3. Hockins Coagulation Model: This model, proposed by Hockins et al. [17], is a smaller
version of the Coagulation model, consisting of 34 species and 45 reactions. We use this model
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specifically for Michaelis-Menten reduction. As with the Coagulation model, we simulate the
Hockins model for 700 seconds of simulated time. The Michaelis-Menten reduction requires
adding extra pseudo-species to the system, and therefore, the iteration matrix has a larger
dimension than the number of species.

The characteristics of all the models are summarized in Table 1.

Model Species Reactions Iteration Matrix Dimension Number of Non-zeros Simulation time (s)

Heat Shock 28 61 28 × 28 116 500

Coagulation 193 301 193 × 193 938 700

Hockins Coagulation 34 45 37 × 37 158 700

Table 1: Summary of the characteristics of the chemical models.

3 Proposed Techniques – An Overview

To handle the stiffness in ODEs, numerical methods that have a large region of absolute stability
are used. Commonly used implicit ODE solvers for stiff problems are Backward Difference Formula
(BDF) methods [8] and implicit Runge-Kutta methods such as Radau [14]. Consider an ODE of
the form

dy

dt
= f(t, y). (1)

The expression for the (n+ 1)th step of the kth order BDF scheme is given by [3]

k
∑

i=0

αiyn+1−i = hβf(tn+1, yn+1). (2)

For an implicit scheme, we cannot directly solve for yn+1 using the previous simulation steps.
A Newton iterative method needs to be used to solve the above nonlinear system. The Newton
method finds the roots of nonlinear system (2) for yn+1, given by

g(yn+1) =

k
∑

i=0

αiyn+1−i − hβf(tn+1, yn+1) = 0. (3)

Starting with an initial guess y0n+1 which comes from evaluating the interpolant of the BDF
method at tn+1, Newton iteration yields

(

∂g

∂y

∣

∣

∣

∣

yν
n+1

)

(yν+1
n+1 − yνn+1) = −g(yνn+1), (4)

where the iteration matrix is ∂g
∂y

= I − hβ ∂f
∂y
, and is generally evaluated only at the initial guess.

Henceforth, we write J = ∂f
∂y

for the Jacobian of f , and M = I−hβJ for the iteration matrix. The

iteration proceeds until yνn+1 converges, i.e. ||yν+1
n+1 − yνn+1|| is less than an error tolerance.

Thus, we solve a linear system at each iterative step, and use the solution to compute yν+1
n+1.

The cost of a Newton iteration step is largely dominated by the cost of solving the linear system.
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3.1 Matrix Reductions

The chemical systems we study lead to sparse iteration matrices. The time required to factor the
matrix and to do the forward and backward solves directly depends on the sparse structure of the
matrix M . By intelligently deleting certain elements of the iteration matrix, we can create a better
sparse structure, speeding up the linear solver. Since the Newton iteration is an approximate
method, the iteration matrix M does not have to be exactly accurate. By making some small
changes in the matrix, it is still possible to reach convergence for yn+1 without significantly affecting
the number of iterations required. This forms the basis for all our model reduction schemes.

We explore different forms of reductions on this matrix. For the systems we consider in the
paper, the matrix M is asymmetric and not so well-conditioned. The Heat Shock and Coagulation
models produce iteration matrices with condition numbers of order 107 or larger. The Hockins
model produces matrices with condition numbers of order 103.

3.1.1 Global Threshold Reduction

We consider the absolute value of each element of the matrix hβJ individually, compare it with a
user-specified threshold - τglobal , and set it to zero if it is smaller than the threshold.

foreach (i,j)

if(abs(hβJ(i,j)) < τglobal)

J(i,j) = 0

end

M = I - hβJ

3.1.2 Local Threshold Reduction

We consider each element of the iteration matrix J , and determine the maximum absolute value in
its row i and column j. If the magnitude of J(i, j) is much less than a given fraction of the smaller
of those values, i.e. abs(J(i, j)) < τ ×min(rowmax(i), colmax(j)), we set it to zero. The intuition
is that, if a reaction involving the pair of species (A,B) is much slower than the fastest reactions
involving A or B, we remove the reaction for this pair.

foreach (i)

rowmax(i) = max(abs(J(i,:)))

colmax(i) = max(abs(J(:,i)))

end

foreach (i,j)

if(abs(J(i,j)) < τlocal× min(rowmax(i), colmax(j)))

J(i,j) = 0

end

M = I - hβJ

3.1.3 Michaelis-Menten Reduction

The Michaelis-Menten (MM) scheme [18] is a reduction that changes the chemical system itself,
rather than changing the matrix. It replaces a sequence of reactions of the form
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E + S
k1
⇋

k2
C

k3→ E + P (5)

with the simpler reaction

S
k′
→ P. (6)

An assumption for the scheme, proposed by G.E. Briggs and J.B.S. Haldane [7], is that the
complex C is in the Quasi-Steady-State (QSS) [25], i.e. its concentration remains almost constant
on the time scale with which P is formed. Since the enzyme E and the complex C are not part
of the ODE system (6), the Jacobian has zeros for entries corresponding to the species. Thus, the
reduction involves creating a sparse Jacobian by reducing the chemical system. The concentrations
for E and C can be computed algebraically. Often, these two species also participate in non-MM
reactions. In such a case, we track their concentrations using a single pseudo-species per MM
reaction. The supporting derivations for the Michaelis-Menten reduction are described in detail in
Appendix A.

The MM reduction may be applied in several places within a system, by identifying the reactions
that exhibit the Michaelis-Menten form and determining the corresponding QSS conditions. We
use the techniques of Wu et al. [26] to identify the reactions and the time instances for their QSS
activation.

3.2 Linear Solvers Considered

We consider two methods to solve the linear system – the direct and the iterative solver. The type
of solver determines where the reduced matrix is used.

3.2.1 Direct Solver

In the direct solver, the reduced matrix is directly used as part of the linear system to be solved.
To take advantage of the sparse structure, a sparse linear solver, KLU [10], is used. The direct
solver approach is used for the threshold-based methods.

3.2.2 Iterative Solver

We also experiment with the reduced matrix as a preconditioner and solve the linear system via the
General Minimized Residual method (GMRES)[23]. Many existing preconditioners are incomplete
factorizations of a matrix, which means that certain elements are deleted in the factorized precon-
ditioner. Our preconditioner is the reverse – we delete certain elements first, and then factorize
the preconditioner. This is similar in spirit to the “support graph” preconditioners [6][4][13]. The
iterative solver approach is used for both the threshold-based methods and the Michaelis-Menten
reduction.

4 Experimental Design

The simulations for the reduction schemes and models were run on an Intel(R) Core i5-2410M CPU
with a 2.3 GHz clock-rate and 6 GB DDR3 memory. We now describe the different setups involved.
We also list the parameters being measured in the different setups.
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4.1 Verification Experiments : MATLAB Setup

4.1.1 Direct Solver Reductions

To determine the effectiveness of the matrix reduction methods, we designed a restricted MATLAB
ODE implementation. The ODE numerical method was a fixed-order implicit scheme : Backward
Euler, with a fixed step-size. The Newton iteration scheme was implemented with the KLU sparse
linear solver (via a MATLAB interface).

For the MATLAB setup, the direct solver approach was used, and the reduced iteration matrix
M was evaluated at every iteration. The reduction of the iteration matrix was done according to a
user-specified threshold value (local and global). To prevent an excessive reduction and production
of a poor approximation of the Jacobian, the threshold values were restricted to less than 0.1. For
the MATLAB setup, we considered the set of thresholds τ = {0.0, 0.001, 0.01, 0.1}. This would give
us an idea about the behaviour for threshold values of different orders. The Coagulation model was
run for a simulated time of 700 seconds, and the Heat Shock for a simulated time of 500 seconds.

KLU is a sparse high performance linear solver that employs hybrid ordering mechanisms and
elegant factorization and solve algorithms. It achieves a low level of fill-in and beats many ex-
isting solvers in run time, when used for arbitrarily sparse matrices arising in circuit simulations.
Popular direct solvers such as SuperLU [11] and UMFPACK [9] take advantage of supernodes –
adjacent columns containing identical non-zero patterns. For very sparse matrices not providing
any supernodes, KLU gives better performance. Our Jacobians are good candidates to be used by
KLU.

The initial step in the matrix factorization by KLU is decomposing the matrix into Block
Triangular Form (BTF). The BTF decomposition reorders the matrix into a set of diagonal blocks.
Only the diagonal blocks need to be factored. The smaller the diagonal blocks, the faster the
factorization process. An example of the BTF form for the reduced Heat Shock model is shown in
Fig. 1. Finding the BTF decomposition is equivalent to finding the strongly connected components
of a directed graph. KLU uses the Tarjan algorithm [12], which requires a complexity of O(n+m),
where n is the matrix dimension, and m is the number of off-diagonal non-zeros in the original
matrix.

In the MATLAB code, we measured the number of Newton iterations throughout the simulation
and the linear solver time. The aim of the MATLAB experiments was to decide whether the reduc-
tions provide a speedup in the linear solver, without affecting the Newton iterations significantly.
For each case we measured a Figure of Merit (FOM) value – the total linear solver time, equal to
the product of the total number of Newton iterations and the average linear solving time. The
smaller the FOM, the more effective the reduction. Both the Coagulation and Heat Shock models
were run using a similar setup.

4.2 Matrix Reductions : Sundials Implementation

4.2.1 Direct Solver

After preliminary experiments in MATLAB, we also implemented the matrix reductions in an
adaptive time-step, adaptive-order ODE solver, together with a sparse linear system solver. We
ported our MATLAB code to Sundials [16][2], an ODE solver package that provides these features.
Sundials provides many optimizations, such as reusing the previously computed Jacobian and
support for scaled preconditioners with iterative linear solvers. Sundials also provides for tracking of
different solver statistics, such as the number of function evaluations, number of Newton iterations,
total simulated time steps, etc.
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BTF Decomposition : Matrix dimensions = 28−by−28, Total Diagonal Blocks = 13

Figure 1: BTF decomposition of a reduced iteration matrix. The model is Heat Shock. The number
of diagonal blocks determines the computation time.

However, Sundials lacks support for a sparse direct linear solver. Since it is crucial for our re-
duction process, we integrated the open source KLU implementation [1] with the Sundials package.
This was done by replacing the calls to the built-in dense solver inside Sundials with corresponding
calls to KLU sparse routines. Two main functions were edited :

1. Iteration matrix setup:
This function computes the iteration matrix M from either the previously saved or a newly
computed Jacobian J , reduces it with a threshold based reduction, and then factorizes it. The
default dense solver decomposes it into LU form. This is replaced by the KLU factorization,
which reduces the matrix according to the threshold schemes, reorders it into BTF and then
factorizes the diagonal blocks.

2. Linear system solve:
This function uses the factorized form to solve the linear system. The LU dense solve routine
was replaced by the KLU solve routine.

We integrated the Sundials and KLU libraries and created a user program implementing both
the Coagulation and Heat Shock models. As we shall see in the next section, the local threshold
method showed no significant benefit in the MATLAB experiments. Therefore, in Sundials, only
the global threshold reduction was implemented, for the range τ = {0.0, 0.001, 0.005, 0.01, 0.05, 0.1}.
To compare across thresholds, we measured the execution time using the gettimeofday() function.
We measured the total number of Newton iterations, the linear solver times and the total number of
simulation time steps. We stored the intermediate iteration matrices, whose BTF structure could
be separately visualized using the cs dmspy() MATLAB function. We compared the overall perfor-
mance of our reduced sparse solver implementation with the default dense solver implementation in
Sundials. To check the effect on the accuracy due to the reduction, we measured the error norm of
the difference between the obtained solution and the near-exact reference solution. The reference
solution was determined by running the simulation with a very small fixed step-size (0.001) and
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variable order. The Figure of Merit was the total execution time. For all the experiments, the
absolute error tolerance co-efficient was set to 10−10 and the relative error tolerance was set to
10−6.

4.2.2 Iterative Solver

As mentioned, Sundials also provides an option for using an iterative solver, along with a precon-
ditioner. For our experiments, we used a left preconditioner for the GMRES method. As in the
case of the direct solver, the iterative solver involves two implementation steps.

1. Preconditioner matrix setup:
This function computes the iteration matrix M from either the previously saved or a newly
computed Jacobian J , reduces it, and then factorizes it. This is used as a preconditioner.

2. Preconditioner solve:
This function uses the matrix factorization of the preconditioner to solve a linear system.

Both of these functions are callbacks for Sundials, implemented in the user program. The
remaining procedure was similar to the direct solver process. The same thresholds were used as in
the direct solver to compare the corresponding results.

4.3 Michaelis-Menten Reduction

The Michaelis-Menten (MM) reduction was implemented on the Hockins model as a preconditioner
reduction in Sundials. Since the Quasi-Steady-State for every MM reaction was valid only for certain
portions of the simulation, a mechanism was designed to handle both the reduced and unreduced
cases. The time instances at which Quasi-Steady-States for each MM reaction went from invalid to
valid and vice versa (called switching points) were predetermined using the methods of Wu et al.

The Hockins model contains 3 MM-reactions. Three switching points were recognized in the
simulated time range based on the QSS states for the MM-reactions. At each switching point the
Jacobian and RHS function were changed appropriately. The system vector is also changed at
the switching point outside the ODE setup, causing discontinuities. Therefore, Sundials requires
that the ODE solver be restarted at each switching point. To account for one extra pseudo-species
per MM-reaction, the Hockins model with 34 species was implemented as an ODE system of 37
elements.

For MM reactions sharing the enzyme E and the complex C with other non-MM reactions, an
appropriate modification to the Jacobian and RHS function was applied. The details of the switch-
ing mechanism and the various modifications are described in Appendix (B). A code generator
was implemented to auto-generate the modified Jacobian and RHS function. For the Coagula-
tion model, the interdependencies among the reactions were too complex to be handled by our
code-generator. The Michaelis-Menten reduction was therefore restricted to the simpler Hockins
model.

In the Sundials setup, we measured the total execution time, the ODE solver statistics, and
the linear solver statistics. We also stored the intermediate preconditioners to study their BTF
structure, and recorded the number of non-zeros. To study the advantage of the reduction, these
metrics were compared with those of the unreduced preconditioner.
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5 Results

We now describe the results of the various experiments.

5.1 Matrix Reduction with Direct Solver: MATLAB Experiments

For the preliminary verification of the matrix reductions, we ran a MATLAB implementation for
the Heat Shock and Coagulation models. We present here the results for the global and local
threshold reduction methods on the Jacobian hβJ . The simulated times for the Heat Shock and
Coagulation models were 500 seconds and 700 seconds respectively. The step-size was fixed at 0.1.
We measured the Newton iterations and the KLU solver time for four different thresholds: 0 (no
reduction), 0.001, 0.01 and 0.1. For each threshold, we measured the relative speedup as the ratio
of the linear solver time for the base case (τ = 0) to the linear solver time for that threshold.

5.1.1 Global threshold

Tables 2 shows the results for the Heat Shock model.

Threshold Newton iterations Linear solver Linear solver Total linear
time speedup solver time (s)

(µs/iteration)

0 8535 28.50 1 0.24

0.001 9945 26.10 1.09 0.25

0.01 10934 24.50 1.16 0.26

0.1 11168 22.20 1.28 0.25

Table 2: Global threshold for step-size = 0.1: Heat Shock model.

As seen from the table, the linear solving time reduces with increasing threshold values, indicat-
ing that a better sparse structure is created. However, at the same time, we see that the number of
Newton iterations increases due to the use of an approximate iteration matrix. On comparing the
linear solver speedup for the largest threshold (0.1) with the relative increase in Newton iterations,
the reduction up to thresholds = 0.1 is not beneficial. This is indicated by the total linear solver
time. The total time increases as the threshold value increases, which is clearly undesirable.

Threshold Newton iterations Linear solver Linear solver Total linear
time speedup solver time (s)

(µs/iteration)

0 14002 188.20 1 2.63

0.001 14003 58.03 3.24 0.81

0.01 14004 48.82 3.85 0.68

0.1 15813 46.47 4.05 0.73

Table 3: Global threshold for step-size = 0.1: Coagulation model.
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Table 3 shows the results for the Coagulation model. The linear solver experiences a better
speedup with reduction on increasing threshold values. At the same time, the approximations don’t
significantly affect the Newton iterations. The total linear solver results clearly shows an overall
improvement due to the reduction. Thus, the Coagulation model shows the benefits of the global
threshold reduction.

5.1.2 Local threshold

We ran the exact same setup for the local threshold method. The results for the Heat Shock model
are given in Table 4.

Threshold Newton iterations Linear solver Linear solver Total linear
time speedup solver time (s)

(µs/iteration)

0 8535 28.50 1 0.243

0.001 9063 26.10 1.09 0.236

0.01 9063 25.90 1.1 0.234

0.1 33002 25.20 1.13 0.831

Table 4: Local threshold for step-size = 0.1: Heat Shock model.

As seen from the table, the total linear solver does not gain a significant speedup. For
τlocal = 0.1, the number of Newton iterations becomes large, thus indicating that the approxi-
mated Jacobian is unfavourable for Newton iteration convergence. Therefore, the local reduction
does not benefit the Heat Shock model.

Table 5 shows the results for the Coagulation model.

Threshold Newton iterations Linear solver Linear solver Total linear
time speedup solver time (s)

(µs/iteration)

0 14002 188.20 1 2.63

0.001 14002 128 1.46 1.79

0.01 14002 120 1.56 1.68

0.1 14003 100 1.88 1.40

Table 5: Local threshold for step-size = 0.1: Coagulation model.

We observe that the local threshold method produces a speedup less than 2. The improvement
in the total linear solver time is correspondingly small, when compared to the global threshold.
The local threshold results improve with increasing thresholds. We also measured the total linear
solver time for thresholds up to 0.9, and the values dropped only to 1.04 seconds. However, this is
still larger than the best total time for the global threshold at τglobal = 0.1.
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5.2 Matrix Reduction with Direct Solver: Sundials Implementation

5.2.1 Global Threshold

For the direct solver method, we ran the Sundials implementation for both the models, using the
threshold values {0, 0.001, 0.005, 0.01, 0.05, 0.1}. The Sundials framework recorded the total Newton
iterations and the total time steps. We measured the linear solver times for each threshold case as
well as the total execution time.

Heat Shock

The Heat Shock model was run for a simulated time of 500 seconds. Figures 2 and 3 show the
BTF structure for the unreduced and reduced iteration matrices respectively.

BTF Decomposition : Matrix dimensions = 28−by−28, Total Diagonal Blocks = 1

Figure 2: BTF structure of the Heat Shock iteration matrix with threshold = 0 (no reduction).
Total number of diagonal blocks generated = 1 (no decomposition.)
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BTF Decomposition : Matrix dimensions = 28−by−28, Total Diagonal Blocks = 13

Figure 3: BTF structure of the Heat Shock iteration matrix with threshold = 0.01. Total number
of diagonal blocks generated = 9.

The reduced matrix has many more diagonal blocks. Hence we expect that the reduction will
provide a good speedup in the linear solver. Figures 4, 5 and 6 show the timings for the linear
solver, the BDF solver, and the overall performance respectively for the Heat Shock Model.
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Thus we conclude that the improvement in solving and factorization time for the reduced
matrices is not very significant.
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Figure 6: Total simulation time for the direct solver reduction.

Observing the linear solver time in Fig. 4, we see that the solver speedup is not significant with
increasing reduction. Except for τglobal = 0.001, the total iterations and simulation steps in Fig. 5
are roughly the same for the reduced matrices (w.r.t τglobal = 0).

For τglobal = 0.01, we get a small speedup of ~1.25 in the total execution time. There is a
slowdown for τglobal = 0.001 and τglobal = 0.05. To summarize, the overall performance is not
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very beneficial. We present an overall summary for the global reduction on the iteration matrix
for different threshold values in Table 6. The error norm shows that the reductions maintain the
accuracy of simulation.

Threshold Execution Time (FOM) Error Norm
(ms) (mol/L)

0 5.98 2.88e-09

0.001 10.46 6.32e-11

0.005 5.15 1.78e-10

0.01 4.70 5.39e-11

0.05 6.39 5.51e-11

0.1 5.60 5.35e-11

Table 6: Global threshold reduction for direct solver reduction: Heat Shock Model. The total
execution time serves as the Figure of Merit for the reduction.

Coagulation

We now present results for direct solver reduction on the Coagulation model. The model was
run for a simulated time of 700 seconds. Figures 7 and 8 show the BTF structure for the iteration
matrix for the unreduced and reduced cases, respectively.

BTF Decomposition : Matrix dimensions = 193−by−193, Total Diagonal Blocks = 16

Figure 7: BTF structure of the Coagulation iteration matrix for threshold = 0 (no reduction).
Total diagonal blocks generated in BTF structure = 16.
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BTF Decomposition : Matrix dimensions = 193−by−193, Total Diagonal Blocks = 169

Figure 8: BTF structure of the Coagulation iteration matrix for threshold = 0.1 (reduction). Total
diagonal blocks generated = 169.

The unreduced matrix has only a few diagonal blocks. On the other hand, the reduced iteration
matrix has a large number of smaller blocks (169). The reduced iteration matrices for other
thresholds have a similar decomposition structure, with nearly the same number of diagonal blocks.
Fig. 9, which shows the time required for the factorization and solving of the iteration matrices
reduced with different threshold values, confirms this.
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Figure 9: The time required for KLU factorization, and solving the factorized iteration matrix.

The factorization and solving time thus drop significantly with a threshold even as low as 0.001.
Overall a best-case 3X speedup in solving time is observed due to the global reduction.
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Figure 10: The total Newton iterations and simulation steps for the direct solver reduction method
as a function of threshold size.

The total time for the entire simulation of the Coagulation model under different threshold
values is shown in Fig. 11.
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Figure 11: Measurement of the total simulation time for the direct solver reduction. We obtain a
best speedup of ~2.07 at τglobal = 0.05.

We obtained a maximum ~2.07 overall speedup. The overall results are summarized in Table
7.
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Threshold Execution Time (FOM) Error Norm
(ms) (mol/L)

0 34.4 2.90e-05

0.001 16.6 4.91e-05

0.005 16.7 1.12e-03

0.01 20.5 1.12e-03

0.05 16.4 1.13e-03

0.1 18.5 1.67e-05

Table 7: Global threshold reduction for direct solver reduction: Coagulation Model.

5.2.2 Local Threshold

For the local threshold, we present the BTF structure obtained from the Sundials setup to explain
the MATLAB results. Figures 12 and 13 show the structures for the local threshold reduction on
the Heat Shock and Coagulation models respectively.

BTF Decomposition : Matrix dimensions = 28−by−28, Total Diagonal Blocks = 13

Figure 12: BTF structure of the Heat Shock iteration matrix with threshold = 0.1 (reduction).
Total diagonal blocks generated = 13.
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BTF Decomposition : Matrix dimensions = 193−by−193, Total Diagonal Blocks = 85

Figure 13: BTF structure of the Coagulation iteration matrix with threshold = 0.1 (reduction).
Total diagonal blocks generated = 85.

For the Heat Shock model, the number of diagonal blocks is the same as in the global threshold
method. The Coagulation model, however, produces much fewer blocks as compared to the global
threshold method. Overall, the poor BTF structures explain the low linear solver speedup in both
the models.

5.3 Iterative Solver with Preconditioner Reduction: Sundials Implementation

5.3.1 Global Threshold

For the iterative solver method with preconditioner, again implemented with Sundials, we exper-
imented on both the Coagulation and Heat Shock models, and used the same thresholds as used
for the direct solver reduction.
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Figure 14: The time in seconds required for preconditioner factorization, and preconditioning solves
time. The drop in timing values is gradual for increasing thresholds, and insignificant in magnitude.
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Figure 15: Total Newton iterations and simulation steps for the iterative solver reduction method.
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Figure 16: Total execution time for the iterative solver reduction.

The results in Fig. 14 show that, as with the direct solver reduction, reducing the preconditioner
does not improve the linear solver time.

The ODE characteristics are shown in Fig. 15. Since the reduced matrix was used as a precon-
ditioner, we expected only an improvement in the linear solver time without any significant change
in the Newton iterations and the time steps. On investigation into Sundials, it was found that the
solution of the linear system under different preconditioners produced different error estimates in
the ODE solver. The error estimates at each step are used by the solver to determine the step-size
and order for the next step. Due to the difference in error estimates, the ODE solver varied in the
order and step-size decisions across different preconditioners. The total time-steps vary by at most
12% w.r.t. the base case (τglobal = 0).

From the total timing results in Fig. 16, we see that the speedup is not significant with increasing
threshold values. The best speedup obtained is 1.23 for the τglobal = 0.05. Table 8 summarizes the
results for the Heat Shock model. The error norm column indicates that the iterative solver results
are roughly similar to the direct solver results.

Threshold Execution Time (FOM) Error Norm
(ms) (mol/L)

0 6.42 4.62e-10

0.001 5.67 6.31e-10

0.005 6.65 6.82e-11

0.01 5.49 7.29e-10

0.05 5.23 2.08e-09

0.1 6.08 5.27e-09

Table 8: Global threshold reduction for iterative solver reduction: Heat Shock model. The total
execution time serves as the Figure of Merit for the reduction.
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Coagulation

The Coagulation model, on the other hand, gives far more consistent results for the linear solver
timings, the ODE statistics and the overall timings, as indicated by the Figures 17, 18 and 19.
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Figure 17: The time in seconds required for preconditioner factorization, and preconditioning solves
time.

The solving time improves by a factor of 3 with the reduction of even such a low threshold as
0.001. The statistics are similar to those of the iteration matrix reductions for the global threshold
method shown in Fig. 9.
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Figure 18: The variation of the number of simulated time steps and the total Newton iterations.

Fig. 18 displays the effect of the reduction on the total number of simulation steps and Newton
iterations. As in the case of Heat Shock, there is a small variation in the number of time-steps and
Newton iterations across different thresholds. The largest difference w.r.t. the base case is 8.5%.
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Figure 19: Measurement of the total execution time for the iterative solver reduction for different
threshold values. We get a maximum of ~1.65 speedup at τglobal = 0.001.

The total execution timing results are consistent with the linear solver and ODE results. The
general trend is a speedup for τglobal greater than 0. Comparing Figs. 11 and 19, we also note
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that the iterative solver method is more expensive than the direct solver method in terms of total
execution time. The speedup obtained in the iterative method is also less than that obtained in
the direct solver method. The final summary of the preconditioner reduction is shown in Table 9.
The error norm results are roughly comparable to direct solver results for the Coagulation model.

Threshold Execution Time (FOM) Error Norm
(ms) (mol/L)

0 44.3 7.45e-05

0.001 26.8 9.73e-05

0.005 27.6 1.57e-04

0.01 27.2 1.20e-04

0.05 26.8 3.42e-04

0.1 26.5 4.57e-04

Table 9: Global threshold reduction for iterative solver reduction: Coagulation Model.

5.4 Michaelis-Menten Reduction: Sundials Implementation

We ran the Michaelis-Menten reduced and unreduced implementation of the Hockins model in
Sundials. Tables 10, 11 and 12 summarize the results for the different cases. We recorded the ODE
characteristics provided by Sundials – the total number of simulation steps, Newton iterations,
function evaluations, preconditioner evaluations, and preconditioner solves. We also stored the
intermediate preconditioner structures, and measured the number of non-zero elements and the
factorization and solving time for those preconditioners.

Preconditioner Simulation steps Newton iterations Preconditioner evaluations Preconditioner solves

Unreduced 392 437 7 1026

Reduced 415 548 9 1139

Table 10: ODE performance comparison for Michaelis-Menten reduction.

Preconditioner Factorization time Solving time Non-zeros
(µs) (µs)

Unreduced 33.2 42.2 158

Reduced 31.6 40.9 149

Table 11: Solver performance comparison for Michaelis-Menten reduction.
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Preconditioner Total Simulation Time (FOM)
(ms)

Unreduced 12.8

Reduced 14.4

Table 12: Overall performance comparison for Michaelis-Menten reduction.

The ODE solver statistics shown in Table 10 do not differ much in the two cases. Due to
the ODE solver resets in the reduction, at each switching point the step-size was reinitialized to
a small value. Though the step-size eventually increased to a large value (even greater than the
unreduced case), extra time-steps were spent in doing so. Therefore, the total time-steps and
Newton iterations are more in the reduced case. The ODE solver reset is necessary because the
modification of the system vector outside the ODE setup creates function discontinuities. It may
be possible to consider alternative implementations where such discontinuities might be avoided.
Without the resets, the total number of time steps may be reduced considerably.

The reduction does not provide any advantage in the preconditioner solving time. Table 11
indicates that the number of non-zero elements was only reduced by 9 with MM reduction. Thus,
the total simulation time therefore does not reduce with the MM reduction. The BTF structure
plots for the full and MM-reduced preconditioners are shown in the Figures 20 and 21.

BTF Decomposition : Matrix dimensions = 37−by−37, Total Diagonal Blocks = 9

Figure 20: BTF structure for iteration matrix of Hockins model without reduction. Total diagonal
blocks = 9.

The unaffected structure with the reduction confirms the absence of improvement in the linear
solving time. In retrospect, we see that the basic MM reduction (Equation (6) in Section 3.1.3)
does not change the vertex reachability relationships in the reaction graph. Therefore it is not
surprising that the effect on the BTF structure is small.
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BTF Decomposition : Matrix dimensions = 37−by−37, Total Diagonal Blocks = 11

Figure 21: BTF structure for iteration matrix of Hockins model with MM-reduction. Total diagonal
blocks = 11.

6 Comparison among Proposed Techniques

We have considered different type of reductions on three models – Heat Shock, Coagulation and
Hockins Coagulation. We now provide a comparison amongst all the reductions.

6.1 Threshold-based Reduction

We investigated two reductions – a local row-wise and column-wise threshold, and a global threshold
method in a direct linear solver MATLAB implementation. The global threshold reduction showed
promising results for the Coagulation model, with a considerable improvement in the linear solves,
without affecting the number of Newton iterations. The reductions did not provide a significant
improvement for the Heat Shock model. The local threshold, on the other hand, was ineffective for
both models.

The results from the Sundials implementation of the matrix reductions were similar to the
results generated with the MATLAB setup. Table 13 shows the performance of the iteration
matrix reduction and preconditioner reduction using the global threshold. We also show the dense
direct and iterative solver results for the unreduced matrices.
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Type of reduction Characteristic Coagulation model Heat Shock Model

Direct Dense Solver Execution time (ms) 84.9 3.5

Direct Sparse Solver Execution time for unreduced matrix (ms) 34.4 5.98
Best execution time for reduced matrix (ms) 16.4 4.77

Best speedup v/s sparse unreduced 2.07 1.25
Best speedup v/s dense unreduced 5.17 0.73

Iterative Dense Solver Execution time (ms) 120.0 4.1

Iterative Sparse Solver Execution time for unreduced preconditioner (ms) 44.3 6.42
Best execution time for reduced preconditioner (ms) 26.8 5.23

Best speedup v/s sparse unreduced 1.65 1.23
Best speedup v/s dense unreduced 4.47 0.78

Table 13: Comparison of matrix reductions for the Coagulation and Heat Shock models, using
Sundials.

The matrix reduction with the direct solver provides a better speedup and is faster than the
preconditioner reduction in the iterative solver. The BTF structure of the reduced matrices for
both the models exhibited an increase in the number of fine diagonal blocks. The increase was from
1 to 13 diagonal blocks for the Heat Shock model, and from 16 to 169 blocks for the Coagulation
model with the global reduction method. However, the Heat Shock model, being a much smaller
one, and generating fewer sub-matrices in the decomposition, did not benefit significantly from
the linear solver speedup. The local threshold method created fewer diagonal blocks for both the
models as compared to the global threshold method, thus explaining the MATLAB results. The
speedup against the dense implementation shows that the Heat Shock model did not benefit from
using the KLU solver.

6.2 Michaelis-Menten Reduction

Finally, we implemented the Michaelis-Menten nonlinear model reduction to improve the Block
Triangular Form (BTF) of the preconditioner by exploiting the structure of the underlying chemical
system. On a model containing 34 species and 3 Michaelis-Menten reactions, it was found that the
preconditioner of the reduced system did not lead to a significantly better matrix structure. The
ODE solver statistics were not affected significantly, and no overall speedup was obtained.

7 Conclusion

We explored the effectiveness of various matrix reduction techniques for ordinary differential equa-
tions arising from chemical reaction systems. The threshold based methods created an improved
sparse structure in the reduced matrices. The speedup obtained in the sparse matrices depended
on the number of diagonal blocks produced in their BTF structure. In the Coagulation model,
the global threshold method produced almost twice the number of blocks than the local threshold
method, and therefore was more effective. The Heat Shock model produced fewer diagonal blocks
under both reductions, and did not benefit from threshold reductions.

The Michaelis-Menten reduction was performed on the chemical system to produce a sparse
matrix. The number of elements reduced depended on Michaelis-Menten-type reactions in the
system. However, the total diagonal blocks was unaffected as a result of reduction. On studying
the effect of the reduction, it was found that the Michaelis-Menten reduction does not change the
total strongly connected components in the equivalent graph of the Jacobian. Therefore, the linear
solver did not gain any advantage due to reduction.
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Since we have experimented on only a few models, it is hard to draw conclusions for the
effectiveness of the reductions for the entire class of models they represent. However, based on
the results, the threshold reductions are recommended for any large chemical reaction system that
produces matrices of considerable sparsity. Matrices containing a large number of extremely small
elements can be well reduced by the global threshold method. It is hard, however, to determine
which threshold value provides the best reduction, though it is recommended to experiment with
smaller threshold values (< 0.1).

To conclude, we have explored a few matrix reductions on a certain class of ODE problems.
The next step is to evaluate these methods on other problems, and determine if the reductions are
beneficial for the entire class. Determining the best threshold based on developed theory, or using
an automatic method can help reduce the development time for manual performance-tuning for
each model.
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A Michaelis-Menten Reduction : Details

Consider the following chemically reacting system :

E + S
k1
⇋

k2
C

k3→ E + P. (7)

This is a typical example of an Enzyme-Substrate-Complex-Product system. The corresponding
differential equations are given by

d

dt









[E]
[S]
[C]
[P ]









=









−k1[E][S] + k2[C] + k3[C]
−k1[E][S] + k2[C]

k1[E][S]− k2[C]− k3[C]
k3[C]









. (8)

The solving of the 4-species system requires a 4×4 Jacobian as part of the Newton iteration, given
by

J =









−k1[S] −k1[E] k2 + k3 0
−k1[S] −k1[E] k2 0
k1[S] k1[E] −k2 − k3 0
0 0 k3 0









. (9)

Instead of working on the entire 4 × 4 system, the nature of the reaction-rates and the species
concentrations in the reaction allows us to approximate the system shown in (7) by a smaller
system. This type of approximation is based on the Michaelis-Menten kinetics [24]. The equivalent
reduced reaction is given by

S
k′
→ P. (10)

The concentrations for E and C need to be tracked and we also need to determine the value for
the new rate constant k′.

Let [E0] be the initial concentration of E at the start of reduction. Using the QSS assumptions
on the complex C and the fact that the total molecules of E remain constant, the kinetics for S

and P can be written (according to Michaelis-Menten) as

d[P ]

dt
= k3[C] = k3

[S][E0]

Km + [S]
, (11)

d[P ]

dt
= −k3[C] = −k3

[S][E0]

Km + [S]
, (12)

where Km = k2+k3
k1

. Rewriting, we have

d[P ]

dt
= k′[S], (13)

d[S]

dt
= −k′[S]. (14)

where, k′ = k3[E0]
Km+[S] .

The new chemical equation consists of a 3-species system – S, P and E0, given as
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S
k′(E0)
→ P. (15)

The concentrations for E and C, eliminated from the ODE system, can be determined alge-
braically, as

[E] =
Km[E0]

Km + [S]
(16)

[C] =
[S][E0]

Km + [S]
. (17)

Because we need a generalized ODE system that works in both the reduced and non-reduced
cases, the corresponding Jacobian and the RHS function for the reduced systems contain all 5
species – {E,S,C, P,E0}.

d

dt













[E]
[S]
[C]
[P ]
[E0]













=















0

−k3[E0][S]
Km+[S]

0
k3[E0][S]
Km+[S]

0















(18)

Jreduced =















0 0 0 0 0

0 − k3[E0]
(Km+[S])2

0 0 − k3[S]
Km+[S]

0 0 0 0 0

0 k3[E0]
(Km+[S])2

0 0 k3[S]
Km+[S]

0 0 0 0 0















(19)

Note that the rows corresponding to E and C are all zeros, thus they are not updated during
the Newton iteration of the reduced system. At the end of the simulation, the concentrations of E
and C can be updated according to the equations (16) - (17). We can therefore solve a much sparser
system, by eliminating the computation of two species – E and C (zero-ing out the Jacobian row),
and keeping track of a new pseudo-species – E0. This serves as the basis for the model reduction
approach. We can similarly reconstruct Junreduced for the 5-species system using Equation (9), to
obtain

Junreduced =













−k1[S] −k1[E] k2 + k3 0 0
−k1[S] −k1[E] k2 0 0
k1[S] k1[E] −k2 − k3 0 0
0 0 k3 0 0
0 0 0 0 0













. (20)

The models we consider for the Michaelis-Menten (MM) reduction also contain other type
of reactions that are not candidates for the Michaelis-Menten reduction. Additionally, the non-
MM may reactions involve the E and C species on both the reactant and product side. Since
these species are being tracked during the reduction process using a pseudo-species, E0, such that
[E0] = [E] + [C]. We need to replace the occurrences of E/C with E0. If the replacement is on the
reactant side, the rate constant is modified, whereas if it is on the product side, the pseudo-species
concentration is modified, in place of its corresponding species. The strategy is explained case-wise
as follows.

As stated in Equation (7), consider an MM reaction R1, given by
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E + S
k1
⇋

k2
C

k3→ E + P, (21)

and a non-MM reaction R2,

A+B
k
→ D. (22)

1. Suppose an Enzyme E of an MM-reaction R1 occurs on the reactant side of R2 (i.e., B = E)
:

A+ E
k
→ D. (23)

When the reaction R1 is being reduced by the MM-scheme, the rate of change of [D] is given
by

d[D]

dt
= k[A][E]. (24)

Using Equation 16, this is rewritten as,

d[D]

dt
=

k[A][E0]Km

Km + [S]
= k′′[A][E0], (25)

where k′′ = kKm

Km+[S] Thus, we are now using the concentration of E0 to compute the rate of

change of [D]. Similar procedure is followed if B = C.

2. Suppose the enzyme of R1 occurs on the product side of the reaction R2 :

A+B
k
→ E. (26)

We keep track of E0 instead of E, i.e.

d[E0]

dt
= k[A][B]. (27)

A similar procedure is followed if D = C.

To summarize, we consider the effect of reduction of a MM reduction on other reactions that
have E or C as a reactant or a product. For the MM reaction, with enzyme E and complex C, we
consider a pseudo-species E0 whose concentration is [E0] = [E] + [C]. We halt the update of [E]
and [C], and instead update [E0] as shown in Equation (27). The products of the non-MM reaction
are updated based on [E0] as shown in Equation (25). At any point, [E] and [C] can be recovered
using equations (16) and (17) respectively. Therefore, the rates of the dependent non-MM reactions
now contain [E0] instead of [E] and [C], and [E0] also depends on the evolution of these reactions.
The Jacobian and the RHS terms for the involved species are changed accordingly.
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B Michaelis-Menten Reduction : Setup

As mentioned in Section 4.3 we need to implement a generic form for the right-hand side func-
tion and the system’s Jacobian. Both these ODE components assume a different form when the
Michaelis-Menten (MM) reduction is used. We should be able to switch to the reduced form when
the Quasi Steady State conditions [E0] << [S]+Km is met. and revert back to the unreduced form,
when the valid condition is violated. To handle the switching, we maintain a flag that separates
the two cases.

d

dt













[E]
[S]
[C]
[P ]
[E0]













= (!flag)(RHSunreduced) + (flag)(RHSreduced). (28)

Thus, when the flag is on, the unreduced RHS is used, and when the flag is off, the reduced
right-hand side function is used. The Jacobian (now a 5×5 system) also is constructed in a similar
manner using the same flag, i.e.

J = (!flag)(Junreduced) + (flag)(Jreduced). (29)

In this manner, we maintain a list of flags - flag1, f lag2 · · ·, one per MM reaction.
Apart from this, we need to handle a number of special cases for the non-MM reactions. Consider
a non-MM reaction of the form :

A+B → C +D.

The following cases may occur –

1. Either A or B is an enzyme/complex of some MM-reaction.

2. A is an enzyme/complex for MM-reaction R1 and B is an enzyme/complex for MM-reaction
R2.

3. C and D are enzymes/complexes of different MM-reactions R1 and R2.

We observed that due to the possibility of simultaneous occurrence of above cases, the resul-
tant Jacobian and right-hand side would become extremely complex, For simplification purposes,
we only consider the cases that actually happen in the model we are going to simulate. The
model that we eventually adapted : the Hockins Coagulation model contains only cases 1 and 3.
It consists of 34 species and 3 MM reactions, and no two MM-reactions share the same E/C species.

Even with such a small model with a lesser complexity, it was difficult to hand-code the right-
hand side and Jacobians to handle all the cases. We therefore implemented a code-generator which
creates these ODE components.
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